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A B S T R A C T

Due to the rapid spread of the new coronavirus variant during the most recent pandemic, it became difficult
to distinguish common cold symptoms from those of other respiratory illnesses and coronavirus infections.
X-rays of the thorax and Polymerase Chain Reaction with Reverse Transcription (RT-PCR) are common
and efficient methods for preventing the spread of infectious diseases. In recent years, Machine Learning
(ML) algorithms have been widely used to aid in the diagnosis of medical images, yielding simpler, more
accurate, and quicker results. This study intends to apply texture descriptors to X-rays of COVID-19 patients’
lungs and utilize the extracted features in frameworks designed to accurately evaluate COVID-19 patients.
Multiple experiments employing individual texture descriptors and their integration were conducted in order to
incorporate these new characteristics into the proposed models. In addition, these frameworks will be compared
to the conventional ML models used to aid in the diagnosis of COVID-19. When texture descriptors are used
in conjunction with other standard features, the predictive power of the algorithms increases, according to the
results. In addition, the accuracy increases when different types of texture descriptors are combined, resulting
in enhanced metrics for detecting and diagnosing COVID-19.
1. Introduction

In late December 2019, an outbreak of pneumonia cases with un-
usual clinical patterns in Hubei Province, China, prompted local health
authorities to issue an epidemiological alert to the Chinese Center for
Disease Control and Prevention (CCDCP) and the Chinese office for
the World Health Organization (WHO) (Boni et al., 2020; Parasher,
2021). Then, in early January 2020, Chinese authorities identified the
etiologic agent of the aforementioned pneumonia cases as a new coro-
navirus, called at that time 2019-nCoV (Organization et al., 2020) and
later also named Severe Acute Respiratory Syndrome Coronavirus-2
(SARS-CoV-2) (Gorbalenya et al., 2020).

Coronaviruses (CoV) are members of the Coronaviridae family ca-
pable of causing respiratory infections, which can develop in humans
with mild or moderate diseases, such as colds and common flu, as well
as conditions ranging from moderate to severe, such as Middle East
Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome
(SARS) (Boni et al., 2020; Parasher, 2021). One of the main similarities
between the SARS-CoV and MERS-CoV viruses is that they both have
a low potential for sustained community transmission. In contrast,
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the newly identified coronavirus disease, called COVID-19 (Thepade &
Jadhav, 2020), is highly contagious. The exponential rates at which
COVID-19 can be transmitted drive attention to the potential increase
in the number of infected individuals, which would impact the spatial
amplitude of epidemic areas, thus posing an extraordinary threat to
global public health (Hu, Guo, Zhou, & Shi, 2021).

Given that COVID-19 is a new disease for which no pharmacolog-
ical treatments have been scientifically validated, it has been treated
preventatively. The recommended actions include a restrictive posture,
self-distance, the use of Personal Protective Equipment (PPE), and asep-
tic body routines. Additional recommendations for patients who tested
positive typically involve quarantine to reduce contagion (Kevadiya
et al., 2021). Thus, in order to effectively combat the pandemic, a
prompt and definitive diagnosis is essential.

As the clinical symptoms of COVID-19 are frequently similar to
those of the common flu, doctors must conduct specialized tests to
investigate each case further and take more appropriate action. Al-
though Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
is the most commonly used method to support medical diagnosis,
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Computed Tomography (CT) and chest X-rays play a central role in
examining and monitoring the disease and its progression, as well as
in supporting medical doctors’ decisions on the method of treatment at
each step of each case (Khatami et al., 2020).

Numerous examples of research that proposes the use of images and
new technologies to support medical diagnosis for various diseases have
been presented in the literature (Astolfi et al., 2023; Bian et al., 2023;
Chen et al., 2023, 2022; da Silva, Nascimento, Jagatheesaperumal, &
Albuquerque, 2022; de Mesquita, Cortez, Ribeiro, & de Albuquerque,
2022; de O. Sousa et al., 2022; de Souza et al., 2021; Huang, Zhang,
Chen, & de Albuquerque, 2022; Jiang et al., 2024; Kalita, Peesapati,
& Ahamed, 2022; Kogilavani, E, & Subramanian, 2022; Li, 2022). For
example, Astolfi et al. (2023) proposed a method for diagnosing ankle
ligament injuries, Chen et al. (2023), Chen, Zheng et al. (2022) propose
predictive frameworks for detecting atrial fibrillation, de Mesquita et al.
(2022) investigates the use of models to identify lung nodules, da Silva
et al. (2022) and Huang et al. (2022) explore the diagnosis of oral and
breast cancer, respectively, de Souza et al. (2021) proposes predictive
models to assess patients with Parkinson’s, and more related to this
study (Kalita et al., 2022; Kogilavani et al., 2022; Li, 2022) propose
models to detect COVID-19.

Even though the pandemic began only two years ago, numer-
ous studies were conducted to aid in its diagnosis and management.
In Singh and Singh (2021)’ study, a novel method employing an
enhanced depth convolution neural network was proposed for thorax
X-ray images. Additionally, wavelet decomposition was used to incor-
porate the multiresolution analysis into the network. At the same time,
the network is fed the frequency subbands extracted from the input
images in order to identify the disease. The authors classified into three
groups, normal, COVID-19, and pneumonia, achieving classification
accuracies greater than 96%. CNN was also used to classify X-ray
images into two groups, normal people and people with COVID-19,
with an accuracy of nearly 96% (Keram bin, bin Mohd Ramli, Kamal,
& bin Mohd Abas, 2021).

