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Abstract
In this article, we investigate the possible torsion sub-
groups of twists of abelian varieties with good reduction.
As an application, we prove a theorem concerning
ramified primes over any quadratic extension where
odd-order torsion growth is achieved. In particular, we
show that for every rational elliptic curve and every
imaginary quadratic field not equal to ℚ(

√
−3) sat-

isfying the Heegner hypothesis, no odd-order torsion
growth can occur.
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1 INTRODUCTION

Let𝐾 be a number field of degree𝑑 and let𝐴∕𝐾 be an abelian variety of dimension g . TheMordell–
Weil theorem states that the set 𝐴(𝐾) of 𝐾-rational points of 𝐴∕𝐾 is a finitely generated abelian
group, and therefore, it decomposes as

𝐴(𝐾) ≅ 𝐴(𝐾)tors ⊕ℤ𝑟,

where𝐴(𝐾)tors is a finite subgroup called the torsion subgroup and 𝑟 is a nonnegative integer. The
problem of producing bounds for the torsion subgroup 𝐴(𝐾)tors has a very long and rich history.
When g = 1 and 𝑑 ⩽ 2, that is, when 𝐾 is either ℚ or a quadratic number field and 𝐴∕𝐾 is an
elliptic curve defined over 𝐾, we have a complete classification of the possible torsion subgroups
that can occur (see [14, 22], and [15]). For higher degree 𝑑, the uniform boundedness theorem, due
to Merel [28], tells us that for every 𝑑 > 0, there exists a bound 𝐵(𝑑) such that for every number
field 𝐾 of degree 𝑑 and every elliptic curve 𝐸∕𝐾, we have that

|𝐸(𝐾)tors| < 𝐵(𝑑).
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2 MELISTAS

For higher dimensional abelian varieties, a lot less is known. For example, even for abelian
surfaces 𝐴∕ℚ, there is no known uniform bound for the group 𝐴(ℚ)tors.
Given an abelian variety 𝐴∕𝐾, it is natural to ask how the torsion subgroup 𝐴(𝐾)tors changes

upon quadratic twisting. More specifically, let 𝐾(
√
𝑑) be a quadratic extension of 𝐾, for some

element 𝑑 of 𝐾, and denote by 𝐴𝑑∕𝐾 the quadratic twist of 𝐴∕𝐾 by 𝑑 (see Example 2.3 below for
the definition). One can then ask the following.

Question 1. If 𝐴(𝐾)tors ≠ 𝐴𝑑(𝐾)tors, then are there any properties (depending on 𝐴∕𝐾) that the
extension 𝐾(

√
𝑑)∕𝐾 must necessarily have?

We also refer the reader to [39], which contains related results, including the statement that
over a number field, an abelian variety has only finitely many twists that admit a 𝐾-rational tor-
sion point of order strictly greater than 2. In this article, we will primarily be interested in the
relationship between the primes of 𝐾 that ramify in 𝐾(

√
𝑑) and the primes of good reduction of

𝐴∕𝐾. In fact, we are able to prove amore general theorem concerning twists of𝐴∕𝐾 by irreducible
rational representations, assuming certain ramification conditions on 𝐾. Our methods are local
relying on the interplay between torsion points and reduction properties of abelian varieties (see
[6] and [27] for more on this relationship).
Let 𝐾 be a field, let 𝐿∕𝐾 be a finite Galois extension with Galois group denoted by 𝐺, and let

𝐴∕𝐾 be an abelian variety. The group algebra ℚ[𝐺] decomposes as a direct sum

ℚ[𝐺] =
⨁
𝜌

ℚ[𝐺]𝜌,

where the direct sum is indexed by the irreducible rational representations of 𝐺 and ℚ[𝐺]𝜌 is the
𝜌-isotypic component of ℚ[𝐺]. If

𝐼𝜌 = ℚ[𝐺]𝜌 ∩ ℤ[𝐺],

then we can construct (see Definition 2.1 below) an abelian variety defined over 𝐾 denoted by

𝐴𝜌 ∶= 𝐼𝜌 ⊗ℤ 𝐴

and called the 𝜌-twist of 𝐴∕𝐾. Such twists were considered by Mazur and Rubin [23, 24] in
order to study Selmer ranks of elliptic curves. We will not consider Selmer ranks in this arti-
cle, but we expect that our results will have applications to Selmer groups of quadratic twists
of abelian varieties.
Our first result concerns the possible orders of 𝐾-rational torsion points of 𝐴𝜌, under certain

assumptions on 𝐾 and 𝐴∕𝐾.

Theorem 1.1. Let 𝐾 be a local field of characteristic 0 with valuation 𝑣𝐾 and residue field 𝑘
of characteristic 𝑝 > 2. Let 𝐴∕𝐾 be a simple g-dimensional abelian variety that has good reduc-
tion and let 𝐿∕𝐾 be a totally ramified finite Galois extension of degree 𝑚 ⩾ 2 with Galois group 𝐺.
Then

(i) If𝜌 is a nontrivial irreducible rational representation of𝐺 and 𝑣𝐾(𝑝) <
𝑝−1

𝑚
, then the twist𝐴𝜌∕𝐾

cannot have any 𝐾-rational points of order 𝑝.
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TORSION AND TWISTS OF ABELIAN VARIETIES 3

(ii) If 𝜌 is a nontrivial irreducible rational representation of 𝐺 and the twist𝐴𝜌∕𝐾 has a 𝐾-rational
point of prime order 𝓁 with 𝓁 ≠ 𝑝, then 𝓁 ⩽ 2g + 1.

