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Abstract
This paper studies the applicability of a deep reinforcement learning approach to 
three different multi-echelon inventory systems, with the objective of minimizing 
the holding and backorder costs. First, we conduct an extensive literature review to 
map the current applications of reinforcement learning in multi-echelon inventory 
systems. Next, we apply our deep reinforcement learning method to three cases with 
different network structures (linear, divergent, and general structures). The linear 
and divergent cases are derived from literature, whereas the general case is based 
on a real-life manufacturer. We apply the proximal policy optimization (PPO) algo-
rithm, with a continuous action space, and show that it consistently outperforms 
the benchmark solution. It achieves an average improvement of 16.4% for the linear 
case, 11.3% for the divergent case, and 6.6% for the general case. We explain the 
limitations of our approach and propose avenues for future research.
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1 Introduction

Inventory is usually kept to respond to fluctuations in demand and supply. With 
more inventory, a higher service level can be achieved but the inventory costs also 
increase. To find the right balance between the service level and inventory costs, 
inventory management is needed. Inventory usually accounts for 20–60% of the 
total assets of manufacturing firms (Unyimadu and Anyibuofu 2014). Therefore, 
inventory management policies prove critical in determining the profit of such 
firms (Arnold et al. 2008). Most companies are already using inventory policies to 
manage their inventories. With these policies, they determine how much to order 
at a certain point in time, as well as how to maintain appropriate stock levels to 
avoid shortages. These policies often focus on a single location and only use local 
information, which results in individually optimized local inventories and do not 
benefit the supply chain as a whole. The reason for not expanding the scope of 
the policies is the lack of sufficient data and the growing complexity of the poli-
cies. Due to recent IT developments, it has become easier to exchange informa-
tion between stocking points, resulting in more data availability. This contributed 
to an increasing interest in inventory optimization over multiple locations, also 
called Multi-echelon inventory optimization (MEIO). Studies show that the coor-
dination among inventory policies, i.e. a centralized decision-making policy, can 
reduce the bullwhip effect (Giannoccaro and Pontrandolfo 2002).

Despite the promising results, a lot of companies are still optimizing individ-
ual locations (Jiang and Sheng 2009). Mathematical models for inventory man-
agement can quickly become too complex and too time-consuming to solve. To 
prevent this, the models usually heavily rely on assumptions and simplifications 
(Jiang and Sheng 2009; Dogru et al. 2013; Jain and Raghavan 2009), for example 
regarding lead times, demand patterns, and network structures, which makes it 
harder to relate the models to real-world problems and to be put into practice. 
Tunc et al. (2011) demonstrate that certain assumptions (in their case stationary 
demand patterns) that do not hold in real-life, can be very costly when using the 
corresponding models in real-life applications. Another way of reducing the com-
plexity and computation time is the use of (meta)heuristics. Unfortunately, these 
heuristic policies are typically problem-dependent and still rely on assumptions, 
which may limit their use in different settings (Gijsbrechts et al. 2022). Although 
mathematical models and heuristics can deliver good results for their specific set-
ting, we are especially interested in a method that can be used for various sup-
ply chains, without requiring major modifications. For such a generic approach, 
reinforcement learning (RL) is a promising method that may cope with this com-
plexity (Topan et al. 2020). RL is developed to solve sequential decision making 
problems in dynamic environments (Sutton and Barto 2018). In sequential deci-
sion making, a series of decisions are to be made in interaction with a dynamic 
environment to maximize overall rewards (Shin and Lee 2019). This makes RL 
an interesting method for inventory management. Due to recent advances in deep 
learning (Goodfellow et al. 2016), reinforcement learning is often combined with 
neural networks. This combination, called deep reinforcement learning (DRL) 
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(Mnih et al. 2013), shows even more potential to solve complex inventory prob-
lems. Inspired by a real case at a manufacturing company, which we refer to 
anonymously as the CardBoard Company, we recognize the need for an approach 
to solve MEIO for general inventory systems with stochastic demand, which is 
more complex than previously has been considered in the literature.

This paper applies DRL to three multi-echelon inventory systems. For each of 
these systems, we take into account the holding and backorder costs. We model the 
problem as a Markov decision process (MDP) and solve it using the DRL approach 
proximal policy optimization (PPO). The contribution of this paper is threefold. 
First, we solve these inventory problems by proposing order quantities that depend 
on various features of the inventory system. To determine the order quantities, we 
use a continuous action space. Most other research on applications of DRL in supply 
chain management use a discrete action space. The discrete action space has limita-
tions in terms of problem size, whereas the continuous action space is more scalable 
and can therefore be used to cope with real-life problems. Second, one of the cases 
we consider is the inventory problem of a general inventory system (besides the sim-
pler linear and divergent systems) with backorders. While the general inventory sys-
tem is relevant for practice, it has received limited attention in research, and to the 
best of our knowledge, DRL has not been applied to a general inventory system with 
this many stock points before. Third, we showcase a method that can be used with-
out major modifications for various supply chains by solving three different cases. 
Two of the cases are from literature, while one case is based on our case study at the 
CardBoard Company. This flexibility allows the application of this general learn-
ing algorithm without having to rely on considerable domain knowledge or limiting 
assumptions.

The remainder of this paper is structured as follows. In Sect.  2, we perform a 
literature study on the application of DRL in multi-echelon inventory systems. Sec-
tion 3 introduces the three different cases on which we will apply our DRL method. 
The PPO algorithm and the setup of the experiments are introduced in Sect. 4. In 
Sect. 5, the results of our DRL method are presented. We end with conclusions and 
discussion in Sect. 6.

2  Literature review

In this section, we first elaborate on studies concerning multi-echelon inventory 
management (Sect.  2.1). Second, we zoom in on the advances in RL research in 
Sect. 2.2. Finally, we look at the literature that uses RL as an approach for solving 
inventory management problems in Sect. 2.3.

2.1  Multi‑echelon inventory management

The term multi-echelon is used for supply chains where an item moves through 
more than one stage (i.e., location) before reaching the final customer (Ganeshan 
1999; Rau et  al. 2003). Because of the multiple locations, managing inventory in 
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a multi-echelon supply chain is considerably more difficult than managing it in a 
single-echelon one (Gumus et  al. 2010). As a result, this research area attracted 
the attention of many scientists. During the last decade, the research focus shifted 
more to integrated control of the supply chain, mainly due to advanced information 
technology (Kalchschmidt et al. 2003; Rau et al. 2003; Gumus and Guneri 2009). 
According to Gumus and Guneri (2007), mathematical models are mostly used, 
often in combination with simulation, followed by heuristics and Markov Decision 
Processes.

The MEIO problem is characterized by the network structure of the supply chain. 
The simplest structure is a linear network, where each stock point is supplied by 
one upstream location, and is supplying one downstream location. A more compli-
cated structure is the divergent network, where one stock point can supply multi-
ple downstream locations. The most complicated structure is the general struc-
ture, which contains at least one stock point that can be supplied by more than one 
upstream location, while also containing at least one stock point that can supply 
multiple downstream locations. Figure 1 provides a visualization of these network 
structures, where we consider warehouses w (stock points) and retailers r. Retailers 
are stock points where demand is observed and can be supplied by one or multiple 
warehouses.