A large amount of literature in these settings also aims to propose
methodological comparisons. For instance, Carvalho, Carvalho, de Car-
valho Filho, De Sousa, and Rabúlo (2020) utilized a CNN for feature
extraction in computed tomography images and for classification in the
groups of regular and COVID-19 patients. They used eXtreme Gradient
Boosting (XGBoost), Random Forest (RF), and Multilayer perceptron to
perform diagnosis classification. Contrast Limited Adaptive Histogram
Equalization (CLAHE) was also used to analyze several comparison sit-
uations. With an accuracy of 97.88%, the CLAHE and CNN combination
yielded the best results. The work proposed by Rohmah and Bustamam
(2020) utilized Computed Tomography (CT) and X-ray images, as well
as three extractors (Gray Level Co-occurrence Matrix (GLCM), Local
Binary Pattern (LBP), and Oriented Pattern Histogram (HOG)) and their
combinations with Principal Component Analysis (PCA) to propose
the reductions of resource consumption. For classification, the SVM
algorithm was utilized, yielding along with GLCM, LBP, and HOG
results with a precision of up to 97% in CT images and 99% in X-ray
images.

Other studies, including those by Elmesalawy, Salama, and Anany
(2020) and Nunes et al. (2021), use the internet and mobile devices
to combat the COVID-19 pandemic. The work presented by Nunes
et al. (2021) propose a web-based system for segmenting, extracting,
and classifying X-ray images in order to detect COVID-19. The results
of Elmesalawy et al. (2020)’ study, on the other hand, demonstrate the
performance of the tracking and identification of people who have been
exposed to an infected individual via smartphone in order to prevent
further transmission by notifying those who have come into contact
with the positive case. Thus, isolation and precautionary measures can
be taken.

In this context, computer-aided diagnosis has played a large role in
monitoring the disease (Hernandez, Pereira, & Georgevia, 2020), as it
2

tends to reduce doubts and speed up the interpretation of results. In this
paper, we propose and develop a computer vision method based on the
Fuzzy OPF classifier that is capable of providing a computer-assisted
diagnosis of COVID-19 from CT or chest X-ray images. Additionally,
this paper has three main objectives. The first objective is to propose
methods and compare their performance while extracting thorax X-
ray characteristics to aid in COVID-19 detection. The second objective
is to analyze and evaluate the predictive performance of integrating
different individual texture extractors into different frameworks used
to aid in the diagnosis of COVID-19 patients. This article’s third and
final objective is to test the performance of an OPF classifier on X-ray
images and compare it to the performance of conventional classifiers.

By focusing on these objectives, we expect to contribute differently
to literature and industry. First, we present novel techniques for ex-
tracting information from X-ray images using individual and integrated
texture descriptors, which may provide greater accuracy and general-
ization for use in other applications. Second, we present a broader array
of experiments that can be used to aid in the diagnosis of COVID-19,
including the application of the most recent classification algorithms
within the predictive frameworks (e.g., OPF). Finally, we provide prac-
titioners and the medical industry with alternative methods to support
their treatment selection decisions; these frameworks may also impact
processing time and increase rates of accurate diagnosis, which in a
pandemic with a highly contagious disease could prevent hospitals from
becoming overcrowded and thus reduce the number of deaths.

The remaining sections are organized as follows. The theoretical
background is presented in Section 2, along with a detailed explanation
of the texture descriptor algorithms and their applications. Section 3
describes the study’s primary research techniques. Section 4 contains
the findings. Section 5 concludes the paper and suggests future research
directions.

2. Theoretical background

There are many different studies proposing the use of different
methods to extract characteristics from X-ray images (Al-Karawi, Al-
Zaidi, Polus, & Jassim, 2020; Hussain et al., 2020; Varela-Santos
& Melin, 2021). This section delves into the rationale and funda-
mental principles underpinning frequently employed feature extrac-
tor techniques. Furthermore, it examines studies that have employed
these texture extractors across various domains, encompassing both
classification-related and non-classification contexts. The latter aspect
of this examination serves a dual purpose: firstly, it offers a comprehen-
sive overview of recent studies within the same domain and technique,
and secondly, it distinctly underscores the innovative nature of the
methods introduced in this study.

2.1. Histogram

In numerous fields, the histogram has been used to extract im-
age characteristics during information processing. For instance, it is
possible to observe applications not only in the medical (Al-Karawi
et al., 2020; Varela-Santos & Melin, 2021), but in other industries as
well (Keyvanpour, Vahidian, & Mirzakhani, 2021; Wang et al., 2017).

Technically, the histogram of an image is a discrete function ex-
pressed as 𝐻𝐼𝑆𝑇 (𝑟𝑘) = 𝑛𝑘 (Gonzalez & Woods, 2018), where 𝑟𝑘 is the
𝑘th intensity level of the image and 𝑘 = 0, 1,… , 𝐿−1 in a grayscale with
𝐿 values, and 𝑛𝑘 is the number of pixels in the image with intensity
𝑟𝑘. Further, it is common practice to normalize a histogram in order to
transform its values to the same magnitude order. Gonzalez and Woods
(2018), for instance, propose that 𝑝(𝑟𝑘) = 𝑛𝑘∕𝑛, where 𝑛 is the total

number of pixels in the image.
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2.2. GLCM

Gray-Level Co-occurrence Matrix (GLCM) was initially described
by Haralick, Shanmugam, and Dinstein (1973) as part of a method for
acquiring image features. In this matrix, each element 𝑃 (𝑖, 𝑗) represents
the frequency with which a pixel with gray level 𝑖 appears at the
location specified by the pair (𝑑, 𝜃) relative to a pixel with gray level
𝑗. The former parameter, 𝑑, refers to the distance in pixels between a
gray level i (reference pixel) and a gray level 𝑗 in the image, whereas
𝜃 defines the angular position of gray level 𝑗 within a neighborhood of
pixels, where the central pixel represents gray level 𝑖.

Consequently, the GLMC contains, in each of its elements, the
relative frequency over two pixels in a neighborhood separated by a
distance 𝑑 that appear in the image along a direction 𝜃, one with gray
tone 𝑖 and the other with gray tone 𝑗, respectively.

