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Preface

This thesis contains new graph theoretical research results on three different
types of edge colorings of planar graphs, which were obtained by the author
with collaborators between March 2019 and March 2023.

Apart from an introductory chapter (Chapter 1), the readers will find four
closely related chapters (Chapters 2–5). In the introductory chapter, we give
a short introduction to the topic, with some background and the necessary
terminology and notation to understand the rest of the thesis.

In the four technical chapters we focus on three different types of edge
colorings, and we restrict ourselves throughout the thesis to planar graphs.
Chapter 2 focuses on list edge coloring of planar graphs. Chapters 3 and 4
focus on signed edge coloring of planar graphs. Chapter 5 focuses on edge
DP-coloring of planar graphs.

The results in Chapter 5, the first main lemma in Chapter 3, and the
first theorem in Chapter 4 were obtained while the author of this thesis was
working as a PhD student in Northwestern Polytechnical University in Xi’an,
China. The results in Chapter 2, the second main lemma in Chapter 3, and
the second theorem in Chapter 4 were obtained while she was working as a
visiting joint PhD student at the University of Twente.

The papers associated with these four research chapters have been listed
below and have been published in (or submitted to) scientific journals.
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Chapter 1

Introduction

In this chapter we will introduce the central concepts of this thesis, but we
start with some background and intuition on the historical motivation behind
the topic of graph coloring. The formal definitions will follow later.

Graph Theory

Graph Theory is a relatively young branch of mathematics, but has been
seriously studied for several hundreds of years. It has developed into a mature
research field, and it has many applications in other scientific disciplines and
different application areas.

Graph Theory is concerned with the study of (binary) relationships be-
tween objects. These objects are usually represented by vertices, with one
vertex for each object; the binary relationships between pairs of objects are
represented by edges, with one edge for each pair of related objects. The
mathematical notion of a graph then consists of these two sets: a set of vertices
and a set of edges, where each edge consists of a pair of vertices representing
a related pair of objects. We assume here that the relationship is symmetric;
otherwise, we have to take care of the direction of the relationship. As an
example of a situation in which graphs turn up naturally, we next consider an
application which has been the main driving force behind graph coloring. In
fact, it looks more like a toy problem.

1
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Map coloring

Suppose we have a map with many regions, and we want to distinguish the
regions by assigning a color to each region in such a way that neighboring
regions (which share a stretch of border, not just one common point) receive
different colors. How many colors suffice to obtain a valid coloring of the
regions?

If we represent the regions by vertices of a graph and the pairs of neigh-
boring regions by edges of the graph, we can translate the above problem into
a graph coloring problem in a straightforward way. We have to assign a color
to each vertex in such a way that there are no edges for which both vertices
receive the same color. We come back to this example later.

So far the translation into a graph problem seems like a cheap trick or a
trivial exercise, but the nice thing is that the same model can be used for many
different settings, not only for any kind of map. We give another example.

Suppose we consider a number of base stations for mobile communication,
and we want to avoid interference by assigning different operating frequencies
to base stations that are so close to one another that they are likely to interfere.
To use the frequencies in an economic way, we want to use as few different
frequencies as possible. If we represent the base stations by vertices, the
interfering pairs by edges, and the frequencies by colors, we are in the same
situation as in the above map coloring problem. It is not hard to imagine other
settings in which conflicting pairs of objects lead to similar graph coloring
problems.

Planar graphs

Let us turn back to the map coloring problem in order to introduce the notion
of a planar graph in an intuitive way. In this map coloring problem, we are
basically considering a 2D map (apart from the thickness of the piece of paper
on which the map has been printed), showing the regions and their borders.
Suppose we draw one point in the interior of every region and we connect two
points by one line segment or curve if the associated regions share a stretch
of border. Then under mild assumptions we can do this in such a way that
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different line segments or curves do not intersect, except at their endpoints.
The drawing we obtain is then referred to as a plane embedding of the graph
that represents the map. The vertices of this graph are drawn as distinct
points in the plane, and the edges of this graph are drawn as line segments
or curves in the plane, in such a way that different line segments or curves
do not intersect, except at their endpoints. If a graph admits such a plane
embedding, then it is called a planar graph. Planar graphs have nice structural
properties which are known since Leonhard Euler in 1758 established what
is now commonly known as Euler’s Formula. We will come back to this later
and use this formula frequently throughout this thesis.

The Four Color Theorem

The study of graph coloring has historically been closely linked to the study of
planar graphs and the Four Color Theorem. The Four Color Theorem states
that any map (planar graph) can be colored with at most four colors in such
a way that no two adjacent regions (vertices) receive the same color. This
theorem was first conjectured in 1852 by Francis Guthrie. In 1879 Alfred
Kempe [39] claimed to have proven this theorem with a proof that relied on a
technique called “Kempe chains”, but his proof was later found to contain an
error by Percy Heawood in 1890. Despite this, the method of Kempe chains
remains a key ingredient in the theory of graph coloring. In fact, by using this
technique one can relatively easily confirm that the vertices of a planar graph
can be colored with five colors in such a way that no two adjacent vertices
receive the same color. Perhaps surprisingly, it took another almost hundred
years before the Four Color Theorem was confirmed. The Four Color Theorem
was lacking a formal proof until 1976, when a computer-assisted proof was
published by Kenneth Appel and Wolfgang Haken [2]. In fact, all the currently
known proofs rely partly on computer-assisted checks of many configurations,
and it is still an open problem to find a pure combinatorial proof.

