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Computer simulations of cardiovascular flows can be key to improving the predicting
capabilities of standard diagnostic tools, to refine surgical techniques and perform virtual
tests of innovative prosthetic devices. The reliability of simulations, however, depends on
the fidelity level of the model, which, for the heart, involves the interconnected multi-
physics dynamics of the various systems: the human heart is among the most complex
organs, and simulating its dynamics is an ambitious undertaking from both the modeling
and computational viewpoints. In this paper we present a multiphysics computational
model of the human heart accounting simultaneously for the electrophysiology, the elasto-
mechanics, and the hemodynamics, including their multiway coupled interactions referred
to as fluid-structure-electro interaction (FSEI). The developed tool embodies accuracy,
versatility, and computational efficiency, thus allowing cardiovascular simulations of phys-
iologic and pathologic configurations within a time to solution compatible with the clinical
practice and without resorting to large-scale supercomputers. Results are shown for healthy
conditions and for myocardial infarction with the aim of assessing the reliability of
the model and proving its predicting capabilities, which could be used to anticipate the
outcome of surgical procedures or support clinical decisions.
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I. INTRODUCTION

The term “digital twins” indicates virtual models which accurately duplicate the dynamics of a
physical object; actually they are nothing but sophisticated computer programs designed and tuned
(or trained) to reproduce, with high fidelity, selected features of a mimicked system [1]. In the last
decade, cardiovascular digital twins have experienced impressive improvements in complexity and
reliability, and they are among the most promising candidates to stimulate the next breakthrough
in modern medicine. In fact, they provide innovative tools for the diagnosis and prognosis of
cardiovascular disorders (CVDs), which are the main cause of death and health care costs in
developed countries [2]. Nowadays, computational engineering allows for the virtual reconstruction
of the cardiac system along with the simulation of its complex dynamics so as to add predicting
capabilities to the actual diagnostic devices and improve the precision of many evidence based
current clinical procedures. On the other hand, accurate and reliable CVD simulations involve the
interconnected multiphysics dynamics of the various heart systems, and their simulation entails
enormous modeling and computational work. Early attempts of CVD models started from specific
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FIG. 1. (a) Perspective vies of the heart with the electrophysiology system and its main structures. (b) Main
elements of the ECG trace. (c) Schematic relation between activation electrical potential and axial tension for
a myocyte cell.

parts, like valves, heart chamber electrophysiology, or tracts of veins and arteries [3–8], and only
recently, when computers have become powerful enough, larger portions of the system have been
tackled [9–13].

The human heart is a hollow muscular organ which pumps blood throughout the body, to the
lungs and to its own tissue through the systemic, pulmonary, and coronary circulation, respectively.
The heart achieves these fundamental goals by two pumps in series, the right and the left, which
beat (almost) synchronously 2–3 billion times during a lifetime to deliver a mean flow rate of about
5 l/min using an amount of power of only ≈8 W with outstanding reliability. This astonishing
performance is obtained through the highly synergistic and interconnected dynamics of different
systems which cooperate to yield the optimized operation: these are (1) the electrophysiologic
system, (2) the active muscular tissue with the passive valves, and (3) the flowing blood. The
“orchestra conductor” of this complex dynamics is the electrophysiologic system, which coordinates
timings and delays of contraction and relaxation of different myocardium regions in order to ensure
the efficient pumping action [14].

In a nutshell, the electrical signal originates from the sinoatrial node [Fig. 1(a)], which gives the
pace of the heartbeat. From there, it propagates through the atria within ≈100 ms, thus depolarizing
the muscle myocytes and inducing their contraction. When the signal reaches the atrioventricular
node, it is delayed by ≈100 ms to allow the relaxed ventricles to be properly filled by the final atrial
systole. The signal then quickly moves through the bundle of His and then to the Purkinje fibers
to trigger, in less than ≈300 ms, the vigorous ventricular contraction which is responsible for the
pumping action. The depolarization of atria and ventricles corresponds, respectively, to the P wave
and QRS complex in the electrocardiogram (ECG) trace [Fig. 1(b)], whereas the T wave indicates
the ventricles’ ripolarization, which gives a relaxed state. Although each heart region has different
myocytes, a general behavior is shown in Fig. 1(c): when the electrical signal reaches a myocyte, the
local transmembrane potential rapidly jumps from the negative resting value of about −85 mV, to a
positive value of about 20 mV, which is maintained for about 200 ms. This transient depolarization
produces an active tension along the axis of the myocytes organized into muscular fibers which
align in specific directions to form the anisotropic myocardial tissue. Its periodic contraction and
relaxation generates a strongly three-dimensional, pulsatile flow driving the blood from atria to
ventricles and then to the arteries; the correct flux direction is ensured by the passive opening and
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closing of the cardiac valves. Furthermore, the hydrodynamic loads acting on the wet surfaces force
the kinematics of the myocardium and of the cardiac valves that are known to have nonlinear and
anisotropic elastic properties.

Tackling the complexity of the whole heart is clearly a formidable computational task, and this
paper describes some recent progress made in this direction. We present a multiphysics computa-
tional approach capable of simulating simultaneously the electrophysiology, the elasto-mechanics,
and the fluid dynamics of the heart, including their multiway coupled interactions. The developed
model exhibits accuracy, versatility, and computational efficiency, thus allowing for cardiovascular
simulations in physiologic conditions without entailing exorbitant computational resources.

During its development, the various software modules have been validated through comparisons
with clinical data, results from the literature, and ad hoc experiments [15–18]; here we present the
latest developments of the multicoupled fluid-structure-electro interaction (FSEI) algorithm [18]
with improved realism of the human heart and, more important, augmented predictive capabilities
of the cardiac dynamics.

The model lies on three pillars: a fluid solver for the pulsatile hemodynamics evolving in a
complex-geometry, deforming domain; a structure solver for the anisotropic hyperelastic biological
tissues with a dynamics determined by both active tension and hydrodynamic loads; and an
electrophysiology solver, for the propagation of the activation potential through the organ, which
accounts for the hierarchical 1D, 2D, and 3D structures of the system.

After having described the main features of the computational tool, it will be employed to
reproduce the physiology of healthy and impaired hearts owing to the presence of an ischemic
region in the left ventricular myocardium.

The paper is organized as follows: Sec. II introduces the problem, the configuration of the heart
and its main systems. Section III describes the governing equations of the these systems, the coupled
electro-fluid-structure interaction, and some technicalities of the numerical methods. The results
obtained for healthy and pathologic configurations are presented and discussed in Sec. IV. Finally,
closing remarks and future perspectives are given in Sec. V.