2.3. Perception-like features

Tamura, Mori, and Yamawaki (1978) determined, based on a se-
ries of psychological experiments, six basic textural image features
corresponding to visual perception: coarseness, contrast, directionality,
line-likeness, regularity, and roughness. These six characteristics can
be defined as follows (Bianconi, Álvarez-Larrán, & Fernández, 2015;
Tamura et al., 1978):

• Coarseness is proportional to the intrinsic size of texture ele-
ments; therefore, the greater the size, the coarser the texture, and
vice versa.

• Contrast is dependent on the distribution of gray levels, the
repetition period of the patterns, and the sharpness of the edges.

• Directionality refers to the probability that variations in pixel
intensities occur along predetermined orientations.

• Line-likeness deals with the probability that the gradient main-
tains the same direction between neighboring pixels; thus, it is
possible to observe the degree to which an image is perceived as
being composed of lines.

• Regularity is related to the variation of the texture throughout
the image; if there is any characteristic of a texture that varies
throughout the entire image, the image is treated as irregular;
otherwise, it is treated as regular.

• Roughness indicates the rate and degree of intensity variability
in a neighborhood. It can be understood from the term rough,
which refers to a surface with protuberances, ridges, and valleys,
in contrast to a smooth surface, which lacks these irregularities.

2.4. LBP

Local Binary Pattern (LBP) is a simple and effective texture descrip-
tor that is useful for a variety of applications including image retrieval,
face recognition, and remote sensing (Kola & Samayamantula, 2021).
It was first presented by Ojala, Pietikäinen, and Harwood (1996) as an
extremely simple texture measure that is computationally tractable and
effectively describes the texture information of an image.

Initially, the LBP operator is defined for 3 × 3 neighborhoods of each
pixel, from which comparisons are made between the central pixels
and their 8 neighbors, using a circular motion that always begins from
the same position in the neighborhood and always moves in the same
direction. It can be defined as:

𝐿𝐵𝑃 (𝑥𝑐 , 𝑦𝑐 ) =
𝑃−1
∑

𝑛=0
𝑠(𝑖𝑛 − 𝑖𝑐 )2𝑛

𝑠(𝑥) =
{

1, if 𝑥 ≥ 0;
0, if 𝑥 < 0.

where 𝑖𝑐 is the intensity value of the center pixel (𝑥𝑐 , 𝑦𝑐 ) and 𝑖𝑛 repre-
sents the gray values of neighbors around the center pixel, for a given
3

window containing 𝑃 pixels. r
This should produce eight ‘‘0’’ or ‘‘1’’ digits (i.e. an 8-bit binary num-
ber) that, when converted to decimal base, represent a value between 0
and 255. This value corresponds to a pixel in the labeled image 𝑓𝑙(𝑥, 𝑦),
which depicts the LBP features of the input image. An histogram of the
labeled image 𝑓𝑙(𝑥, 𝑦) can be defined as 𝐻𝑖 =

∑

𝑥,𝑦 𝐼{𝑓𝑙(𝑥, 𝑦) = 𝑖}, 𝑖 =
0,… , 𝑛 − 1.

2.5. Gabor

The Gabor filter is a sinusoidal function of a specific frequency and
orientation that is modulated by a bidimensional Gaussian wave (Jiang,
Li, & Shi, 2020). It is commonly employed to analyze image texture,
detect image borders, and extract image features. These capabilities are
made possible by the superior spatial and frequency properties of the
filters (Karan, Yadav, & Singh, 2020).

Beirami and Mokhtarzade (2019) indicate that the spatial charac-
teristics of Gabor are used to extract objects from images of varying
sizes and orientations. Specifically, a transformation of Gabor’s bidi-
mensional filters can be described by an image (𝐼(𝑥, 𝑦)) convolutional,
s defined by (Bahat & Görgel, 2021):

(𝑥, 𝑦) = ∬ 𝐼(𝑥′, 𝑦′)𝑔(𝑥 − 𝑥′, 𝑦 − 𝑦′)𝑑𝑥′𝑑𝑦′. (1)

here, 𝑔(𝑥, 𝑦) represents the Gabor’s filter.1

.6. SCM

Scale Co-Occurrence Matrix (SCM) is a technique for extracting
mage features in scale space following wavelet transformation. In
n n-dimensional space, SCM analyzes the co-occurrence relationship
etween the structures of two discrete signals. Thus, SCM maps the
o-occurrences between the input signals and a bidimensional his-
ogram (Bezerra Ramalho, Ferreira, Rebouças Filho, & de Medeiros,
016).

Considering the existence of two signals (𝑓 ∈ 𝐷𝑓 ⊂ C𝑛 and 𝑔 ∈
𝑔 ⊂ C𝑛) with the same number of samples in each dimension, and the

unction 𝑘 ∶ 𝐷𝑔 → 𝐷𝑓 , responsible for modifying the structures of the
ignal 𝑔, which aims to maximize the structural difference between 𝑓
nd 𝑔, we can then define the SCM matrix, 𝑀 =

{

𝑚𝑖,𝑗
}

, which stores the
o-occurrence of the signals structures of 𝑄 (𝑓 ) e 𝑄 (𝑘 (𝑔)), as defined
y Bezerra Ramalho et al. (2016) in Eq. (5), where 𝑄 minimizes the
omputational cost, describing the scale of the structures and limiting
he SCM size, #{⋅} represents the cardinality of the subsets of pairs
(𝑖, 𝑗) ∈ 𝐼 × 𝐼) satisfying specific properties (Rodrigues et al., 2018).

𝑖,𝑗 = #{(𝑖, 𝑗)|𝑃 (𝑖, 𝑗), 𝑖 = 𝑄(𝑓𝑝), 𝑗 = 𝑄(𝑘(𝑔))𝑝+𝑑}, (5)

In image applications, the signals 𝑓 and 𝑔 represent grayscale im-
ges defined by 𝐷𝑓 ∈ Z, where 𝑚×𝑛 are the dimensions. Consequently,
𝑝 ∈ {0,… , 𝐿 − 1} represents the pixel value in a bidimensional posi-
ion, where 𝐿 is the number of required levels (Bezerra Ramalho et al.,
016; Rodrigues et al., 2018).