The Four Color Theorem (or even more its conjectured validity) has in-
spired a lot of research in the field of graph theory. Many variants and
generalizations of the graph coloring problem have been proposed, involving
concepts like edge coloring, total coloring, list (edge) coloring, signed (edge)
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coloring, DP (edge) coloring, among others. These variants and generaliza-
tions have their own unique properties and applications. We should emphasize
here that the results of this thesis are mainly of theoretical relevance. There-
fore we refrain from giving details about applications. It might be clear from
the two examples we gave before that graph coloring problems turn up in
many different application areas.

Apart from the above example of frequency assignment, graph coloring
problems have applications in wavelength assignment, network flow optimiza-
tion, routing and traffic scheduling, social network analysis, and resource
allocation in parallel computing, among others. The study of graph coloring
in all its forms continues to be an active area of research in graph theory and
related fields.

In the sequel, we will encounter several different variants of edge coloring.
Before we are going to explore the relevant concepts and background in
different sections, we first need to introduce some essential terminology and
notation.

1.1 Terminology and notation

All the ordinary graphs (or simply, graphs) and signed graphs we consider in
this thesis are finite and contain no loops or parallel edges. For terminology
and notations not defined here we follow the modern textbook of Bondy and
Murty [6].

A graph is a pair G = (V, E), where V is a nonempty set whose elements are
called vertices, and E is a set of (unordered) pairs of vertices whose elements
are called edges. We take the liberty to use uv to denote the edge consisting
of the pair {u, v} if no confusion can arise. The vertices u and v of an edge
uv are called the endpoints of the edge. The endpoints of an edge are said
to be incident with the edge, and an edge is also said to be incident with its
endpoints. Two vertices which are incident with a common edge are called
adjacent, as are two edges which are incident with a common vertex. Two
distinct adjacent vertices are also called neighbors.
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Let G = (V, E) be a graph. Then the degree dG(x) of x ∈ V is the number of
edges of G incident with x . We use ∆(G) =max{dG(v)|v ∈ V} to denote the
maximum degree of G, and δ(G) =min{dG(v)|v ∈ V} to denote the minimum
degree of G. A graph G is regular if all the vertices of G are of equal degree.
In particular, if every vertex of G has degree r, then G is called r-regular.

For a vertex v ∈ V (G), we use NG(v) and EG(v) (or simply N(v) and E(v)
if no confusion can occur) to denote the set of neighbors of v, and the set
of edges incident with v, respectively. For two vertices u, v, let NG(u, v) =
NG(u)∪NG(v). For S ⊆ V (G), let NG(S) =

⋃

v∈S NG(v). We use the shorthand
d-vertex (d+-vertex, d−-vertex, respectively) to denote a vertex with degree
d (at least d, at most d, respectively), and we let Vd(G) (Vd+(G), Vd−(G),
respectively) be the set of d-vertices (d+-vertices, d−-vertices, respectively)
in G. If an edge of G has exactly one endpoint with degree 1 in G, we call it a
pendant edge.

A walk in G is a sequence v0e1v1 . . . vk−1ekvk of vertices and edges such
that the edge ei is incident with the vertices vi−1 and vi for i = 1, . . . , k. The
walk is closed if v0 = vk and is open otherwise. A trail is a walk in which
all edges are distinct. A path is a trail with no repeated vertex. A cycle is a
closed walk of length at least three in which the vertices are distinct except
for the first and the last vertex. The length of a cycle is the number of its
edges. A cycle of length k is called a k-cycle. A chord of a cycle C is an edge
in E(G) \ E(C) both of whose ends lie on C .

A graph is called complete if all its vertices are pairwise adjacent, and it is
called non-complete otherwise. We use Kn to denote a complete graph on n
vertices.

A matching in a graph is a set of edges no two of which share an endpoint.
This is sometimes called a set of independent edges.

A graph is said to be connected if there exists a path between every pair of
vertices in the graph. Throughout the thesis we assume that the graphs we
consider are connected.

If e is an edge of a given graph G = (V, E), we use the notation G − e to
indicate the graph obtained from G by removing the edge e. If G is connected
and G − e is disconnected, then we call e a cut-edge of G. Similarly, if v is a
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vertex of a graph G on at least two vertices, then we use the notation G− v to
indicate the graph obtained from G by removing the vertex v together with
all the edges incident to v. If G is connected and G− v is disconnected, then
we call v a cut-vertex of G.

By contracting an edge e of a graph G, we mean deleting e from G and
identifying its endpoints, replacing any resulting multiple edges by single
edges. A graph H is a minor of a graph G if H can be obtained from G by
repeatedly deleting edges, deleting vertices and contracting edges. A graph G
is called H-minor free if G has no minor which is isomorphic to H.