Remark 1.2. Example 2.9 below shows that the assumption that 𝑣𝐾(𝑝) <
𝑝−1

𝑚
in Part (𝑖) of

Theorem 1.1 is necessary and cannot be removed. The assumption that 𝐴∕𝐾 has good reduc-
tion in Theorem 1.1 is also necessary and cannot be removed. The latter is, of course, expected
because every elliptic curve over ℚ is a quadratic twist of another elliptic curve defined
over ℚ.

As an application of Theorem 1.1, we obtain the following theorem.

Theorem 1.3. Let 𝐴∕ℚ be a simple g-dimensional abelian variety of conductor 𝑁 and let 𝑑 be a
square-free integer. If 𝑑 has a prime divisor 𝑝 > 3 with 𝑝 ∤ 𝑁, then the quadratic twist𝐴𝑑∕ℚ cannot
have any ℚ-rational points of prime order 𝓁 with 𝓁 > 3.

Remark 1.4. The above theorem partially generalizes [26, Theorem 1.2, Part (𝑖)] and can also be
thought of as a higher dimensional analog of a proposition of Mazur and Gouvêa [12, Proposition
1]. Moreover, as is shown in [26, Remark 1.4] if 𝑑 = −1, then the conclusion of Theorem 1.3 does
not hold.

We now explain some applications of Theorem 1.1 to torsion growth of abelian varieties over
quadratic extensions. Let 𝐴∕𝐾 be an abelian variety over a number field 𝐾 and let 𝐿∕𝐾 be a
quadratic extension. If 𝐴(𝐿)tors ⧵ 𝐴(𝐾)tors contains a point of prime order 𝑝, then it follows from
the Néron–Ogg–Shafarevich criterion [33, Theorem 1] that the primes of 𝐾 that ramify in 𝐿 are
contained in the set

{𝔭 is a prime of 𝐾 ∶ 𝔭 lies above 𝑝 or 𝐴∕𝐾 has bad reduction at 𝔭}.

The following theorem tells us that under a certain assumption on the field 𝐾, every prime that
ramifies in 𝐿 and lies above 𝑝 must be a prime of bad reduction of 𝐴∕𝐾.

Theorem 1.5. Let 𝐴∕𝐾 be a simple abelian variety over a number field 𝐾 and let 𝐿 be a quadratic
extension of 𝐾. Assume that𝐴(𝐿)tors ⧵ 𝐴(𝐾)tors contains a point of prime order 𝑝. If for all primes 𝔭
of𝐾 with associated valuation 𝑣𝔭, we have that 𝑣𝔭(𝑝) <

𝑝−1

2
, then the primes of 𝐾 that ramify in 𝐿

are contained in

{𝔭 is a prime of 𝐾 ∶ 𝐴∕𝐾 has bad reduction at 𝔭}.

We note that Theorem 1.5 is sharp in the sense that the condition 𝑣𝔭(𝑝) <
𝑝−1

2
is optimal (see

Example 3.1 below).
Finally, we turn our attention to elliptic curves 𝐸∕ℚ and quadratic extensions 𝐿 that satisfy the

Heegner hypothesis for 𝐸∕ℚ, that is, 𝐿 is an imaginary quadratic field and all prime divisors of
the conductor𝑁 of 𝐸∕ℚ split in 𝐿. Under this assumption, we show that if 𝐿 ≠ ℚ(

√
−3), then the

quotient |𝐸𝐿(𝐿)tors|∕|𝐸(ℚ)tors| is a power of 2 (see Corollary 3.8 below).
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4 MELISTAS

2 TWISTS OF ABELIAN VARIETIES

In this section, we prove Theorem 1.1 and then derive some corollaries on torsion points of
quadratic twists. Before we begin our proof, we recall some background material on twists of
abelian varieties. We refer the reader to [25, 34] and [29] for further information concerning
this topic.
Let𝐾 be any field, let𝐴∕𝐾 be an abelian variety, and let 𝐿∕𝐾 be a finite Galois extension. If𝑋∕𝐾

is any abelian variety, then we will denote by 𝑋𝐿∕𝐿 the base change of 𝑋∕𝐾 to 𝐿. An 𝐿∕𝐾-form
of the abelian variety 𝐴∕𝐾 is a pair (𝐵, 𝜓), where 𝐵∕𝐾 is an abelian variety and 𝜓 ∶ 𝐴𝐿 ⟶ 𝐵𝐿 is
an isomorphism that is defined over 𝐿. Two 𝐿∕𝐾-forms (𝐵, 𝜓) and (𝐵′, 𝜓′) are called equivalent if
they are isomorphic over 𝐾.
If (𝐵, 𝜓) is an 𝐿∕𝐾-form of 𝐴∕𝐾, then the class of the map 𝜉 ∶ Gal(𝐿∕𝐾)⟶ Aut𝐿(𝐴𝐿) given

by 𝜉(𝜎) = 𝜓−1◦𝜓𝜎 for all 𝜎 ∈ Gal(𝐿∕𝐾) is an element of H1(Gal(𝐿∕𝐾),Aut𝐿(𝐴𝐿)), that is, 𝜉 is
a 1-cocycle for Gal(𝐿∕𝐾) with values in Aut𝐿(𝐴𝐿). This association induces a bijection between
the set of 𝐿∕𝐾-forms modulo equivalence and the pointed set H1(Gal(𝐿∕𝐾),Aut𝐿(𝐴𝐿)) (see [32,
Chapter III]).
To ease notation in what follows we shall write Aut𝐿(𝐴𝑛) for Aut𝐿((𝐴𝐿)𝑛) for every positive

integer 𝑛.