The aim of exact mathematical models is to solve the inventory management 
problem to proven optimality. Lambrecht et  al. (1984) shows that the multi-eche-
lon stochastic problem can be modeled as a Markov decision process (MDP). An 
MDP consists of stages where we transition from one state to the next, satisfying 
the Markov property (where the next state is dependent only on the current state 
and the chosen action). Several researchers model the MEIO problem as an MDP, as 
multiple convenient methods for solving MDPs exist. However, these authors typi-
cally focus on relatively simple structures of the supply chain, for example, the lin-
ear supply chain Lambrecht, Luyten and Vander Eecken 1985; Chen and Song 2001; 

Fig. 1  Three types of network structures for MEIO problems
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Vercraene and Gayon 2013; Iida 2001) and the divergent supply chain (Chen et al. 
2002; Minner et al. 2003). Yet, determining optimal policies is intractable, even for 
simple network structures, due to the well-known curses of dimensionality (De Kok 
et  al. 2018; Bellman 1957). As a result, most mathematical models use extensive 
restrictions and assumptions, such as deterministic demand and constant lead times. 
Also, mathematical models are usually complex and case-specific.

There are solution approaches that aim to overcome the aforementioned curses of 
dimensionality. In Sect. 2.2, we discuss approximate methods for solving the MDP, 
the focus of this paper. Another approach, Robust Optimization, is applied by Bert-
simas and Thiele (2006) and Ben-Tal et al. (2009) to the MEIO problem, where the 
demand uncertainty is captured in uncertainty sets. Because Robust Optimization 
methods typically yield conservative solutions, measures must be taken to avoid the 
focus on possible worst-case realizations of the uncertainty. Bertsimas and Thiele 
(2006) and Ben-Tal et al. (2009) show that this method yields promising results, and 
is less affected by the curses of dimensionality.

Due to the intractability of mathematical models, heuristics are also often used 
as a solution approach in the optimization of multi-echelon inventory management. 
Heuristics are used to find a near-optimal solution in a short time span and are often 
a set of general rules, which can, therefore, be used on various problems. Frequently, 
a heuristic is used to optimize the parameters of the order-up-to policy (i.e., base-
stock policy). This policy has been the most commonly adopted approach in inven-
tory optimization (Nahmias and Smith 1993, 1994). For multi-echelon inventory 
systems, the base-stock policy, though not necessarily optimal, has the advantage of 
being simple to implement and to perform well (Rao et al. 2000; Rong et al. 2017).

2.2  Reinforcement learning

MDPs are typically solved using dynamic programming (DP) (Bellman 1957). 
Because of the high computation costs of DP, an approximate method is often 
required to solve MDPs. We consider two approximate approaches: (1) Approximate 
dynamic programming (ADP) and (2) RL. ADP is a modeling framework based on 
an MDP model (Mes and Rivera 2017), whereas RL does not necessarily assume 
a perfect model (Sutton and Barto 2018). ADP is an umbrella term for a broad 
spectrum of methods to approximate the optimal solution of an MDP, just like RL. 
It typically combines optimization with simulation. ADP and RL are two closely 
related paradigms for solving sequential decision-making under uncertainty, but in 
the remainder of this paper, we will use the umbrella term RL.

RL is about learning a policy to maximize a reward. In RL, unlike most forms 
of machine learning, the learner is not explicitly told which action to perform in 
each state (Sutton and Barto 2018). At each time step, the agent observes the current 
state st and chooses an action at to take. The agent selects the action by trial-and-
error (exploration) and based on its knowledge of the environment (exploitation) 
(Giannoccaro and Pontrandolfo 2002). After taking the action, the agent is given a 
reward rt+1 and evolves in the new state st+1 . Using this observed information about 
the state transition and reward, the agent updates its knowledge of the environment 
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and selects the next action. To maximize the reward, the trade-off between explora-
tion and exploitation is important. The agent has to explore new state-action pairs in 
order to find the value of the corresponding reward. Full exploration ensures that all 
actions are taken in all states to avoid ending up in a local optimum. However, this 
is often too time consuming, so most of the methods start with full exploration and 
gradually increase the chance for exploitation.

In RL, tables could be used that map all action values to the states. Nevertheless, 
this table grows prohibitively large when solving large, realistic problems. Further-
more, the learnings of some states that are similar to others (i.e. having values for 
the state variables that are close to each other) cannot easily be generalized with this 
representation. To address this problem, often approximations for policies or value 
functions are used. With approximations, only the parameters of the function need 
to be stored, rather than the whole mapping table. There are several ways to use 
value or policy function approximation in RL, but a method that is gaining popular-
ity is the use of deep learning (DL). Deep learning means that the learning method 
uses one or multiple neural networks to estimate the value or policy function. In a 
recent paper, Mnih et al. (2015) applied deep learning as a value function approxi-
mator and gained impressive results. Deep learning was combined with RL, because 
they have a common goal of creating general-purpose artificial intelligence systems 
that can interact with and learn from their environment (Arulkumaran et al. 2017). 
While RL provides a general-purpose framework for decision-making, deep learn-
ing provides a general-purpose framework for representation learning. With the use 
of minimal domain knowledge and a given objective, it can learn the best represen-
tation directly from raw inputs (Sutton and Barto 2018). The neural networks are 
updated with gradient descent, where the objective is to minimize the loss function.

We can roughly distinguish between value-based and policy-based RL. In value-
based RL methods, the values of states and actions are approximated with a func-
tion, which could still result in a tremendous computational load. In this case, the 
loss indicates how well the estimates of the values match the observed values. 
Examples of value-based methods are Q-Learning (where the action with the max-
imum estimate is used in the updates) and Temporal Difference Learning (where 
the action that is taken is used in the updates). In essence, in solving the MDP, the 
optimal policy is the desired end result. With policy-based methods, the policy is 
directly parameterized and approximated, rather than learning ‘indirectly’ through 
the value functions. In this case, the loss indicates how well the policy is perform-
ing. Usually, some type of baseline is used in policy-gradient methods that reduces 
the variance in learning. Value- and policy-based methods can also be combined, for 
example in the A3C algorithm where the value estimates (i.e., the critic) are used as 
a baseline for the policy (i.e., the actor).

Schulman et al. (2017) developed the proximal policy algorithm (PPO), which is 
more scalable, sample-efficient, and requires less parameter tuning than other DRL 
algorithms. It is a policy-gradient algorithm that can be used in combination with 
a critic. The key of the algorithm is that large updates to the policy are avoided by 
clipping the loss function that is used to perform stochastic gradient ascent updates. 
This ensures that the weights of the neural network are updated in a subtle way, 
resulting in more stable training behavior. It has been shown empirically that the 
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performance of this PPO algorithm is less sensitive to the chosen hyper-parameters 
compared to other DRL algorithms. Furthermore, PPO is applicable to a continuous 
action space. If there are a large number of potential actions in a range of continu-
ous values, it is possible to learn the parameters of the probability distribution of 
the action (continuous action space), rather than the probabilities of every individ-
ual action (discrete action space). This enhances the scalability of the algorithm to 
larger problem instances.

2.3  Reinforcement learning in multi‑Echelon inventory management

Quite some research on RL or ADP in MEIO has already been done. An overview 
is given in Table 1. Within this overview, we list per paper the considered network 
structure and how demand that is not satisfied is treated. Additionally, the objec-
tive used in solving the problem is of relevance. Some papers focus on cost (and/
or profit), while others focus on minimizing the difference between the realized and 
target service levels. The problem horizon is also a consideration. In a finite horizon, 
RL is trained by simulating a given time period, e.g., a number of days or weeks. 
The outcome of such a finite horizon approach is a time-dependent policy, which 
suggests an action for each possible state in each time period of the horizon. In an 
infinite horizon, the simulation runs for an arbitrary time period, and the outcome 
will be a stationary policy. In the last column of Table 1, we show the approach that 
is used by the authors. Note that some entries are incomplete in case the research did 
not clearly specify these characteristics.

