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Abstract—Inertial measurement units (IMUs) are commonly
used for measuring runners outside the lab, but current IMU-
based motion capture solutions require a large number of sensors.
Therefore, we propose an AI-driven inverse dynamics approach
that requires three IMUs (placed on pelvis and lower legs) and
pressure insoles to estimate lower-body kinematics and joint
reaction moments during running. These joint reaction moments
could give insight in the muscle contribution in joint loading, such
as tibial bone loading. Results show good agreement with the ref-
erence for ankle reaction moments, while knee reaction moments
have larger errors. The proposed method shows good potential,
but better estimation of more proximal joint kinematics/kinetics
is required in combination with measuring shear forces.

Index Terms—machine learning, inverse dynamics, running,
ambulatory movement analysis, inertial measurement unit (IMU)

I. INTRODUCTION

Injuries of the lower extremity have a high occurrence
(∼37%) among runners [1]. About 80% of all injuries is
considered an overuse injury, caused by the repetitive impacts
while running [2]. Common parameters for impact analysis
are the peak tibial acceleration (PTA) or the impact peak
of the ground reaction force (GRF), which showed possible
relationships with potential injury [3]. However, they do not
represent the actual total compression forces occurring in, for
example, the ankle joint [4], where muscle forces also play an
important role in compressive joint forces [4]. Joint moments
could give insight in muscle force contributions, for example in
tibial bone loading estimation [4]. Biomechanical analysis of
running has provided substantial insights in relations between
various aspects that can impact injury, such as running form,
fatigue, shoe wear, etc. [1]. However, such analyses are
typically performed inside a gait laboratory equipped with
three-dimensional optical motion capture systems and force
plates [5].

Advances in ambulatory movement sensing allow for taking
the kinematic analysis of running out of the lab by using iner-
tial measurement units (IMUs), such as in road-race conditions
[6]. A full biomechanical analysis also requires kinetic data
to obtain (joint) loading information. It has been shown that
ankle/knee joint loading can be estimated by adding insoles to
the measurement setup [7]. Such a measurement setup requires
a large number of sensors, which results in a long setup time

and extensive data analysis. Efforts to minimize this setup, by
using machine learning to substitute information from body
segments without sensors, have shown good potential [8].
However, research on directly estimating knee joint loading
using machine learning shows that inter-individual outcomes
are less accurately estimated [9].

Inverse dynamics analysis allows for taking into account
individual differences, such as kinematics, body shape, seg-
ment lengths, etc., which can provide the required insights for
individual biomechanical running analysis. Therefore, we aim
to decrease the number of IMUs required in such a minimal
sensor setup to allow for more accessible biomechanical
running analysis. Our approach is to estimate lower-body joint
angles with only three IMUs placed on pelvis and lower legs,
using an artificial neural network (ANN) based on [8]. These
joint angles will be used in combination with data from the
pressure insole as input to the inverse dynamics analysis to
estimate ankle and knee moments. We hypothesize that this
will result in estimated joint moments that agree well with the
method based on an eight-IMU full body setup [7]. Results of
this study could benefit inverse dynamics analysis approaches
for estimating joint loading in an outdoor setting and its
relation to potential running injuries, but also in other sporting
activities.

II. METHODS

A. Dataset

A dataset collected by Wang et al. was used for train-
ing/testing our proposed approach for estimating joint mo-
ments in an ambulatory running setting [7], [10]. The dataset
contains data of 9 young adults running at 6.3, 8.1 and
9.9 km/h on an instrumented treadmill (custom Y-mill,
Motekforce-Link, Culemborg, The Netherlands), while mea-
suring body kinematics using eight IMUs (Xsens MVN Link,
Movella, Enschede, The Netherlands), and vertical ground
reaction forces (vGRF) and center of pressure (CoP) using
pressure insoles (Moticon, Munich, Germany). Two subjects
were excluded from this analysis, because the pelvis sensor
was placed in a different orientation compared to the other
subjects. Inverse dynamics analyses were performed using the
OpenSim gait2392 model [11]. Additional details of the data
acquisition and analysis can be found in [10].