Definition 2.1. Let𝐴∕𝐾 be an abelian variety and let 𝑅 be a commutative ring with a ring homo-
morphism 𝑅⟶ End𝐾(𝐴). Fix a positive integer 𝑛. Let 𝐼 be a finitely generated free 𝑅-module
of rank 𝑛 with a continuous right action of the absolute Galois group of 𝐾 and fix an 𝑅-module
isomorphism 𝜓 ∶ 𝑅𝑛 ⟶ 𝐼. If GL𝑛(𝑅) is regarded as a subgroup of Aut𝐿(𝐴𝑛), then the homor-
phism 𝜉 ∶ 𝐺⟶ Aut𝐿(𝐴𝑛) given by 𝜉(𝜎) = 𝜓−1◦𝜓𝜎 is a 1-cocycle for Gal(𝐿∕𝐾), that is, the class
of 𝜉 belongs to H1(Gal(𝐿∕𝐾),Aut𝐿(𝐴𝑛)). Therefore, there exists an abelian variety (𝐼 ⊗𝑅 𝐴)∕𝐾

corresponding to 𝜉. We call the abelian variety (𝐼 ⊗𝑅 𝐴)∕𝐾 the twist of 𝐴∕𝐾 by 𝐼.

Note that according to Definition 2.1, the variety (𝐼 ⊗𝑅 𝐴)∕𝐾 is an 𝐿∕𝐾-form of 𝐴𝑛∕𝐾. More-
over, it is shown in [25, Remark 1.2] that the definition of the twist is independent of the choice of
𝜓. We proceed with two important examples that will be used below.

Example 2.2 (Weil restriction). Let 𝐿∕𝐾 be a finite extension and let 𝐵∕𝐿 be an abelian vari-
ety. Recall that the Weil restriction Res𝐿∕𝐾(𝐵) of 𝐵∕𝐿 from 𝐿 to 𝐾 is the scheme defined over 𝐾
representing the functor from 𝐾-schemes to sets given by 𝑆 ↦ 𝐵(𝑆 ×𝐾 𝐿).
Let 𝐿∕𝐾 be a finite Galois extensionwith𝐺 = Gal(𝐿∕𝐾) and let 𝐼 = 𝑅[𝐺]. Then the twist 𝐼 ⊗𝑅 𝐵

is isomorphic to Res𝐿∕𝐾(𝐵) (see [25, Proposition 4.1]).

Example 2.3 (Quadratic twists, see also [34, Section 3.1.3]). Let 𝐴∕𝐾 be an abelian variety over a
field𝐾 and let𝐿 = 𝐾(

√
𝑑) be a quadratic extension. Let𝜒𝐿 ∶ 𝐺𝐾 ⟶ {±1} be the unique nontrivial

quadratic character of the absolute Galois group𝐺𝐾 of𝐾 that factors throughGal(𝐿∕𝐾). Let𝑅 = ℤ

considered as a subset of End𝐾(𝐴) via the identification of 𝑅 with {[𝑚] ∶ 𝑚 ∈ ℤ}, where [𝑚] in
the multiplication by 𝑚 on 𝐴∕𝐾. Consider 𝐼 to be a free rank 1 module over ℤ equipped by an
action of 𝐺𝐾 given by 𝑖𝜎 = 𝜒𝐿(𝜎) ⋅ 𝑖 for 𝑖 ∈ 𝐼 and 𝜎 ∈ 𝐺𝐾 . Denote by 𝐴𝑑∕𝐾 the abelian variety
(𝐼 ⊗𝑅 𝐴)∕𝐾. Here, themap 𝜓 is defined as follows; fix a generator 𝑖0 of 𝐼 and let𝜓 ∶ 𝑅⟶ 𝐼 be the
isomorphism given by𝜓(𝑚) = 𝑚 ⋅ 𝑖0. The associated 1-cocycle is 𝜉 ∶ Gal(𝐿∕𝐾)⟶ Aut𝐿(𝐴) given

 14692120, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12952 by U

niversity O
f T

w
ente Finance D

epartm
ent, W

iley O
nline L

ibrary on [07/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TORSION AND TWISTS OF ABELIAN VARIETIES 5

by 𝜉(𝛾) = [−1] and 𝜉(id) = [1] = id, where 𝛾 is the generator of Gal(𝐿∕𝐾). The abelian variety
𝐴𝑑∕𝐾 is called the quadratic twist of 𝐴∕𝐾 by 𝑑.
In the special case where 𝐸∕𝐾 is an elliptic curve and char(𝐾) ≠ 2, 3 using [35, Example X.2.4],

we see that 𝐸𝑑∕𝐾 is the usual quadratic twist of 𝐸∕𝐾 by 𝑑, that is, if 𝐸∕𝐾 is given by a short
Weierstrass equation

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏,

for some 𝑎, 𝑏 ∈ 𝐾, then 𝐸𝑑∕𝐾 is given by a short Weierstrass equation

𝑑𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

Consider now a finite Galois extension 𝐿∕𝐾 with Galois group𝐺 ∶= Gal(𝐿∕𝐾). The group alge-
bra ℚ[𝐺] decomposes as a direct sum ℚ[𝐺] =

⨁
𝜌 ℚ[𝐺]𝜌, where the direct sum is indexed by the

irreducible rational representations of 𝐺 and ℚ[𝐺]𝜌 is the 𝜌-isotypic component of ℚ[𝐺].

Definition 2.4. Let𝐴∕𝐾 be an abelian variety. If 𝜌 is an irreducible rational representation of the
group 𝐺, then let

𝐼𝜌 = ℚ[𝐺]𝜌 ∩ ℤ[𝐺].

Define the 𝜌-twist of 𝐴∕𝐾 by

𝐴𝜌 ∶= 𝐼𝜌 ⊗ℤ 𝐴.

The following theorem, due to Mazur, Rubin, and Silverberg, will be very useful in the proof of
Theorem 1.1.

Theorem 2.5 (See [25, Theorem 4.5]). Let 𝐿∕𝐾 be a finite Galois extension with Galois group𝐺 and
let 𝐴∕𝐾 be an abelian variety. Then Res𝐿∕𝐾(𝐴𝐿) is isogenous over 𝐾 to

∏
𝜌 𝐴𝜌, where the product is

taken over all irreducible rational representations of 𝐺.