1

(𝑥, 𝑦, 𝜆, 𝜑, 𝜓, 𝜎, 𝛾) = 𝑒𝑥𝑝

(

−
𝑥21 + 𝛾

2𝑦21
2𝜎2

)

𝑒𝑥𝑝
(

𝑖
(

2𝜋
𝑥1
𝜆

+ 𝜓
))

. (2)

𝑥1 = 𝑥 cos𝜑 + 𝑦 sin𝜑. (3)

𝑦1 = −𝑥 sin𝜑 + 𝑦 cos𝜑. (4)

Eq. (2) describes the Gabor filter, where 𝜆 and 𝜑 represent, respectively, the
length factor of the cosine’s wave (scale) and the direction of the Gabor
function. The phase shift and spatial vision angle are denoted by 𝜓 and 𝛾,
espectively.
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2.7. Recent applications of texture extractors

In recent literature, numerous studies have employed extraction and
classification techniques like those proposed in this work, spanning
diverse domains such as medicine, agriculture, and security. In the
healthcare domain, for instance, Astolfi et al. (2023) utilized extrac-
tion techniques, including GLCM, LBP, HU Invariant Moments, and
dimensional measures, for ligament classification. Various classifica-
tion algorithms such as SVM, MLP, RF, and k-NN were employed
to assess performance. Similarly, K, Adepu, Nagandla, and Agarwal
(2023) conducted a study focusing on skin cancer classification, utiliz-
ing multiple extractors and classifiers, albeit without incorporating the
extractor combination step. In addition, other studies, such as those
by Mardison and Yuhandri (2023) and Meenakshi, Sai Sree, Pavan,
and Sohail (2023), follow similar patterns of employing extraction and
classification techniques without including the combination phase.

In the agricultural sector, studies following analogous methodolo-
gies can be found. For instance, Basri, Indrabayu, Achmad, and Areni
(2022) compared traditional extraction models, including GLCM, LBP,
HSV, and GLCH, for detecting diseases in cocoa fruits, testing each
extractor independently without combination, and employing the SVM
classifier with different kernels. Similarly, Sarma, Das, Mishra, Bhuiya,
and Kaplun (2022) developed a decision support system for agricultural
monitoring, using extraction techniques such as GLCM, LBP, LBGLCM,
GRLLM, and SFTA, along with various classification algorithms, includ-
ing SVM and MLP. This study also explored combinations among the
extractors. In the realm of security, Dhaliwal, Trivedi, and Singh (2022)
employed feature extractors like HoG, LBP, CSLBP, and GLCM to train a
CNN for detecting facial forgeries, while Chen et al. (2022) used multi-
radius LBP and Local Phase Quantization (LPQ) as feature extractors for
liveness detection in fingerprint scans, employing the MLP algorithm
for classification. In summary, while methodologies involving feature
extraction and traditional classifiers are commonly employed across
diverse domains, what sets this research apart is the integration of
various texture extractors and their comprehensive exploration. This
approach includes the thorough comparison and combination of multi-
ple feature extraction algorithms and classifiers, marking it as distinct
within the field. It is important to emphasize that while we have
not conducted experiments with our proposed expert system across
a wide range of domains (only in healthcare), the literature suggests
that the methods employed in this study merit further investigation in
datasets from various other industries (e.g., insurance, agriculture, and
manufacturing).

3. Methodology

This section describes the data set used in this study as well as the
experimental configuration taken into account. Finally, we provide an
overview of the COVID-19 detection tool’s proposed frameworks.

3.1. Dataset

We conduct experiments utilizing the dataset of chest X-ray im-
ages compiled by researchers from the Qatar University, University of
Dhaka, and from medical doctors from Pakistan and Malaysia (Chowd-
hury et al., 2020; Rahman et al., 2021). The dataset is open access
and its second version is available.2 It consists of over 13,000 images
of patients with a positive COVID-19 diagnosis (3616 images) and
patients who tested negative for COVID-19 (10,192 examples). All of
these images (a total of 13,808) have the same dimensions (299 × 299).
Fig. 1 displays a selection of the available samples from the dataset.
The three images on top represent healthy patients who tested negative
for COVID-19, while the three images on the bottom represent patients
with COVID-19.

2 Dataset available at https://www.kaggle.com/tawsifurrahman/covid19-
adiography-database.
4

Table 1
Descriptors settings and number of output features.

Method Highlights of the settings # Output
features

Gabor Offset 0, aspect 0.5, orientations 0, 45, 90, and
135, and size 11

7

SCM 8 number of parts and Laplace filter 8
GLCM Offsets [0 1], [−1 1], [−1 0], [−1 −1], and

true symmetric key
88

LBP Uniform LBP and 8 number of neighbors 59
HIST Mean, variance, asymmetric, kurtosis, and

moments
11

PERC Coarseness, contrast, directionality,
line-likeness, and roughness

5

Table 2
Combining descriptors based on their individual performance.

Descriptors Combined descriptor

LBP+GLCM SET01
LBP+GLCM+SCM SET02
LBP+GLCM+SCM+GABOR SET03
LBP+GLCM+SCM+GABOR+HIST SET04
LBP+GLCM+SCM+GABOR+HIST+PERC SET05

3.2. Experimental setup and parameter settings

According to Fig. 2, the experiments in this study are designed to
predict the diagnosis of patients with and without COVID-19 by using
chest X-ray images as independent variables in classification-based
models. Initially, we develop a process for extracting characteristics
from grayscale images using six distinct texture descriptors (i.e., GLCM,
SCM, Gabor filters, LBP, histogram features - HIST, Perception-like
features - PERC). Each of these descriptors generates an ordered set
of features. Table 1 summarizes the settings included in each explored
method, along with the number of features generated by each. Then,
five of the most widely used supervised learning algorithms (OPF Papa,
Falcão, & Suzuki, 2009, SVM Bao et al., 2019, BAYES Sammut & Webb,
2011, KNN Kramer, 2013, and LDA Xanthopoulos, Pardalos, & Trafalis,
2013) are applied to each of the five sets to classify patients with and
without the COVID-19 disease. At this stage, we conducted an exhaus-
tive search (i.e., grid search) to determine the optimal parameters to
be used with each estimator.

