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A B S T R A C T

This paper describes fluid classification methods using machine learning applied on a microfabricated Coriolis
mass flow sensor with integrated pressure sensors. The latter are positioned upstream and downstream of
the Coriolis mass flow sensor, which enables the measurement of the viscosity-dependent pressure drop. The
Coriolis mass flow sensor itself is particularly sensitive to the mass flow and density of the fluid. Five different
liquids (nitrogen, water, isopropanol, ethanol and acetone) are applied to the sensor system in different
combinations of mass flow rate, pressure and temperature. For each combination, the raw signals from all
sensors are amplified, demodulated, digitized, sampled and stored. Then BiLSTM and CNN neural networks
were trained and tested by using train-test split validation and K-fold cross-validation. With both methods,
the classification accuracy is determined using a different part of the dataset than for learning. For mass flow
rates up to 5 g/h, pressures between 4 bar and 6 bar and temperatures between 288 K and 308 K. BiLSTM
performs best with a cross-validated accuracy of 77% up to 100%, dependent on the inclusion of low-flow
data.
1. Introduction

Liquids and gases play leading roles in organisms and machines and
their interactions with their environments. Sensing fluid parameters,
flow rates and pressures has therefore numerous applications in indus-
try, healthcare and the environment. Miniaturization of fluid sensing
principles used in these applications, by e.g., microtechnology, have
shown significant advantages in mass fabrication and performance [1,
2].

Coriolis mass flow sensors form a category of these sensors that
use a flow-dependent mechanism to detect the true mass flow rate.
These sensors have successfully been miniaturized [3,4] and have been
integrated with in-line pressure sensors using the same microtechnol-
ogy [5]. This evolved into actual multi-parameter fluid measurement
systems that are capable of measuring real-time mass flow, pressure,
density and viscosity [6].

Sensing structures that are directly or indirectly sensitive to fluid
parameters like viscosity and density can be used to recognize the
fluid using a simple decision tree, e.g., for oil in water [7]. When sit-
uations become more complicated, e.g., substances with temperature-
dependent viscosities and varying flows, more elaborate decision mak-
ing processing is required. This can be developed automatically by a
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computer system that learns from examples: machine learning [8]. The
use of machine learning might even enable the detection of information
from sensor combinations that was not detectable using conventional
data processing [9,10].

The latter has potential, as sensors are generally not sensitive to just
one physical quantity. For example, a simple steel ruler does not only
measure distance, but also temperature as the steel expands for higher
temperatures. Dependence on other physical quantities can be reduced
by a smart design and sensor fusion [11]. Although designers try to
optimize the linearity and sensitivity to one quantity of interest, it is
mathematically more relevant that the output signals are distinguish-
ably and repeatably sensitive to all quantities of interest. A specific
example is presented in [12], in which the side-effects of a Coriolis mass
flow sensor were used to measure the differential pressure. This enables
the sensor to indirectly detect the kinematic viscosity and, thanks to the
integrated density sensing within the same structure, dynamic viscosity.

Application-oriented machine learning has been used many times in
combination with sensor data, examples being image recognition [13],
speech recognition [14,15], farm optimization [16] and oil spill de-
tection [17]. Research on machine learning is mostly focused on the
software algorithms or on a novel application-oriented features using
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off-the-shelf sensors. This trend is also applicable in fluidics, where
e.g., the detection of gases using gas sensors has been improved in sen-
sitivity and reduction of drift by machine learning [18]. More specific,
machine learning techniques have also been applied to improve the
performance of Coriolis mass flow sensors [19–21], e.g., by reducing
the uncertainty for multi-phase flow measurements.

The use of machine learning to process the data from such ex-
perimental microfluidic devices is an emerging field, varying from
biotechnological applications, e.g., cell classification [22] to device
design optimization [23]. To our knowledge machine learning has
never been used in combination with microfabricated Coriolis-based
multi-parameter fluid measurement systems. Yet, it has potential to
improve performance, understanding and functionality when directly
applied to the raw sensor signals that contain as many as possible
(including non-ideal) aspects of the sensing mechanisms. This paper
describes the first step, in which the raw signals are used for fluid
classification.

A feasibility study on a simulated dataset has been performed
preliminary to this research [24]. In this paper, we present fluid clas-
sification using a microfabricated Coriolis mass flow sensor with in-
tegrated pressure sensors. First, the theory and design of the sensors
and machine learning algorithms are described. Then, the fabrication,
experimental setup and preprocessing are discussed. The classification
performance is presented in the Results section. The paper concludes
with a discussion, summary and outlook.

2. Theory and design

The sensor design is presented in [6] and is kept unchanged. It
consists of a Coriolis mass flow sensor and two pressure sensors. The
latter are positioned in the upstream and downstream channels of the
Coriolis mass flow sensor as illustrated in Fig. 1a.

2.1. Mass flow and density sensing

The Coriolis mass flow sensor consists of a rectangular frame of
silicon nitride channels with semi-circular cross section. It is mechan-
ically fixed in the center at one of the sides of the rectangular frame.
The channel can be actuated by Lorentz actuation, i.e., an alternating
current through one of the wires on top of the channel in a magnetic
field causes the channel to move in so-called twist mode. A mass flow
through the vibrating channel causes a Coriolis force which forces the
channel to vibrate in a second mode at the same frequency. This so-
called swing mode is a measure for the mass flow rate through the
channel. The actuation and detection modes are illustrated in Fig. 1b.