Before we proceed to the proof of Theorem 1.1, we need to briefly recall a few basic facts con-
cerning reduction of abelian varieties. The interested reader can find more information on this
topic in [2] and [20]. Let 𝐾 be a local field, that is, 𝐾 is a complete field with respect to a discrete
valuation 𝑣𝐾 and has finite residue field 𝑘, and let 𝐴∕𝐾 be an abelian variety of dimension g . We
denote by∕𝐾 the Néron model of 𝐴∕𝐾. The special fiber𝑘∕𝑘 of∕𝐾 is a smooth commu-
tative group scheme. We denote by0

𝑘
∕𝑘 the connected component of the identity of𝑘∕𝑘. By a

theorem of Chevalley (see [8, Theorem 1.1]), there exists a short exact sequence

0⟶ 𝑇 ×𝑈⟶ 0
𝑘
⟶ 𝐵⟶ 0,

where𝑇∕𝑘 is a torus,𝑈∕𝑘 is a unipotent group, and𝐵∕𝑘 is an abelian variety. The number dim(𝑈)
(resp. dim(𝑇), dim(𝐵)) is called the unipotent (resp. toric, abelian) rank of 𝐴∕𝐾. By construc-
tion, we have the following equality g = dim(𝑈) + dim(𝑇) + dim(𝐵). We say that𝐴∕𝐾 has purely
additive reduction if g = dim(𝑈), or equivalently, if dim(𝑇) = dim(𝐵) = 0.
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6 MELISTAS

Proof of Theorem 1.1. To ease notation, let 𝜌0, … , 𝜌𝑛 be the irreducible rational representations of
𝐺 with 𝜌0 the trivial representation (corresponding to the trivial twist of 𝐴∕𝐾) and let 𝐴𝑖 ∶= 𝐴𝜌𝑖
for 𝑖 = 1, … , 𝑛. □

Lemma 2.6. For every 𝑖 = 1, … , 𝑛, the abelian variety 𝐴𝑖 has purely additive reduction.

Proof Lemma 2.6. Let𝑊 ∶=Res𝐿∕𝐾(𝐴𝐿) be the Weil restriction of the base change 𝐴𝐿∕𝐿 of 𝐴∕𝐾
to 𝐿. Theorem 2.5 tells us that there exists an isogeny 𝑊⟶𝐴×𝐴1 × … × 𝐴𝑛 defined over 𝐾.
Since 𝐿∕𝐾 is totally ramified and 𝐴∕𝐾 has good reduction, using [29, Remark on Page 179], we
obtain that the abelian rank of𝑊∕𝐾 is equal to the dimension of 𝐴∕𝐾 and that the toric rank of
𝑊∕𝐾 is zero. Recall that we assume that 𝐴∕𝐾 has good reduction. This implies that the abelian
rank of𝐴∕𝐾 is equal to the dimension of𝐴∕𝐾. Denote by∕𝐾 the Néron model of𝐴∕𝐾 and by
𝑖∕𝐾 the Néron model of 𝐴𝑖∕𝐾, for every 𝑖 = 1, … , 𝑛. Since the Néron model of (𝐴 × 𝐴1 × … ×
𝐴𝑛)∕𝐾 is ( ×1 × … ×𝑛)∕𝐾 and the abelian, unipotent, and toric ranks of abelian varieties
are preserved under isogeny (see [1, Corollaire IX.2.2.7]), we find that 𝐴𝑖∕𝐾 has purely additive
reduction for every 𝑖 = 1, … , 𝑛. This proves our lemma. □

Proof of Part (i): Assume that for some 𝑗 > 0 the twist 𝐴𝑗∕𝐾 has a 𝐾-rational point of order
𝑝 and we will arrive at a contradiction. Since 𝐴𝑗∕𝐾 acquires good reduction in 𝐿 (because it is
an 𝐿∕𝐾-form of 𝐴∕𝐾) and 𝑣𝐾(𝑝) <

𝑝−1

𝑚
, using [27, Theorem 1.1], applied to the base extension of

𝐴𝑗∕𝐾 to the maximal unramified extension of 𝐾, we find that 𝐴𝑗∕𝐾 cannot have purely additive
reduction. However, this contradicts Lemma 2.6. This proves part (𝑖).
Proof of Part (ii): Assume that for some 𝑗 > 0, the twist 𝐴𝑗∕𝐾 has a 𝐾-rational point of order 𝓁

with 𝓁 ≠ 𝑝.We need to show that 𝓁 ⩽ 2g + 1, where g is the dimension of𝐴∕𝐾. Using Lemma 2.6,
we find that 𝐴𝑗∕𝐾 has purely additive reduction. Therefore, using [6, Main Theorem Part (iii)],
we find that 𝓁 ⩽ 2g + 1. This completes the proof of Theorem 1.1.

Remark 2.7. If 𝐿∕𝐾 is a finite abelian Galois extension, then the irreducible rational represen-
tations of Gal(𝐿∕𝐾) are in one-to-one correspondence with the cyclic subextensions of 𝐾 in 𝐿.
Assume now that 𝐿∕𝐾 is a quadratic extension with Galois group𝐺 and denote by 𝜎 the generator
of 𝐺. According to [34, Section 5.3], if 𝜌𝐿 is the irreducible rational representation correspond-
ing to the extension 𝐿∕𝐾, then ℤ[𝐺]𝜌𝐿 = (𝜎 − 1)ℤ is a free rank one ℤ-module. Moreover, if
𝜒𝐿 ∶ 𝐺𝐾 ⟶ {±1} is the unique nontrivial quadratic character of the absolute Galois group 𝐺𝐾
of 𝐾 that factors through Gal(𝐿∕𝐾), then every 𝛾 ∈ 𝐺𝐾 acts on ℤ[𝐺]𝜌𝐿 as multiplication by 𝜒𝐿(𝛾).
Therefore, it follows that the corresponding abelian variety𝐴𝜌𝐿∕𝐾 is just the quadratic twist𝐴

𝑑∕𝐾

of Example 2.3, for some 𝑑 ∈ 𝐿 with 𝐿 = 𝐾(
√
𝑑).

