

• M3 Institute of Materials, Minerals & Mining

Can we successfully use elastomers on Mars?

Rafal Anyszka¹⁻³⁾, Norbert Nizel³⁾, Dariusz Bielinski³⁾, Piotr Szajerski⁴⁾, Li Jia²⁾, Anke Blume¹⁾

¹⁾ University of Twente, Faculty of Engineering Technology, Department of Mechanics of Solids, Surfaces & Systems (MS3), Chair of Elastomer Technology & Engineering, Enschede, The Netherlands
²⁾ The University of Akron, The School of Polymer Science and Polymer Engineering, Akron, Ohio, United States
³⁾ Lodz University of Technology, Faculty of Chemistry, Institute of Polymer and Dye Technology, Poland
⁴⁾ Lodz University of Technology, Faculty of Chemistry, Institute of Applied Radiation Chemistry, Poland

Lodz University of Technology

RED[•]**4 MARS**[•] What is commonly known about the Mars?

Let's google it and see what we can learn from the internet:

RED 4 MARS What is commonly known about the Mars?

Let's google it and see what we can learn from the internet:

- fourth planet from the Sun
- named for the Roman god of war
- Known also as "Red planet"
- minimum distance from Earth toMars: about 54.6 million kilometers

Why do we need rubber on Mars?

RED'4 Current missions - examples

Rover - Perseverance Helicopter - Ingenuity

Lander - InSight

https://www.sciencefocus.com/news/perseverance-a-year-on-mars/

https://mars.nasa.gov/insight/

Not rubber but metal seals are used in machines operating on Mars

RED'4 Current missions - examples

Aluminum wheels

Speed comparison

https://www.reddit.com/r/space/comments/2dj1xb/comparative_wheel_sizes_of_mars_rovers/ https://i.stack.imgur.com/HejZ8.jpg https://saxstation.com/playing-saxophone-by-earmemory.htm

https://polki.pl/magazyn/zjawisko,7-faktow-o-leniwcach-niektore-szokujace,10419763,artykul.html https://mars.nasa.gov/msl/home/

https://turbo.fandom.com/wiki/Turbo_(character)

Mars rovers' mass

Curiosity's wheel damage

https://www.spaceflightinsider.com/missions/solar-system/wheel-treads-break-curiosity-rover/

RED'4 Current missions - examples

Self-driving rovers

ESA's program started in 2019

"...they'll be moving hundreds of meters per day."

- Currently, no rubber is used on Mars
- Increasing the speed of Mars rovers could result in accelerated wheel and equipment damage caused by vibrations
- Tailored rubber for Mars could be the solution

How about future Mars missions?

In Israel, six analog astronauts are living and working in a small structure to simulate life on Mars.

Mars Simulation in Israel Is Prep for a Future Mission to Red Planet (businessinsider.com)

Mars habitat

Metal seals are not preferable for dynamic applications – like door sealing

Rubber-based composites exhibit superior dynamic sealing performance

https://upload.wikimedia.org/wikipedia/commons/5/5f/Mars_Ice_Home_concept.jpg

RED'4 Future missions **MARS**

Mars spacesuit

https://www.theverge.com/2017/8/19/16104004/sc ience-fiction-space-suit-worst-best-the-martianalien-sunshine-gravity

- Spacesuit consists of several elements that need to be assembled and disassembled frequently
- Efficient sealing of the connection of the elements is essential
- Rubber-based seals guarantee the best performance

RED'4 Future missions

Mars rover

https://en.wikipedia.org/wiki/The_Martian_(film)

Rubber tires/tracks and dampers are needed

https://the-martian.fandom.com/wiki/Rover_2

Which weather conditions do we have to face on Mars?