Two gold electrodes are positioned at each side of the twist mode
axis as indicated in Fig. 1b. Without mass flow, the phase shift between
the electrodes is 180°. The swing mode, due to a mass flow, causes
the electrodes to move less than 180° shifted from each other. The
phase shift 𝛥𝜙 can be derived from the ratio between the swing mode
amplitude �̂�swing and the twist mode amplitude �̂�twist at the electrode’s
position 𝑥e:

𝛥𝜙 = arctan
( �̂�swing(𝑥e)

�̂�twist(𝑥e)

)

∝ arctan (�̇�) ≈ �̇�, (1)

which is approximately proportional to the mass flow �̇� for small phase
shifts, and thus low mass flows.

The fluid inside the channel is a significant part of the total mass of
the vibrating structure. The resonance frequency 𝑓0 of the filled channel
is therefore not only dependent on the mass of the channel 𝑚c, but also
on the density of the fluid 𝜌f:

𝑓0 ∝
1
2𝜋

√

𝑘eff
𝑚c + 𝑉f𝜌f

, (2)

with 𝑘eff the effective spring constant of the channel for the twist mode
and 𝑉f the volume inside the vibrating channel. The density of the fluid
can therefore be measured with the same structure and in parallel with
the mass flow. Fig. 1e shows an illustration of the signals from the
electrodes.
2

Fig. 1. Principle of fluid classification using an integrated mass flow sensor and
pressure sensors, with (a) the chip, (b) the two modes of the Coriolis mass flow sensor,
(c) the pressure sensor structure with deforming membrane, (d) different applied fluids,
(e) the four output signals, (f) pre-processing and (g) the neural network that recognizes
the fluid after training.
Source: Adapted from [5].

2.2. Pressure and viscosity sensing

The pressure sensors consist of the same type of semi-circular sil-
icon nitride channels, but are fixed in the silicon bulk as illustrated
in Fig. 1c. The flat silicon nitride ceiling of the channels forms a
membrane that deforms due to a pressure inside the channel that
is different than the pressure outside the channel. Meandering gold
electrodes are positioned on top of the channel. Two of these electrodes
elongate and two electrodes compress when the membrane deforms.
These pressure-dependent resistors are configured in a Wheatstone
bridge configuration. The output voltage 𝑉bridge can be approximated
by the following model:

𝑉bridge ∝ 𝑃𝑉supply, (3)

with 𝑃 the gauge pressure and 𝑉supply supply voltage of the Wheatstone
bridge. Both pressure sensors combined can be used to measure the
pressure drop

𝛥𝑃 = 𝑃 − 𝑃 (4)
upstream downstream
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Fig. 2. Illustration of machine learning where a set of rules 𝑔(𝐗) will be found by
lgorithms to predict output values 𝐘 based on input values 𝐗.

nd the average pressure

𝑃 ⟩ =
𝑃upstream + 𝑃downstream

2
(5)

over/in the Coriolis mass flow sensor channel.
The combination of sensing structures, i.e., the Coriolis mass

flow/density sensor and the pressure sensors, can be used to estimate
the viscosity of the fluid. Following to the Hagen–Poiseuille law, the
relation between the pressure drop 𝛥𝑃 and the mass flow �̇� is:

𝛥𝑃 =
8𝜂𝐿
𝜌𝜋𝑟4eff

�̇� = 8𝜈𝐿
𝜋𝑟4eff

�̇�, (6)

with 𝜂 the dynamic viscosity, 𝜈 the kinematic viscosity, 𝐿 the length of
the channel, 𝜌 the density of the fluid and 𝑟eff the effective radius [25].
This is a rough estimation, as it assumes an incompressible Newtonian
fluid with uniform density without acceleration with a laminar fluid
flow. Nevertheless, also in non-ideal cases, e.g., when the fluid is
compressible, the viscosity still has a positive effect on the pressure
drop. Using the Hagen–Poiseuille law as a function of the kinematic
viscosity compared to dynamic viscosity is convenient when mass flow
is measured, since the relation is independent of density.

Summarized, the sensing structures are together able to measure
the fluid’s mass flow, pressure drop, density, and viscosity. Although
rough linear estimations of the physical sensing principles are given,
the actual relations are more complex. This holds especially for com-
pressible fluids and fluids with a very low density (e.g., gases). Further-
more, other complex physical effects might give interesting information
of the fluid. The magnitudes of the higher order harmonics of the
Coriolis mass flow sensor are for example pressure dependent [12].
Since the raw signals of these sensors contain fluid-dependent and
fluid-independent information, they could be used to classify the fluid.

2.3. Machine learning algorithms

As depicted in Fig. 2, a machine learning algorithm is an algorithm
that is able to find rules 𝐘 = 𝑔(𝐗) from training data, usually pairwise
data of input vector 𝐗 and output vector 𝐘. Traditionally, scientists
are supposed to find these (physical) rules, as e.g., given by Eqs. (1),
(2), (3), and (6). In contrast, machine learning researchers design
algorithms to approximate these rules for scientists.