II. THE PROBLEM

Given the extreme human variability, even the definition of a typical heart configuration is a
problem in its own right [19]. For example, among healthy adults the maximum (end diastolic)
left-ventricle volume is in the range 75–211 ml and the ejected (stroke) volume 45–125 ml; all
other geometrical dimension have similar variations [20] thus making uncertain the definition of a
representative heart. A popular choice consists of using the so-called “patient specific” geometries,
extracted from computed tomography (CT) scans, which can be employed to answer precise
questions or to plan the surgery for a single individual. In this case the geometry of the heart
reflects precisely that of the specific patient, although all the tissues’ mechanical properties and the
conduction parameters of the electrophysiology system have to be indirectly estimated or assumed
from reference values.

In our study we pursue a different approach in which we use an idealized heart having the average
properties of a large cohort of patients [20]. More in detail, we have extracted from the literature
the ensemble average of the main dimensions of each heart chamber, valve, and main vessel to
assemble a standard heart which is representative of a broad class of humans although of none of
them in particular: the result is shown in Fig. 2.

Oxygenated blood enters the left atrium via the pulmonary veins and flows into the left ventricle
crossing the open bileaflet mitral valve during diastole. During systole, the ventricle contracts,
increasing blood pressure therein, and when it exceeds the value in the aorta (about 80 mmHg in
healthy adults) the aortic valve opens and blood is squeezed into the aorta. Concurrently, the upper
and lower venae cavae collect CO2-saturated blood from the body and direct it to the right atrium.
Blood is then routed to the right ventricle through the open tricuspid valve, which closes during
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FIG. 2. Structure of the heart used for the simulations: (a) valves and chambers; (b) tagging of the different
regions and local orientation of the fibers. The main parameters in diastole are left ventricle (LV) long axis
92 mm; LV short axis 50 mm; right ventricle (RV) long axis 79 mm; RV short axis 32 mm; left atrium (LA)
volume 75 ml; right atrium (RA) volume 84 ml. Aortic annulus diameter 23 mm; pulmonary annulus diameter
22 mm; mitral ostium area 800 mm2; tricuspid ostium area 800 mm2. Additional details are given in [20].

systole as blood pressure increases and blood is pumped to the common tract of the pulmonary
arteries across the pulmonary valve.

The contraction of all the muscular tissue (myocardium) is active and triggered by the activation
potential of the electrophysiology system, while the motion of the heart valves is passive and
governed by the hydrodynamic loads only. Heart chambers are modeled as a single elastic 3D
medium with position-dependent, nonlinear, anisotropic elastic properties; also the myocardium
thickness and orientation of the muscular fibers is a local property and they reflect the heart
physiology. Note that, as the embryological heart development entails loopings and foldings of
elementary layers of tissue, in the ventricles the orientation of the fibers is inhomogeneous across
the myocardium thickness [21], and this property is also considered in our model.

All the heart valves, consisting of thin leaflets of passive connective tissue, are modeled as 2D
membranes with some bending stiffness to avoid surface wrinkling.

In our simulations the heart rate is set to 70 beats per minute (bpm) corresponding to a period of
T = 857.1 ms and in a typical run temporal integration is performed over six heart beats: the first is
discarded since it accommodates the initial transient with the pretensioning of all tissues, while the
remaining ones are used to compute phase-averaged statistics.

As we will detail in the next section, the hemodynamics developing in the complex, deformable
shape of the heart is dealt with by an Immersed Boundary (IB) method [4,22]; thus the whole
geometry is placed in a Cartesian computational domain where the Navier-Stokes equations are
integrated and the no-slip condition on all wet surfaces is imposed through body forces. The domain
size is lx × ly × lz = 100 × 100 × 140 mm3, and it is discretized by a uniform mesh of, at least,
531 × 531 × 751 nodes corresponding to a grid spacing � � 190 µm. This fine mesh and the
stiffness of the coupled system of equations enforce an integration time step of �t ≈ 2 µs implying
about half a million of time steps to advance each heartbeat.

All the circulations of the human body form a self-connected hydraulic circuit with the blood
flowing in a closed loop; our computational domain, however, accounts only for the heart and
the initial tract of the main vessels; thus all the missing circulations have to be mimicked by
suitable boundary conditions capable of reproducing the appropriate impedance on the flow. To
this aim, each distal end of veins and arteries is embedded in a cylindrical volume where additional
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TABLE I. Windkessel parameters at the inlets/outlets of the cardiac model.

�ao �epi �pv �pa �vcs �vci

αwk (106 kg m−3 s−1) 3.13 16.62 0.062 0.78 0.39 0.39
βwk (106 kg m−3 s−2) 2.96 10.36 0.059 1.18 0.11 0.11
γwk (106 kg m−2 s−2) 18.43 25.68 0.00 4.17 0.00 0.00

volume forces, in the form fwk = αwku + βwk
∫ t

0 u(τ ) dτ + γwkn�, are added to the Navier-Stokes
equations. These are equivalent to a three-element Windkessel [23–25] with specific constants αwk ,
βwk , and γwk at each distal end as detailed in [20]: here we report the numerical values in Table I for
ease of reading.

It is worth mentioning that these boundary condition parameters for each artery and vein have
been tuned, through preliminary simulation, so as to yield the physiological pressure and flow-rate
waveforms; they are therefore not predictions of the model but rather input data needed to obtain
the correct dynamics within the heart.

III. MODELS AND GOVERNING EQUATIONS

In this section we present each model, together with the related equations, used to build the
multiphysics digital twin of the heart. We describe separately the fluid-, electrophysiology-, and
structural-solvers, along with their coupling. Detailed descriptions and thorough validations can be
found in [18,20,26,27]; here only the main methodological novelties of the computational setup are
highlighted.

A. Flow solver

Blood velocity u and pressure p are governed by the Navier-Stokes and continuity equations for
an incompressible, viscous flow, which, in nondimensional form, read

∂u
∂t

+ u · ∇u = −∇p + ∇ · τ + f,

∇ · u = 0. (1)

τ is the viscous stress tensor, which, in our model, depends on the strain-rate tensor E =
(∇u + ∇T u)/2 through a Carreau-Yasuda shear-thinning model, as described in [28]. However,
the non-Newtonian features of blood become dominant only in submillimetric vessels, while, as
shown in [29], the flow developing in larger structures can be modeled by a Newtonian constitutive
relation unless particular phenomena, like hemolysis, have to be considered. Accordingly, in this
study, the linear constitutive relation τ = 2E/Re has been used for all simulations, thus imposing
a fluid viscosity independent of the rate of strain. The Reynolds number is defined using the
effective kinematic viscosity for human blood with a hematocrit of 40%, ν = 4.8 × 10−6 m2 s−1,
dm = 3.2 cm the mitral annulus diameter, and U m = 60 cm/s the average velocity through the
mitral annulus during diastole measured using Doppler echocardiography: the resulting value is
Re = U mdm/ν = 4000, which will be used for all simulations.