As we can see in Table 1, there are already a large number of papers available 
considering RL in MEIO. The papers differ substantially in their inventory systems 
and approaches. When we compare the different network structures of the papers, 
we can see that a divergent network is mostly assumed, followed by a linear supply 
chain. Only one paper considers a convergent structure and four papers describe a 
general network structure, which is the network structure of our case study at the 
CardBoard Company. In two papers where this structure is considered, the authors 
recommend addressing the scalability challenge to solve larger problems (Çimen 
and Kirkbride 2013, 2017).

In the case of unsatisfied demand, both lost sales and backorders are almost 
equally considered in literature, whereas two papers consider a hybrid approach. 
Reaching the target service level is the goal in eight papers, and most of the papers 
focus on the costs by either minimizing the costs or maximizing the profit. The algo-
rithms that are used vary, but Q-learning is the most frequently used algorithm, fol-
lowed by the actor-critic (AC) algorithm including variations of this, such as A3C. 
While RL and ADP are both often used in multi-echelon inventory management, 
DRL is considered nine times. After reviewing these papers, we conclude that, while 
reinforcement learning is used because of its promise to solve large problems, many 
papers still use extensive assumptions and simplifications. As we see in the table, 
the problems that are solved in literature are still quite different from the general 
network setting of the CardBoard Company. Harsha et al. (2021) consider a general 
network structure and a dual-sourcing structure, which are both quite different from 
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our general network structure. In their general network structure, each retailer stock 
point can only be supplied by one warehouse, thus resembling a divergent network. 
In their dual sourcing structure, the network is fully connected, i.e., every retailer 
stock point (3 in total) is connected to each of the two warehouses. In our general 
network, the number of retailers (5) and warehouses (4) is larger, and the network is 
not fully connected, i.e., not all retailers can order at all warehouses. Pirhooshyaran 
and Snyder (2020) focus on a finite horizon policy and specify the order up to levels 
per node, whereas we focus on finding a steady-state policy and the replenishment 
quantities rather than order up to levels. Furthermore, both studies use a value-based 
DRL method to solve the problems, whereas we focus on the policy-based method 
PPO. This method has also been applied by Vanvuchelen et al. (2020), but in that 
case, a divergent joint-replenishment network is considered using a discrete action 
space. This method will scale poorly to the size of the general network considered in 
this paper, so we use a continuous action space within the PPO algorithm.

We contribute to the existing literature by considering multiple network struc-
tures, including the general structure, and applying a novel method within this field. 
By applying PPO with a continuous action space on multiple network structures, we 
study the flexibility of this method in solving such problems.

3  Problem statement

In this section, we introduce the multi-echelon inventory optimization problem with 
a general network structure. In this problem, we consider two types of stock points: 
warehouses w ∈ W and retailers r ∈ R . A summary of the problem notation is given 
in Table 2.

We model the problem as a Markov decision process (MDP), where all decisions 
are made centrally by a single decision maker. In each time period t, the process is 
in state st , and the decision maker may choose an action at that is available in that 
state. The state (1) should contain enough information such that the problem has 
the Markov property, i.e., the future (e.g., the decision at and the expected future 
rewards) depends only on the present state and does not depend on past history. For 
each of the three inventory cases, we define the state as follows:

In (1), ti represents the total inventory in the system, and tb defines the total num-
ber of backorders. Note that we do not consider the time period as a state variable, 
meaning that we are looking for a stationary (or infinite horizon) policy that is valid 
at any time period.

In our problem, the state consists of all the necessary information for the decision 
maker to take an action. In all problem structures, the action (2) to take is the order 
quantity for the upstream location. Therefore, we define the action space as an order 
for every edge of the network:

(1)
st =

[
ti, tb, Iend

w,t
, Iend

r,t
,BOr,w,t,BOr,t, ITw,t,t� , ITw,r,t,t̃

]

∀w ∈ W, r ∈ R, t� ∈ 1,… , 𝜆w, t̃ ∈ 1,… , 𝜆w,r
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After taking the action, we have a transition to a new state st+1 . The probability of 
moving to the new state st+1 is influenced by the chosen action, and given by the 
state transition function P(st+1 ∣ st, at) . The transition function is presented by the 
sequence of events (Table 3), where the randomness lies in the uncertainty of cus-
tomer demand dr,t and lead time �w,r between stock points.

In every time step t, five events happen. At the beginning of each period, the 
shipments of the upstream stock points ( ITw,t′,t, ITw,r,t′,t ) are received. Then, the 
supplier of the warehouse sends outgoing shipments to the warehouse ( ITw,t,t+�w ) 
with (possibly stochastic) lead time �w . Thereafter, the warehouses fulfill the 
orders Or,w,t−1 from the retailers with on-hand inventory if possible ( ITw,r,t,t+�w,r ). 
Transport between two stock points w and r requires a (possibly stochastic) lead 
time �w,r . If there is not enough inventory for all downstream orders, the retail-
ers are ranked in ascending order of their inventory minus their backorders, and 
the one with the lowest inventory minus backorders is satisfied first, until there 
is no inventory left. When there is no inventory left, the (partial) order will be 

(2)at =
[
Ow,t,Or,w,t

]
∀w ∈ W, r ∈ R

Table 2  Notation

Indices
w Warehouses, w ∈ W

r Retailers, r ∈ R

t Time period index, t = 1, 2,… ,T

Parameters
hw, hr ≥ 0 Holding cost per period for warehouse w, retailer r
bw, br ≥ 0 Backorder cost per period for warehouse w, retailer r
�w ≥ 0 Lead time for transport to warehouse w
�w,r ≥ 0 Lead time for transport from warehouse w to retailer r
dr,t ≥ 0 Demand at retailer r in period t, for r ∈ R

Variables

I
begin

w,t ∈ ℤ Inventory level of warehouse w in period t after receiving incoming shipments

I
begin

r,t ∈ ℤ Inventory level of retailer r in period t after receiving incoming shipments from ware-
houses

Iend
w,t

∈ ℤ Inventory level of warehouse w in period t after sending outgoing shipments to retailers

Iend
r,t

∈ ℤ Inventory level of retailer r in period t after fulfilling customer demand
BOr,w,t ∈ ℤ Backorders of warehouse w to retailer r in period t
BOr,t ∈ ℤ Backorders of retailer r to customers in period t
ITw,r,t,t� ∈ ℤ Number of items in transit from warehouse w to retailer r shipped in period t to arrive in 

period t′

ITw,t,t� ∈ ℤ Number of items in transit to warehouse w shipped in period t to arrive in period t′

Or,w,t ∈ ℤ Number of items ordered from retailer r to warehouse w in period t
Ow,t ∈ ℤ Number of items ordered from warehouse w to their supplier in period t
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put in backorder ( BOr,w,t ). After sending the outgoing shipments, upstream orders 
are placed ( Ow,t,Or,w,t ). Finally, the customer demand is fulfilled at the retailers, 
and demand that was not satisfied is backordered ( BOr,t ). This means that the 
demand of the customers dr,t is not known before the replenishment orders are 
placed. Note that in the linear case, as shown in Fig.  1, all stock points except 
the last one are considered warehouses. With respect to the sequence of events 
in the linear case, event 2 concerns only the most upstream warehouse. In event 
3, there also exist warehouse to warehouse shipments and backorders (i.e., 
ITw,w�,t,t+�w,w�

,BOw,w�,t where w,w� ∈ W  ). In event 4, there are also warehouse to 
warehouse orders (i.e., Ow,w′,t where w,w� ∈ W).