In 1997, Mitchell [8] provided a solid definition ‘‘A computer
program is said to learn from experience 𝐸 with respect to some class
of tasks 𝑇 and performance measure 𝑃 , if its performance at tasks in
𝑇 , as measured by 𝑃 , improves with experience 𝐸’’. In this paper, we
formulate our fluid classification problem using the aforementioned
definition of machine learning.

Given the sampled discrete-time signals from the Coriolis mass
flow sensor and two pressure sensors, we aim at training a machine
learning model which can classify four different fluid types, such as
nitrogen, water, isopropanol, ethanol, and acetone. Note that it is
necessary to incorporate a settling time between changing conditions,
so the discrete-time sampled signals have been measured in steady-
3

state. Regarding the definition of machine learning above, the model
is asked to specify which of 𝑛 (= 5) fluid types the test sample belongs
to (task 𝑇 ). By comparing the predicted fluid types and their actual
labels (the ‘truth’), a performance measure 𝑃 can be defined. The
model improves performance with experience 𝐸 after each iteration of
comparing the predicted fluid type with the label.

This type of task is so-called classification [26,27]. To solve this
task, the learning algorithm has to learn a way to produce a function 𝑔

𝐘 = 𝑔(𝐗) (7)

with the input 𝐗 ∈ R𝑚×𝜏 of 𝑚 signals with each 𝜏 samples, and 𝐘 ∈ N1×𝑛.
In other words, the model assigns the sensory measurements, described
by the input vector 𝐗 to a fluid type identified by numeric code 𝑦. By
using the labeled fluid types (experience 𝐸), identifying the fluid types
(𝑇 ), and evaluating performance (𝑃 ), the model learns to produce the
function 𝑔 which forms a probability distribution over the four fluid
types.

In this paper, we use two recent machine learning algorithms,
i.e., convolutional neural networks (CNN) [28] and Bidirectional Long
Short-Term Memory (BiLSTM) [29,30], to produce the function 𝑔.
Traditional deep neural networks (DNN) use matrix multiplications to
describe the correlation between input and output. For each DNN layer,
if there are 𝑚×𝜏 inputs and 𝑛 outputs, the matrix multiplication requires
𝑚 × 𝜏 × 𝑛 parameters and the runtime is proportional to 𝑚 × 𝜏 × 𝑛. With
CNN, the number of neurons can be significantly reduced while it is
still possible to obtain good accuracy. Using CNN also allows us to train
the network models quicker since the learned signatures that represent
the fluid type in one part of the signal can be reused in another part
of the signal. In addition, we expect that the signatures are sparse in
the input signals. CNN will learn to just focus on the signature, not the
entire window of the signals.

While CNN is a very effective model for classification, it does not ex-
plore the temporal information in sequential data, whereas the sensing
structures can provide data continuously. Exploring the temporal infor-
mation might improve the classification accuracy. In fact, CNN also can
share parameters across time when a sliding window is used. However,
performance is still limited to the size of the sliding window. Therefore,
in this paper we also apply recurrent neural networks (RNN) [29,30].
An RNN processes a sequence of input values 𝐱𝑡, 𝐱𝑡 ∈ R𝑚, where
𝑡 = 1, 2,… , 𝜏, with 𝜏 the number of sequential input samples within
a window of observation 𝐗, 𝐗 = {𝐱1,… , 𝐱𝜏}. The key idea to enable a
recurrent neural network to exploit the temporal information is sharing
parameters 𝜃 across time. In an RNN, the output of state 𝐒𝑡 is a function
of the previous state 𝐒𝑡−1, signal input 𝐱𝑡 and the sharing parameters
output 𝜽 used to parametrize 𝑔,

𝐒𝑡 = 𝑔
(

𝐒𝑡−1, 𝐱𝑡;𝜽
)

, (8)

where the states 𝐒𝑡 contains information about the whole past sequence,
which are the fluid types in our application.

In practice, RNN is also not able to capture the information which
happened further back in the past, i.e., detecting long-term depen-
dencies. The basic problem is the vanishing gradient problem when
that gradients propagated over many states. The exponentially smaller
weights given to long-term interactions also remove long-term depen-
dencies as a weight 𝐰 is multiplied by itself many times. The product
𝐰𝑡 will either vanish or explode (rarely) depending on the magnitude
of 𝐰. To overcome the limitations of a regular RNN on long-term
dependencies, Long Short-Term Memory (LSTM) [29] is adopted in
addition to CNN.

Future input signals coming up later than the current time 𝑡 + 𝑡l is
usually also useful for prediction. With a recurrent neural network, this
can be achieved by delaying the output of RNN and LSTM. In practice,
this method is not expected to be effective, especially when 𝑡l is very
large. The RNN could increasingly concentrates on remembering the
input information up to 𝑡 + 𝑡l to predict the output 𝐘𝑡. In other words,

less knowledge from previous input vectors was used for the prediction.
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To this end, Bidirectional Long Short-Term Memory (BiLSTM) [31] is
adopted as most effective method. BiLSTM is capable of learning long-
term dependencies in the past and future of a specific time frame [31,
32].