The governing equations (1) are numerically solved as in [18], using the AFiD solver based on
central, second-order, finite differences on a staggered mesh for spatial discretization [30–32]. As
mentioned above, the heart is placed in a Cartesian computational domain, and the no-slip condition
on the wet surfaces is imposed using an IBM technique based on the moving least square (MLS)
approach [33,34]. Given un and pn, velocity and pressure fields at time t n, and �t the time step, the
provisional nonsolenoidal velocity field û satisfies

û − un

�t
= −α∇pn + γ Hn + ρHn−1 + α

2Re
∇2(û + un), (2)

100502-5



VIOLA, DEL CORSO, AND VERZICCO

(a) (b) (c)

FIG. 3. IB treatment of the deformable tissues. (a) Generic wet surface, (b) triangulated mesh with the mass
concentrated at the nodes and the Lagrangian markers placed at its centroids, and (c) support domain around a
Lagrangian marker consisting of 27 Eulerian cells.

where H incorporates the nonlinear terms and some volume forces while γ = 3/2, ρ = −1/2,
and α = γ + ρ = 1 are the coefficients of the Adams-Bashforth/Crank-Nicolson time advancement
scheme [35].

The no-slip condition on the wet surfaces is imposed at the Lagrangian markers uniformly
distributed on the immersed boundaries and then transferred to the Eulerian grid points as shown in
Fig. 3.

A 3D support domain (“cage”) consisting of Ne = 3 × 3 × 3 = 27 Eulerian nodes is created
around each Lagrangian marker, and the fluid velocity therein û(xb) is computed through interpola-
tion using the velocity at the Ne Eulerian points of the cage

ûi(xb) =
Ne∑

k=1

φk
i (xb)ûi(xk ); (3)

φk
i (x) are the transfer operators which depend on the shape functions used for the interpolation.

Generally, this interpolated velocity does not match that of the corresponding Lagrangian marker
ub(xb), and their difference is therefore used to compute a source term fb = [ub(xb) − û]/�t , which
is then transferred back to the Eulerian grid points as a distributed forcing f by a relation similar to
(3). This procedure is repeated for all Lagrangian markers, and the resulting forcing field is used to
update the provisional velocity û as

u∗ = û + �tf . (4)

Since u∗ is still a nonsolenoidal field it is projected onto a divergence-free space by a correction in
the form

un+1 − u∗

�t
= −α∇� ⇒ un+1 = u∗ − α�t∇�, (5)

where the scalar field � comes from the elliptic equation ∇2� = ∇ · u∗/(α�t ), which yields also
the updated pressure through

pn+1 = pn + � − α�t

2Re
∇2�. (6)

It should be noted that the projection step (5), enforcing the divergence-free condition for the
velocity un+1, slightly perturbs the field u∗, which satisfies the IB condition imposed in step (4).
In order to reduce a residual mass flux through the immersed surfaces, steps (4) and (5) may be
iterated to obtain an updated velocity un+1 complying, at the same time, with the solenoidal- and
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FIG. 4. Snapshots of the three-dimensional myocardium and the corresponding two-dimensional endo-
cardium wet by the blood flow during different phases of the cycle.

the no-slip boundary-condition up to a given tolerance: typically one or two iterations are sufficient
to yield the desired convergence for the valve leaflets and four for pressurized heart chambers.

Hydrodynamic loads are needed as input for the structural solver thus pressure and viscous
stresses are evaluated at the Lagrangian markers lying on the immersed body surface. For the valve
leaflets, both surface sides are wet by the flow, and the local force at each triangular face Fext

f is
computed along positive n+ and negative n− = −n+ normal directions:

Fext
f = [−(p+

f − p−
f )n+

f + (τ+
f − τ−

f ) · n+
f ]A f , (7)

where A f is the area of the surface. In contrast, for closed surfaces, like heart chambers and vessels,
hydrodynamic loads are computed on only one side of the surface,

Fext
f = [−p f n f + τ f · n f ]A f , (8)

where n f is the outward normal vector of the wet surface. The hydrodynamic loads, evaluated at the
baricentric Lagrangian markers, are then transferred to the triangle nodes according to

Fext
n = 1

3

Nn f∑
i=1

Fext
f i A f i, (9)

Nn f being the number of faces sharing the node n and Fext
f i and A f i hydrodynamic forces and surfaces

of the ith face sharing the node n.
It must be noted that, differently from valve leaflets, atria and ventricles are 3D structures, with

a finite-thickness myocardium, wet by the blood only on the side lined by the endocardium; this
implies that IB force (4) and external loads (9) should be computed only at the corresponding
surface. To this aim, the triangular faces belonging to the endocardium are identified in a prepro-
cessing step and tracked in time [see Fig. 4(a)], thus providing the instantaneous position of the wet
surface needed for fluid-structure interaction, as shown in panels (b) and (c) for systole and diastole,
respectively.

Adaptive tiling rule

The two-way transfer between Lagrangian and Eulerian grids requires that each grid cell
crossed by the immersed boundary can be associated (at least) with a surface triangle. If the
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triangulation is too fine and more than one surface element fits into a single mesh volume, only
the triangle whose centroid is closest to the Eulerian variable will be used to compute the IB
forcing with the remaining ones staying “idle.” Vice versa, with too coarse of a triangulation,
a single surface element will cross several mesh volumes, and only that closest to the triangle
centroid will have the Lagrangian information transferred: all the other mesh elements will be
“orphaned” and do not guarantee the correct imposition of boundary conditions by IB forcings.
Of course, the first possibility still provides a correct solution, although computing resources
are wasted with idle triangles; on the other hand, in the second case, orphan cells will produce
fluid flow across the immersed boundary, which will spoil the solution. The authors of [35] have
shown that a working compromise between the above opposite instances is to have a surface
triangulation with equilateral triangles having edges of size ≈0.7 times the local grid spacing; this
choice does not penalize the computational overhead while ensuring the absence of orphan mesh
nodes.

An immediate consequence of these constraints is that as the Eulerian grid is refined, also
the Lagrangian resolution must be increased thus entailing geometry remeshing for every change
of Eulerian resolution. In the present case, the problem is further exacerbated by the periodic
myocardium contraction, almost halving ventricular volumes at the end of systole with respect
to their end-diastolic values, which shrinks and stretches the surface triangles and varies the
Lagrangian-to-Eulerian mesh size ratio from the initial design 0.7 to suboptimalvalues.

