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Abstract

The increasing activities in plastics recycling have led to a
sprawl of terminology describing different technologies and
technology categorizations. This creates not only linguistic
confusion but also makes it difficult for regulators, investors,
corporate leaders and other stakeholders to fully understand
the relationship between different technologies, potentially
leading to suboptimal decisions on policy, investment, or
collaboration. To bring clarity to this topic, this manuscript
provides an overview of (i) the different circular pathways for
plastics, with a focus on recycling, (ii) the most common
categorization of recycling technologies, (iii) what is consid-
ered ‘recycling’ by the European Commission and (iv) some
alternative terms used in grey and academic literature to
describe recycling technologies.
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Introduction
Plastics recycling receives a lot of scientific, industrial
and legislative attention as it is considered a key element
www.sciencedirect.com Curren
to realizing a circular economy for plastics [1]. In recent
literature, mechanical and chemical recycling of plastics
has been thoroughly reviewed [2e4]. In addition, a

number of papers have started exploring the overall
plastic waste management system [5] and plastic (waste)
flows have been documented for Europe [6,7], the USA
[8,9] and low- and middle-income countries [10].

The dramatic increase in research and development in
this area has led to the emergence of an abundance of
nomenclature, which has led to a dispersal of terminol-
ogy in scientific and layman’s literature. In many cases,
this is simply using variations of the same expression
(such as dissolution vs. solvent-based recycling), but

contradictions are also commonly found. For example,
literature is divided whether solvent-based technologies
are considered chemical recycling or mechanical recy-
cling [11e13]. Moreover, in a bid to appear novel or to
dissociate from the negative connotation which chemical
recycling may have [14e17], new terms like “molecular
recycling” or “advanced recycling” are being introduced
in reports and press releases [18e20]. Likewise, the
term “upcycling” has found its way into many an-
nouncements and even scientific papers [21,22]. Such
terms sound attractive but have no formalized meaning

andd with advancing insightsd it is debatable whether
they make scientific sense, especially when considering
economics or thermodynamics [23,24].

From a systemic point of view, the term “plastic recy-
cling” is commonly understood to cover not only the
specific reprocessing which converts plastic waste to
new resources but also the more complete chain which
starts at end-of-life of a plastic product and includes
collection, sorting and reprocessing [25]. However, the
European Waste Framework Directive (WFD) [26], a

foundational piece of European legislation, defines the
above as “waste management” and considers “recycling”
to be only the reprocessing step in this value chain.

While many (often hierarchically structured) illustrations
of recycling technologies exist [4,5,27,28], none of them
provide a complete and concise overview of the different
circular pathways for plastics, their output products, as
well as the definition of recycling according to European
legislation. This creates not only linguistic confusion but
also makes it difficult for regulators, investors, corporate
leaders and other stakeholders to fully understand the

relationship between different technologies, potentially
leading to suboptimal decisions on policy, investment or
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2 Circular technologies for plastics (2023)
collaboration. Therefore, this manuscript does not aim to
introduce any new terminology, but rather to clarify the
exact meaning of the complex terminology already used
in plastics recycling, with regard to different names used
for a single technology, as well as which technologies lead
to what outputs and belong to which category of recy-
cling. Additionally, this article will clarify which tech-
nologies fall under the definition of recycling under

current European legislation.

The following aspects are considered out of scope as
they have been well reviewed elsewhere: food contact
recycling [29], definitions of plastic waste types [30],
comparison or ranking of technologies [31e35].
Types of plastic recycling
Figure 1 shows an overview of the different pathways
and technologies in the plastic system, by using the
Figure 1

Overview of the different circular pathways for plastics. Differentiation mecha
recycling with [26]. Note how this is not a Sankey diagram and thickness of a
MTO = Methanol To Olefin and CCU = Carbon Capture and Utilization.
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most common terminology for distinct recycling tech-
nologies. Virgin fossil or non-fossil resources are
converted to hydrocarbons, which are consecutively
cracked to monomers, which are in turn polymerized
into a polymer. By combining different polymer grades
and adding in additives or fillers, this process creates
plastics, as commonly understood [36]. These plastics
are delivered to converters in granulate form, to be

turned into plastic products. After their use and po-
tential repair/reuse they become waste and enter the
formal collection system, if disposed correctly.