The transition from st to st+1 due to action at results in a reward R(st, at, st+1) . In 
this general network, we minimize the costs, consisting of holding costs hw, hr and 
backorder costs bw, br , for the warehouses w and retailers r, respectively. The action at 
directly impacts the inventory levels and backorders in the system. This results in the 
following cost function that we aim to minimize:

The objective of the MDP is to find a policy �∗ that minimizes the discounted 
infinite sum of costs, where a policy is a mapping of states to actions. Thus, the 

(3)ct(st, at) =
∑
w∈W

[
hw ⋅ Iw,t + bw ⋅

∑
r∈R

BOr,w,t

]
+
∑
r∈R

[
hr ⋅ Ir,t + br ⋅ BOr,t

]

Table 3  Sequence of events describing the transition dynamics of the MDP
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objective can be expressed as shown in (4), where � is the discount factor balancing 
the impact of future and present rewards and a�

t
 represents the action at time t pre-

scribed by policy � . Note that we aim to minimize the long-term average costs. This 
means that in practice, we choose T to be high enough to reflect the infinite horizon 
costs.

In the next section, we elaborate on how the PPO algorithm can be used to solve this 
problem.

4  Proximal policy optimization implementation

The PPO algorithm (Schulman et al. 2017) can be used to solve MDPs in an approx-
imate manner. The policy � is prescribed by a neural network (actor network), and 
by interacting with the environment (i.e., a simulation of the problem dynamics, 
sampling demand, etc.) the parameters of the neural network are updated to improve 
the policy. In Sect. 4.1 we elaborate on the standard steps taken in the PPO algo-
rithm to learn a good policy, and in Sect. 4.2 we describe the hyperparameters that 
are used in the algorithm. In the sections that follow, we specify how the state and 
action spaces and reward function were transformed to make them applicable for 
use in the PPO algorithm. Although we use a standard implementation of PPO, the 
hyperparameters, and the state, action, and reward space transformations are design 
choices.

4.1  Algorithm steps

We implement the actor-critic structure of the PPO algorithm as described by Schul-
man et  al. (2017). Within this algorithm, two neural network approximators are 
used: one for the policy function and one for the value function. We call them the 
actor network ( �(st;�) ) and the critic network ( v�(st;�) ), which do not share weights. 
The actor network gives the current policy, meaning that, given the input state, we 
get the action that is taken in that state. The critic network outputs the estimated 
value of being in that state. The network weights are initialized randomly, and then 
the training procedure starts. The random initialization encourages exploration at the 
beginning of training. The actor network results in a stochastic policy, as the output 
of the actor network consists of the mean and standard deviation of a Gaussian dis-
tribution. The action is sampled from this distribution. When starting with a large 
standard deviation, exploration of actions is encouraged. With the random samples, 
we do not have the guarantee that all state-action pairs are visited. However, the ben-
efit of using neural networks as approximators is that they can generalize the learn-
ings from similar states and actions.

(4)�∗ = argmin
�∈Π

�

[
∞∑
t=0

� t ⋅ ct
(
st, a

�

t

)]
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In every training iteration, a buffer is filled with states, actions, and (scaled) 
rewards following the current (initially random) policy �(st;�) . With these observa-
tions, the advantage is calculated, which is an essential indication of whether the 
action that was taken is better or worse than the average policy action (i.e., the out-
put of the critic network). This advantage calculation is done using the Generalized 
Advantage Estimation method as described by Schulman et  al. (2015). This gives 
an indication of the direction in which the weights of the actor network need to be 
updated.

Based on the advantage information, the parameters of both neural networks are 
updated by computing a loss function, based on a trajectory of following the cur-
rent policy. The updates aim to improve the policy and the value estimates. This 
means that for the actor network, we need to find the direction of choosing better 
actions. The loss function of Schulman et al. (2017) is used for the actor network, 
and it differs from other DRL algorithms in the sense that it clips the loss, meaning 
that the updates of the policies are not taking excessive steps. For the critic network, 
we need to close the gap between the observed and predicted values (mean squared 
error loss). Updating the neural network weights by filling the buffer and comput-
ing the loss functions constitutes one iteration. Typically the learning continues 
until some convergence is reached, meaning that we no longer observe significant 
improvements in the rewards achieved by consecutive policies.

4.2  Algorithm parameters

For many steps in the PPO algorithm, the values for the hyperparameters need to 
be selected. First of all, the architecture of the neural networks needs to be defined, 
which consists of the number of hidden layers, the number of neurons in these hid-
den layers, and the activation function. The number of neurons of the input layer is 
given by the size of the state space [i.e., the number of different combinations of 
variable values in (1)], whereas the number of neurons of the output layer is equal 
to the size of the action space [i.e., the number of different combinations of variable 
values in (2)], multiplied by two as we want to output the mean and standard devia-
tion of the Gaussian distribution for each action. Additionally, we need to determine 
the method for initializing the weights of the network parameters.

After initializing the neural networks, decisions about the length of the buffer 
and the parameters ( � , � ) used for calculating advantages are chosen. The � param-
eter corresponds to the discount rate mentioned in Sect. 3, while the � controls the 
trade-off between bias and variance in the estimation of the advantage function. For 
updating the networks, we need to identify the relevant parameter for the loss func-
tion, namely the � that indicates how far away from the ‘old’ policy the network is 
allowed to be after an update. To update the network, we use the popular Adam 
optimization procedure to update the network weights, instead of classical stochas-
tic gradient descent. The key hyperparameter for this procedure is the learning rate. 
Finally, the networks are updated using minibatches of a certain size and several 
update epochs that are performed with the same training data.
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We implemented the ‘standard’ PPO algorithm as described by Schulman et al. 
(2017), using the same hyperparameters presented in their paper, for which they 
concluded the PPO algorithm to perform well in a number of different problem envi-
ronments. Although hyper-parameter tuning might improve the results, we decided 
to use these given parameter settings for each of the three inventory cases, to inves-
tigate how this PPO algorithm works without the time-consuming hyper-parameter 
tuning steps. However, to make the algorithm applicable to the three different inven-
tory cases under consideration, we had to choose how to represent and scale the 
states, actions, and rewards. We elaborate on this in the following subsections.

A summary of the used hyperparameters for the PPO algorithm is given in 
Table  4. Experimentation on these parameters confirmed the suitability of the 
parameters found by Schulman et al. (2017).

4.3  State space transformation

As we use neural networks as approximators for the policy and value function, we 
perform a common preprocessing step to normalize the input for the neural network. 
This normalization prevents vanishing or exploding gradients, improves conver-
gence and generalization, and helps with regularization. The values of the state vari-
ables (1) are normalized to a range of [−1, 1] , to keep the values in a relevant domain 
for the hyperbolic tangent activation function of the neural network. For the general 
case, the values are normalized to a range of [0, 1] as opposed to [−1, 1] . This ena-
bles us to get an output of the untrained network that lies in the interval of [−1, 1] , 
such that the actions do not have to be clipped in the beginning.