A planar graph is a graph that can be embedded in the plane, i.e., it can be
drawn on the plane (using points to represent its vertices and line segments or
curves to represent its edges) in such a way that (the line segments or curves
representing) its edges intersect only at their endpoints. Given such a plane
embedding of a planar graph G, the plane is divided into connected regions
which are separated from each other by the (line segments or curves that
represent the) edges of G. These regions are called the faces of G. Note that
the faces depend on the embedding, so a planar graph can have different sets
of faces. One of these faces is always unbounded, and called the outer face.

Let F(G) be the set of faces of (a fixed plane embedding of) a planar
graph G. The boundary of a face f ∈ F(G) is a shortest closed walk along the
vertices and edges of f . The length of this shortest closed walk is called the
degree of f , denoted by dG( f ) or simply d( f ). Note that this implies that all
edges on the boundary of f contribute 1 to its degree, except for cut-edges;
the latter contribute 2 to d( f ). As we did for vertices, we use the shorthand
d-face (d+-face, d−-face, respectively) to denote a face with degree d (at least
d, at most d, respectively).

If the boundary of f is a cycle x1 x2 . . . xk x1, then we call this boundary a
facial cycle. If d( f )≤ 4 and G contains no 1-vertex, then the boundary of f
is a cycle. In that case f is denoted by f = [x1 x2 . . . xk], and is also referred
to as a (d(x1), d(x2), . . . , d(xk))-face, according to the degrees d(x i) of its
vertices.

For a vertex v ∈ V (G), let N(v) = {v1, v2, . . . , vk}. We assume that all vi are
arranged in a clockwise order around v in the plane embedding, i.e., vi+1 is the



1.2. Edge coloring 7

immediate successor of vi for 1≤ i ≤ k−1, and v1 is the immediate successor
of vk in this order. If v is not a cut-vertex, then every two consecutive incident
edges with v in the clockwise ordering are on a common face. In this case, we
use fi to denote the face which is incident with the edges vvi and vvi+1 for
i ≤ k− 1, and with vvk and vv1 for i = k. Under these assumptions, we let
Fv = { f1, f2, . . . , fk}. We use λi(v) (λi+(v),λi−(v)) to denote the number of
i-faces (i+-faces, i−-faces) of G incident with v and ni(v) (ni+(v), ni−(v)) to
denote the number of i-vertex (i+-vertex,i−-vertex) of G adjacent to v.

For two integers a, b with a ≤ b, we let [a, b] = {a, a+ 1, . . . , b}.
In the next four sections, we will give an overview of four different types of

edge colorings, including the main open conjectures involving these concepts,
the progress that has been established over the years, and our contributions
to the field. We start with a natural counterpart of the graph coloring problem
we introduced at the beginning of this chapter. Instead of coloring the vertices
of a graph, we aim to color the edges of the graph in such a way that no vertex
is incident with two edges of the same color.

1.2 Edge coloring

Let us start this section with another small example of an application in which
the concept of edge coloring appears naturally. Suppose we consider a number
of teachers and a number of classes, and assume we know which teachers
have to take care of which classes. We want to find out how may time slots we
need to schedule these classes without conflicts. The restrictions are that each
teacher can take care of at most one class in each time slot, and that each
class requires one teacher and one time slot. We can model this as a graph
problem by representing each teacher and each class by one vertex, and using
edges to indicate which teachers have to take care of which classes. To obtain
a feasible schedule, we have to assign the time slots to the edges in such a
way that no time slot appears twice at a vertex, i.e., at two (or more) edges
incident with the same vertex. If we interpret the time slots as colors, this
problem is a special case of edge coloring.

Definition 1.1. A k-edge-coloring of a graph G is a coloring of the edges of
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G with k colors such that two edges that incident receive distinct colors. A
graph is k-edge-colorable if it has a k-edge-coloring.

Definition 1.2. The edge chromatic number, denoted by χ ′(G) is the minimum
k such that G is k-edge-colorable.

The first paper dealing with the edge coloring problem was written by
Tait [60] in 1880, so about the same time Kempe thought he had a valid proof
of the Four Color Theorem. In fact, the results in [60] were inspired by the
map coloring problem. In [60], Tait presents a rather surprising relationship
between face colorings and edge colorings of 3-connected cubic (3-regular)
plane graphs. Here a face coloring is an assignment of colors to the faces of a
plane graph with the property that neighboring faces receive different colors.
Hence, a face coloring of a plane graph is equivalent to a vertex coloring of its
dual graph. This dual graph is obtained by defining one vertex for each face
and adding an edge between two vertices whenever the corresponding faces
share an edge on their boundary. We omit further details, since they are not
relevant for the results of this thesis.

In 1916, König [40] published his celebrated result on bipartite graphs.
Recall that a graph is called bipartite if its vertex set can be partitioned
into two disjoint sets in such a way that every edge has one endpoint in
both of these sets. König’s Theorem states that every bipartite graph can be
edge colored using exactly ∆ colors. In 1949, Shannon [57] proved that
every graph can be edge colored with at most b3∆

2
c colors. An important

theorem due to Vizing [61], and independently Gupta [23], asserts that for
any (simple) graph G, either χ ′(G) = ∆ or χ ′(G) = ∆+1, and became known
as Vizing’s Theorem.

Theorem 1.1 (Vizing [61]). For any (simple) graph G, χ ′(G)≤∆+ 1.