Several times a year a dust storm of titanic size blooms on Mars

Snowy morning near the south pole of Mars: snowflakes = frozen CO_2 ; T = -129 °C

RED 4 Comparison of Earth and Mars environments

	Earth	Mars		
Temperature range	(-88 °C) – 58 °C	(-140 °C) − 30 °C		
Pressure	101.3 kPa	0.6 kPa		
Radiation	Low – 0.003 Gy/a	High – 0.1-0.2 Gy/a; additionally occasional solar proton events; UV radiation		
Atmosphere	21 % oxygen; 78 % nitrogen; 1 % other	96 % carbon dioxide; <2 % argon; <2% nitrogen; <1% other		

https://visibleearth.nasa.gov/images/54388/earth-the-blue-marble https://solarsystem.nasa.gov/planets/mars/in-depth/ https://mars.nasa.gov/all-about-mars/facts/

RED 4 Comparison of Earth and Mars environments

	Earth	Mars
Temperature range	(-88 °C) − 58 °C	(-140 °C) − 30 °C
Pressure	101.3 kPa	0.6 kPa
Radiation	Low – 0.003 Gy/a	High – 0.1-0.2 Gy/a; additionally occasional solar proton events; UV radiation
Atmosphere	21 % oxygen; 78 % nitrogen; 1 % other	Very small amount of oxygen = less oxidation aging

https://visibleearth.nasa.gov/images/54388/earth-the-blue-marble https://solarsystem.nasa.gov/planets/mars/in-depth/ https://mars.nasa.gov/all-about-mars/facts/

How to design rubber for Mars?

How to remain elastic at such cold conditions?

RED[•]**4** Can the rubber flexibility be preserved on Mars?

RED 4 Idea – blending of silicone (VMQ) & butadiene rubber (BR)

Blend of Silicone (VMQ) and Butadiene Rubber (BR)

No risk of fast aging of BR due the absence of oxygen

Dispersed phase

Silicone rubber:

- ✓ Very good low temperature elasticity
- ✓ Good UV resistance
- Low abrasion resistance
- Low mechanical properties

Continuous phase

Butadiene rubber:

- ✓ Good low-temperature elasticity
- ✓ High abrasion resistance
- ✓ High mechanical properties
- ✗ Low UV resistance

How to homogenize BR with VMQ?

Chemical compatibility guide

	VMQ (silicone)
butadiene	4 = do not use!

Butadiene rubber

Methyl vinyl silicone rubber

RED'4 Idea – chemical coupling of VMQ & BR

Formulation

Ingredient [phr]	REF	Coupl	BR green	VMQ green
Butadiene rubber	80	80	100	-
Silicone rubber	20	20	-	100
ZnO	5	5		-
Stearic acid	3	3	-	
Sulfur	1.2	1.2		-
CBS	1.6	1.6	-	
Trimethylolpropane tris(3-mercaptopropionate)	-	4		-

Mixing procedure

Mixing conditions Laboratory mixer 50 cm ³			
Temperature	70 °C		
Temp. rise	$70 \ ^{\circ}C \rightarrow 90 \ ^{\circ}C$		
Time	4 min + 1 min with curatives		
Rotor speed	20 rpm (incorporation), 60 rpm (homogenization)		

Idea – chemical coupling of VMQ & BR

RE³ 4 MARS

DSC and DMA investigation of the glass transition temperature of the blends

Micromorphology investigation

Significant improvement in the silicone rubber dispersion

How to design rubber for Mars?

How to remain elastic at such cold conditions?

How to design rubber for Mars?

What about radiation aging?

	Earth	Mars
Temperature range	(-88 °C) − 58 °C	(-140 °C) – 30 °C
Pressure	101.3 kPa	0.6 kPa
Radiation	Low – 0.003 Gy/a	High – 0.1-0.2 Gy/a; additionally occasional solar proton events; UV radiation
Atmosphere	21 % oxygen; 78 % nitrogen; 1 % other	96 % carbon dioxide; <2 % argon; <2% nitrogen; <1% other

Carbon Black addition - Expectations

Addition of carbon black increases the radiation¹ and UV² resistance Addition of carbon black increases the mechanical properties of rubber

✓ Carbon Black: *N330*, specific surface area = 78 m²/g

¹ Markovic, G., et al. Influence of carbon black on reinforcement and gamma-radiation resistance of EPDM/CSM CR/CSM rubber blends. KGK. Kautschuk, Gummi, Kunststoffe 62.6 (2009): 299-305.