These problems are prevented by using an adaptive Lagrangian mesh refinement procedure where
the initial triangular mesh is automatically subdivided into virtual subtriangles (the “tiles”) until
each one gets smaller than the local Eulerian grid size, thus avoiding “holes” in the interfacial
boundary condition. In this way, heart tissues can be discretized independently of the Eulerian
mesh, and each triangle is successively refined until the Lagrangian resolution of the tiled surface
is sufficiently fine. The tiling procedure can be run either once at the beginning of the simulation
or dynamically at each time step according to the instantaneous tissue deformation that changes the
local ratio between Lagrangian and Eulerian grids. As discussed also in [18] the advantage of an
adaptive refinement of the Lagrangian triangulation for high Reynolds number flows is twofold: on
one hand it allows the use of the same base triangulation regardless of the Eulerian grid and, on the
other, the number of Lagrangian nodes used to deform the immersed body can be reduced, provided
that the structural loads are accurately resolved.

A possible tiling approach is the barycentric adaptive rule [36] consisting of splitting the triangles
into three parts according to the medians passing through the centroid. Higher Lagrangian resolution
can thus be obtained by successive splitting of the subtriangles according to the same procedure
[Fig. 5(a)].The barycentric tiling rule, however, has two main drawbacks: the shape of the tiles
changes with respect to the initial triangle, and it gets more skewed as successive tiling steps are
made [see Fig. 5(a)]. Furthermore, the number of tiles increases exponentially Ntiles = 3b with
the tiling step b [Fig. 5(d)], and this limits the flexibility of the procedure as the Lagrangian
resolution can be increased only by powers of three and so does the computational cost of the
IB-MLS.

These shortcomings are mitigated by an adaptive quadratic tiling [18,37] where triangles are
tiled by tracing a set of m − 1 (with m = 1, 2, 3, . . . ) equispaced lines parallel to each triangle edge
intersecting the other two. According to Talete’s theorem all tiles are similar to the original triangle
and, consequently, are similar among each other. Moreover, the number of tiles grows algebraically
Ntiles = m2 with the tiling steps m, thus allowing a greater control of the Lagrangian resolution
with respect to the barycentric tiling rule. This last aspect can be further improved by combining
the quadratic tiling rule with the barycentric one. Specifically, both strategies are used to split the
triangles with the number of barycentric and quadratic steps (b and m, respectively), which can be
varied independently so as to obtain the desired Lagrangian refinement. The resulting “mixed” rule,
hence, provides a richer space of tiling configurations [Fig. 5(c)] with the number of tiles growing
slower than respect for the other strategies [Fig. 5(d)].
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FIG. 5. Possible adaptive tiling strategies. (a) Barycentric (b) quadratic, and (c) mixed quadratic-
barycentric formula, along with the corresponding (d) number of tiles as a function of the number of steps
of the formula. A slower growth in the last panel corresponds to a better control of the Lagrangian resolution
through the adaptive tiling.

B. Electrophysiology

The functioning of individual myocyte cells is known in detail under normal or pathological
conditions [38–40], and computational models of increasing complexity have been conceived to
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link specific molecular mechanisms to cellular physiology [41,42]. Unfortunately, the number of
myocytes in the heart is intractable (there are more than 5 billion of them in the left ventricle only
[43]), and reproducing the cardiac electrophysiology starting from the single cell is currently out
of reach. In order to overcome this limitation, effective myocardium models have been formulated
using a continuum medium made of intracellular and extracellular overlapping domains separated
by a distributed membrane [44,45]: these are referred to as “bidomain models” and are widely used
in many different contexts. The electric potential difference across the domains (v, transmembrane
potential) and the extracellular potential (vext) satisfy a generalized Ohm law which can be written
as

χ

(
Cm

∂v

∂t
+ Iion(s) + Is

)
= ∇ · (M int∇v) + ∇ · (M int∇vext ),

0 = ∇ · (M int∇v + (M int + Mext )∇vext ),

ds
dt

= F (s, v, t ), (10)

where the surface-to-volume ratio of cells, χ , and the specific membrane capacitance, Cm, are set as
in [18] equal to χ = 1400 cm−1 Cm = 1 µF cm−2, respectively. M int and Mext are the conductivity
tensors of the intracellular and extracellular media, which reflect the orthotropic myocardium
electrical properties and depend on the local fiber orientation, since the propagation velocity is
faster along the muscle fiber than in the cross-fiber directions. Expressed in the basis formed by the
fiber, sheet, and sheet-normal directions the local conductivity tensors M̂ext, M̂ int are diagonal [46],

M̂ext =
⎡
⎣mext, f 0 0

0 mext,s 0
0 0 mext,n

⎤
⎦, M̂ int =

⎡
⎣mint, f 0 0

0 mint,s 0
0 0 mint,n

⎤
⎦, (11)

and the nonnull diagonal components are the principal conductivities, which are set as in [20]. The
conductivity tensor in the global coordinate system is thus obtained by the transformation

Mext = AM̂extAT , M int = AM̂ intAT , (12)

where A is the rotation matrix containing columnwise the components of fiber, sheet, and sheet-
normal unit vectors

A =
⎡
⎣e f ,x es,x en,x

e f ,y es,y en,y

e f ,z es,z en,z

⎤
⎦. (13)

The quantity Iion(s), in the first of Eqs. (10), is the ionic current per unit cell membrane (measured
in mA mm−2), which is determined by the state vector s given by the cellular model [the last
of equations (10)]. Different heart tissues entail different myocytes described by specialized cell
models: the Courtemanche model [38] has been used for the atrial myocytes, the Stewart model [39]
for the Purkinje network, and the ten Tusscher-Panfilov model [40] for the ventricular myocytes.
Last, Is is a prescribed input current needed to initiate the electrical propagation, which in the heart
is generated by specialized self-oscillatory cells (pacemaker cells) within the sinoatrial node placed
in the upper part of the right atrium. The transmembrane potential propagation and the consequent
myocardium depolarization are quite insensitive to the time duration and amplitude of Is, which here
have been set to 1 ms and 0.3 mA mm−2, respectively.

As explained in the Introduction, the transmembrane potential does not propagate along a single
heterogeneous medium but rather across a hierarchy of systems whose electrical connection occurs
only through selected points. In fact, the electrical signal travels, at a velocity of about 1 m/s,
along the internodal pathways and the bundle of Bachmann, which are elongated 1D structures. The
atrioventricular node is the only electrical conduction between atria and ventricles, and there the
conduction velocity is only ≈0.05 m/s, thus delaying the transmission of ≈100 ms before moving
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beyond. The signal then reaches the bundle of His and speeds up to 2 m/s following the left and
right branches, which are also 1D filaments. These bundles connect to a very fine 2D network, the
Purkinje fibers, in which the signal accelerates to 4 m/s and rapidly reaches the 3D ventricular
myocardium, where it slows down at <1 m/s.