To investigate whether the predictions made by the models are re-
liable and reasonable, the classification decisions of the trained models
should be analyzed after training. Gradient-weighted class activation
mapping (Grad-CAM) technique [33] utilizes the gradient of the net-
work’s classification score with regards to its determined convolutional
features to identify the crucial aspects of the data for classification.
In the case of our time-series sensor data, Grad-CAM determines the
time steps that have the greatest impact on the network’s classification
decision.

3. Fabrication and experimental setup

Before the mentioned classification methods can be applied, the
described sensor chip has to be fabricated and connected to a fluidic
and electronic interfacing setup. Then, the signals from the sensor
chip together with the fluid labels need to be digitized and stored for
different conditions of the fluid.

3.1. Fabrication

The device is fabricated using Surface Channel Technology [34,35].
Fig. 3 shows an illustration of the most relevant steps of this process.
Microchannels are realized by low-pressure chemical vapor deposition
of a low-stress silicon-rich silicon nitride (SiRN) layer (Fig. 3b), etching
of a slit pattern in this layer by reactive ion etching (Fig. 3c) and
isotropic plasma etching in the highly p-type doped silicon wafer
(Fig. 3d). Inlets are realized by wafer-through deep reactive-ion etching
from the backside (Fig. 3e). A second deposition step of SiRN is per-
formed to form the channel and inlet walls (Fig. 3f). Metal layers are
deposited using sputtering (chromium and gold) to form the electrodes
(Fig. 3g) and are etched using ion beam etching. A final isotropic
plasma etch is performed to release the channels from the silicon. A
microscopy image is shown in Fig. 4.

When the wafer is separated into chips, the chips are adhesively
bonded onto a printed circuit board and wirebondend. Interfacing to
the chip board is performed by the lab’s standard 3D-printed fluidic
connector and pogo-pin connections [37].

3.2. Experimental setup

Fig. 5 shows an illustration of the experimental setup for fluid
and temperature control. The liquids are applied to the sensor using
a reservoir in a pressure chamber. A pressure controller (Bronkhorst®
EL-PRESS P-602CV) is used to control the pressure of the liquid at the
inlet of the chip. A flow sensor with control valve (Bronkhorst® mini
CORI-FLOW™ ML120V21) controls the flow through the chip. Extra
pressure sensors (uncalibrated Honeywell sensors from the 24PC series)
have been included to record the pressure changes in real-time together
with the on-chip measurements, but the data has not been used in the
analysis. The chip with electronic and fluidic interfacing is placed in
an incubator (Peltier-cooled incubator IPP55 from Memmert) to apply
different temperatures (see Fig. 6). A photograph of the setup is shown
in Fig. 6.

The sensing structures on the chip are resistive (Wheatstone bridge)
for the pressure sensors and capacitive for the Coriolis mass flow sen-
sor. The Wheatstone bridge signals are recorded using a custom-built
synchronous detector, consisting of a differential amplification stage,
demodulation at the carrier wave frequency with offset correction and
a low-pass filter.

The Coriolis mass flow sensor is placed in a constant magnetic
field and actuated using Lorentz actuation. The actuation current is
provided by a custom made oscillator circuit that amplifies signal
4

Fig. 3. Illustration of the most relevant fabrication steps of Surface Channel Technol-
ogy [34,35]. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Source: Reprinted from [36].

Fig. 4. Microscope image of the integrated upstream pressure sensor and part of the
Coriolis channel.

from the electrodes of the Coriolis channel. This circuit in combination
with the Coriolis channel form an electromechanical oscillator which
frequency is only dependent on the mechanics as described by Eq. (2).
The capacitive signals of the Coriolis mass flow sensor are detected
using a charge amplifier with virtual ground to reduce parasitic effects.
Similar to the resistive readout circuitry, demodulation of the carrier
wave and low-pass filtering is performed to reduce the signals outside
the band of interest. All analog signals are recorded using an analog-
to-digital converter (ADC) card (NI PCI-6143) and stored on a hard
drive. Effectively, the Coriolis mass flow sensor signals are sampled
with 250 kS s−1 for 1 s. One sample is captured for each pressure sensor
and is copied 250,000 times to match the length of the Coriolis mass
flow sensor signals. A schematic representation of the readout circuitry
is shown in Fig. 7.
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Table 1
Overview of the five different fluids used in the experiments with values for the density, kinematic viscosity and dynamic viscosity for a gauge
pressure of 5 bar. Similar values are highlighted. All parameters are estimated using Bronkhorst® FLUIDAT® [38].
Fluid Abbreviation Phase Temperature (K) Density

(kgm−3)
Kinematic
viscosity (mm2 s−1)

Dynamic
viscosity (mPa s)

Nitrogen N2 Gas 288 7.05 2.44 1.73 ⋅ 103

Nitrogen N2 Gas 308 6.58 2.76 1.82 ⋅ 103

Water H2O Liquid 288 999 1.16 1.15
Water H2O Liquid 308 995 0.74 0.74
Isopropanol IPA Liquid 288 800 3.40 2.72
Isopropanol IPA Liquid 308 778 1.94 1.51
Ethanol EtOH Liquid 288 812 1.53 1.27
Ethanol EtOH Liquid 308 791 1.10 0.87
Acetone Ace Liquid 288 805 0.42 0.34
Acetone Ace Liquid 308 800 0.36 0.28
Fig. 5. Illustration of the experimental setup for fluid and temperature control. Note
that there are four variables that can be controlled in this setup: the type of fluid, the
temperature, the pressure and the mass flow.