Fig. 1: The network structure (and number of neurons in the
layer shown under the bars) for estimation of joint angles
using sensor orientation data of 3 IMUs. Data is represented
as quaternions, resulting in an input-layer with 8 inputs. The
second layer is an LSTM layer (with 250 neurons) that takes
into account relations over time that exist within the input
data. The LSTM layer connects to a fully connected layer (with
100 neurons), dropout layer (dropout of 0.5) and the output
layer (with 28 outputs), where the output is joint angles of the
ankles, knees, hip joints and lumbar joint (in quaternions).

B. Learning Approach

The proposed learning approach takes relative IMU orienta-
tion (in quaternions) of the lower legs to the pelvis as input in
the ANN to estimate lumbar, hip, knee and ankle joint angles
(in quaternions), which is schematically represented in Fig-
ure 1. The relative orientations are used as input to the ANN as
this removes the real-world heading orientation from the input
data. The output of the ANN (joint angles) are represented as
quaternions, because an Euler angle representation (which is
used in OpenSim) suffers from discontinuities and is therefore
not suitable for a recurrent regression approach. Additionally,
the pelvis sensor orientation is used to define the orientation of
the OpenSim model, as the pelvis segment is used for orienting
the model in the local frame.

A recurrent LSTM layer is used because it was shown to
be effective for estimation of cyclical motions [12]. Further
layers of the ANN are chosen to limit possible overfitting to
the training data. The neural network toolbox of MATLAB
R2023a (Mathworks, Inc., Natick, MA, USA) was used to
design, train, and evaluate the ANN described above. ANNs
were trained for 2,000 iterations using an initial learning rate
of 0.1, with the Adam optimizer functionality.

The data of seven runners was divided such that 5 subjects
were used for training, 1 subject was used for validation and 1
for testing. To ensure that no additional overfitting to a specific
running speed was occurring, the trials of running at 8.1 km/h
were excluded from the training/validation set, but were part
of the testing set.

C. Inverse Dynamics

Joint angles estimated using the proposed ANN approach
are converted to Euler angles and used as kinematic input
for the inverse dynamics. Furthermore, the CoP and vGRF
from the pressure insoles are obtained (assuming that the
pressure insoles are aligned with the foot coordinates, as
in [7]), to obtain joint moments with the inverse dynamics
simulations from OpenSim, using settings as described in [7].

As reference, a full-body IMU setup (8 IMUs: on feet, lower
legs, upper legs, pelvis, and sternum) was used, in combination
with the one-dimensional vGRF and CoP from the pressure
insoles to run the OpenSim inverse dynamics analysis.

D. Outcome Measures

Initial contact was detected when the vGRF measured by
the insoles exceeded 50 N, where each stride was resampled
to 200 samples to normalize each stride to 0-100% of the
stride cycle. 40 strides in the middle of each running trial were
evaluated, assuming that steady state running was achieved in
that period. Only the right leg was evaluated (similar results
were obtained for the left leg) for conciseness. First, outcomes
from our proposed ANN approach will be compared to joint
angles obtained by Wang et al. with their eight-IMU full-
body sensor setup [10]. Next, output of the inverse dynamics
analysis of OpenSim (normalized to the subject’s body weight)
based on our minimal sensor approach will be compared to that
based on the results of Wang et al. [10]. Both the kinematic
and kinetic outcomes of our method will be compared on
similarity (Pearson’s correlation coefficient, ranges according
to [13]) and accuracy (root mean squared errors (RMSE)) to
the previously described reference.