All these anatomical structures are explicitly simulated by our electrophysiology model which
integrates Eqs. (10) on 1D, 2D, or 3D domains depending on the specific heart region and using
for each of them the appropriate properties. It is worth mentioning that all these subsystems are
two-way coupled among them although only through selected points, the communication nodes,
where electrical conduction is allowed. Further details, validations, and specific values of the model
parameters can be found in [26] where also the numerical scheme used for the integration of the
system (10) is thoroughly described.

Here we mention only that the governing equations are solved by a numerical scheme developed
in house to cope with the electrophysiology equations in complex geometries: The domain is
split into a 1D graph for the fast conduction bundles, 2D shells for the Purkinje network, and an
anisotropic 3D medium for atrial and ventricular myocardium, which are segmented, respectively,
using linear, triangular, and tetrahedral elements.

As detailed in [26], all unknowns are defined at the cell center, while the equations, written
in conservative form, are discretized by second-order accurate finite volume schemes with the
transmembrane potential v integrated explicitly in time and the extracellular potential vext obtained
through an iterative GMRES method with restart [47] using the potential at the previous time step
as an initial guess for the unknown.

Special care is needed to integrate the cellular model [the third of equations (10)] whose state
vector s contains 21 variables for the Courtemanche model of the atria, 20 for the Stewart used in
the Purkinje network, and 19 for the ten Tusscher-Panfilov model for the ventricular myocardium.
Each of them entails the solution of ODEs in time for every spatial cell and those quantifying the
ionic fluxes through the cell membrane pores (gating variables) are numerically stiff. Prohibitively
small time steps are avoided by integrating analytically the quasilinear equations for the gating
variables (with the transmembrane potential v held constant) and using a time-explicit method for
the remaining nonlinear ones. This is known as the Rush-Larsen scheme [48,49], and its enhanced
stability properties allow for a time step more than one order of magnitude larger than for a standard
explicit scheme.

Once the transmembrane potential vn is known at every cell node, the active muscular tension
τ act

n is obtained by the relation [50]

dτ act
n

dt
= ψ (vn)

[
kτvn − τ act

n

]
, (14)

where kτ controls the amplitude of the active stress and ψ is a smoothed Heaviside function
(increasing monotonically from 0.1, during muscular contraction, to 1, during relaxation), which
sets the delay of the active stress with respect to the action potential (see [51] for more details). The
active tension at the nodes translates in an active force oriented as the local muscular fiber direction
according to

Fact
n = τ act

n l̃2
n ê f , (15)

where l̃n is the average length of the mesh edges sharing the node n and ê f the local unit vector
aligned along the fibers.

C. Structure mechanics

The dynamics of deformable biological tissues is generally tackled by solving the Cauchy-
Poisson equation, complemented by appropriate constitutive relations, using finite-element or
finite-volume methods. For the present problem, however, entailing large time-dependent displace-
ments and deformations, these classical methods imply an excessive computational burden, and
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alternative approaches have to be employed. The interaction potential method [52] has proven
to be very efficient for these problems [35,53], and it allows one to handle within the same
framework three-dimensional tissues, used for the ventricular and atrial myocardium, as well as
two-dimensional membranes or shells adopted for valve leaflets, veins, and arteries.

The strength of the method lies in its simplicity: the structure is described by triangular (2D) or
tetrahedral (3D) elements, and the mass is evenly distributed among the nodes, which are connected
by elastic links. The dynamics of the nth node obeys the second Newton’s law of motion

mn
d2xn

dt2
= Fext

n + Fint
n + Fact

n , (16)

with xn the node position and on the right-hand side external, internal, and active forces acting on
each mesh vertex.

Note that here external forces are hydrodynamics loads (9), which are nonzero only on the nodes
located on wet surfaces, whereas the active tensional force (15) is nonzero only for the nodes
belonging to contractile myocardium of ventricles and atria. Internal forces depend on the material
constitutive relation, and they are specified in the next subsections for 3D and 2D structures. They
can also include additional constraints, like incompressibility or surface preservation, as shown in
[18,35].

1. 3D myocardium

The 3D structural model starts from the tetrahedral discretization of ventricles and atria, which
is typically the same mesh used by the electrophysiology solver. Elastic links connect the adjacent
nodes of the network, and they yield reaction forces when their relative position changes. Although
this was originally proposed in the framework of linear elastic materials [54], it can be extended
to the case of hyperelastic and anisotropic materials to model the biological tissues with fibers. In
fact, these materials are stiffer in the fiber direction (ê f ) than in the sheet (ês) and sheet-normal (ên)
directions, and the stiffness increases nonlinearly with the strain. These anisotropic, hyperelastic
continua can be described by a Fung-type constitutive relation for which the strain energy density
can be written as

We = c

2
(eQ − 1), (17)

with Q = α f ε
2
f f + αsε

2
ss + αnε

2
nn being a combination of the Green strain tensor components [55] in

the fiber, ε f f , sheet, εss, and sheet-normal εnn directions. The general expression for Q [35,55], which
includes also the cross terms of the Green strain tensor, has been simplified under the assumption of
pure axial loading, and, consequently, the nonnull second Piola-Kirchhoff stress tensor components
in the three directions read τ f f = cα f f eα f f ε

2
f f ε f f , τss = cαsseαssε

2
ssεss, and τnn = cαnneαnnε

2
nnεnn. The

latter two terms can be taken as equal since it is found experimentally that αnn = αss [56,57],
implying that the local axial stress of the mesh springs depends only on their inclinations, φ, with
respect to the local fiber direction. Hence, the local stress within an edge inclined by φ with respect
to the local fiber direction is computed as

τφ = cαφeαφε2
φ εφ, (18)

where αφ =
√

α2
f f cos2 φ + α2

nn sin2 φ (we recall, assuming αnn = αss). The strain εφ is calculated as

the spring elongation relative to its instantaneous length, i.e., εφ = (l − l0)/l , where l and l0 are the
actual and the stress-free length of the edge, respectively. As shown in Fig. 6, the stress increases
linearly with the strain for small amplitudes and then grows exponentially for larger deformations.
Concerning the alignment with the local fiber orientation, the stiffness is inversely correlated with

100502-12



HIGH-FIDELITY MODEL OF THE HUMAN HEART: …

FIG. 6. Hyperelastic and orthotropic constitutive relation as a function of the local inclination between the
mesh edge and the fiber direction. The two limiting cases of edge parallel (φ = 0) and orthogonal (φ = π/2)
to the local fiber direction are shown by the thicker lines.

the angle φ; thus the force applied to the nodes n and m sharing the link of length ln,m reads

Fel
n = τφ︸︷︷︸

stress

Nn,m∑
j=1

Vc j

ln,m︸ ︷︷ ︸
tissue cross-section

rn − rm

ln,m︸ ︷︷ ︸
force direction

, Fel
n = −Fel

m , (19)

with rn (rm) the position of the node n (m) and Vc j the area of the jth tetrahedron out of the Nn,m

ones sharing the edge ln,m. The parameters of the Fung constitutive relation are set as in [20], so as
to reproduce the stress-strain curves in the fiber and cross-fiber direction measured in the ex vivo
experiments.