Example 2.8 (See also the). MathOverflow post [21]) In this example, we show that it is possible
for both an elliptic curve and a quadratic twist of it to have rational points of odd orders. Let 𝐸∕ℚ
be the elliptic curve given by the following Weierstrass equation:

𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 − 76𝑥 + 298.

The curve 𝐸∕ℚ has LMFDB [18] label 50a2 and 𝐸(ℚ) ≅ ℤ∕3ℤ. Therefore, we see that 𝐸(ℚ5) con-
tains a point of order 3. Using SAGE [37], we find that the quadratic twist of 𝐸∕ℚ by 5, which we
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TORSION AND TWISTS OF ABELIAN VARIETIES 7

denote by 𝐸5∕ℚ, has Weierstrass equation

𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 + 𝑥2 − 3𝑥 + 1

and LMFDB [18] label 50b3.Moreover, we have that 𝐸5(ℚ) ≅ ℤ∕5ℤ. Therefore, we see that 𝐸5(ℚ5)
contains a point of order 5. Thus, both the curve 𝐸∕ℚ5 and the curve 𝐸5∕ℚ5 have (nontrivial)
ℚ5-rational points of finite order.

Example 2.9. This example shows that the condition 𝑣𝐾(𝑝) <
𝑝−1

𝑚
in Theorem 1.1 is neces-

sary, with 𝑝 = 3 and 𝑚 = 2. Consider the elliptic curve 𝐸∕ℚ given by the following Weierstrass
equation:

𝑦2 + 𝑦 = 𝑥3 + 𝑥2 − 9𝑥 − 15.

The curve𝐸∕ℚhas LMFDB [18] label 19a2. Therefore, the base change𝐸ℚ3∕ℚ3 has good reduction.
Using SAGE [37], we find that the quadratic twist of 𝐸∕ℚ by −3, which we denote by 𝐸−3∕ℚ, has
Weierstrass equation

𝑦2 + 𝑦 = 𝑥3 − 84𝑥 + 315

and LMFDB [18] label 171b2. Moreover, we have that 𝐸−3(ℚ) ≅ ℤ × ℤ∕3ℤ. This implies that the
curve 𝐸−3

ℚ3
∕ℚ3 has a ℚ3-rational point of order 3.

Corollary 2.10. Let 𝐾 be a number field, let 𝐴∕𝐾 be a simple abelian variety, and let 𝐿 = 𝐾(
√
𝑑)

be a quadratic extension of𝐾, for some 𝑑 ∈ 𝐾. Fix a rational prime 𝑝. Let𝔓 be a prime of𝐾 that lies
above 𝑝 and denote by 𝑣𝔓 the corresponding valuation of 𝐾. Assume that𝔓 ramifies in 𝐿 and that
𝐴∕𝐾 has good reduction modulo 𝔓. If 𝑣𝔓(𝑝) <

𝑝−1

2
, then the quadratic twist 𝐴𝑑∕𝐾 cannot have a

𝐾-rational point of order 𝑝.

Proof. Since 𝐿∕𝐾 is a quadratic extension andwe assume that𝔓 ramifies in 𝐿, we know that there
exists a unique prime 𝔓′ of 𝐿 that lies above 𝔓. Let 𝐾𝔓 be the completion of 𝐾 at 𝔓 and let 𝐿𝔓′
be the completion of 𝐿 at𝔓′. It follows from basic algebraic number theory (see [31, Chapter II])
that under our assumptions, the extension 𝐿𝔓′∕𝐾𝔓 is a (totally) ramified quadratic extension of
local fields. Consider the base change 𝐴𝐾𝔓∕𝐾𝔓 of 𝐴∕𝐾 to 𝐾𝔓. Using Paragraph 2.7, we see that
Part (𝑖) of Theorem 1.1 implies that the abelian variety 𝐴𝑑

𝐾𝔓
∕𝐾𝔓 cannot have a 𝐾𝔓-rational point

of order 𝑝. Therefore, we find that 𝐴𝑑∕𝐾 cannot have a 𝐾-rational point of order 𝑝. This proves
our corollary. □

As an application of the previous corollary, we will now prove Theorem 1.3 of the introduction.
Before we proceed to our proof, we need to recall the following useful lemma.

Lemma 2.11. Let 𝐾 be a field with char(𝐾) ≠ 2 and let 𝐴∕𝐾 be a simple abelian variety. Let 𝐿∕𝐾
be an abelian Galois extension of degree 𝑚 > 1 and assume that the exponent of the Galois group
Gal(𝐿∕𝐾) is 2. Then there exist 𝑑𝑖 ∈ 𝐾 for 𝑖 = 1, … ,𝑚 with associated quadratic twists 𝐴𝑖 ∶= 𝐴𝑑𝑖
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8 MELISTAS

and a group homomorphism

𝑚⨁
𝑖=1

𝐴𝑖(𝐾)⟶ 𝐴𝐿(𝐿),

whose kernel and cokernel are annihilated by𝑚.

Proof. Using [16, Page 165], we find that this is a special case of [16, Lemma 1.1] with 𝑒 = 2. □

When𝑚 = 2, which is the case of primary interest for us, we immediately obtain the following
corollary.