² Spahr, M.E., Rothon, R. (2016). Carbon Black as a Polymer Filler. In: Palsule, S. (eds) Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_36-2

Formulation

Mixing procedure

Ingredient	N330 [phr]	N330-C [phr]	Mixing conditions Laboratory mixer 50 cm ³		
Butadiene rubber	80		Temperature	70 °C	
Silicone rubber	20		Temp. rise	$70 \ ^{\circ}C \rightarrow 90 \ ^{\circ}C$	
ZnO	3 3		Time	4 min + 1 min with	
Stearic acid			Time	curatives	
Sulfur	1.2		Rotor speed	20 rpm (incorporation),	
CBS	1.6			60 rpm (nomogenization	
6PPD	2				
N330	37.5				
Trimethylolpropane tris(3-mercaptopropionate)	-	2			

> Vulcanizates: γ-irradiated with doses of 9.6 kGy and 16.7 kGy

First results: tensile properties tested before and after the irradiation at -40°C to simulate Mars' surface temperature, which on average equals -62.7 °C Idea – one filler for many problems

REJ 4

Tensile strength tested at -40°C

Idea – one filler for many problems

RE) MAR

Elongation at break tested at -40°C

- Overall tendency: High elongation at break (Eab) achieved
- No significant impact of radiation, tendency to decrease Eab
- Impact of coupling agent: decreases Eab, probably due to higher crosslink density

How to design rubber for Mars?

How to remain elastic at such cold conditions with a higher radiation?

- Unique elastic and damping properties of rubber make it an advantageous material for Mars missions
- Crewed future missions to Mars will need rubber for critical applications
- Possible solution for low temperature on Mars: Blending BR with VMQ
- Improve compatibility of BR/VMQ blends by coupling agent
- Possible solution to face higher radiation on Mars: Addition of carbon black N330

The first step is done.

What will come next?

https://www.planet-wissen.de/natur/weltall/mars/pwiewissensfrage400.html; <u>https://www.space.com/47-mars-the-red-planet-fourth-planet-from-the-sun.html;</u> https://www.space.com/16758-apollo-11-first-moon-landing.html

! High-energy UV radiation due to the lack of an ozone layer

UV testing of the designed rubber compounds

Can we use resources on Mars?

• Martian regolith contain >40 % of SiO_2

Extraction and precipitation in form of reinforcing silica

Investigation of possible synthesis of reinforcing silica from Mars regolith for In-Situ Resource Utilization

RED'4 MARS

The results and experience gathered within the RED 4 MARS project will allow to look into other space environments:

C The Moon's surface:

- € Permanent base planned by ESA and NASA
- **└** *Temperature range -150°C 100°C*
- ✔ Vacuum no atmosphere = outgassing
- C Direct exposition to radiation
- C Permanent plasma
- € Abrasive, static-charged particles

The results and experience gathered within the RED 4 MARS project will allow to look into other space environments:

⊯ Titan – Saturn's moon

- Submarine mission planned by NASA
- ✓ Temperature -180°C
- Pressure about 50 % higher than on Earth
- ▲ Lakes of liquid hydrocarbon
- Unknown conditions in the lakes

Stay tuned!

"Rubber & Elastomer Development for MArtian enviRonmental applicationS (RED 4 MARS)"

• M 3 Institute of Materials, Minerals & Mining

This project is financed by EU Marie Skłodowska Curie Action: Global Fellowship. Grant No. 101025756

Thank you for your kind attention!