III. RESULTS

The mean Pearson correlation coefficients and RMSE ±
standard deviation of the ankle/knee angles/moments for all
subjects are shown in Table I, for each running velocity.
On average, the ankle/knee angles show very strong corre-
lations (> 0.9) and RMSE smaller than 12 degrees for all
running velocities. No significant differences can be observed
between the running velocities. These estimated kinematic
outcomes are used to drive the OpenSim inverse dynamics
simulation, which resulted in the mean ankle/knee moment
correlation/RMSE as shown in Table I. The ankle moments
in Y- (ab-/adduction) and Z-direction (flexion/extension) are
highly correlated with the reference OpenSim approach, while
the X-direction (eversion/inversion) shows larger errors and
smaller correlations. A similar pattern is visible for the knee
moments, however, these are less correlated and with higher
errors compared to the ankle moments.

Figure 2 shows the estimated right ankle (Figure 2a) and
knee (Figure 2b) angles of a representative subject running
at 9.9 kph, normalized to a complete stride cycle. Ankle
and knee reaction moments of the right leg are shown in
Figures 3a and 3b, where dashed lines show the estimates from
the AI-driven OpenSim approach and solid lines the reference
OpenSim approach of Wang et. al [7].

IV. DISCUSSION

This study aimed to estimate knee and ankle angles with
only three IMUs (placed on the pelvis and lower legs) by
using an ANN. Furthermore, ankle and knee moments were es-
timated using this limited IMU setup combined with pressure
insoles to perform inverse dynamics analysis with OpenSim.
The obtained joint angles and moments were compared with an



TABLE I: The mean Pearson correlation coefficients ± standard deviation (7 different test subjects, using 40 strides) is shown
in the left columns for the different angles/moments at different running speeds. The RMSE ± standard deviation is shown in
the right columns for the same conditions.

Pearson correlation RMSE
6.3 km/h 8.1 km/h 9.9 km/h 6.3 km/h 8.1 km/h 9.9 km/h

Ankle angle [deg] 0.87 ± 0.05 0.89 ± 0.10 0.89 ± 0.08 7.78 ± 2.56 7.63 ± 2.27 8.47 ± 3.09
Knee angle [deg] 0.92 ± 0.05 0.89 ± 0.21 0.97 ± 0.02 11.05 ± 3.24 11.44 ± 3.46 11.20 ± 1.65

X 0.56 ± 0.65 0.47 ± 0.61 0.48 ± 0.64 0.25 ± 0.11 0.24 ± 0.14 0.23 ± 0.12
Ankle reaction moment [Nm/kg] Y 0.96 ± 0.02 0.97 ± 0.03 0.95 ± 0.07 0.07 ± 0.02 0.08 ± 0.04 0.12 ± 0.09

Z 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.10 ± 0.06 0.10 ± 0.08 0.10 ± 0.06

X -0.08 ± 0.25 -0.15 ± 0.29 -0.02 ± 0.17 0.25 ± 0.10 0.23 ± 0.11 0.22 ± 0.08
Knee reaction moment [Nm/kg] Y 0.30 ± 0.31 0.42 ± 0.42 0.44 ± 0.36 0.12 ± 0.04 0.13 ± 0.07 0.18 ± 0.13

Z 0.42 ± 0.26 0.45 ± 0.28 0.43 ± 0.25 1.19 ± 0.77 1.25 ± 0.92 1.35 ± 0.96

(a) Sagittal ankle angle.

(b) Sagittal knee angle.

Fig. 2: Sagittal joint angle comparison (mean and standard
deviation band over 40 right strides) between the proposed
approach (AI-driven - red) and the reference (OpenSim - blue)
for the ankle (a) and knee (b), normalized over the stride cycle.