Corollary 2.12. Let 𝐿∕𝐾 be a quadratic extension of number fields with 𝐿 = 𝐾(
√
𝑑) and let 𝐴∕𝐾

be a simple abelian variety. If 𝑛 is odd, then

𝐴(𝐾)[𝑛] ⊕ 𝐴𝑑(𝐾)[𝑛] ≅ 𝐴𝐿(𝐿)[𝑛].

We are now ready to proceed with our proof.

Proof of Theorem 1.3. Assume that the twist𝐴𝑑∕ℚ has aℚ-rational point of prime order 𝓁 for some
𝓁 > 3, and we will find a contradiction. Recall that we assume the existence of a prime 𝑝 > 3 that
divides 𝑑 but it does not divide 𝑁.
Assume first that 𝓁 ≠ 𝑝. Since 𝑝 and𝑁 are coprime, we see that𝐴∕ℚ has good reduction mod-

ulo 𝑝. Fix an algebraic closure ℚ of ℚ. Let 𝐾𝓁 = ℚ(𝐴[𝓁]) be the 𝓁-division field of 𝐴∕𝐾, that is,
the minimal field of definition of all the 𝓁-torsion points of 𝐴(ℚ). If 𝐿 = ℚ(

√
𝑑), then it follows

from Corollary 2.12 that

𝐴(ℚ)[𝓁] ⊕ 𝐴𝑑(ℚ)[𝓁] ≅ 𝐴𝐿(𝐿)[𝓁].

Since we assume that𝐴𝑑∕ℚ has aℚ-rational point of order 𝓁, we find that𝐴𝐿∕𝐿 has an 𝐿-rational
point of order 𝓁. Therefore, we have that 𝐿 ⊆ 𝐾𝓁 . On the other hand, since 𝐴∕ℚ has good reduc-
tion modulo 𝑝, using the Néron–Ogg–Shafarevich criterion [33, Theorem 1], we find that 𝑝 is
unramified in 𝐾𝓁 . However, this contradicts the fact that 𝐿 ⊆ 𝐾𝓁 because 𝑝 divides 𝑑, and hence,
it ramifies in 𝐿.
Assumenow that every primedivisor of𝑑 divides𝓁, that is, that𝑑 = ±𝓁. Since𝓁 ⩾ 5, we see that

if 𝑣𝓁 is the valuation corresponding to 𝓁, then 𝑣𝓁(𝓁) = 1 <
𝓁−1
2
. Therefore, applying Corollary 2.10

(for 𝐾 = ℚ and 𝓁 = 𝔓), we find that 𝐴𝑑∕ℚ cannot have a ℚ-rational point of order 𝓁, which is
again a contradiction. This proves our theorem. □

Remark 2.13. Let 𝑅 be a complete discrete valuation ring with fraction field 𝐾 of characteristic
𝑝 > 0 and algebraically closed residue field. One may wonder whether there can exist an analog
of Theorem 1.1 over the field 𝐾. Unfortunately, such an analog does not seem to exist, as we now
explain. Let 𝐸∕𝐾 be an elliptic curve with good reduction and let ∕𝑅 be the Néron Model of
𝐸∕𝐾. Assume that the Hasse invariant of ∕𝑅 has vanishing order 𝑝−1

2
(see [17, Section 5] for

information on the Hasse invariant of ∕𝑅). Let 𝐸(𝑝)∕𝐾 be the Frobenius pullback of the curve
𝐸∕𝐾, which still has good reduction by [17, Proposition 7.2]. According to [17, Proposition 8.3] for
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TORSION AND TWISTS OF ABELIAN VARIETIES 9

every separable quadratic extension 𝐾′∕𝐾, the corresponding quadratic twist 𝐸(𝑝)∕𝐾 of 𝐸(𝑝)∕𝐾
has a 𝐾-rational point of order 𝑝.

3 TORSION GROWTH OF ABELIAN VARIETIES AND AN
APPLICATION TO A CONJECTURE OF GROSS AND ZAGIER

In this section, we consider torsion growth questions for abelian varieties over quadratic fields.
After proving Theorem 1.5, we turn to elliptic curves𝐸∕ℚ andwe study the possible torsion growth
over quadratic extensions satisfying the Heegner hypothesis with respect to 𝐸∕ℚ.

Proof of Theorem 1.5. Let 𝔭 be a prime of 𝐾 that ramifies in 𝐿 and lies above 𝑝. Assume that
𝐴∕𝐾 has good reduction modulo 𝔭 and we will find a contradiction. Write 𝐿 = 𝐾(

√
𝑑) for some

𝑑 ∈ 𝐾 and denote by 𝑣𝔭 the valuation associated to 𝔭. Since we assume that 𝑣𝔭(𝑝) <
𝑝−1

2
, using

Corollary 2.10, we find that the twist 𝐴𝑑∕𝐾 cannot have a 𝐾-rational point of order 𝑝. However,
this is a contradiction because by Corollary 2.12, we have that

𝐴(𝐾)[𝑝] ⊕ 𝐴𝑑(𝐾)[𝑝] ≅ 𝐴𝐿(𝐿)[𝑝],

and we assume that 𝐴(𝐿)tors ⧵ 𝐴(𝐾)tors contains a point of order 𝑝. This proves our theorem. □

Example 3.1. This example shows that Theorem 1.5 is sharp for 𝑝 ∶= 7. Consider the elliptic
curve 𝐸∕ℚ with LMFDB [18] label 26.b1. This elliptic curve is given by the following Weierstrass
equation:

𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 − 𝑥2 − 213𝑥 − 1257.