Almost all types of recycling require some level of
sorting and washing when entering recycling processes.
Although they are not the focus of this manuscript, they
have been modelled [32], assessed [33] and reviewed
[34] and are clustered under “sorting/pretreatment” in
Figure 1.
nical/chemical recycling is in accordance with [37] and definition of
rrows do not correlate to relative tonnages. Abbreviations used:

www.sciencedirect.comS100
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Terminology in plastics recycling Ragaert et al. 3
Mechanical recycling d still the most ubiquitous recy-
cling technology [38] d is the shortest loop, extruding
the sorted and washed flakes to granulates of recycled
plastics, which are often compounded with new addi-
tives [39,40], compatibilizers [39,41] or fillers.
Depending on the properties of the recyclates, these
will be used to create different recycled products
[42,43]. The purity of the input material has a signifi-

cant influence on the properties and quality of the
mechanical recycling outputs [44,45].

Solvent-based recycling has two variations. In the first
option, the polymer is dissolved and then later precipi-
tated again by either lowering the temperature or adding
antisolvent (or both) [27]. As such, it is possible to clean
the liquefied polymer from other components (like ad-
ditives) which made up the plastic [46,47]. The solvent
used is specific to the target polymer for dissolution,
meaning the technology can also be used as a selective

method for recycling parts of a multicomponent product
such as multilayers [48]. The second option is a type of
non-aqueous washing, typically employing chemicals
such as solvents to have an additional effect on the
pretreatment, for instance de-inking, de-lamination
[48] or increased de-odourization [49,50].

Current European standardization [37] differentiates
mechanical and chemical recycling by whether the
process is “significantly changing the chemical structure
of the material”. Mechanical recycling does not (inten-

tionally) change the chemical structure, while chemical
recycling does change the structure. Any technology
leaving the polymer chain intact is formally considered
mechanical recycling. Therefore, solvent-based recy-
clingd if it needs to be categorizedd should fall under
the definition of mechanical recycling [51,52]. However,
there is some confusion surrounding this: (1) the pro-
cess uses chemicals (the solvents), which frequently
leads to the misclassification of this technology as
chemical recycling [53,54]. And (2), as mechanical
recycling is often commonly linked to the re-extrusion
process, the term ‘physical recycling’ has been intro-

duced to describe both solvent-based and mechanical
recycling [51,52] because neither changes the chemical
structure of the polymer [35].

All of the techniques described below belong to the
chemical recycling category.

Depolymerization reduces the polymer to its consitu-
tive monomers or at least very short segments of
polymer chain called oligomers. Methanolysis,
hydrolysis, glycolysis and aminolysis are some typical

variants of the depolymerization process, their names
referring to the specific chemical reactions
involved [48,55e57]. Depolymerization typically works
well for condensation polymers [5]. However, catalytic
cracking is promising for the depolymerisation of
www.sciencedirect.com Curren
polyolefins, with over 85% monomers being reported in
certain cases [58].

In pyrolysis, polymers are broken down into hydrocar-
bons, typically a mix of olefins, aromatics, paraffins and
napthenes, with a certain level of gases and char also
produced. The ratio between these resulting products is
dependent on the input polymer(s), the presence of

contaminants, the catalyst (if any), reactor type and
process parameters used [59e61]. There is no “typical”
pyrolysis process; there are many types of pyrolysis re-
actors, feeding systems for the reactors and cleaning
processes. The resulting product is called a “pyrolysis-
oil”, which (after purification or refining) can be fed into
the cracker to produce new monomers [26].

Gasification uses the highest temperate of all recycling
technologies, producing syngas (H2þCO) and energy in
the presence of an oxygen-rich gas [62]. This technology

is particularly suited to process a complex mix of waste
material and is often used as a waste-to-energy solution
for municipal solid waste or biomass waste. From a
circularity point of view, chemicals are the desired
syngas products (FischereTropsch liquids, ethanol,
methanol and so on), which can feed into the system for
the production of monomers for further processing
[63,64].

After going through any of the above technological
pathways, the material ceases to be “waste” [26]. This

End-of-Waste point coincides with the transition from
green to blue arrows in Figure 1.

