REJ'4 MARS

Rubber for Mars: Optimization of BR/VMQ compounds

Rafal Anyszka¹⁻³⁾, Norbert Nizel³⁾, Magdalena Maciejewska³⁾, Dariusz Bielinski³⁾, Li Jia²⁾, Anke Blume¹⁾

¹⁾ University of Twente, Faculty of Engineering Technology, Department of Mechanics of Solids, Surfaces & Systems (MS3), Chair of Elastomer Technology & Engineering, Enschede, The Netherlands
 ²⁾ The University of Akron, The School of Polymer Science and Polymer Engineering, Akron, Ohio, United States
 ³⁾ Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, Poland

, Lodz University of Technology

RED'4 Current solutions

Manual controlling from Earth: average 20 min signal delay

- ✓ Mars rovers use aluminum wheels
- Aluminum exhibits good resistance to
 Martian environment = higher wheel
 reliability
- Rubber tires are much heavier than thin aluminum wheels
- Martian rovers carry sensitive equipment that can suffer from intensive vibration during driving
- Aluminum exhibits low flexibility and damping properties

https://www.reddit.com/r/space/comments/2dj1xb/comparative_wheel_sizes_of_mars_rovers/ https://i.stack.imgur.com/HejZ8.jpg

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars/Moving_on_Mars

RED'4 Current solutions

https://saxstation.com/playing-saxophone-by-earmemory.htm https://polki.pl/magazyn/zjawisko,7-faktow-o-leniwcach-niektore-szokujace,10419763,artykul.html https://mars.nasa.gov/msl/home/ https://turbo.fandom.com/wiki/Turbo_(character)

RED'4 Curiosity rover wheel damage

- > Too low resistance to continuous deformation – low elasticity
- Direct contact with sharp/pointy rocks

https://www.spaceflightinsider.com/missions/solar-system/wheel-treads-break-curiosity-rover/ https://spacenews.com/mars-rover-curiosity-dealing-with-wheel-damage/ https://www.space.com/26472-mars-rover-curiosity-wheel-damage.html

How about high-performance vehicles on Mars?

Let's try to use rubber!

RED[•]**4** Can the rubber flexibility be preserved on Mars?

RED 4 Idea – blending of silicone (VMQ) & butadiene rubber (BR)

Morphology of the designed rubber compounds

Dispersed phase

Vinyl-Methyl Silicone Rubber (VMQ):

- ✓ Very good low temperature elasticity
- ✓ Good UV resistance
- Low abrasion resistance
- Low mechanical properties

Polimer MV 1,0

1% of methyl-vinyl

Addition of reinforcing fillers:

♠Carbon Black N330 – 78 m²/g

♦Silica ULTRASIL® 7000 GR – 170 m²/g + TESPD silane (Si®266)

Continuous phase

Butadiene Rubber (BR):

- ✓ Good low-temperature elasticity
- ✓ High abrasion resistance
- ✓ High mechanical properties
- Low UV resistance

Buna CB24 > 96% of cis-mers

Formulation of the compounds

Samples	BR-VMQ_CBN330_30	BR-VMQ_SilUlt7000_30		
Ingredients [phr]				
BR (Buna CB24)	80			
VMQ (Polimer MV 1,0)	20			
CB N330	30	-		
Silica ULTRASIL® 7000 GR	-	30		
TESPD silane (Si® 266)	-	3		
Other ingredients [phr]: Vulcanization activators: Zinc oxide – 3; Stearic acid – 3 Vulcanization accelerator: N-cyclohexyl-2-benzothiazole sulfenamide (CBS) – 1.6 Vulcanization agent: Sulfur – 1.2 Antiozonant: N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) - 2				

Choosing the right filler

RED'4 MARS Kine

RED'4 MARS All day flexible

Daily temperature amplitude can reach 100°C

RE Finding the right BR The Battle of BRs Lithium-catalyzed BR Neodymium-catalyzed BR Buna CB550 - 38 % cis-, 9-10 % vinyl-, \geq > Buna CB24 – >96 % of cis-mers 52-53 % trans-mers Crystallization 20 18 16 14 Heat flow [mW/mg] 12 10 **DSC** analysis 8 6 4 2 0 -130 -80 -30 20 Temperature [°C]

The Battle of BRs

No crystallization
Larger rubbery plateau

Buna CB550 Wins!

https://www.klasgame.com/en/steam-games/209120-street-fighter-x-tekken.html

Future Mars rubber formulation

Vinyl-Methyl Silicone rubber: 20 phr

Amorphous, lithium-catalyzed BR: 80 phr 🕑

Reinforcing filler, carbon black: 30 phr

Designing Mars rubber

Curatives - sulfur-based system?

Relatively low amount due to a lack of oil in the formulation

Finding oil replacements!

UV resistance needs to be improved due to high-energy UV rays on Mars – no ozone layer

Application of anti-UV additives!

Anti-aging additives, classic antioxidant/antiozonant

Radiation testing
Application of anti-Rads!

- CB provides better reinforcement to BR/VMQ blends via dispersion forces than the silica/silane system due to the scarcity of double bonds in VMQ and possibly worse silica dispersion in comparison to CB
- Crystallizing grades of BR can cause sealing performance problems due to their greater shrinkage with decreasing temperature [1]
- Application of amorphous BR provides a large rubbery plateau of dynamic mechanical properties in a wide range of temperatures, which is promising for potential application on Mars.

- Investigating fillers dispersion in BR/VMQ blends
- **Testing and improving radiation and UV resistance of rubber compounds**
- Testing non-volatile oil replacements to avoid outgassing in the vacuum of space and the low-pressure atmosphere of Mars

REJ[•]**4 MARS**

No one will change your flat tire on Mars!

Choose your rubber wisely, with RED 4 MARS!

Lodz University of Technology

UNIVERSITY OF TWENTE.

This project is financed by EU Marie Skłodowska Curie Action: Global Fellowship. Grant No. 101025756

Silikony polskie

Thanks to the industrial partners

OCION ENGINEERED & EVONK Thank you for your kind attention!

Performance Elastomers

ARLANXEO

Lodz University of Technology

RED 4 Comparison of Earth and Mars environments

		Earth	Mars
https://visibleearth.nasa.gov/images/	Temperature range	(-88 °C) − 58 °C	(-140 °C) – 30 °C
	Pressure	101.3 kPa	0.6 kPa
	Radiation	Low – 3.0 mSv/a	High – 400-500 mSv/a; additionally occasional solar proton events; UV radiation
	Atmosphere	21 % oxygen; 78 % nitrogen; 1 % other	96 % carbon dioxide; <2 % argon; <2% nitrogen; <1% other

https://solarsystem.nasa.gov/planets/mars/in-depth/ https://mars.nasa.gov/all-about-mars/facts/