The mass of the tissue is concentrated on the vertices of the discretizing tetrahedra, uniformly
distributed and proportional to their volume: given a tissue local density ρ j , the mass of the jth
element of volume Vj is equally distributed among its four vertices; thus the mass of a node, mn, is

mn = 1

4

Nn∑
j=1

ρ jVj, (20)

with the summation extended only to the Nn tetrahedra sharing the node n. Here the tissue density
ρ j is assumed to be uniform within the myocardium and equal to 1.05 g/ml.

2. 2D membranes

Valve leaflets are thin deformable structures which can be modeled as shells and their internal
stresses computed using the 2D link network given by surface triangulation [18,35,55]. Similarly to
the above 3D model, the anisotropic and hyperelastic material properties are accounted for by the
same Fung constitutive relation as in (17), and the mass is lumped at the nodes proportionally to the
area of the triangles sharing a given vertex [18,35,55]. Thus the mass mn of the nth node is

mn = 1

3

Nn∑
j=1

ρ j s jA j, (21)

where ρ j and s j are the local density and tissue thickness, respectively, Aj the area of the triangular
element, and Nn the number of triangles sharing the nth node.
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Once again internal stresses are computed using equation (18) to account for the local fiber
orientation, and the force exerted by the link connecting the nodes n and m is

Fel
n = τφ︸︷︷︸

stress

s
A(1)

n,m + A(2)
n,m

ln,m︸ ︷︷ ︸
tissue cross-sectional

rn − rm

ln,m︸ ︷︷ ︸
force direction

, Fel
m = −Fel

n , (22)

where rn (rm) is the position of the node n (m) and A(1,2)
n,m are the areas of the two triangles sharing

the edge ln,m.
Since the relation (22) accounts only for the in-plane stiffness, an additional bending energy

term is added to provide out-of-plane bending stiffness to the shells and prevent their wrinkling.
The out-of-plane deformation of two adjacent triangles sharing an edge is then associated with an
elastic reaction of a bending spring, whose energy involves four adjacent nodes [35]. Considering a
surface with nonzero initial curvature in the stress-free configuration, the discretized bending energy
can be written as [58]

Wb = kb[1 − cos(θ − θ0)], (23)

where θ is the angle between the normals of adjacent triangular faces of the tessellated surface, and
θ0 is the neutral angle of the stress-free configuration. The bending constant is equal to kb = 2B/

√
3

[35,59], with B = cαφs3/[12(1 − ν2
m)] the bending modulus of a planar structure, where s is the

tissue thickness, cαφ is the equivalent Young modulus in the limit of small strain (which depends
on the Fung tissue properties), and νm = 0.5 is the Poisson ratio of the material. The corresponding
bending nodal forces, Fbe

n , can be then obtained by taking the gradient of the bending potential (23)
as detailed in [35].

The total internal force of these 2D shells at a given node is thus given by

Fint
n = Fel

n + Fbe
n , (24)

to be used in Eq. (16) to compute the time-dependent dynamics.
During the heart beat cardiac valves open and close alternatively, and their leaflets are pushed

against each other, during the closing phase, to seal the valve. In order to prevent the structures
from piercing each other during the approaching phase, the contact model developed in [16] has
been used. It consists of tagging, at each time step, the cells of the fluid domain occupied by
a structure node with an integer number corresponding to the body to which the node belongs
(untagged cells are entirely occupied by the fluid). Whenever a node of a moving body enters a
tagged cell, a contact is detected, and the two nodes belonging to different bodies are forced to move
with the average of their incoming velocity, so that they can drift in space without compenetration.
In contrast, if the local forces pull them apart, the structures can freely recede without any constraint.
Of course, as two bodies approach, and the gap between them contains fewer than ≈3–4 grid
points, the spatial resolution becomes insufficient to capture the flow, and a subgrid model should
be used to estimate the hydrodynamic loads generated by their relative motion. Among many, one
possibility consists of solving the Stokes or the lubrication equations in the gap to compute the
overpressure (underpressure) induced by the approaching (receding) phase; this avoids incorrect
contact dynamics when the gap between the tissues becomes too narrow to be resolved by the grid
spacing [60]. We wish to stress that this, and similar models available from the literature, entail
a nonnegligible computational overhead and reduce the numerical stability of the computational
model: we are currently working on these issues before employing this model for our cardiac
simulations.

3. Model coupling and computational implementations

The description of the three main models makes it immediately evident that none of them is
stand-alone, and each one relies on the results of the others as input: in fact, the integration of
Eq. (16), from which the actual tissue configuration is obtained, needs the hydrodynamic loads and
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the active myocardium tension given, respectively, by flow and electrophysiology solvers. On the
other hand, the system (1) can be tackled only once the fluid domain is known which is determined
by the structure model. Finally, Eqs. (10) depend on the structure solver not only for the domain
configuration but also because the conductivity tensors M̂ext and M̂ int might be altered by the local
strain [61].

On account of the complex physical interconnection it is not clear whether these systems should
be advanced in time simultaneously or whether they could be solved sequentially and, in the latter
case, in which order. The former strategy, referred to as strong coupling, considers all models as a
unique dynamical system whose solution is stable although computationally expensive. In contrast,
the alternative method, the loose coupling, yields relatively inexpensive schemes at the price of
more unstable solutions which require smaller time steps.

The most advantageous approach, in terms of time to solution, depends on the problem and on the
specific parameters; therefore both strong and loose coupling have been implemented in the present
model [18]. The first is based on a predictor-corrector two-step Adams-Bashforth scheme with the
three solvers iterated within each time step (typically 2–3 times) until the maximum relative error
computed on the position and velocity of the structural nodes decreases below a prescribed threshold
(usually 10−4). In the loose-coupling method, fluid and electrophysiology are solved first, using the
structure at the previous time step, and the generated hydrodynamic and active loads are used to
evolve the new structure.