When implementing supervised ML models, the holdout method is
utilized. This means that the experiments were executed a thousand
times, and the evaluations were based on the average of the validation
metrics from these executions. Consequently, the dataset was arbitrarily
divided into three subsets: training set (60%), evaluation set (20%), and
test set (20%). At each iteration, the dataset was rebalanced using a
random selection of subjects. This means that instead of using the entire
dataset (13,808 examples), only 7232 instances are considered in each
implementation, (i.e., 3616 images of patients with the disease and the
other half without the disease diagnosis). To evaluate the performance
of the various frameworks, accuracy, recall, and F1 were extracted from
each model and compared.

Finally, we investigated whether merging features into a concate-
nated feature vector could improve the predictive performance of the
implemented frameworks. Thus, we propose extended frameworks that
integrate features extracted by various texture extractor methods. To
determine which texture extractor would be merged, we observe the
results obtained by each of the previously implemented frameworks
and select the methods with the highest degree of precision. Table 2
displays the integrated proposed schemes, which are then used in
each of the supervised ML models to evaluate patients’ diagnoses, in a

manner comparable to what was submitted for the other frameworks.

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Fig. 1. X-ray samples selected from the dataset explored in this study — Patients without COVID-19 (top 3 images) and with COVID-19 (bottom 3 images).
3.3. Proposed approach

Our experimental design and proposed methods are grounded in
the conceptual framework by Zhang, Yang, Lin, Ji, and Gupta (2018).
In the context of our investigation, which involves the analysis of X-
ray images linked to patient diagnoses (with two classes: COVID/Not
COVID), our approach consists of two key components. Firstly, we
employ texture extractors, which are established as baseline methods
in the existing literature, to extract information from the images within
the dataset. Secondly, we utilize classification-based machine learning
models to assess patient diagnoses. These models take as input the
features extracted through the application of various individual texture
extractors. It is worth noting that our approach deviates from the
majority of studies in this domain, such as those conducted by Astolfi
et al. (2023), Basri et al. (2022), Dhaliwal et al. (2022), K et al.
(2023) and Mardison and Yuhandri (2023). Unlike these studies, our
experimentation focuses on the integration of these individual texture
extractors as the primary step (1.), and subsequently, we perform
diagnosis predictions after feature extraction through the integration
of these methods. This approach underscores the primary contributions
of this study, which are rooted in the unique experiments conducted
involving the integration of various texture extractors — an endeavor
that, to the best of our knowledge, has not been previously explored in
the existing literature.

Fig. 2 provides an overview of this proposed diagnostic pipeline for
detecting COVID-19. Thus, the first step presented is the acquisition
of images using X-ray equipment, followed by the digitization and
preprocessing of the acquired images to feed the extraction features. It
can be seen in the image that the feature extraction process of the X-ray
images is performed both independently by each feature extraction and
collectively between them. Eventually, these characteristics are used to
train machine learning algorithms. Lastly, it is the responsibility of a
specialist physician equipped with the system’s results to diagnose the
patient.

4. Results and discussions

The results are presented in two sections. First, we describe the
predictive performance of each baseline model, in other words, the
frameworks employing a single texture extractor, as well as the per-
formance of the proposed method (integration of texture descriptors).
The results are then compared and discussed. We conduct a total of
(6 + 5) × 6 = 66 experiments, taking into account the use of 11 distinct
methods for texture extraction (6 from individual algorithms and 5
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from integrated versions) and 5 distinct supervised learning algorithms
(classifiers). Various validation metrics (i.e., accuracy, recall, precision,
normal, and F1) were extracted to compare the performance of various
frameworks.

4.1. Predictive performance

All metrics of validation are presented in Tables 3 and 4. Table 3
displays the results obtained by models that use a single texture de-
scriptor extractor algorithm, while Table 4 displays the results obtained
by models that use multiple texture extractors. Each of these tables
contains the accuracy, recall, precision, normal, and F1 metrics for each
classifier, which can be used to compare the various approaches.

To analyze these results, we first examine the performance of the six
classifiers applied to the sets of characteristics derived from the GLCM,
Gabor, SCM, LBP, PERC, and HIST textural descriptors. Table 3 demon-
strates that the LBP’ characteristics yield the best results, with 92.66%
accuracy, 93.67% recall, and an F1 of 92.57. Bayes over the PERC
and HIST sets of characteristics yields the lowest prediction power,
with an accuracy of 60.46% and 62.94%, respectively. Based on the
average classification accuracy of the feature sets, LBP would provide
the most accurate prediction, while PERC would produce the worst
results (i.e., LBP > GLCM > SCM > GABOR > HIST > PERC). This rank-
ing supports the rationale for the proposed concatenated frameworks,
in which individual texture descriptor extractors are concatenated in
descending order of prediction power performance (Table 2).

Table 4 demonstrates an increase in accuracy when concatenating
extractor models. For instance, when using SVM, the accuracy increases
to 95.06% (prior 92.66%), 95.04% (prior 67.32%), and 95.47% (prior
92.66%) over SET03, SET04, and SET05, respectively. We can assume
that the integration of various feature extractors captures the strengths
of each method, as indicated by Table 1. This aligns with the findings
in the literature regarding hybrid ML models (Bao, Lianju and Yue,
2019; Machado & Karray, 2022a, 2022b), which essentially claim that
combining different settings allows the algorithms to more effectively
capture information from the datasets, leading to improved predictive
results.