Emerging technologies which could be situated be-
tween pyrolysis and gasification are known as hydro-
thermal liquefaction [65,66]. Hydroprocessing
technologies (hydrogenolysis [67] and hydrocracking
[68]) are a good example, using water as a solvent and
operating a high pressure in the presence of hydrogen.
However, as they are still in early development, they are
not included in Figure 1.

For completeness, incineration is included in Figure 1,
but it is not considered recycling (see below). However,
if the incineration is paired with CCU (carbon capture
and utilization), the resulting CO2 can be converted to
methanol or ethanol and as such re-enter the circular
system in Figure 1. Furthermore, some inorganic incin-
eration byproducts (like bottom ash) can be used as
fillers in materials like concrete [69]. Regardless of the
type of recycling, every step in the life cycle typically
has losses either before the recycling process (e.g.
littering, rejects) or during the recycling process. Those

plastics which are collected but landfilled or incinerated
after are considered as losses. Even from those plastics
formally collected for recycling, whole truckloads are
often rejected at the entry of the recycling plant due to
excessive contamination with other materials. These
t Opinion in Green and Sustainable Chemistry 2023, 44:100871S100
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waste plastics are likewise incinerated or landfilled and
lost to the circular economy. Considering the losses
during the recycling process, it is possible for them to be
cascaded to other recycling pathways (e.g. mixed poly-
olefins from mechanical recycling to pyrolysis). This is
marked by the thin green arrows running between
recycling technologies in Figure 1.

Table 1 summarizes the technological pathways shown
in Figure 1 by recycling category according to European
standard [37], as well as listing some commonly used
grouping terms or synonyms for these recycling tech-
nologies. While these synonyms are not wrong, the au-
thors do suggest only using the terms in the first two
columns to prevent confusion.

The term solvolysis deserves some attention. Solvolysis
is the chemical breaking of bonds in the presence of a
solvent [79], and as such is a synonym for depolymer-

ization. The term is sometimes misused to describe
solvent-based recycling [47,52,80]; at times, depoly-
merization processes have even been described as
solvent-based [81].

In addition, a technology-agnostic differentiation is
made between closed and open-loop recycling, which
refers to how the recycled content is used after
reprocessing. In closed-loop recycling, the recycled
content is used again for the manufacture of the same
type of product as the previous lifecycle (e.g. bottle-to-

bottle), while open-loop recycling relates to any other
destination for the recycled content (e.g. bottle-to-
Table 1

Summary of categories describing types of recycling according to Eu
ature [70–78].

Recycling categoriza�on 

according to European 

standard [37]

Technologies C

Mechanical  recycling Mechanical recycling

PSolvent-based recycling

Chemical recycling Depolymeriza�on M

ch

Pyrolysis T

reGasifica�on
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tray). Open loop recycling is often driven by legislative
constraints and is not necessarily of lower value than
closed-loop [29].

There are also some terms or even ‘buzzwords’, most
often used in layman’s literature, which sometimes
cause confusion. In Table 2, the authors have made an
effort to clarify the most prominent ones.

Further legal framework and implications
The WFD [26] builds on the definition of “recovery” to
define the term “recycling” as “any recovery operation by
which waste materials are reprocessed into products,
materials or substances whether for the original or other
purposes. It includes the reprocessing of organic mate-
rial but does not include energy recovery and the
reprocessing into materials that are to be used as fuels or

for backfilling operations”. Compared to “recovery”, the
term “recycling” explicitly excludes the output used for
fuels or energy purposes. As such, all technologies
demarcated by the yellow dotted line in Figure 1 are
considered recycling, while only those also in the yellow
field are considered circular pathways.

While the definition of recycling is clear, the thermo-
chemical technologies have raised some new questions
regarding the alignment of calculation methodologies for
recycling rates, end-of-waste point and recycled con-

tent. Mechanical recycling and solvent-based technol-
ogies are inherently circular and therefore this recycled
content is straightforward to calculate: the amount of
input entering the recycling facilities (recycling rate)
ropean standard [30] and their commonly used synonyms in liter-

ommonly used synonyms

hysical recycling

Remel�ng of plas�cs [70], 

conven�onal recycling [71], thermo-

mechanical recycling [72]

Dissolu�on-based recycling [73], 

dissolu�on recycling[74], Solvent-

based purifica�on[12], solvent 

purifica�on[17]

onomer recycling[75], monomer recovery [76], 

emolysis [2,77]

hermochemical 

cycling

Thermolysis [78]

No common synonyms
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Table 2

Terms commonly used with regard to recycling that have very broad or misleading meanings.