For the application presented in this paper the authors of [18] have shown that the time step
is fixed by the fast electrophysiology dynamics and the high frequencies of the stiff myocardium
during systole; since the limitation comes from physical rather than from numerical constrains, a
loose-coupling strategy has shown to provide stability and computational time savings of the order
of 50%–70% while giving the same results as the strong coupling.

Accordingly, for all results shown in this paper, a loose-coupling approach has been employed,
and a dynamic time step with a constant Courant number CFL = 0.2 has yielded a �t ≈ 2 µs
throughout the simulations.

Before showing the results, it is worthwhile to summarize some details about the computational
cost of the model since, given the enormous undertaking, without an efficient implementation it
would be impossible to run the simulation campaigns needed for parametric studies. In fact, the
model was originally parallelized using MPI directives and run on standard CPU clusters: the
reference configuration with a grid of 211 Mnodes could use a maximum of 144 CPUs before
the parallel performance was too degraded and, on the Cartesius cluster of SURFsara [62], it
required ≈2 s of wall-clock time per time step; thus, with a time step �t ≈ 2 µs, the integration
of a heartbeat could be completed in not less than 12 days. It must be mentioned that for each case
the first heartbeat is discarded since it accommodates the initial transient and the pretensioning of
all tissues, while an order of five additional statistically steady heartbeats are computed in order
to obtain phase-averaged statistics of the pulsatile flow. With the above numbers, each simulation
needed about 2 months to be completed, and these numbers were clearly incompatible both with the
clinical practice and extensive parametric studies.

An important breakthrough for this model has been its porting to GPUs whose architecture turned
out particularly beneficial for the present software: using 8 NVIDIA A100 GPUs, the same above
simulation could be run in ≈0.07 s per time step and ≈10 h per heartbeat [27], thus allowing a
complete simulation in 2.5 days.

This impressive speedup has allowed the use of the present model for large simulation campaigns
in which input data and configurations are systematically varied to reproduce a cohort of virtual
patients as would be done in clinical trials. In the next section, we will show first the results obtained
for a healthy configuration and then some pathologic cases with myocardial infarction in which, by
changing the position of the necrotic scar, the effect of the disorder on the overall pumping function
is discussed.
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FIG. 7. Perspective views, for the healthy configuration, of instantaneous distributions of activation poten-
tial (a), (d), internal tissue stress (b), (e), and blood velocity magnitude on a plane cutting the left ventricle (c),
(f). Panels (a)–(c) are for late diastole, (d)–(f) for peak systole.

IV. RESULTS AND DISCUSSIONS

A. Physiologic conditions

In order to better identify the effects of myocardial infarction, we will present first some data
obtained from the model run with nominal healthy parameters: this configuration will be regarded
as a reference, and any change produced by the disorder will be identified by comparison.

The main results obtained for healthy conditions are discussed in [20], and in Fig. 7 electrophys-
iology, tissue loads, and hemodynamics are reported at ventricular diastole and systole. Note that,
owing to the complex 3D structure of the heart, a single planar section cannot properly visualize the
flow in the left and right sides, and, in this paper, the former has been privileged.

One important result of the model is the time evolution over a heartbeat of the left ventricular
blood pressure, of its volume, and of the aortic blood pressure (Fig. 8) since these quantities are
widely used in clinical practice and have relevant diagnostic value. In fact, the peak of the aortic
pressure is the systolic (maximum) value while the baseline is the diastolic (minimum) value, which,
in any routine medical check are immediately acquired by the physician to make an evaluation.

The time evolution of the left ventricle volume, usually estimated by simple ultrasound scan
imaging, yields the ejection fraction EF% = (VM − Vm)/VM , with VM and Vm the maximum and
minimum left ventricular volume over an heart beat. The EF gives a concise assessment of the
cardiac pumping efficiency: values in the range �50% are normal, 50%–30% are moderately to
severely reduced, while �30% are life threatening. Finally, the ejection fraction multiplied by
the heart rate gives the cardiac output (CO, usually in liters per minute) which is the blood flow
rate pumped in the circulations. Additional information can be obtained from the crossings of
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FIG. 8. (a) Time evolution, during a complete heartbeat, of left ventricle (—) and aortic (– – – –) blood
pressure. (b) Time evolution of the left ventricle volume.

aortic and ventricular blood pressure that mark the opening and closing of the aortic valve or the
shape of the waveforms, which indicates the relative duration of systolic and diastolic phases.
The values obtained from the present model, run under nominal values of the parameters, are
130 mmHg/80 mmHg (17 290 Pa/10 640 Pa) for systolic/diastolic pressure, EF% = 55.7 and
CO = 7.3 l/min which are typical figures for a healthy adult male.

B. Infarcted myocardium

The heart has very limited anaerobic capacity and oxygen shortage, even of just a few minutes,
can result in permanent damage. In fact, myocytes extract up to 80% of the available oxygen from
the blood, unlike skeletal muscles which use only 30%–40% of it [64]; therefore they depend on

FIG. 9. (a) Left ventricle segmentation according to [63]. (b)–(f) Position of our “minimal’; infarction and
the affected LV segments: (b) anterior infarction (segments 1-7-13); (c) septal (2-8-14); (d) lateral (5-6-11-12);
(e) inferior (4-10-15); (f) apical-anterior (1-7-13-17).
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FIG. 10. Internal stresses of the myocardium at peak systole (t/T = 0.44): (a) healthy case; (b)–(f)
infarcted hearts as in Fig. 9. The stress level is color coded as in Fig. 7(e).

a continuous supply of oxygenated blood from the coronary circulation. The latter starts from the
left and right coronary arteries, originating from two Valsalva sinuses of the aortic root, and by
successive branchings feeds a superfine network of capillaries reaching all myocardial cells. If a clot
ends up in one coronary artery and it gets stuck in one of the branches, all the downstream flow is
decreased because of completely blocked and the perfused tissue is impaired. Indeed some residual
tissue oxygenation is still possible due to retrograde secondary perfusion from the surrounding
capillary bed; therefore the final outcome of an ischemic event shows enormous variability ranging
from complete recovery to death. If the clot is eliminated (usually by drug dissolution) within the
first few minutes the event is reversible and myocardial function is restored partially or totally. In
contrast, if oxygen shortage lasts beyond a hour, the interested region necrotizes becoming a scar
with altered elastomechanic and electrophysiologic properties [65].

Among the factors determining the damage, there are the area of the ischemic tissue, the depth
across the thickness, and the position in the heart. The left ventricle is by far the part most damaged
by heart attacks, and for this reason cardiologists have segmented its myocadium into 17 sectors
and cataloged the affected ones for the most common ischemic events [63]. In Fig. 9 we show the
map of the segmented regions together with the location of the five ischemic events considered in
this study.