Comparing the average predictive power of the various methods
that use concatenated texture extractors, we observe a degree of sim-
ilarity in the classifications performed across the various SETs (01,
02, 03, 04, and 05). We conducted a pair-wised Tuki test (Lowry,
1999) to verify the statistical equality of accuracy among the ap-
proaches (Table 4). Fig. 3 depicts the results of this inequality test,
in which we exploit the accuracy difference between all employed
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Fig. 2. A proposed method for classifying COVID-19 X-ray examinations.
methods. Taking 𝑎𝑙𝑝ℎ𝑎 = 0.05 into account, we can see that there is
no mean difference between SET 03, SET 04 and SET 05; however,
their average is significantly higher than that of the other sets. This
implies that, in deployment, these proposed integrations consistently
yield similar predictive results with a 95% confidence interval. This
demonstrates the robustness of the designed methods and strengthens
the case for their utilization in healthcare settings. Furthermore, it
encourages investigations into their efficiency on datasets from other
industries.

In addition, we investigate potential explanations for why the con-
catenated texture features algorithms produce statistically equivalent
outcomes among themselves (SETs 03, 04, and 05). For this pur-
pose, a correlation analysis is performed across all of the character-
istics derived from the individual texture descriptor algorithms. Fig. 4
demonstrates that Gabor, GLCM, and PERC have a strong and negative
correlation, which may be the most influential factor on the inequality
test results.
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4.2. Discussion

Based on the findings described in the previous section, a number
of observations and comparisons can be made. First, the use of indi-
vidual texture descriptors such as PERC and HIST yields the weakest
prediction power. However, when these methods are concatenated with
other individual texture descriptors (e.g., SCM, LBP) in SET04 and
SET05, the accuracy of all classifiers is improved. In fact, among all
tested frameworks, SET05’s use of SVM, which combines the use of all
individual texture descriptors, yields the highest accuracy (i.e., GLCM,
Gabor, SCM, LBP, PERC, and HIST).

Second, comparing the prediction power of all classifiers imple-
mented in both datasets constructed using individual texture extractors
and through their integration (Tables 3 and 4), we find that in all cases
SVM has the highest accuracy, precision, and recall, whereas Bayes is
the worst classifier. Even after submitting these models to a 5, 10, and
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Fig. 3. Equality of means hypothesis test, Tuki test (with 𝑎𝑙𝑝ℎ𝑎 = 0.05).
Table 3
Metrics of validation — Frameworks that apply individual texture extractors before supervised classification.

Features
extraction
methods

Classifier Accuracy (%) Recall (%) Precision (%) Specificity (%) F1 (%)

GLCM

OPF 82.79 ± 0.85 84.77 ± 1.15 79.94 ± 1.34 85.64 ± 1.31 82.28 ± 0.90
Fuzzy-OPF 80.99 ± 1.64 83.88 ± 1.59 76.73 ± 2.73 85.25 ± 1.63 80.14 ± 1.88
SVM 83.55 ± 1.15 82.49 ± 1.37 85.18 ± 1.53 81.92 ± 1.67 83.81 ± 1.13
BAYES 67.73 ± 3.69 63.66 ± 8.77 82.61 ± 15.94 52.84 ± 23.12 71.91 ± 1.97
KNN 84.59 ± 0.008 86.86 ± 1.17 81.51 ± 1.59 87.67 ± 1.31 84.10 ± 0.96
LDA 74.56 ± 1.27 73.82 ± 1.36 76.10 ± 1.58 73.02 ± 1.71 74.94 ± 1.26

GABOR

OPF 75.38 ± 0.99 76.48 ± 1.19 73.29 ± 1.56 77.46 ± 1.49 74.85 ± 1.07
Fuzzy-OPF 75.22 ± 0.96 76.36 ± 1.13 73.04 ± 1.54 77.39 ± 1.42 74.67 ± 1.04
SVM 78.89 ± 1.41 78.74 ± 1.75 79.16 ± 1.42 78.63 ± 2.09 78.95 ± 1.34
BAYES 65.94 ± 1.86 66.62 ± 2.04 63.90 ± 2.04 67.99 ± 2.32 65.23 ± 2.04
KNN 77.97 ± 0.01 79.36 ± 1.68 75.62 ± 2.44 80.33 ± 1.79 77.44 ± 1.80
LDA 76.60 ± 1.48 74.27 ± 1.59 81.39 ± 1.61 71.81 ± 2.21 77.67 ± 1.35

SCM

OPF 79.93 ± 0.84 81.06 ± 1.08 78.11 ± 1.94 81.74 ± 1.47 79.55 ± 1.00
Fuzzy-OPF 78.02 ± 1.43 79.61 ± 1.13 75.35 ± 3.45 80.69 ± 1.62 77.42 ± 1.94
SVM 79.91 ± 1.21 76.80 ± 1.09 85.71 ± 1.86 74.10 ± 1.49 81.01 ± 1.21
BAYES 65.31 ± 1.52 70.58 ± 1.85 52.53 ± 2.84 78.10 ± 1.76 60.23 ± 2.28
KNN 81.59 ± 0.008 82.57 ± 0.88 80.10 ± 1.25 83.09 ± 0.97 81.31 ± 0.89
LDA 70.80 ± 1.23 71.61 ± 1.33 68.92 ± 2.19 72.67 ± 1.78 70.24 ± 1.45

LBP

OPF 86.70 ± 0.99 89.89 ± 1.40 82.70 ± 1.46 90.69 ± 1.43 86.15 ± 1.05
Fuzzy-OPF 85.55 ± 1.07 88.64 ± 1.52 81.55 ± 1.60 89.55 ± 1.60 84.95 ± 1.13
SVM 92.66 ± 0.60 93.67 ± 0.75 91.50 ± 1.02 93.82 ± 0.79 92.57 ± 0.62
BAYES 77.65 ± 1.03 80.32 ± 1.45 73.25 ± 1.47 82.05 ± 1.67 76.62 ± 1.08
KNN 88.91 ± 0.008 92.34 ± 1.19 84.87 ± 1.21 92.96 ± 1.18 88.45 ± 0.90
LDA 86.86 ± 0.71 90.00 ± 1.42 82.94 ± 1.28 90.79 ± 1.55 86.33 ± 0.72