3.3. Conditions

Various environmental and fluid conditions are applied to test the
performance of the sensor and classification algorithms. All combina-
tions of temperatures between 288K and 308K in steps of 5K, pressures
between 4 bar and 6 bar in steps of 0.5 bar, and mass flows between
0 g h−1 and 5 g h−1 in steps of 0.3 g h−1 to 1 g h−1 have been applied.
The applied conditions are measured by the reference sensors. The
measured conditions are presented in Fig. 8.

All experiments have been conducted with five different fluids:
nitrogen (N2), water (H2O), isopropanol (IPA, propan-2-ol), ethanol
(EtOH) and acetone (Ace, propan-2-one). Relevant parameters for these
experiments, i.e., density and viscosity, for 288K and 308K for 5 bar
are presented in Table 1. Isopropanol, ethanol and acetone have similar
densities, which forces any successful classification method to be based
on more than density sensing alone. Furthermore, water and ethanol
have similar dynamic viscosities, although their kinematic viscosities
are different.

3.4. Pre-processing

The dataset consists of 5540 streams, with each 4 signals of 250,000
samples captured in 1 s. First, the data as indicated by the brown-
shaded areas in Fig. 8 is removed from the set. This data corresponds
5

Fig. 6. Photograph of the experimental setup with (a) pressure controller (not clearly
visible), (b) pressure vessel with liquid reservoir, (c) incubator, (d) sensor chip, (e) flow
controller, (f) electronics as illustrated in Fig. 7, (g) lock-in amplifiers for debugging,
(h) computer with digitizers and storage.

to measurements where fluids have just been exchanged and redundant
measurements. Since a stream of one second at 250 kS s−1 is longer
than needed for signals in the kHz-regime, each stream is split into
50 parts, with each part being 5000 samples (i.e., 20ms, > 40 periods
at resonance). A low mass flow can cause a pressure drop that is too
low to sense. Therefore, five different datasets with different thresholds
for the mass flow are extracted, i.e., ≥ 4 g h−1 (all data with mass
flows lower than 4 g h−1 is removed), ≥ 3 g h−1, ≥ 2 g h−1, ≥ 1 g h−1

and no threshold (leaving all data in the dataset). This means that no
classification has been performed for nitrogen when low mass flows
(< 2 g h−1) are removed from the dataset.

The four signals are then subjected to the feature extraction al-
gorithm. The average pressure and the pressure drop of the Coriolis
mass flow sensor channel is calculated from the two pressure sensor
signals. The magnitude spectrum and phase spectrum are calculated
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Fig. 7. Illustration of the electronic measurement setup. Everything above the ×2 mirror line has been implemented twice.
Fig. 8. Illustration of the applied conditions to the chip, based on measurement data from the reference sensors. All combinations of fluids, temperature, pressure and mass flow
have been applied. The brown-shaded intervals have been removed from the dataset. The bottom gray area show (partly) the four signals that are recorded during each condition.
A settling time between measurements without data acquisition has been incorporated. The pressure sensor signals are based on one repeated sample to match the sample length
of the signals from the Coriolis electrodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
from the Coriolis mass flow sensor electrodes by Fast Fourier Trans-
forms (FFT). A notch filter at resonance and harmonics is applied to
the phase spectrum to emphasize the relevant Coriolis-induced phase
shift. A schematic overview of the pre-processing algorithm, including
the feature extraction, is shown in Fig. 9.

3.5. Training

Neural networks based on both BiLSTM and CNN have been trained
using MATLAB® R2023a with the Deep Learning Toolbox™. An
6

overview of the CNN layer stack is given in Table 2 [27,39]. The
architecture consists of a sequence input layer, two one-dimensional
convolution layers with rectifying linear units and layer normalization
layers, one-dimensional global average pooling layer, fully connected
layer, softmax layer and classification layer. The CNN architecture
results in 7076 learnable parameters. On the other hand, the BiLSTM
layer stack consists of a sequence input layer, BiLSTM layer, fully
connected layer, softmax layer and classification layer 3. The BiLSTM
architecture results in 84804 learnable parameters, 12X more than
the CNN model. To make the training lightweight and generalized
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1
v

Fig. 9. Schematic overview of the pre-processing algorithm. The streams of data are split into multiple streams and then filtered for two different mass flow thresholds. Features
are then extracted from each stream. The resulting dataset is then split into a set for learning and a set for testing. In addition to this train-test split validation method, also K-fold
cross-validation is performed.
Table 2
Used CNN architecture with eleven layers based on MATLAB® syntax [27,39].