A neural network is initialized with small values and updated with small gradient 
steps. If the input values are not normalized, it takes a long time for the weights of 
the actor network to converge to well-performing action values and for the weights 
of the critic network to converge to accurate value functions. We want the inter-
val of the state variables before normalizing to have a wide range, to ensure we do 
not limit our method in its observations. The lower bound is 0 for every variable 

Table 4  PPO hyper-parameters

Hyper-parameter Parameter value

# of iterations 10,000 (Linear, Divergent); 50,000 (general)
Layers 2 hidden layers with 64 nodes each: (64, 64)
Activation function tanh
Initialization of weights Glorot-Uniform
Buffer size 256
Discount factor (�) 0.99
GAE parameters (�) 0.95
� 0.2
Adam learning rate 1e−4
Batch size 64
Update epochs 10
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because we do not have orders, backorders, or shipments that can be negative. With 
a large scaling upper bound, the state space values will be very close together, which 
also makes it hard for the neural network to distinguish different states from each 
other. Therefore, we test the performance of several different scaling upper bounds 
and assess which one performs the best in learning well-performing values.

For the simple network structures (i.e., the linear and divergent cases), we expect 
that transforming the input variables for the neural network, without limiting the 
transition dynamics with the upper bounds, will work reasonably well to find well-
performing policies. However, as the problem grows in complexity (i.e., increasing 
state and action space), exploration may get trapped in unlikely states, from which 
no recovery is possible. Consider for example a situation where there is an extreme 
amount of inventory. If the algorithm takes actions to get out of this situation, by not 
ordering replenishments, the positive reinforcement signals could have a long delay, 
because of the slow depletion of inventory. One option to avoid this is to use the scale 
on the state variables both for normalizing the input to the neural network, as well as 
for limiting the variables in the transition function. We evaluate this ‘transition-limit’ 
option for the general case, as it is the most complex case and could benefit from this 
adjustment. It is important to note that the upper bounds should only be used in train-
ing the algorithm, not in evaluating the performance of the trained policy.

4.4  Action space transformation

For all inventory cases, the action to take is the order quantity at the upstream loca-
tion. Reinforcement learning problems can either have a discrete or continuous 
action space. For every output node, the neural network of the actor outputs either 
the probability that this action will be executed (discrete actions) or the action-value 
(continuous actions). With a discrete action space, the agent decides which distinct 
action to perform from a finite action set. For example, when we have four edges 
(linear case), and we want the order size to be in the interval of [0, 30], we have 
314 = 923, 521 different actions. For the case of the CardBoard Company using the 
same interval, this would even result in an astonishing number of 3118 = 6.99 ⋅ 1026 
actions. With this number of actions, the neural network cannot even be initiated on 
most computers due to memory limits, as for every distinct action in this action set, 
the neural network has a separate output node. The probability of taking one of the 
actions is computed by a softmax function on the output layer. Because this results 
in a large network that is not scalable to larger action spaces, we choose to imple-
ment a continuous action space.

With a continuous action space, the number of output nodes of the neural net-
work is equal to twice the number of different combinations of variable values in 
the action space. In (2), we defined an order quantity per edge of the network. The 
output of the neural network is the mean and standard deviation of the order quan-
tity for every edge (5). The action for each edge is then sampled from a Gaussian 
distribution using these parameters. This action space results in a more scalable neu-
ral network, as the number of output nodes only grows linearly with the number of 
edges in the network, rather than exponentially in the case of a discrete action space.



1 3

Multi-echelon inventory optimization using DRL

In the linear and divergent cases, the number of edges is equal to the number of 
stock points. However, in the general case, the number of edges (18) is much larger 
than the number of stock points (9). This may result in issues with scalability. To 
explore the impact of reducing the size of the action space, we consider two differ-
ent action space implementations for the general case: (1) order per edge and (2) 
order per stock point. In the case where we define an order per stock point, we use a 
probability to determine the predecessor stock point to which the order is sent. For 
example, with 60% probability, the order of retailer r1 is sent to warehouse w1 , and 
with 40% probability the order is sent to warehouse w2 , meaning the order quan-
tity is not split over multiple suppliers. These percentages are determined based on 
historical data of the CardBoard Company. While this action space implementa-
tion might work well in improving the scalability of the algorithm, the performance 
could be jeopardized, as we add an additional source of uncertainty to the problem 
(i.e., the random choice of supplier), which is a common challenge for DRL algo-
rithms (Dulac-Arnold et al. 2021).

The default output of an untrained network is 0, with a standard deviation of 1. 
It could, therefore, take a long time to reach the desired mean output. For example, 
if the optimal order size is 20, the neural network has to adjust its output to 20, but 
might do this in very small steps. Hence, it is recommended to scale the action space 
to the interval [−1, 1] (Raffin et al. 2019). This should speed up the learning of the 
network. The interval of the action space can be determined based on experimenta-
tion or reasoning on what would be the maximum allowed action in the environ-
ment. Because the action space output of the neural network is unbounded, we clip 
the outputs that lie outside the given interval. This way, we encourage the network 
to stay within the limits of the interval. We have also experimented with giving the 
network a penalty whenever the outputs were outside the given interval, but this 
resulted in worse performance.

4.5  Reward function transformation

PPO tries to maximize the rewards. Because we want to minimize our costs, we 
multiply the costs (3) by −1 to represent the rewards. As mentioned in Sect. 4, the 
PPO algorithm uses an Actor-Critic architecture. While the actor outputs the values 
of the actions, the critic estimates the value function. The network weights are then 
optimized to achieve minimal loss (MSE) between the network outputs and training 
data outputs. If the scale of our network outputs is significantly different in weight 
and bias from that of our input features, the neural network will be forced to learn 
unbalanced distributions of weight and bias values, which can result in a network 
that is not able to learn properly. To combat this, it is recommended to scale the out-
put values (Muccino 2019). In our experiments, we noticed that the scaling of these 
rewards is not trivial and no best practices are defined yet. In our case, dividing the 
results by 1000 yielded good results and we saw that the expected value of the critic 
corresponded to the average reward that was gained in the experiments.

(5)at =
[
�w,t, �w,t,�r,w,t, �r,w,t

]
∀w ∈ W, r ∈ R
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5  Experiments and results

Experiments were executed to assess the performance of the PPO algorithm from 
Sect.  4 in the multi-echelon inventory problem as described in Sect.  3. In this 
section, we first introduce the settings of the three inventory cases we experi-
ment with (Sect.  5.1). Thereafter, we report the performance of the PPO algo-
rithm in terms of minimizing the costs compared to the benchmarks in the linear 
(Sect. 5.2), divergent (Sect. 5.3), and general inventory network (Sect. 5.4). We 
present the cost and computational performance of the algorithm, and we provide 
an analysis of how to interpret the resulting policy in practice.

5.1  Experimental settings

The linear supply chain case is based on the synthetic problem settings as 
described by Chaharsooghi et al. (2008). The lead time is drawn from a random 
distribution each period and is identical for all stock points. Furthermore, the 
demand at the retailer is drawn from a discrete uniform distribution, and there are 
four stock points. We have replicated their simulation and applied our reinforce-
ment learning method to this simulation. As a benchmark, we used their original 
method, the Reinforcement Learning Ordering Mechanism (RLOM).