PERC

OPF 61.11 ± 2.81 62.15 ± 1.74 56.86 ± 8.45 65.36 ± 3.47 59.39 ± 5.12
Fuzzy-OPF 61.09 ± 2.81 62.12 ± 1.73 56.81 ± 8.45 65.36 ± 3.43 59.35 ± 5.13
SVM 67.32 ± 0.97 66.16 ± 0.89 70.91 ± 2.27 63.73 ± 1.72 68.45 ± 1.22
BAYES 60.46 ± 4.93 57.17 ± 6.11 83.42 ± 22.23 37.51 ± 23.40 67.84 ± 14.11
KNN 67.35 ± 0.01 66.67 ± 1.22 69.39 ± 4.32 65.32 ± 2.00 68.00 ± 2.66
LDA 62.80 ± 1.38 60.01 ± 1.19 76.74 ± 1.86 48.86 ± 2.36 67.35 ± 1.19

HIST

OPF 63.77 ± 1.40 63.70 ± 1.34 64.05 ± 2.17 63.50 ± 1.60 63.87 ± 1.60
Fuzzy-OPF 63.65 ± 1.41 63.69 ± 1.37 63.99 ± 2.18 63.51 ± 1.67 63.84 ± 1.61
SVM 66.65 ± 1.34 77.98 ± 2.11 46.40 ± 2.64 86.89 ± 1.61 58.18 ± 2.28
BAYES 62.94 ± 1.44 78.70 ± 2.91 35.49 ± 2.48 90.39 ± 1.45 48.92 ± 2.64
KNN 67.82 ± 0.009 68.28 ± 1.16 66.58 ± 1.77 69.06 ± 1.78 67.42 ± 1.11
LDA 66.23 ± 1.01 71.91 ± 1.62 53.26 ± 2.36 79.19 ± 1.95 61.20 ± 1.59
7
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Table 4
Metrics of validation — Frameworks that apply concatenated texture extractors before supervised classification.

Features
extraction
methods

Classifier Accuracy (%) Recall (%) Precision (%) Specificity (%) F1 (%)

SET01

OPF 89.24 ± 0.94 92.24 ± 1.17 85.69 ± 1.30 92.79 ± 1.15 88.84 ± 0.99
Fuzzy-OPF 87.62 ± 1.90 91.15 ± 1.42 83.34 ± 3.60 91.91 ± 1.43 87.07 ± 2.26
SVM 93.54 ± 0.76 94.19 ± 1.04 92.80 ± 0.97 94.28 ± 1.07 93.49 ± 0.76
BAYES 74.66 ± 0.96 78.16 ± 1.16 68.45 ± 1.79 80.87 ± 1.33 72.98 ± 1.18
KNN 90.69 ± 0.008 93.99 ± 0.95 86.93 ± 1.27 94.44 ± 0.91 90.32 ± 0.93
LDA 88.38 ± 0.72 90.64 ± 1.21 85.60 ± 1.13 91.16 ± 1.27 88.05 ± 0.74

SET02

OPF 90.95 ± 0.82 93.99 ± 0.90 87.50 ± 1.58 94.41 ± 0.92 90.63 ± 0.90
Fuzzy-OPF 89.71 ± 1.82 93.22 ± 0.77 85.66 ± 3.67 93.77 ± 0.74 89.28 ± 2.24
SVM 94.33 ± 0.54 95.11 ± 0.76 93.47 ± 0.81 95.20 ± 0.79 94.28 ± 0.55
BAYES 74.87 ± 1.29 77.86 ± 1.49 69.51 ± 1.89 80.23 ± 1.55 73.45 ± 1.47
KNN 91.60 ± 0.007 95.18 ± 0.70 87.64 ± 1.16 95.57 ± 0.66 91.26 ± 0.79
LDA 89.27 ± 0.87 91.12 ± 1.13 87.01 ± 1.07 91.52 ± 1.16 89.02 ± 0.89

SET03

OPF 91.69 ± 0.76 94.69 ± 0.86 88.33 ± 1.12 95.05 ± 0.84 91.40 ± 0.80
Fuzzy-OPF 91.04 ± 1.26 94.17 ± 0.97 87.50 ± 2.29 94.58 ± 0.94 90.71 ± 1.42
SVM 95.06 ± 0.57 95.91 ± 0.92 94.15 ± 0.95 95.98 ± 0.95 95.02 ± 0.57
BAYES 74.89 ± 0.99 78.07 ± 1.23 69.24 ± 1.58 80.55 ± 1.35 73.39 ± 1.14
KNN 91.98 ± 0.006 95.64 ± 0.91 87.98 ± 1.02 95.99 ± 0.87 91.65 ± 0.70
LDA 89.84 ± 0.91 91.34 ± 0.82 88.02 ± 1.59 91.65 ± 0.86 89.65 ± 0.98

SET04

OPF 92.28 ± 0.79 95.39 ± 0.85 88.86 ± 1.09 95.70 ± 0.81 92.01 ± 0.83
Fuzzy-OPF 91.10 ± 1.53 94.80 ± 1.05 86.97 ± 2.54 95.23 ± 0.95 90.71 ± 1.71
SVM 95.04 ± 0.64 95.85 ± 0.69 94.15 ± 0.96 95.93 ± 0.70 94.99 ± 0.65
BAYES 74.97 ± 1.00 78.19 ± 1.46 69.26 ± 1.45 80.68 ± 1.67 73.45 ± 1.06
KNN 92.32 ± 0.006 96.19 ± 0.75 88.13 ± 1.20 96.51 ± 0.72 91.98 ± 0.73
LDA 89.81 ± 0.85 91.86 ± 0.91 87.35 ± 1.24 92.26 ± 0.92 89.55 ± 0.90