Let ℚ(𝜁7)+ be the maximal totally real subfield of the cyclotomic field ℚ(𝜁7). Using the
LMFDB database, we find that 𝐸ℚ(𝜁7)+(ℚ(𝜁7)

+)tors is trivial and that 𝐸ℚ(𝜁7)(ℚ(𝜁7))tors ≅ ℤ∕7ℤ.
Thus, the curve 𝐸ℚ(𝜁7)+∕ℚ(𝜁7)

+ acquires a torsion point of order 7 over the quadratic exten-
sion ℚ(𝜁7)∕ℚ(𝜁7)

+. Moreover, if 𝔭+ is the prime of ℚ(𝜁7)+ that lies above 7, then the curve
𝐸ℚ(𝜁7)+∕ℚ(𝜁7)

+ has good reduction modulo 𝔭+. Finally, if 𝑣𝔭+ is the associated valuation, we see
that 𝑣𝔭+(7) =

7−1

2
.

Example 3.2. The following is an interesting example where an elliptic curve acquires both a
torsion point of large order and everywhere good reduction over a quadratic extension. Consider
the elliptic curve 𝐸∕ℚwith LMFDB [18] label 1225.b2. This elliptic curve is given by the following
Weierstrass equation

𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 + 𝑥2 − 8𝑥 + 6.

Let ℚ(𝜁35)+ be the maximal totally real subfield of the cyclotomic field ℚ(𝜁35). Recall that the
degree of the extension ℚ(𝜁35)+∕ℚ is 12. The field ℚ(𝜁35)+ contains a sextic number field 𝐾 with
defining polynomial

𝑥6 − 𝑥5 − 7𝑥4 + 2𝑥3 + 7𝑥2 − 2𝑥 − 1.
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10 MELISTAS

Using SAGE [37] (or MAGMA), it is easy to see that the torsion subgroup 𝐸𝐾(𝐾)tors is trivial and
that 𝐸𝐾∕𝐾 has bad reduction modulo two prime ideals. In fact, 𝐸𝐾∕𝐾 is a twist of an elliptic
curve that appears in [19, Section 7.2]. On the other hand, using LMFDB, we find that the curve
𝐸ℚ(𝜁35)+∕ℚ(𝜁35)

+ has a torsion point of order 37 and everywhere good reduction.

For an elliptic curve 𝐸∕ℚ and quadratic field 𝐿, the relationship between 𝐸(ℚ)tors and 𝐸𝐿(𝐿)tors
has been studied by González-Jiménez and Tornero in [10] and [11]. Moreover, Najman, answer-
ing a problem posed by González-Jiménez and Tornero, in [30] gave sharp upper bounds on the
number of quadratic extensions forwhich𝐸(ℚ)tors ⊊ 𝐸𝐿(𝐿)tors. In the following theorem,we show
that if every prime of bad reduction for 𝐸∕ℚ is unramified in 𝐿, then the possible torsion growth
is very restricted.

Theorem 3.3. Let 𝐸∕ℚ be an elliptic curve, let 𝐿∕ℚ be a quadratic extension, and assume that every
prime of bad reduction of 𝐸∕ℚ is unramified in 𝐿. Then

(i) The set 𝐸𝐿(𝐿)tors ⧵ 𝐸(ℚ)tors cannot contain points of prime order 𝑝 > 3.
(ii) If there exists a prime𝑝 ≠ 3, which ramifies in 𝐿, then the quotient |𝐸𝐿(𝐿)tors|∕|𝐸(ℚ)tors| is equal

to a power of 2.

Proof. Proof of Part (i): This part follows directly from Theorem 1.5.
Proof of Part (ii): Using the previous part, we see that we only need to show that 𝐸𝐿(𝐿)tors ⧵

𝐸(ℚ)tors cannot contain a point of order 3. Assume that 𝐸𝐿(𝐿)tors ⧵ 𝐸(ℚ)tors contains a point
𝑃 of order 3, and we will find a contradiction. Write 𝐿 = ℚ(

√
𝑑) with 𝑑 ∈ ℤ square-free. By

Corollary 2.12, we have that 𝐸𝐿(𝐿)[3] ≅ 𝐸(ℚ)[3] ⊕ 𝐸𝑑(ℚ)[3], which implies that there exists a
point 𝑃′ ∈ 𝐸𝑑(ℚ)[3] of order 3. Since 𝑝 is a prime of good reduction for 𝐸∕ℚ and 𝑝 divides 𝑑,
we find that 𝐸𝑑∕ℚ has reduction of Kodaira type I∗

0
, II, or I∗

8
modulo 𝑝 by [7, Proposition 1] and

[7, Table II] (see also the hypotheses for this table at the bottom of page 58 of [7]). However, since
𝑝 ≠ 3, using [26, Proposition 2.4], we find that rational elliptic curves with a point of order 3 can-
not have reduction of Kodaira type I∗

0
, II, or I∗

8
modulo 𝑝. This implies that 𝐸𝑑∕ℚ cannot have a

ℚ-rational point of order 3, which is a contradiction. This proves our theorem. □

Example 3.4. This example shows that the assumption that 𝑝 ≠ 3 in Part (𝑖𝑖) of Theorem 3.3
is necessary, and cannot be removed. Consider the elliptic curve 𝐸∕ℚ given by the following
Weierstrass equation

𝑦2 + 𝑥𝑦 + 𝑦 = 𝑥3 + 549𝑥 + 2202.

This is the curve with LMFDB [18] label 50a4 (Cremona [9] label 50a4). It has bad reductionmod-
ulo 2 and modulo 5, and good reduction modulo every other prime. Using the LMFDB database,
we find that, on the one hand, 𝐸(ℚ)tors is trivial, while, on the other hand, 𝐸ℚ(

√
−3)
(ℚ(

√
−3))tors ≅

ℤ∕3ℤ.