The divergent supply chain case is based on the synthetic problem settings as 
described by Kunnumkal and Topaloglu (2011). The lead time here is determin-
istic, while the demand at the retailer follows a Poisson distribution. The mean 
of the Poisson distribution is drawn from a Uniform distribution. There are again 
four stock points, and in this case, unlike the others, there are no backorders for 
the warehouses. To benchmark this system, we have used the decomposition-
aggregation heuristic of Rong et  al. (2017). This heuristic is also considered as 
benchmark by Harsha et al. (2021).

The general supply chain case is inspired by a real-world case at the Card-
Board Company, with nine stock points. It is structured as shown in Fig. 1, where 
the four warehouses in this case are paper mills that process the raw materials 
into paper and cardboard products. Then this intermediate product is shipped to 
corrugated plants (which can be considered as the five retailers), which process 
the intermediate product into the final products that are sold to customers. As 
the general network structure is already complex to study, we assume determin-
istic lead times in this case. In this study, we assume the demand is drawn from 
a Poisson distribution. The warehouses do observe backorders, however, there 
are no backorder costs associated with this, since only the demand from the end 
customers is ‘penalized’ for not being readily available. In the current inventory 
policy (the benchmark), the aim is to reach a 98% fill rate at all stock points, 
meaning that also here the aim is to minimize backorders between retailers and 
warehouses. However, the general intuition at the CardBoard Company is that 
improvements are possible in terms of decreasing the total amount of inventory 
while keeping customers satisfied.
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All case specific parameters, which originate from the cases studied by Cha-
harsooghi et  al. (2008) and Kunnumkal and Topaloglu (2011), can be found in 
Table  5. Please note that these benchmarks are all non-iterative, and therefore 
each provides only one output value. Hence, the benchmarks are depicted as 
straight lines in the figures with results. Unfortunately it was not possible to use 
one of the other value-based DRL methods we found in literature as a bench-
mark. As noted by Lynnerup et al. (2019), DRL studies are notoriously difficult 
to replicate due to the algorithms’ intrinsic variance, the stochasticity in the envi-
ronment, and the various hyper-parameters that can be chosen (and that are not 
always reported). Since the problems considered in other studies vary from our 
problem settings, the corresponding DRL methods cannot easily be applied to our 
case. Instead, we focus on explaining the approach and implementation details of 
our PPO algorithm, and demonstrating its applicability to different problems.

In the linear and divergent case, we run the PPO algorithm for 10,000 learn-
ing iterations. For the general case, we use 50,000 iterations as the state and action 
space are larger. To study the convergence of the algorithm in terms of the perfor-
mance of the learned policy, we simulate the learned policy at every 100 learning 
iterations (at every 500 iterations for the general case). At each of these evaluation 
moments, 100 simulation runs are performed. In the linear case, 35 time periods 
are simulated to compare to the benchmark. Note that the linear case benchmark 
focuses on a finite horizon setting, whereas we aim to minimize the long-term aver-
age costs in the other network structures. In the divergent case, 75 time periods are 
simulated, and the first 25 are discarded as warm-up periods. For the general case, 
100 time periods are simulated, and the first 50 are discarded as warm-up. The dif-
ferences in time periods are a result of the different benchmarks that are considered. 
Since there is randomness in running the PPO algorithm, ten different random seeds 
(referred to as ‘replications’) are used in each case to demonstrate the consistency 
in performance of the algorithm. The average performance of these random seed 
replications is reported. The experiments were conducted on an Intel(R) Xeon(R) 
Processor CPU @ 2.20 GHz with 4 GB of RAM.

As indicated in Sect. 4, the state and action space need to be scaled to an appro-
priate range for the specific problem environment. Since our problem environments 
differ significantly in terms of the number of nodes and thus in the reasonable maxi-
mum amounts of total inventory and replenishment quantity, we use different scales 
for the state and action variables in each case. The upper bounds for the state and 
action space were found after experimenting with several values, and the resulting 
bounds are shown in Table 6.

Table 5  Parameters per case

Structure �
w

�
w,r d

i
K h

w
h
r

b
w

b
r

Linear Unif{0, 4} Unif{0, 4} Unif{0, 15} 4 1 1 2 2
Divergent 1 1 Pois(Unif{5, 15}) 4 1 1 0 19
General 1 1 Pois(15) 9 0.6 1 0 19
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5.2  Linear network

We first show the results of the linear network, providing insight into the applica-
bility of the PPO algorithm to the simplest network structure. One replication of 
the PPO algorithm takes on average 1 h to complete. Note that the computation 
time of the algorithm can be reduced with early stopping procedures once the 
solution has converged.

The results of the experiments can be found in Fig.  2. As a benchmark, we 
have included the average results of the RLOM approach of Chaharsooghi et al. 
(2008).

We see that the PPO algorithm improves quickly and it only needs a few itera-
tions to improve on the benchmark (note that the benchmark also relies on RL). 
After completing training, the PPO algorithm results in 16.4% lower costs com-
pared to the benchmark. From this, we conclude that the PPO algorithm suc-
ceeded in yielding good rewards while using a large state- and action space, and 
is able to learn well-performing actions. These results indicate that deep rein-
forcement learning might be a promising method for other more complicated 
cases.

Table 6  Upper bound of the state and action variables per case

Structure ti tb Iend
w,t

Iend
r,t

BO
r,w,t BO

r,t IT
w,t,t′ IT

w,r,t,t′ O
w,t O

r,w,t

Linear 4000 4000 1000 1000 1000 1000 150 150 30 30
Divergent 1000 450 250 250 150 150 300 75 300 75
General 4500 8250 500 500 500 250 150 75 150 75

Fig. 2  Performance of the PPO algorithm in the linear inventory system. The blue shade depicts the 95% 
confidence interval (colour figure online)



1 3

Multi-echelon inventory optimization using DRL

5.3  Divergent network

In this section, we present the results of applying the PPO algorithm to the divergent 
network case. One full replication of the deep reinforcement learning method takes 
on average 1 h. The result of the deep reinforcement learning method can be seen in 
Fig. 3.

To benchmark our method, we use the decomposition-aggregation (DA) heuristic 
of Rong et  al. (2017), which is proven to be asymptotic optimal. Besides the DA 
heuristic, Rong et al. (2017) also propose the Recursive-Optimization heuristic; they 
conclude that both heuristics perform well, but that DA is significantly less compu-
tationally intensive. With this heuristic, we find the base-stock levels [124, 30, 30, 
30]. Hence, the base-stock level for the warehouse should be 124, while the base-
stock level for the retailers is 30. The calculations for the heuristic can be found in 
Appendix A. The average costs of the benchmark are 4059.

As can be seen in Fig. 3, PPO is able to learn the required actions quickly, as the 
costs decrease vastly over the first iterations. After only 3000 iterations, which takes 
about 30 min, the method is able to beat the benchmark. At iteration 6300, the algo-
rithm has learned the lowest costs, with an average cost performance of 3600, which 
means that the method is able to beat the benchmark by an impressive 11.3%. Note 
that it is not recommended to continue learning after convergence has been reached, 
as the performance could deteriorate after more learning iterations due to overfit-
ting. From these results, we conclude that the deep reinforcement learning method 
can easily be applied to other cases, without any alterations to the algorithm. There 
might be still some improvement possible by tuning the parameters of the algorithm. 
However, this is a non-trivial and time-consuming task (Gijsbrechts et  al. 2022). 
Therefore, we decided to keep the current parameter values. With the current set-
tings, the method is already able to beat a base-stock level heuristic.