According to the Vizing-Gupta bound, a (simple) graph can be classified
into one of two classes: Class 1 graphs for which ∆ colors suffice, and Class 2
graphs for which ∆+ 1 colors are necessary (See Figure 1.1 for an example).
This means a gap of at most one between an edge coloring obtained by
using a constructive proof of Vizing’s Theorem and an optimal edge coloring.
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However, by a result of Holyer [29], the determination of the chromatic index
is an NP-hard optimization problem.

v1

v2 v3

v4

A Class 1 graph

v1

v2

v3

v4

v5

A Class 2 graph

Figure 1.1: An example of Class 1 and Class 2 graphs.

In 1977, Erdős and Wilson [18] showed that almost all graphs are Class
1. Specifically, they considered the Erdős-Rényi model of random graphs.
This result has important implications for the study of random graphs, as it
suggests that most random graphs possess certain desirable properties such as
planarity, colorability, and so on. We omit further details on random graphs
and their properties.

In 1965, Vizing [62] showed that any planar graph with maximum degree
at least eight is Class 1. This is a stronger result than the general result that
almost all graphs are Class 1, and it is specific to planar graphs. On the other
hand, Vizing observed that for any maximum degree in the range from two to
five, there exist planar graphs which are Class 2. He also conjectured that all
(simple) planar graphs with maximum degree six or seven are Class 1, which
is known as Vizing’s Planar Graph Conjecture.

Conjecture 1.1 (Vizing [62]). Every (simple) planar graph of maximum degree
6 or 7 is Class 1.

Independently, in 2000, Zhang [80], and in 2001, Sanders and Zhao [54]
confirmed that Conjecture 1.1 is true for planar graphs of maximum degree 7.

It is well-known that every planar graph contains neither a K5-minor nor
a K3,3-minor. Therefore, the family of K5-minor free graphs is a generalization
of planar graphs. Recently, Feng et al. [19] extended the above results by
showing that every K5-minor free graph with maximum degree ∆ ≥ 7 is
∆-edge-colorable.
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However, Conjecture 1.1 remains open for planar graphs with maximum
degree 6. Nevertheless, many interesting results have been reached in recent
years, confirming the conjecture for planar graphs with maximum degree 6
subject to various conditions and constraints. We refer the interested reader to
the following sources for more details [9,20,27,43,44,49,65,72,75,83,84].

In the next section, we turn to list edge coloring, a generalization of the
above concept of edge coloring.

1.3 List edge coloring

The concept of list edge coloring was introduced by Vizing in 1976, as a
generalization of edge coloring. We can use the scheduling example with the
teachers and classes of the previous section to introduce this concept.

In many practical settings such scheduling problems involve additional
restrictions. In our example, suppose there are restrictions on the availability
of the teachers in certain time slots, or likewise on the choice of the time slots
for the classes. This can be modeled by assigning a list of colors to each edge
of the graph, indicating which time slots are in principle available to choose
from for the associated teacher and class. An edge coloring would then only
correspond to an eligible solution if each of the colors assigned to the edges is
chosen from the list of colors assigned to that edge. This leads naturally to
the concept of list edge coloring.

Definition 1.3. An edge list assignment for a graph G is a function L that
assigns to each edge e ∈ E(G) a list of colors (integers) L(e). If G has a proper
edge coloring φ such that φ(e) ∈ L(e) for each e of G, then we say that G is
edge-L-colorable, and that φ is an edge-L-coloring of G. The graph G is said
to be edge-k-choosable if G is edge-L-colorable for any list assignment L with
|L(e)| ≥ k for any edge e ∈ E(G).

Definition 1.4. The list edge chromatic number, denote by χ ′`(G)is the mini-
mum k such that G is edge-k-choosable.
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From the definitions it is immediately clear that edge coloring is a special
case of list edge coloring, where all the lists are equal (and sufficiently large).
Thus χ ′(G)≤ χ ′`(G).

The most famous open problem about list edge coloring is probably the
following list coloring conjecture, which was proposed independently by
Vizing, by Gupta, by Albertson and Collins, and by Bollobás and Harris
(See [35] for more details on the history of the conjecture).

Conjecture 1.2. If G is a graph, then χ ′`(G) = χ
′(G).

This conjecture has been confirmed for several classes of graphs, including
d-regular d-edge-colorable planar graphs [17], graphs with ∆ ≥ 12 which
can be embedded in a surface of non-negative characteristic [8], outerplanar
graphs [68], bipartite multigraphs [8,21], complete graphs of odd order [24],
and complete graphs of prime degree [55]. We omit the details, but the
results show that list edge coloring has received considerable attention over
the years.

Vizing [63] proposed the following conjecture, which is weaker than
Conjecture 1.2.

Conjecture 1.3 (Vizing [63]). If G is a graph, then χ ′`(G)≤∆+ 1.

Harris [26] showed that χ ′`(G)≤ 2∆− 2 if G is a graph with ∆≥ 3. This
implies Conjecture 1.3 for the case ∆= 3. Juvan et al. [37] settled the case
for ∆ = 4 in 1999. Several other special cases of Conjecture 1.3 have been
confirmed. It is known to hold for complete graphs [24], graphs with girth
at least 8∆(ln∆+ 1.1) [41], planar graphs with ∆≥ 9 [7,14], and planar
graphs with ∆≥ 8 [5].