Concerning the infarct in the myocardium, for all cases, we have considered a “minimal infarc-
tion” consisting of a circular scar region centered at xi of radius σi = 2 cm of partially necrotized
tissue which is surrounded by an annular border zone of size 1 cm [66]; the ischemic endocardium is
about 9% of the total left ventricle wet surface. Although in reality the necrosis can affect different
thickness depths of the myocardium, here we have assumed that the scar always extended from
the epicardium to the endocardium (transmural ischemia). Finally, within the infarcted area a shape
function f (x) = exp{−[(x − xi )/σi]8} modulates the tissue stiffness with the factor 1 + f (x) and
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FIG. 11. Activation potential of the hearts at peak systole (t/T = 0.44): (a) healthy case; (b)–(f) infarcted
hearts as in Fig. 9. The stress level is color coded as in Fig. 7(d).

the electrophysiology conductivity and the active tension with the factor 1 − f (x). In this way the
necrotic scar is twice stiffer than the corresponding healthy tissue, and it has no electric conduction
and active contraction. Furthermore the shape function f (x) smoothly connects the properties
of the impaired and healthy tissue, thus mimicking the peri infarct region with some residual
functionality [67].

Figure 10 shows a perspective view of the tissue stress distribution for the various cases at
t/T = 0.44, which is around peak systole; it appears that generally, given the limited extent of
the impaired region, ventricle contraction is mostly preserved, the case of septal infarction being
the only exception. The distribution of the activation potential (Fig. 11) gives similar information

FIG. 12. (a) Time evolution, during a complete heartbeat, of left ventricle and aortic blood pressure:
comparison between healthy and infarcted hearts. (b) Time evolution of the left ventricle volume.
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TABLE II. Efficiency indicators for the heart pumping function in the various simulated cases.

Healthy Anterior Septal Lateral Inferior Apical-anterior
Impaired Sectors – 1-7-13 2-8-14 5-6-11-12 4-10-15 1-7-13-17

Max LV pressure (mmHg) 128.0 117.1 108.9 115.6 118.0 118.2
Ejection fraction (EF) 55.7 52.0 49.9 50.5 52.0 52.6
Cardiac output (l/min) 7.3 6.8 6.1 6.6 6.8 6.9

and clarifies the reason for the latter atypical behavior. In fact, for all cases but the septal infarction,
although the scar does not conduct the electrical signal, the surrounding tissue can make up for
it, thus preventing the blocking or delaying of ventricle depolarisation. In contrast, within the
interventricular septum is embedded the bundle of His, which branches into left and right bundles
[Fig. 1(a)], the elongated fast conduction fibers, bringing the activation potential to the Purkinje
network of left and right ventricles, respectively. The ischemic scar of our septal infarction, located
across segments 8 and 14, impairs a tract of the left bundle branch, thus cutting the electrical
connection between the bundle of His and the left Purkinje network. As a consequence, the left
ventricle contracts only when the depolarization wave from the right ventricle propagates along the
myocardium (see [20]) where the conduction velocity is only ≈0.5 m/s rather than ≈4 m/s of the
Purkinje fibers.

This dynamics is well evidenced by the pressure profiles of Fig. 12 showing that, for the septal
infarction, the left ventricle systole is delayed by ≈150 ms with a peak pressure and a volume
contraction which are the smallest among all cases. In fact, the contraction asynchrony of left and
right ventricles destroys their synergistic action and decreases the overall pumping efficiency of the
heart, as shown by the data of Table II. Figure 13 shows the hemodynamics on a plane cutting the
left ventricle at t/T = 0.44, which is the peak systole for the healthy configuration as confirmed
by the strong aortic jet in Fig. 13(a). On the other hand, at the same time, the heart with the
septal infarction [Fig. 13(b)] is only at the beginning of its contraction since the depolarization
wave has not reached the whole muscular tissue. When, at t/T = 0.55, the ventricle fully depo-
larizes [Fig. 13(c)] the contraction is weaker and the aortic jet less intense than in the reference
case.

The loss of electrical connection between the bundle of His and the left Purkinje network is
known as left bundle branch block, and it can be due to different causes such as cardiomyopathies
and endocarditis, although coronary artery diseases are among the most common [68].

FIG. 13. Comparison of the LV hemodynamics at t/T = 0.44: (a) healthy case (peak systole); (b) septal
infarction. (c) The same as (b) but at t/T = 0.55, which is the peak systole for the case of septal infarction.
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V. CONCLUSIONS

In this paper we have illustrated and described a computational tool aimed at reproducing
with high fidelity the full dynamics of the human heart. To achieve this goal three different
models have been developed to emulate the elastomechanics of active and passive heart tissues,
the electrophysiology systems including its hierarchical structures, and the blood hemodynamics.

A complex and important aspect is the multiple way coupling of all these systems, which entail
sophisticated numerical techniques for their concurrent integration. The resulting model reproduces
with high fidelity and predictive capabilities the dynamics of the heart, but at the price of huge
computational costs, which, on common CPU clusters, would allow only flagship simulations. Since
the long-term aim of this research is to make of this model a useful tool for clinical research, an effort
has been made to port all the software on the latest GPU architectures [27], and this has reduced the
time to solution from months to days, which makes possible clinical applications.

Some illustrative results have been produced for a reference healthy configuration and for
several cases of myocardial infarction: it has been shown that not only does the model yield the
physiological parameters when run in nominal conditions, but it can also reproduce subtle details of
cardiovascular disorders due to its detailed multiphysics modeling.

Before concluding this paper we wish to stress that, even if the present results confirm that the
model behaves as clinicians would expect, there are still many aspects to be improved. The electro-
physiology modeling should account for the modifications on the ionic currents and on the action
potential duration and restitution induced by the ischemia, which are known to generate abnormal
depolarization patterns (spiral and scroll waves) and eventually induce cardiac arrhythmia [69,70].
Accounting for such abnormalities would allow the digital heart to predict the arrhythmic potential
and the risk of ventricular tachycardia along with the corresponding impaired hemodynamics as a
function of the location and shape of the ischemic region and the cardiac anatomy.

As a last main point we mention the heart geometrical parameters and all tissue properties,
which, given the scattered values, should be analyzed with uncertainty quantification techniques.
This implies that rather than running single deterministic simulations, large simulation campaigns
should be performed with the results presented in terms of probability distributions. This approach
has already been used for small portions of the heart [71] and is currently being pursued for the
whole organ in an ongoing investigation.
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