Advanced recycling A term used by academics or industries when trying to stress the novelty of what they do. As such, the
meaning varies with its use. It has been used to describe forms of chemical recycling [60,82,83] or even
new methodologies for mechanical recycling [84,85], but has no formal value. Likewise, the term “improved
recycling” simply refers to an advancement with regard to current industrial common practice [86,87].

Upcycling Similar to advanced recycling, upcycling has no formal value and is used in the connotation that waste is
“upgraded” to a new resource by a recycling process. In some contexts, it is used to describe recycling of
materials to a “higher value” than the original material [88,89], although the sense of that is up for
discussion.

Molecular Recycling A more recent term used to indicate any of the chemical recycling processes [90]; most often, it refers to
depolymerization [18–20]. The term is confusing, as the nomenclature supposedly comes from “breaking
molecular bonds” and as such would instead refer to recycling beyond the level of the (macro)molecule (to
the monomer).

Recovery ISO 15270:2008 defines it as “processing of plastics waste material for the original purpose or for other
purposes, including energy recovery” [37], while the definition by the WFD [26] even explicitly includes
processing to fuels. It therefore comprises all possible recycling routes and incineration [91]. However, it is
often used contextually as referring only to energy recovery or to the processes counted as thermochemical
recycling [92,93] and is then often called “thermal recovery”.

Feedstock recycling Per ISO 15270:2008, feedstock recycling is a synonym for chemical recycling [37]; however, it is more
commonly used to describe techniques falling under the thermochemical recycling category [94] (pyrolysis
and gasification).

Terminology in plastics recycling Ragaert et al. 5
minus the recycling process losses represent the amount
of recycled content. However, the output of thermo-
chemical technologies d and even some depolymer-

ization techniques d can produce three final end-uses:
(1) end-product that counts as recycling and recycled
content (Plastics); (2) end-product that counts as
recycling but does not create recycled content (Chem-
icals & Waxes); (3) end-product that does not count as
recycling (Fuels & Energy).

On top of these considerations, petrochemical facilities
using thermochemical technologies output as their
feedstock represent a large interconnected system
where recycled and fossil feedstock cannot be distin-

guished. It therefore requires a clear calculation meth-
odology, a ‘mass-balance approach’, to attribute the
appropriate quantities of recycled feedstock created, to
the end-products defined above [95e97]. The main
question is how to attribute it in a representative and
credible way to different output, to prevent double
counting and incentivize the most circular end-product
[98,99]. It is clear that despite these technologies being
considered as recycling, the caveat discussed in the
WFD notwithstanding, it will not be truly considered as
recycling until the EU recognizes a harmonized mass-

balance calculation methodology that especially clar-
ifies the use of mass-balance for reporting on recycled
content targets.

Finally, and despite the potential contribution to circu-
larity of captured CO2, incineration with CCU is not
counted as recycling, but the development of mass-
balance could challenge this for the portion of the
output used as products (instead of Fuel & Energy). Yet,
incineration brings the embedded energy in the carbon
www.sciencedirect.com Curren
of the polymer chains closest to its thermodynamic dead
state, being CO2 in flue gas, which means that this
would be by far the longest loop possible within carbon

recycling options.
Conclusions
The field of plastics recycling is in constant develop-
ment, which gives rise to rich but also confusing ter-

minology on the subject. This manuscript has provided
an overview of (i) the different terms used for circular
pathways for plastics, with a focus on recycling, (ii)
which technology falls under which category of recy-
cling, (iii) what is currently considered ‘recycling’ by the
European Commission and (iv) the most common
misleading terms used in layman’s and academic litera-
ture. To improve clarity, the authors recommend
restricting the use of terminology within plastics recy-
cling to those listed in Table 1 and to avoid the
confusing terms listed in Table 2.
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