In Chapter 2, we focus on planar graphs and list a number of references
to sources of recent work related to Conjecture 1.3. In all this work, the
authors confirm special cases of Conjecture 1.3 for planar graphs, involving
restrictions on the cycle structure. With our main result of Chapter 2, we
confirm Conjecture 1.3 for planar graphs with ∆≥ 6 in which every 7-cycle
(if any) induces a C7. This means that any existing cycles on exactly 7 vertices
in the graph have the property that there are no additional edges in the graph
between pairs of vertices on the cycle, apart from the cycle edges.
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In the next section, we focus on another generalization of edge coloring,
with similar features, conjectures and results. Instead of assigning lists to the
edges of a graph, we next consider the situation in which signs are assigned
to its edges, in order to indicate a positive or negative relationship between
their endpoints.

1.4 Signed edge coloring

Signed graphs were initially introduced by Harary [25] in 1953 to study social
psychology, and since then in certain application areas they have become
a natural generalization of ordinary graphs. The presence of edge signs in
signed graphs makes them more complicated than their unsigned counter-
parts. However, as one can imagine this added complexity allows for various
phenomena that are unseen in the world of ordinary graphs. This may lead
to interesting insights concerning both ordinary graphs and signed graphs.
Before we give more background and list several results and conjectures, we
start with some definitions.

Definition 1.5. A signed graph (G,σ) is a graph G with a signatureσ : E(G)→
{+,−}, in which case G is called the underlying graph of (G,σ). An edge
e ∈ E(G) is called positive if σ(e) = + and negative otherwise. A signed graph
is called all-negative if all edges are negative.

In a signed graph, switching at a vertex means reversing all signs of the
edges incident with it (See Figure 1.2 for an example, where the negative
edges are dashed, and we first switch at v2 and then at v4, or vice versa). Two
signed graphs are said to be switching equivalent if one can be obtained from
the other via a sequence of switchings.

The first very fundamental study on the structure of signed graphs and
related matroids and polynomials was done by Zaslavsky in [77]. There
he also introduced a notion of vertex coloring for signed graphs, which he
studied in more depth in two later papers [78, 79] of the early 1980s. In
order to define a chromatic number for signed graphs that is more in line with
the chromatic number of (unsigned) graphs, Máčajová et al. [52] diverged
from Zaslavsky’s definition of vertex coloring, and investigated relationships
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σ : E(G)→ {+,−}

v1

v2 v3

v4

(G,σ1)

switching at {v2, v4}

v1

v2 v3

v4

(G,σ2)

Figure 1.2: An example of the switching operation.

between the chromatic number of a signed graph and various graph invariants.
They also obtained a Brooks-type theorem for signed graphs. We omit the
details. Interested readers can refer to the following literatures for the latest
research on signed graph coloring [32,36,38,42,53,56].

Motivated by the works of Zaslavsky [77] and Máčajová et al. [52],
Behr [3] recently introduced the following concept of edge coloring for signed
graphs, as a natural extension of edge coloring for graphs.

In order to introduce this concept, it is convenient to treat an edge e =
uv ∈ E(G) as two half edges hu

e and hv
e , where hu

e is incident (only) with u and
hv

e is incident (only) with v. Let H(G) be the set of all half edges of G.

Definition 1.6. Let k be a positive integer. An Mk-edge-coloring of a signed
graph (G,σ) is a mapping

ϕ : H(G)→ Mk =

¨

{±1, . . . ,± k
2
} if k is even;

{±1, . . . ,± k−1
2

, 0} if k is odd.

satisfying ϕ(hu
e) =−σ(uv)ϕ(hv

e), in which half edges incident with u receive
distinct colors for all uv ∈ E(G) and u ∈ V (G).

The colors +a and −a are said to have the same magnitude denoted by
|a|, and are sometimes called opposite.

In order to enable appealing formulations of analogues of well-known
conjectures and results on ordinary edge coloring for unsigned graphs, we
prefer to follow the earlier terminology introduced by Behr [3]. For this reason,
we say that a signed graph is k-edge-colorable if it has an Mk-edge-coloring.
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With the above in mind, we also take the liberty to use k-edge-coloring instead
of Mk-edge-coloring throughout the rest of the thesis.

Definition 1.7. The signed edge chromatic number, denoted by χ ′±(G,σ) is
the minimum k such that (G,σ) is k-edge-colorable.

For convenience, we view the colors of two half edges of e as the color of
e when e is a negative edge. From this it is clear that ordinary edge coloring
is a special case of signed edge coloring. It is of (mainly theoretical) interest
to explore whether results and conjectures on edge coloring have natural
counterparts on signed edge coloring.

We note here that Behr gave an equivalent definition of edge coloring of
signed graphs by coloring edges rather than by coloring half edges (See [3]
or [82]). By applying this equivalent definition, Zhang et al. [82] noted that
for any signed graph G, if σ′ is obtained from σ by one switching operation at
a vertex v ∈ V (G), then for any integer k, “(G,σ) admits a k-edge-coloring” if
and only if “(G,σ′) admits a k-edge-coloring”. This is clear, since one of these
k-edge-colorings can be obtained from the other one by reversing the colors
on the half edges incident to v. This fact implies that the edge chromatic
number and criticality of signed graphs are preserved under switchings.