(a) Ankle reaction moment, Pearson (rX = 0.39, rY =
0.94, rZ = 1.00) and RMSE (Nm/kg) (RMSEX =
0.20, RMSEY = 0.07, RMSEZ = 0.06)

(b) Knee reaction moment, Pearson (rX = −0.35, rY =
0.29, rZ = 0.55) and RMSE (Nm/kg) (RMSEX =
0.18, RMSEY = 0.15, RMSEZ = 0.84)

Fig. 3: Reaction moment comparison (mean and standard
deviation band over 40 right strides for the different axes)
between the proposed approach (AI-driven - dashed) and the
reference (OpenSim - solid) for the ankle (a) and knee (b),
normalized over the stride cycle.



eight-IMU full-body setup and pressure insoles from [7]. The
proposed method is able to estimate joint angles and moments,
for use in joint loading estimates, such as tibial bone load [13].
Furthermore, this approach ensures a limited IMU setup time
for running in an outdoor setting.

On average, estimating lower-body kinematics from a three
IMU-based setup shows strong correlation compared to an
eight-IMU full-body setup. Joint angle estimates show larger
differences at peak values, where in most cases our approach
underestimates range of motion. This is likely a result of
excluding the evaluation subject of the training dataset of the
ANN, which means it extrapolates to this unseen subject. Sim-
ilar results were shown in Wouda et al. for training a subject-
specific (RMSE >3 degrees) ANN compared to training on
multiple subjects (RMSE >11 degrees) [8]. However, obtained
joint angles in this work show better time coherence, which
is due to applying a LSTM-layer in the ANN.

Using the estimated kinematics in combination with vGRF
to drive the OpenSim simulation to estimate joint moments
shows moderate to very strong correlation for the ankle
moments (depending on the axis) and weak to moderate
agreement for the knee moments (depending on the axis). This
is in line what was reported by Wang et al., namely that more
proximal joint moments are estimated with decreased accuracy
using a wearable setup (IMUs combined with insoles) due to
the lack of shear force information [7]. In combination with
errors of the kinematics that accumulate over the distal to
proximal segments, larger differences in knee moments are
observed that also show a more variable shape compared to
the reference. However, peak knee moments values appear to
be similar between the proposed approach and the reference,
which will require additional evaluation.

Two subjects had to be excluded from the results because the
sensor orientation on the body segment was different compared
to the other seven subjects. This resulted in different in- and
output relations for those subjects, which were not accurately
modeled by the trained ANN. This could be improved by
implementing a calibration procedure to use segment instead
of sensor orientations. In this manner, the approach would
be agnostic of the sensor orientation and potentially improve
results for all subjects.

Previous work of the authors estimated both kinematics and
kinetics using a three IMU sensor setup [8]. This could be
combined with inverse dynamics analysis to remove depen-
dency on pressure insoles. However, a different approach for
estimating CoP would then be required. This CoP estimation
can be an interesting focus for future research to further
minimize the sensor setup and run an ambulatory inverse
dynamics analysis based on only three IMUs.

A limitation of this work is that while kinematics of
heel/forefoot strikers are different, a single ANN was trained
without taking into account their foot landing pattern. This
might explain the smaller range of motion in the estimated
joint angles of the representative subject. One could train
different ANN for these running phenotypes, or provide addi-
tional features as input to the ANN to help distinguish these

different kinematics and therefore improve the joint angle
estimation of specific foot strikers. Furthermore, the running
speed evaluated (6.3 to 9.9 km/h) in this study is relatively
low. Higher running speeds need to be evaluated in further
research, as this can induce higher errors in IMU and pressure
insole measurements.

The ANN structure and inputs (sensor placement) were
chosen based on previously obtained results [8], however,
other combinations (more or less sensors, or different machine
learning approaches) of these should be investigated to ensure
this is the optimal approach for combining estimated kinemat-
ics with inverse dynamics analysis.

V. CONCLUSION

AI-driven joint angle estimation using a three-IMU setup
shows good agreement with an eight-IMU full body setup.
In combination with pressure insoles, the three-IMU setup
was still able to accurately estimate ankle moments, while
more proximal joints require improvement of the estimated
kinematics as well as inclusion of shear force information.
Overall, the proposed method shows potential in estimating
joint moments to be used in joint load estimation, such as
tibial bone loading, in an outdoor running environment.
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