SET05

OPF 92.62 ± 0.72 95.06 ± 0.84 89.92 ± 1.16 95.33 ± 0.83 92.42 ± 0.76
Fuzzy-OPF 91.25 ± 1.51 94.45 ± 1.14 87.66 ± 2.77 94.85 ± 1.09 90.93 ± 1.71
SVM 95.47 ± 0.53 96.18 ± 0.75 94.71 ± 0.76 96.24 ± 0.77 95.44 ± 0.54
BAYES 75.17 ± 1.23 78.70 ± 1.76 69.03 ± 1.52 81.31 ± 1.91 73.55 ± 1.27
KNN 93.05 ± 0.008 96.28 ± 0.96 89.55 ± 1.31 96.54 ± 0.91 92.80 ± 0.88
LDA 90.89 ± 0.67 92.95 ± 0.96 88.50 ± 1.16 93.28 ± 1.00 90.67 ± 0.71
Fig. 4. Correlation matrix illustrating the correlation between each extractor’s
characteristics.

20-Fold cross-validation system and balancing the dataset with respect
to the target, SVM maintains the highest classification accuracy.

Third, even though the prediction power of the classifiers imple-
mented in the datasets created with the integrated texture descriptors
increases when compared to the cases in which no concatenation is
considered, the accuracy of the classifiers across SETs 01–05 does not
vary significantly. For instance, the OPF, Fuzzy-OPF, SVM, Bayes, KNN,
and LDA accuracy intervals for these SETs are [89.24, 92.62], [87.62,
91.25], [93.54, 95.47], [74.66, 75.17], and [90.69, 93.05] respectively.
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Fig. 5. Confusion matrix: Classifying patients with (COVID-19) and without (NORMAL)
COVID-19.

Fourth, using concatenated methods for texture descriptor extrac-
tion increases the accuracy with which classifiers can distinguish be-
tween patients with and without COVID-19. Nevertheless, in both
instances (Tables 3 and 4), even though the dataset is forced balanced,
the precision of assessing patients without COVID-19 is greater than
that of patients with the virus. Through the use of additional diagnos-
tic tools, medical professionals can further investigate their patients’
diagnoses in order to determine the most effective and appropriate
treatment for each individual case.

Fifth, comparing the results of all individual and concatenated
frameworks (Tables 3 and 4), we find that the incorporation of different
texture descriptors extractors improved the predictive accuracy of all
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models. For instance, SVM applied to SET01, SET02, SET03, SET04, and
SET05 yielded an accuracy of 93.54%, 94.33%, 95.06%, 95.04%, and
95.47%, whereas when SVM is applied to datasets constructed using
GLCM, Gabor, SCM, LBP, PERC, and HIST individually, the accuracy
This result challenges the literature on the applications of textual
descriptors to extract information from images and use it in predic-
tive models, which has ignored the testing of concatenating multiple
algorithms to achieve a higher level of accuracy. It suggests that the
integration of different texture descriptors should be considered in
order to improve assessments of patients with and without COVID, as
well as other classification-based problems.

Sixth, if we consider that the higher the number of characteristics
used in the training processes, the higher the computational cost, and
that there is no significant difference between SETs 03, 04, and 05, one
could choose SET 03 in a trade-off between accuracy and computational
cost, as this set (SET03) has the highest accuracy and the fewest number
of characteristics of the three sets.

Seventh and final, Fig. 5, the seventh and final figure, demonstrates
that the best model proposed in this study has true positive and true
negative indices of 94.15% and 95.98%, respectively. This finding is
consistent with the current state of the art, which achieves comparable
levels of accuracy, and therefore claims that it is not necessary to heav-
ily implement any type of pre-processing treatment in X-ray images for
this type of work.

5. Conclusions

Medical professionals rely on X-ray images to aid in patient diag-
nosis for a variety of respiratory diseases. With COVID-19, the use of
Machine Learning techniques has been shown to accelerate analysis
and improve the accuracy of detecting patients carrying the virus.
This study employs various texture descriptor extractors and supervised
machine learning algorithms to distinguish between COVID-19-positive
and -negative patients. Six distinct texture descriptor extractors are
utilized prior to the implementation of six distinct supervised learning
classifier algorithms. While the majority of the existing literature uses
a texture descriptor prior to implementing a regressor or classifier ML
model, we propose the use of five different extractors (concatenating
different individual methods) prior to using the same set of supervised
ML to evaluate patients with and without the virus.

The main results show that concatenating the characteristics of
two or more texture extractors improves the predictive performance
of classifiers when applied to thorax X-rays in frameworks designed
to extract image features to support medical diagnosis on COVID-19.
While the majority of combinations have greater predictive power than
the use of individual models, the combination of HIST and PERC does
not contribute significantly to accuracy.

On the basis of the validation metrics extracted and compared
in this study (Section 4), it is important to note that the proposed
frameworks achieve results comparable to the state-of-the-art without
extensive data pre-processing tasks applied to the X-ray images, which
typically require a great deal of time and are positively correlated
with accuracy. Consequently, the findings of this study have an im-
pact on the industry by providing alternative methods to accelerate
the diagnosis of COVID-19 with greater precision, and by supporting
research in this field by presenting a large number of results from
experiments conducted on the integration of texture methods applied
to image applications.

Future research should concentrate on experiments that integrate
other texture-based algorithms, are applied to other image sets, and can
be generalized to aid in the diagnosis of other diseases. Furthermore,
it is worth considering the performance of recently developed image
information extraction methods, such as deep random chains (Zhang
et al., 2023), in comparison to the proposed frameworks in this study.
This comparison could shed light on aspects like processing time and
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accuracy. Although we do not propose modifying any existing algo-
rithm, we firmly believe that the insights gained from this comparative
analysis might potentially lead to developing other integrated frame-
works for enhanced image information extraction. In addition, other
classification-based algorithms (e.g., multi-modality or aggregation ap-
proach Modi et al., 2011) should be utilized to identify models with
the potential to improve accuracy.
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