Layer Type Description

1 Sequence input Sequence input with 4 dimensions (2 when
pressure sensor signals are excluded)

2 1D Convolution 32 3 × 4 convolutions with stride 1 and
padding

3 ReLU Rectified linear unit layer
4 Layer normalization Layer normalization with 32 channels
5 1-D Convolution 64 3 × 32 convolutions with stride 1 and

padding ‘causal’
6 ReLU Rectified linear unit layer
7 Layer normalization Layer normalization with 64 channels
8 1D Global average pooling 1D global average pooling
9 Fully Connected Fully connected layer with output size 4 or

5, dependent on the inclusion of nitrogen
10 Softmax Softmax layer
11 Classification output Crossentropyex of ‘1’ and 3 other classes

with very noisy and sparse input signals, we use the Adam opti-
mizer [40]. The Adam optimizer combines the advantages of two other
extensions of stochastic gradient descent, Adaptive Gradient Algorithm
(AdaGrad) and Root Mean Square Propagation (RMSProp). AdaGrad
maintains a per-parameter learning rate that improves performance
on problems with sparse gradients. Meanwhile, RMSProp adapts per-
parameter learning rates based on the average of recent magnitudes
of the gradients for the weight (e.g., how quickly it is changing).
This means that the algorithm can handle online and non-stationary
problems (e.g. noise). We have fine-tuned the models to a learning rate
of 0.001. The maximum epochs were set to 3, mini-batch size is set to
50. To train and test the models, we have performed two different
alidation methods: train-test split using 70% of the data for training

(𝐗tr) and 30% for testing (𝐗) and K-fold cross-validation with 𝐾 = 10.
With the latter method, the dataset is split into ten groups. In ten cycles,
each tenth of the dataset is used for testing and the rest for training.
This results in ten accuracies of which the mean and standard deviation
can be calculated as a measure for the reliability of the method.

3.6. Analytical benchmark

Parallel to testing the neural network, a simple fluid classification
algorithm based on Eqs. (2) and (6) has been applied to the same
testing parts of the dataset (𝐗) as for the neural network training. First,
measures for the resonance frequency and for the viscosity are extracted
7

Table 3
Used LSTM architecture with five layers based on MATLAB® syntax [27,39].

Layer Type Description

1 Sequence input Sequence input with 4 dimensions (2 when
pressure sensor signals are excluded)

2 BiLSTM BiLSTM with 100 hidden units
3 Fully connected Fully connected layer with output size 4 or

5, dependent on the inclusion of nitrogen
4 Softmax Softmax layer
5 Classification output Crossentropyex of ‘1’ and 3 other classes

from the data. Based on these two parameters, decision trees with a
maximum depth of four are automatically generated using MATLAB®
R2023a. The decision trees are tested using the same testing part of
the dataset (𝐗tr) as for the neural network testing. The results of these
analytical benchmarks are labeled ‘Analytical’ in the results.

4. Results

A quick characterization has been performed to verify the condition
of the Coriolis mass flow sensor. Fig. 10a shows the phase shift at
resonance between the two capacitive signals for different mass flows
for different fluids. A line, based on the linear relation in Eq. (1), has
been fitted through the results and show a sensitivity of 2.7 ° h g−1.
Fig. 10b shows the resonance frequency for the different densities of
the applied fluids. A line, based on the relation in Eq. (2), has been
fitted through the results.

The classification analyses that have been performed can be catego-
rized into the following combinations:

• Analytical, all sensor signals included, using train-test split vali-
dation;

• BiLSTM, all sensor signals included, using train-test split valida-
tion;

• BiLSTM, all sensor signals included, using K-fold cross-validation;
• BiLSTM, pressure sensor signals excluded, using train-test split

validation;
• CNN, all sensor signals included, using train-test split validation;
• CNN, all sensor signals included, using K-fold cross-validation;
• CNN, pressure sensor signals excluded, using train-test split vali-

dation.
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Fig. 10. Characterization plots for the Coriolis mass flow sensor. The Coriolis model fit
and density model fit are based on Eqs. (1) and (2) respectively. The graphs are based
on the same dataset as for classification, with data for 20 °C, for all applied pressures
and split for different fluids. Reference values for the density are from Table 1, reference
values for the flow are from the reference flow meter (Bronkhorst® mini CORI-FLOW™

L120V21), rounded to the nearest setpoint to enable statistical analysis. Errorbars
epresent three times the standard deviation.

hen, for each combination, analyses are performed for a mass flow
hreshold of ≥ 4 g h−1, ≥ 3 g h−1, ≥ 2 g h−1 and ≥ 1 g h−1 and for no
hreshold, which sums up to a total of 35 analyses. Most important
esults, i.e, BiLSTM and CNN including all sensor signals using train-test
plit validation for ≥ 4 g h−1, ≥ 2 g h−1 and no threshold are presented
n Tables 4, 5–9. The accuracies for all results (including K-fold cross-
alidation and excluding pressure sensors) are summarized in Table 10.
ig. 11 shows a graphical comparison of the different methods and their
ccuracies using train-test split validation.

To show how the model pays attention to the input signals, five
andom test examples from the five different fluid types have been ana-
yzed using Grad-CAM [33]. Fig. 12 displays the four extracted feature
ignals with highlighted Grad-CAM importance for both BiLSTM and
NN, which emphasizes the areas utilized by the network in making

ts classification decision. In most cases, there is high importance at
esonance. Yet, a high importance at resonance is not directly related
o classification by density of the fluid, since the viscosity has influence
t the phase at resonance as well.