In [82], they also showed that every signed planar graph is (∆+ 1)-edge-
colorable. And they proposed the following signed version of Conjecture 1.3.

Conjecture 1.4 (Zhang et al. [82]). Every signed planar graph with maximum
degree ∆ is ∆-edge-colorable for all ∆≥ 6.

Zhang et al. [82] used the concept of linear coloring to partially confirm
Conjecture 1.4, by establishing the following result. We omit the details.

Theorem 1.2 (Zhang et al. [82]). Every signed planar graph G with maximum
degree ∆ is ∆-edge-colorable if either ∆ ≥ 10 or ∆ ∈ {8,9} and G does not
contain any adjacent triangles.

Behr [3] showed that the minimum number of colors required for an edge
coloring of a signed graph is bounded from above by ∆+ 1, thus obtaining
the following analogue of Vizing’s Theorem.
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Theorem 1.3 (Behr [3]). Every signed graph with maximum degree ∆ is ∆- or
(∆+ 1)-edge-colorable.

In Chapters 3 and 4, we study the structure of critical signed graphs, and
we confirm the signed planar graph conjecture for signed planar graphs with
∆≥ 8, and for signed planar graphs with ∆≥ 6 in which every 6-cycle has at
most one chord.

The final variant of edge coloring we will encounter in this thesis is the
rather technical concept of edge DP-coloring, which is the edge analogue of
what is known as correspondence coloring.

1.5 Edge DP-coloring

Before we recall the definition of edge DP-coloring given by Bernshteyn and
Kostochka in [4], let us start with some remarks adopted from a paper on
correspondence coloring due to Dvořák and Postle [16].

Many proofs of colorability results are based on a method involving so-
called reducible configurations, including the known existing proofs of the
Four Color Theorem. The essence of this approach is to reduce any given graph
step by step to one of a bounded size for which its colorability can be checked
(in principle by hand, or by computer). In each step, colorability should be
preserved by using a suitable operation on the (intermediate) graph. One
of the commonly used operations within this framework is the identification
of two vertices with similar coloring properties. We omit the details, since
this operation depends on the type of coloring one considers. However, we
note here that this approach is in general not applicable in the context of
list coloring, since the vertices we want to identify might have different lists.
Hence, this type of argument for ordinary coloring does not translate directly
to the list coloring setting.

Motivated by this, to enable reductions in the list coloring domain, Dvořák
and Postle [16] introduced a generalization of list coloring which they called
correspondence coloring. They showed the relevance of this new concept by
resolving a conjecture on list coloring due to Borodin. We omit the details,
since we are focused on edge colorings instead of vertex colorings.
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In a recent paper [4], Bernshteyn and Kostochka examined the difference
between list coloring and correspondence coloring, and introduced the edge
coloring analogue of correspondence coloring, which they named edge DP-
coloring in recognition of Dvořák and Postle. Their definition is based on
the correspondence coloring of line graphs, and leads to the following rather
technical definition.

Let L be an edge list assignment of a graph G. Define a graph G̃ as follows:

(i) V (G̃) = ∪e∈E(G)({e} × L(e)), where × denotes the Cartesian product;

(ii) For e ∈ E(G), the subgraph of G̃ induced by {e} × L(e) is a complete
graph;

(iii) For e ∼G e′, the edges of G̃ between {e} × L(e) and {e′} × L(e′) consist
of a matching, denoted by ML,ee′ .

Here the notation e ∼G e′ (or simply, e ∼ e′) means that edge e is adjacent
to edge e′ (they share an endpoint) in G. We call

ML = {ML,ee′ : e ∼G e′}

a matching assignment over L, and the graph G̃ anML-cover of G.

Definition 1.8. For an edge list assignment L of G and a matching assignment
ML , if theML-cover G̃ of G has an independent set I with |I |= |E(G)|, then
we call I anML-coloring of G.

Definition 1.9. The edge DP-chromatic number of G, denoted by χ ′DP(G), is
the minimum integer k such that G has an ML-coloring for any edge list
assignment L with |L(e)| ≥ k for each e ∈ E(G) and any matching assignment
ML . If χ ′DP(G)≤ k, then we say that G is edge DP-k-colorable.

Here is a small example to illustrate the above concepts, in which all edges
have assigned lists of two colors.

Example 1.1. Figure 1.3 shows two distinct ML-covers of the 4-cycle C4.
Note that according to the above definitions C4 admits anML1

-coloring but
not anML2

-coloring.
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e1

e2

e3

e4

C4

L(e1)

L(e4)

L(e2)

L(e3)

G̃1 G̃2

L(e1)

L(e4)

L(e2)

L(e3)

Figure 1.3: Two distinctML-covers of a 4-cycle

In fact, by Theorem 1.5 below, we know that χ ′DP(C4) ≥ 3, whereas the
next result due to Galvin [21] implies that χ ′`(C4) = 2.

Theorem 1.4 (Galvin [21]). For every bipartite graph G, χ ′`(G) = χ
′(G) =

∆(G).