To gain more insights into the decisions that the deep reinforcement learning 
method makes, and to interpret the resulting policy when being used in practice, 

Fig. 3  Performance of the PPO algorithm in the divergent inventory system. The blue shade depicts the 
95% confidence interval (colour figure online)
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we look at how the actions of the method depend on the state. To do this, we use 
the trained network and feed the different states as input to this network. The 
output of the network is the action that it will take, i.e., the quantity of the order 
it will place upstream. When we visualize these states and actions in a heatmap, 
we see how the actions are coherent with the states. Because we use a two-dimen-
sional heatmap, we can only vary two different variables in the state vector at 
a time, so the other values in the state vector remain fixed. This value is based 
on the average value of the particular state variable, which we determined using 
simulation.

The heatmap of Fig. 4a shows the cohesion of the inventory in the warehouse 
with the number of items in transit for the warehouse. We see that the order quan-
tity gets lower as the inventory of the warehouse gets higher. The order quan-
tity only slightly depends on the number of items in transit. When the number 
of items in transit is low, the order quantity is high. This order quantity slightly 
decreases when the number of items in transit increases. However, when the 
number of items in transit passes 50, the order quantity tends to increase again 
slightly. Although this is counter intuitive, it might be the result of providing only 
a limited number of observations of these states to the neural network, as they do 
not occur often in the simulation, so they seem to be unlikely to occur in practice. 
All in all, the heatmap shows that PPO is able to make explainable connections 
between states and actions, but also resulted in some actions that make less sense.

The state-action connections of the retailers can be found in Fig. 4b. For these 
heatmaps, we investigated the different retailers and the relation between their 
inventory and both the inventory of the warehouse and the number of items in 
transit. We see that there is no clear dependency between the actions and the 
inventory of the warehouse. This makes sense, as the number of items in the 
warehouse does not directly affect the inventory position of the retailer. The con-
nection between the number of items in transit and the inventory of the retailer is 
clearly visible. The resulting policy does not order when the number of items in 
transit is large. Also, the current inventory of the retailers impacts the order quan-
tity. Especially for retailers 1 and 2, the order quantity quickly increases when the 
retailers have backorders (with a slower increase for retailer 3).

Fig. 4  Actions of the warehouse and retailers
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With this analysis, we demonstrate that the PPO algorithm finds sensible poli-
cies, and we provide guidance on how to interpret the resulting policy in practice. 
Although it is not possible to quickly see the relations between all the different 
states in these two-dimensional heatmaps, we do get insights into some important 
connections.

5.4  General network

In this section, we present the results of applying the PPO algorithm to the general 
network case. We conducted three different sets of experiments. In Experiment set 
1, we defined the action space with orders per stock point. Experiment set 2 had a 
larger action space, as an order per edge was considered (see Sect. 4.4). To ensure 
that the PPO algorithm does not become trapped in unlikely state spaces, we defined 
Experiment set 3, where the transition function was restricted (see Sect.  4.3) and 
where we again use the action space with orders per edge.

As a benchmark, we used the actual policy of the CardBoard Company, which 
aimed to achieve a fill rate of 98% for their customers. They aimed to achieve this by 
also enforcing the fill rate of 98% for the connections between the paper mills and 
corrugated plants, which is similar to a decentralized inventory policy. We set up a 
benchmark by manually tuning the base-stock parameters such that the fill rate of 
98% is met for every connection. We measure this fill rate by running a simulation 
model of the network for 100 time periods, where we remove the first 50 periods 
to account for the warm-up period and replicated this simulation 500 times. Using 
this method, we obtained the following base stock parameters for Experiment 1: [82, 
100, 64, 83, 35, 35, 35, 35, 35], resulting in an average total cost of 10,467. For 
Experiments 2 and 3, the base stock parameters were defined as: [37, 47, 33, 63, 30, 
30, 30, 30, 30], with an average total cost of 4,797. There is a difference between 
these base stock parameters due to the higher uncertainty in Experiment set 1 as a 
result of the randomness in where the upstream order will be placed. In Experiment 
set 2 and 3, the orders are split across all the upstream connections, resulting in 
lower demand uncertainty for the warehouse stock points, higher delivery reliability 
between warehouse and retail stock points, and thus lower base-stock parameters.

We run the deep reinforcement learning method for 50,000 iterations for the three 
experiment sets, which takes approximately 5.8  h per replication. Table  7 shows 
the most important results of every experiment set. When looking at the results, 
we observe that the PPO algorithm is not able to achieve consistent results for both 

Table 7  Results of the benchmark and the PPO algorithm in the general inventory system

Experiment Benchmark Base-stock parameters Best performance Average 
perfor-
mance

Set 1 10,467 [82, 100, 64, 83, 35, 35, 35, 35, 35] 8714 630,401
Set 2 4797 [37, 47, 33, 63, 30, 30, 30, 30, 30] 4175 314,923
Set 3 4797 [37, 47, 33, 63, 30, 30, 30, 30, 30] 3935 4481
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Experiment set 1 and 2. Although the lowest costs are lower than the benchmark, the 
average costs are high, due to some runs that are not able to converge. Experiment 
set 3, which implements the transition limit, is able to converge in every run and is 
therefore yielding an average performance that is lower than the benchmark. For the 
remainder of this section, we will further analyze the results of Experiment 3.

Figure 5 shows the result of Experiment 3, compared with the benchmark. We 
see that the PPO algorithm once again improves quickly in this case, but needs some 
time to converge and yield steady results. After 22,000 iterations, which takes about 
2.5 h, the average costs drop below the benchmark for the first time. On average, the 
PPO algorithm improves the benchmark by 6.6%. To gain more insight into the deci-
sion that the PPO algorithm makes, we will look into the fill rate of the inventory 
system and compare it with the benchmark. Note that for the case of the CardBoard 
Company, we are not able to create heatmaps, as we have too many state variables 
that depend on each other.

For every replication of our deep reinforcement learning method, we use the fully 
trained network to run a simulation for 100 periods. We then remove the first 50 
periods, to account for the warm-up period. Figure 6 shows the average fill rate of 
replication 1 for both the benchmark and our deep reinforcement learning method. 
While we did not impose the 98% fill rate as a constraint in our model, the method 
is still meeting this requirement for almost every retailer. We see that the method 
did learn that it is not necessary to achieve a 98% fill rate for every stock point, but 
only for the retailers, as they are directly delivering to the customers. With respect 
to the warehouses, our PPO algorithm decides to only store inventory at warehouse 
4. According to Fig. 1, this warehouse has a connection to every retailer. The PPO 
algorithm learned that storing inventory at only one warehouse minimizes the vari-
ability and achieves higher downstream fill rates. With this approach, the PPO algo-
rithm has learned to simplify the general network structure of our case to a divergent 
network structure. While this is a valid solution to our provided case, this might not 
be a realistic solution in a real setting, for example, due to the distances between 

Fig. 5  Results of the PPO algorithm on the case of CardBoard Company. The blue shade depicts the 95% 
confidence interval (colour figure online)
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warehouses and retailers. Therefore, future research could focus on altering the case, 
such that it becomes less beneficial to only store inventory at warehouse 4. This 
could be done by either adding an extra long lead time to this warehouse, making 
using of preferred suppliers, or changing replenishment costs for different suppliers.