. Discussion

In this paper, we have shown that the functionality of existing
icrofabricated Coriolis mass flow sensors can be extended by ma-

hine learning. By post-processing, it is proven that fluid classification
s possible without sensor redesign. After training, the model may
ven be implemented in embedded processing electronics for real-
ime fluid classification. This enables non-invasive physics-based fluid
8

lassification in in-line medical or industrial systems.
Table 4
Predicted values for four different liquids for flows of 4 g h−1 and higher using BiLSTM.
Accuracy: 100%.

BiLSTM Predicted

≥ 4 g h−1 N2 H2O IPA EtOH Ace Recall

True

N2 – – – – – –
H2O – 2740 0 0 0 100%
IPA – 0 745 0 0 100%
EtOH – 0 0 3272 0 100%
Ace – 0 0 0 4195 100%

Precision – 100% 100% 100% 100%
𝐹1 score – 100% 100% 100% 100%

Table 5
Predicted values for four different fluids for flows of 4 g h−1 and higher using CNN.
Accuracy: 100%.

CNN Predicted

≥ 4 g h−1 N2 H2O IPA EtOH Ace Recall

True

N2 – – – – – –
H2O – 2740 0 0 0 100%
IPA – 0 745 0 0 100%
EtOH – 0 0 3272 0 100%
Ace – 0 0 0 4195 100%

Precision – 100% 100% 100% 100%
𝐹1 score – 100% 100% 100% 100%

Table 6
Predicted values for four different fluids for flows of 2 g h−1 and higher using BiLSTM.
Accuracy: 92.2%.

BiLSTM Predicted

≥ 2 g h−1 N2 H2O IPA EtOH Ace Recall

True

N2 – – – – – –
H2O – 5025 0 477 0 91%
IPA – 3 3963 2231 0 64%
EtOH – 1730 1037 6579 0 70%
Ace – 101 0 0 10 146 99%

Precision – 73% 79% 71% 100%
𝐹1 score – 81% 71% 71% 100%

Table 7
Predicted values for four different fluids for flows of 2 g h−1 and higher using CNN.
Accuracy: 76.6%.

CNN Predicted

≥ 2 g h−1 N2 H2O IPA EtOH Ace Recall

True

N2 – – – – – –
H2O – 2991 0 1811 700 54%
IPA – 0 3888 2309 0 63%
EtOH – 1049 1021 6947 329 74%
Ace – 97 0 0 10 150 99%

Precision – 72% 79% 63% 91%
𝐹1 score – 62% 70% 68% 95%

Table 8
Predicted values for five different fluids for all mass flows using BiLSTM. Accuracy:
84.4%.

BiLSTM Predicted

All flows N2 H2O IPA EtOH Ace Recall

True

N2 8268 0 0 26 0 100%
H2O 0 6189 93 879 1358 73%
IPA 0 764 8691 87 2955 70%
EtOH 0 1133 1292 12 438 834 79%
Ace 0 35 47 56 16 312 99%

Precision 100% 76% 86% 92% 76%
𝐹1 score 100% 74% 77% 85% 86%

From Table 10, it appears that train-test split validation results

in similar accuracies as K-fold cross-validation. This gives a strong
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Table 9
Predicted values for five different fluids for all mass flows using CNN. Accuracy: 50.4%

CNN Predicted

All flows N2 H2O IPA EtOH Ace Recall

True

N2 734 36 847 3604 3073 9%
H2O 0 3198 0 2200 3121 38%
IPA 486 533 3561 5172 2745 28%
EtOH 360 1351 898 7490 5598 48%
Ace 0 310 0 130 16 010 97%

Precision 46% 59% 67% 40% 52%
𝐹1 score 15% 46% 40% 44% 68%

Table 10
Overview of the performances for the discussed methods. Train-test split valida-
tion (TTS) as illustrated by Fig. 9 and K-fold cross validation. In case of K-fold
cross-validation, also the standard deviation is given.

Method Sensors Validation Mass flow
threshold

Accuracy Standard
deviation

Analytical All TTS ≥ 4 g h−1 100%
BiLSTM All TTS ≥ 4 g h−1 100%
BiLSTM All K-fold ≥ 4 g h−1 100% 0.3%
BiLSTM Cori. only TTS ≥ 4 g h−1 47%
CNN All TTS ≥ 4 g h−1 100%
CNN All K-fold ≥ 4 g h−1 100% 0.0%
CNN Cori. only TTS ≥ 4 g h−1 47%

Analytical All TTS ≥ 3 g h−1 96%
BiLSTM All TTS ≥ 3 g h−1 94%
BiLSTM All K-fold ≥ 3 g h−1 93% 2.3%
BiLSTM Cori. only TTS ≥ 3 g h−1 46%
CNN All TTS ≥ 3 g h−1 93%
CNN All K-fold ≥ 3 g h−1 92% 0.6%
CNN Cori. only TTS ≥ 3 g h−1 40%

Analytical All TTS ≥ 2 g h−1 80%
BiLSTM All TTS ≥ 2 g h−1 82%
BiLSTM All K-fold ≥ 2 g h−1 81% 5.5%
BiLSTM Cori. only TTS ≥ 2 g h−1 31%
CNN All TTS ≥ 2 g h−1 77%
CNN All K-fold ≥ 2 g h−1 77% 1.0%
CNN Cori. only TTS ≥ 2 g h−1 41%

Analytical All TTS ≥ 1 g h−1 72%
BiLSTM All TTS ≥ 1 g h−1 85%
BiLSTM All K-fold ≥ 1 g h−1 77% 9.6%
BiLSTM Cori. only TTS ≥ 1 g h−1 76%
CNN All TTS ≥ 1 g h−1 63%
CNN All K-fold ≥ 1 g h−1 64% 0.6%
CNN Cori. only TTS ≥ 1 g h−1 35%

Analytical All TTS – 69%
BiLSTM All TTS – 84%
BiLSTM All K-fold – 88% 7.6%
BiLSTM Cori. only TTS – 64%
CNN All TTS – 50%
CNN All K-fold – 51% 0.8%
CNN Cori. only TTS – 30%

positive indication for (a) the reliability of the used neural network
configurations, (b) the reliability for using provided dataset for learning
and (c) the reliability of the train-test split method.