By the definitions of edge L-coloring andML-coloring, when

ML,ee′ = {(e, c)(e′, c) : c ∈ L(e)∩ L(e′)}, for all e ∼ e′,

then G has an edge L-coloring if and only if G has an ML-coloring. Thus
χ ′`(G)≤ χ

′
DP(G).

It is interesting to analyze the counterparts of results and conjectures on
list edge coloring for edge DP-coloring. Bernshteyn and Kostochka [4] proved
the following theorem, showing that the counterpart of Theorem 1.4 does
not hold for edge DP-coloring. More in particular, their result implies that it
is impossible for a d-regular graph G with d ≥ 2 to have edge DP-chromatic
number d.

Theorem 1.5 (Bernshteyn and Kostochka [4]). For all integers d ≥ 2, every
d-regular graph G satisfies χ ′DP(G)≥ d + 1.

In [4], they also formulated the following open problem.

Problem 1.1 (Bernshteyn and Kostochka [4]). Does there exist a graph G
with χ ′DP(G)≥∆(G) + 2?

This question is closely related to the earlier Conjecture 1.3 due to Viz-
ing [63] stating that χ ′`(G) ≤ ∆(G) + 1 for any graph G. The results we
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present in Chapter 5 are partial answers to the above question and conjecture.
As in the other chapters, we restrict ourselves in Chapter 5 to planar graphs.
We show that χ ′DP(G)≤∆(G) + 1 for any planar graph G with ∆≥ 9. More-
over, we prove that χ ′DP(G) = ∆(G) for any planar graph G with ∆≥ 8 which
contains no 3-cycles, as well as for any planar graph G with ∆ ≥ 7 which
contains no 4-cycles.

In the final section of this introductory chapter, we give a short explanation
of one of the key ingredients in most of our proofs.

1.6 The discharging method

The discharging technique we are going to explain here is a powerful and
widely used method for proving theorems about planar graphs by contradic-
tion.

It is based on the idea of assigning initial charges to the vertices and faces
of a plane embedding of a planar graph, and then redistributing the charges
in a way that preserves the total charge while satisfying certain rules. The aim
is to reach a contradiction with Euler’s Formula: any plane embedding of a
connected planar graph with vertex set V , edge set E and face set F satisfies:
|V |−|E|+ |F | = 2. Using the facts that

∑

v∈V d(v) = 2m and
∑

f ∈F d( f ) = 2m,
by straightforward calculations one can obtain

∑

v∈V

(3d(v)− 10) +
∑

f ∈F

(2d( f )− 10) =−20

or
∑

v∈V

(2d(v)− 6) +
∑

f ∈F

(d( f )− 6) =−12,

to give two examples we will use in the thesis.

Based on these equalities, one can assign the initial charge w : V ∪ F → Z
defined by

¨

w(v) = 3d(v)− 10 (or 2d(v)− 6) for v ∈ V ;
w( f ) = 2d( f )− 10 (or d( f )− 6) for f ∈ F
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to the vertices and faces of G. In order to reach a contradiction, the idea is to
redistribute the charges among the vertices and the faces in G by a number of
discharging rules. The aim is to show that the new charges of all the vertices
and faces are nonnegative, contradicting Euler’s Formula.

Hence, the method is typically used to prove theorems by contradiction.
To do this, we start with a minimum counterexample and assume that it
satisfies certain conditions. We then study some reducible configurations that
cannot occur in a minimum counterexample, and assign initial charges to the
vertices and faces of the embedding of the graph.

The key property of the charges is that the sum of all charges in the graph
must be negative. This property allows us to apply the rules for shifting the
charges, which involve moving charges from high-charge vertices or faces to
low-charge ones while maintaining the total charge.

The final step of the method involves verifying that the final charges of
every face and every vertex are nonnegative. If we can do this, then we
have shown that the minimum counterexample is not a planar graph, which
contradicts our assumption.

One of the strengths of the discharging technique is that it can be used
to prove theorems about planar graphs with local constraints, such as graphs
that satisfy certain edge or vertex conditions. By identifying and analyzing
the set of reducible configurations, we can often prove theorems that would
be difficult or impossible to prove by other methods. Overall, the discharging
technique is a powerful tool for proving theorems about planar graphs, and it
has been used to make significant contributions to the field of graph theory.





Chapter 2

List edge coloring of planar
graphs

In this chapter, we confirm the Conjecture 1.3 holds for planar graphs with
∆≥ 6 in which every 7-cycle (if any) induces a C7 (so, without chords).

2.1 Introduction

As we mentioned in the previous chapter, Conjecture 1.3 has been proved for
planar graph with maximum degree condition ∆≥ 8. There are also lots of
related results on Conjecture 1.3 by adding restrictions which can be found
in [10,11,13,22,30,31,33,45–48,51,58,59,64,66,67,69–71,73,81]. Here,
we list one result obtained by Dong, Liu and Li [15].

Theorem 2.1 (Dong, Liu and Li [15]). Let G be a planar graph where all
7-cycles are induced. If ∆≥ 7, then χ ′`(G)≤∆+ 1.

The additional condition implies that any existing 7-cycles in G are in-
duced, i.e., contain no chords. In this chapter, we strengthen Theorem 2.1
and obtain the following result, showing that this additional condition allows
a further relaxation of the maximum degree condition.