Based on these experiments, we conclude that the PPO algorithm is not able to 
converge in complex environments without using a transition limit. The extra sto-
chasticity in Experiment set 1 results in a highly unstable method. Experiment set 
2 shows that, while the stochasticity is reduced, the method remains unstable. The 
transition limit in Experiment set 3 ensures that the PPO algorithm does not get 
stuck in unlikely states and pushes the method in the right direction.

6  Conclusion

We investigated the applicability of Deep Reinforcement Learning (DRL) for find-
ing replenishment order quantities in multi-echelon inventory management. More 
specifically, we proposed a PPO algorithm, a method that performs well with robust 
hyper-parameter values found in the literature. We applied our method to three dif-
ferent network structures, to show its general applicability. When applying the PPO 
algorithm to the different cases, the main modifications we made were related to 
the definition of the state and action spaces, and setting the bounds. The bounds 
on state and action variables have a big impact on the performance, but with minor 
experimentation, suitable bounds can be identified. Future research could look into 
automating and optimizing the process for determining these bounds. The only other 
modification concerns the transition limits in the larger problems to ensure a stable 
performance of the algorithm.

The PPO algorithm outperforms the benchmarks in all cases. In the linear case, 
the algorithm achieved 16.4% lower costs compared to the benchmark of Cha-
harsooghi et al. (2008). In the divergent network structure, PPO resulted in 11.3% 
lower costs compared to the benchmark of Rong et al. (2017). In the general net-
work structure, we considered a real-world case of Cardboard Company, where we 

Fig. 6  Average fill rates (in percentage) for the stock points of the CardBoard Company
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found that a transition limit was necessary to let the PPO algorithm converge. In this 
general network structure case, the PPO algorithm was able to reduce the costs by 
6.6%. The PPO algorithm learned to minimize variability and improve downstream 
fill rates by storing inventory at only one warehouse. However, this may not be a fea-
sible solution in real-world settings. Future research could explore ways to make it 
less beneficial to store inventory at one warehouse by introducing more complexity 
and uncertainty, such as preferred suppliers or different lead times per connection. 
Furthermore, the PPO algorithm is executed within reasonable computation times of 
around 1 h, with larger problems taking more time to train. Once trained, the neural 
networks can instantly provide the action to take. We showed that insights into the 
resulting policy of the algorithm can be retrieved by creating heatmaps and investi-
gating the prescribed actions in different states.

Our contributions to this research are threefold. First, we applied a DRL method 
with a continuous action space, which is not yet widely used, to a multi-echelon 
inventory system, creating better scalability to larger problems. If discrete actions 
would be used, we would not have been able to initiate the neural network for the 
case of the CardBoard Company. Second, we investigated a general inventory sys-
tem, which has received less attention in the literature due to its complexity and 
intractability. Nevertheless, the relevance of a general network structure is under-
lined by our real-world case of the CardBoard Company, and we showed that the 
PPO algorithm can improve inventory policies. Third, we demonstrated the flexibil-
ity of the PPO algorithm by applying it to a variety of cases without major modifica-
tions and without any parameter tuning.

While demonstrating the applicability of the PPO algorithm in a general net-
work structure, we investigated the performance in a simulated environment, using 
stationary demand distributions. Investigating the performance and suitability in a 
real-life environment is essential before implementing the PPO algorithm in prac-
tice. While our case reflects a real-life environment, further research could focus on 
implementing more real-life aspects. Additionally, more research should be done on 
the explainability of our method and deep reinforcement learning in general. As the 
explainability aspect is a key component of implementing such methods in practice, 
it deserves more attention. van Hezewijk et al. (2022) provide an example of how 
the neural network ‘black box’ can be opened to interpret the resulting policy of the 
PPO algorithm. They do so by using multiple linear regression to find relationships 
between the state and action variables of the trained actor, thereby providing insight 
into the logic behind selecting certain actions when observing certain states.

Appendix A: Calculation of the base‑stock levels for the divergent 
case

In this appendix, we elaborate on the calculations for the heuristic of Rong et  al. 
(2017) to determine the base-stock levels of the divergent inventory system. The 
formulas and explanatory notes of Rong et  al. (2017) are extended with our own 
calculations.
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Under the decomposition-aggregation (DA) heuristic, we decompose the diver-
gent inventory system into three two-location serial systems, solve the base-stock 
levels of the locations in each serial system, and aggregate the solutions utilizing 
a procedure that Rong et al. (2017) have called“backorder matching”. We use sa

i
 

to denote the local base-stock level at location i based on the DA heuristic. Next, 
we provide a detailed description of the steps of the heuristic.

Step 1 Decompose the system into N serial systems. Serial system i consists of 
the warehouse and retailer i. We use 0i to refer to the warehouse in serial system 
i. Utilizing the procedure from Shang and Song (2003), we approximate the ech-
elon base-stock levels of retailer i, SSS

i
 , and the warehouse in serial system i, SSS

0
i , 

as follows:

Here, D̃i is the total leadtime demand in serial system i. Di is a Poisson random vari-
able with rate �i

(
L0 + Li

)
 . F−1 is the inverse Poisson cumulative distribution func-

tion (CDF). For the warehouse, instead of using F−1, we opt instead to use G−1
D
, the 

inverse function of an approximate Poisson CDF. Let ⌈x⌉ and ⌊x⌋ be the smallest inte-
ger no less than x and the largest integer no greater than x,  respectively. We define 
this approximate CDF of a Poisson random variable D to be the following continu-
ous, piecewise linear function:

Step 2 Calculate the local base-stock level for the warehouse in serial system i by 
sd
01
= SSS

01
− SSS

i
 . For the retailers, we have sd

i
= S

�S

i
,∀i ∈ {1, 2,… ,N} . We approxi-

mate the expected backorders of the warehouse in serial system i by:

In (A3), D0 is a Poisson random variable with rate �iL0, and QD(x) is the loss func-
tion of the Poisson random variable D.

Step 3 Aggregate the serial systems back into the OWMR system utilizing a 
“backorder matching” procedure. We approximate the total expected backorders 
at the warehouse by E

[
B0

]
≅ ΣN

i=1
E
[
B0

]
 . Specifically, the backorder matching pro-

cedure sets sa
0
, the base-stock level at the warehouse, equal to the smallest integer 

s0 such that:

(A1)

SSS
i

= F−1
Di

(
bi + h0

bi + hi

)
= F−1

Di
(0.98) = 30

SSS
0i

=
1

2

[
G−1

D̃i

(
bi

bi + hi

)
+ G−1

D̃i

(
bi

bi + h0

)]
1

2

[
G−1

D̃i

(0.95) + G−1

D̃i

(0.97)
]
= 52

(A2)GD(x) =

⎧⎪⎨⎪⎩

2FD(0)x, if x ≤ 0.5

FD(⌊x − 0.5⌋) + �
FD(⌈x − 0.5⌉)

−FD(⌊x − 0.5⌋)�(x − 0.5 if x ≥ 0.5

−⌊x − 0.5⌋)

(A3)E
[
B0i

]
= E

[(
D0i

− sd
0i

)+
]
= QD0i

(
sd
0i

)
= 0.97949
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Q−1
D
(y) is defined as min

{
s ∈ ℤ ∶ QD(s) ≤ y

}
.

This gives us the base-stock parameters: [124, 30, 30, 30].
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