Let 𝐸∕ℚ be an elliptic curve of conductor 𝑁. Work of Breuil, Conrad, Diamond, Taylor, and
Wiles (see [3, 36] and [38]) tells us that there exists a modular parametrization 𝜙 ∶ 𝑋0(𝑁) → 𝐸

defined overℚ, where𝑋0(𝑁)∕ℚ is themodular curve associated toΓ0(𝑁). Let𝐿∕ℚ be an imaginary
quadratic field satisfying the Heegner hypothesis for 𝐸∕ℚ, that is, all primes that divide the con-
ductor𝑁 of𝐸∕ℚ split in 𝐿. Let𝐿 be the ring of integers of 𝐿. TheHeegner hypothesis implies that
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TORSION AND TWISTS OF ABELIAN VARIETIES 11

there exists an integral ideal of 𝐿 such that 𝐿∕ ≅ ℤ∕𝑁ℤ. Let 𝑥1 ∈ 𝑋0(𝑁)(ℂ) be the point
corresponding to the isogeny ℂ∕𝐿 ⟶ ℂ∕−1 (whose kernel is−1∕𝐾 ≅ 𝐿∕ ≅ ℤ∕𝑁ℤ).
The theory of complex multiplication tells us that 𝑥1 ∈ 𝑋0(𝑁)(𝐻), where 𝐻 is the Hilbert class
field of 𝐿. Finally, let 𝑃𝐿 = Trace𝐻∕𝐿(𝜙(𝑥1)), which is called the Heegner point associated with 𝐿
and is well defined up to sign and torsion.
Let 𝑚 be the Manin constant of 𝐸∕ℚ, let 𝑐(𝐸∕ℚ) be the product of the Tamagawa numbers of

𝐸∕ℚ, and let 2𝑢𝐿 be the number of roots of unity in 𝐿. The following conjecture is due to Gross
and Zagier.

Conjecture 3.5 ([13, Conjecture (2.2) in Section V]). If 𝑃𝐿 has infinite order in 𝐸𝐿(𝐿), then 𝑃𝐿
generates a subgroup of finite index in 𝐸𝐿(𝐿) and this index equals 𝑐(𝐸∕ℚ) ⋅𝑚 ⋅ 𝑢𝐿 ⋅

√|Ш(𝐸𝐿∕𝐿)|.

Since the index of 𝑃𝐿 in 𝐸𝐿(𝐿) is divisible by |𝐸(ℚ)tors|, Conjecture 3.5 implies the following
weaker conjecture.

Conjecture 3.6 ([13, Conjecture (2.3) in SectionV]). If𝑃𝐿 has infinite order in𝐸𝐿(𝐿), then |𝐸(ℚ)tors|
divides𝑚 ⋅ 𝑐(𝐸∕ℚ) ⋅ 𝑢𝐿 ⋅

√|Ш(𝐸𝐿∕𝐿)|.

Very recently Byeon, Yhee, and Kim (see [4] and [5]) have proved the following theorem, which
settles Conjecture 3.6 up to a power of 2.

Theorem 3.7. If 𝐸∕ℚ is an elliptic curve with 𝐸(ℚ)tors ≇ ℤ∕2ℤ orℤ∕4ℤ, then Conjecture 3.6 is true.

We end this section with the following corollary.

Corollary 3.8. Let 𝐸∕ℚ be an elliptic curve and 𝐿 ≠ ℚ(
√
−3) be an imaginary quadratic field satis-

fying the Heegner hypothesis for 𝐸∕ℚ. Assume that the Heegner point 𝑃𝐿 has infinite order in 𝐸𝐿(𝐿).
Then

(i) The quotient |𝐸𝐿(𝐿)tors|∕|𝐸(ℚ)tors| is equal to a power of 2. In particular, |𝐸𝐿(𝐿)tors| divides
𝑚 ⋅ 𝑐(𝐸∕ℚ) ⋅ 𝑢𝐿 ⋅

√|Ш(𝐸𝐿∕𝐿)|, up to a power of 2.
(ii) If𝐸(ℚ)[2] ≅ {0}, then |𝐸𝐿(𝐿)tors| = |𝐸(ℚ)tors|. In particular, |𝐸𝐿(𝐿)tors|divides𝑚 ⋅ 𝑐(𝐸∕ℚ) ⋅ 𝑢𝐿 ⋅√|Ш(𝐸𝐿∕𝐿)|.

Proof. Proof of Part (i): We first show that the quotient |𝐸𝐿(𝐿)tors|∕|𝐸(ℚ)tors| is a power of 2. Write
𝐿 = ℚ(

√
𝑑) for 𝑑 ∈ ℤ square-free. Using Part (𝑖) of Theorem 3.3, we find that 𝐸𝐿(𝐿)tors ⧵ 𝐸(ℚ)tors

cannot contain points of order 𝑝 > 3. If 𝑑 ≠ ±3, then there exists a prime 𝑝 ≠ 3 that ramifies in 𝐿.
Therefore, using Part (𝑖) of Theorem 3.3, we find that 𝐸𝐿(𝐿)tors ⧵ 𝐸(ℚ)tors cannot contain points of
order 3. Since the case 𝑑 = 3 corresponds to a real quadratic field, we have proved that the quotient
|𝐸𝐿(𝐿)tors|∕|𝐸(ℚ)tors| is a power of 2. The last assertion of this part follows now immediately from
Theorem 3.7.
Proof of Part (ii): If 2 divides |𝐸𝐿(𝐿)tors|, then it follows from [16, Part (𝑖) of Lemma 1.4] that

𝐸(ℚ)[2] ≇ {}. Therefore, our assumption implies that |𝐸𝐿(𝐿)tors| is odd. However, by the pre-
vious part, we know that the quotient |𝐸𝐿(𝐿)tors|∕|𝐸(ℚ)tors| is a power of 2. Thus, we have that
|𝐸𝐿(𝐿)tors| = |𝐸(ℚ)tors|. Finally, the last assertion follows immediately from Theorem 3.7. This
proves our corollary. □
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