As shown in Table 10, high accuracies cannot be achieved when ex-
cluding the pressure sensor data for high mass flows. Since isopropanol,
ethanol and acetone have very similar densities (as specified in Ta-
ble 1, classification cannot be performed well on resonance frequency
only. Viscosity of the fluid has more influence on the pressure drop
when the mass flow is higher. Data with only high mass flows show
significantly higher accuracies, up to 100% when all low-flow data of
< 4 g h−1 is removed. For low-flow data where (low-density) nitrogen
comes into play, so statistically more accurate classifications can be
performed on frequency alone as can be concluded from the confusion
matrix in Table 8. Better pressure sensing could help in increasing the
classification accuracy for low flows (and thus low pressure drops). The
gold strain gauges of the pressure sensors may drift due to the high
9

Fig. 11. Graphical representation of the accuracies from Table 10 for the three different
classification methods and for the five different mass flow thresholds using test-train
split validation.

malleability of gold [41], i.e., its ability to easily plastically deform
under pressure-induced stresses. Replacing gold with platinum in the
fabrication process might reduce these drift issues.

The functionality may further be extended, since the raw signals
from the Coriolis mass flow sensor contain valuable information that
is related to physical quantities other than mass flow. The magnitudes
of the higher harmonics are, for example, pressure dependent [12]. In
contrast to the conventional criteria to design the sensor as sensitive
as possible for one specific parameter, the machine learning method
presented in this article could benefit from a vibrating channel with
dependencies on multiple parameters. As can already be concluded
from the Grad-CAM analyses in Fig. 12, the relatively high importance
at the higher harmonics show potential for the use in classification or
more accurate fluid parameter measurements. Focusing more on higher
harmonics in the feature extraction process might render the integrated
pressure sensors redundant.

From Fig. 11, it can be concluded that BiLSTM neural networks
perform better then convolutionary neural networks, especially for
low flows. This is expected due to BiLSTM’s better performance for
sequential data, apparently even in the frequency domain. Although
our BiLSTM model generally performs better than the CNN model, the
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Fig. 12. Gradient-weighted class activation mapping analysis for a random extracted
feature signal from the 0 g h−1 threshold set for the five classes. Note that there might
be difference in conditions (i.e., mass flow, pressure and temperature) for the plotted
analyses.

CNN model is 12× lighter than the BiLSTM model. This is critical when
deploying the models on tiny embedded devices which have limited
memory capacity and computation power. Nevertheless, it requires
further investigation on the trade-off of accuracy-latency and accuracy-
resource consumption to come up with a decision on which model is
more preferred. There is also room for improving the AI models in
several ways. First, the designed models were simple and not fully
optimized. Using a Neural Architecture Search (NAS) [42] would result
in better CNN and BiLSTM models in terms of accuracy. Second, com-
bining CNN and BiLSTM in one neural network architecture has been
10
shown more effective [43,44]. Finally, empirical study [45] showed
that even LSTM can only maintain effectively the long term memory up
to about 1000 previous states. In other words, the information of about
the first 4000 samples of the observation windows in our experiments
were not effectively retrieved. A solution is finding compromise of
using shorter windows, lower sampling rates, and replacing BiLSTM
with Transformer [46]. With the attention-based model of Transformer,
all such 5000 samples in the observation windows will be considered
together for the classification task.

Future work will focus on the classification of additional types of
fluids and fluid compositions. Optimizations of the machine learning
hyperparameters and the use of algorithms that might give more
insight into the sensor’s limitations (e.g., Bayesian neural networks)
are planned. Furthermore, a new generation of sensing structures
optimized for machine learning should be designed, possibly even
computer-generated. Another challenge for the future lies in the regres-
sion of the physical parameters, e.g., density and viscosity.

6. Conclusion

Novel methods to classify fluids using a microfabricated Corio-
lis mass flow sensor with integrated pressure sensors and a trained
machine learning model has been realized. Thanks to the chip’s mech-
anisms that are sensitive to multiple fluid parameters, correct classi-
fication proved to be mostly independent on mass flow, pressure and
temperature. A comparison has been made between machine learning
methods BiLSTM and CNN and an analytical method, of which BiLSTM
performs best with a cross-validated accuracy of 77% up to 100%,
dependent on the inclusion of low-flow data. Improved pressure sensing
can further reduce the lower flow limit.

Future work will focus on physics-based machine learning algo-
rithms for fluid composition classification, physical parameter regres-
sion and computer-generated sensor designs.
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