21
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Theorem 2.2. Let G be a planar graph in which any existing 7-cycles contain
no chords. If ∆≥ 6, then χ ′`(G)≤∆+ 1.

In fact, in Section 2.3 we prove the following result.

Theorem 2.3. Let G be a planar graph in which any existing 7-cycles contain
no chords. If ∆≤ 6, then χ ′`(G)≤ 7.

It is clear that Theorem 2.2 is a direct consequence of Theorem 2.1 and
Theorem 2.3. We postpone our proof of Theorem 2.3 to Section 2.3. Just
like in most of the proofs in this area, the main ingredient of the proof is
discharging. In the next section we introduce and apply a Combinatorial
Nullstellensatz due to Alon [1]. We use it there in order to determine several
configurations which cannot appear in an assumed minimal counterexample
to Theorem 2.3. Then, we use discharging rules to complete our proof in
Section 2.3.

2.2 A useful polynomial for list edge coloring

In this section, we will use the following theorem, known as the Combinatorial
Nullstellensatz, and apply it to a polynomial associated with the edges of a
graph.

Theorem 2.4 (Alon [1]). Let F be a field, and let P = P(x1, . . . , xm) be a
polynomial in F[x1, . . . , xm] with degree deg(P) =

∑m
j=1 i j, where each i j

is a nonnegative integer. If the coefficient of the monomial x i1
1 · · · x

im
m in P

is nonzero, and if S1, . . . , Sm are subsets of F with |S j| > i j, then there are
s1 ∈ S1, . . . , sm ∈ Sm such that P(s1, . . . , sm) 6= 0.

In fact, the stated version is the second one of the two versions that ap-
peared in Alon’s paper [1]. Theorem 2.4 and its variants have been applied to
obtain new results in many different areas, including graph coloring. In par-
ticular, they have been used to resolve conjectures on list (edge) coloring for
special classes of graphs, by applying them to certain polynomials associated
with the vertices and edges of the graph. For our purposes, we consider the
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following polynomial which is based on variables associated with the edges of
the graph.

Let H be a subgraph of a graph G, and let E(H) = {e1, e2, . . . , em}. Assign
a variable x i to the edge ei for each i ∈ [1, m], and define the polynomial
PH = PH(x1, x2, . . . , xm) by

PH =
∏

w∈V (H)
dH (w)>1

PH,w , with

PH,w =
∏

ei ,e j∈EH (w)
i< j

(x i − x j) for w ∈ V (H) with dH(w)> 1 (2.1)

We next demonstrate how this polynomial can be used in our setting if a
certain condition on a monomial is met. In particular, we show that in such
cases Theorem 2.4 can be applied to guarantee that a list edge coloring of a
subgraph can be extended to a list edge coloring of the whole graph. This will
help us to identify a large number of configurations that cannot appear in an
assumed minimal counterexample to Theorem 2.3.

Lemma 2.5. Let G be a graph with an edge list assignment L. Let H be
a subgraph of G, and let L|E(H) denote the restriction of L to E(H), where
H = G − E(H). Let PH be defined as in Eq. (2.1) with E(H) = {e1, . . . , em}.
Then G is edge-L-colorable if the following two conditions are satisfied:

(1) H is edge-L|E(H)-colorable;

(2) there is a monomial
∏

ei∈E(H) x t i
i in PH with a nonzero coefficient and

such that 0≤ t i < |L(ei)| − dH(u)− dH(w) for each ei = uw ∈ E(H).

Proof. Assume that (1) and (2) hold. Let φ be an edge-L|E(H)-coloring of
H. Denote by Sφ the edge list assignment of H satisfying that, for every
ei = uw ∈ E(H),

Sφ(ei) = L(ei) \ {φ(h) : h ∈ EH(u)∪ EH(w)}.
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Then |Sφ(ei)| ≥ |L(ei)| − dH(u)− dH(w). By Theorem 2.4, there exist ci ∈
Sφ(ei) for all ei ∈ E(H) such that PH(c1, . . . , cm) 6= 0. This implies G has an
edge-L-coloring obtained from φ by coloring each ei ∈ E(H) with color ci .

It will be shown in the next lemma that the graphs illustrated in Figure 2.1
cannot appear as a subgraph in a minimal counterexample G to Theorem 2.3.
It should be noted here that the integers in Figure 2.1 indicate the largest
degree the associated vertices can attain in G. Hence, each of the graphs of
Figure 2.1 represents a larger number of forbidden configurations.

In the sequel, with an edge k-list assignment we mean a list assignment in
which each edge has an assigned list with exactly k colors. The next lemma is
a key ingredient for showing that the discharging rules we define in the final
part of our proof of Theorem 2.3 lead to a contradiction, if we assume there
exists a counterexample to Theorem 2.3. For the statement of the lemma, let
us assume that G is a graph with maximum degree ∆≤ 6 and an edge 7-list
assignment L, and that H is a subgraph of G. We write H ∈ {F1, . . . , F14} if H
is one of the graphs of Figure 2.1 such that the degree of each vertex of H in
G does not exceed the value indicated in the associated circle in Figure 2.1.
Lemma 2.5 has the following consequence.

Lemma 2.6. If H ∈ {F1, . . . , F14} and G − E(H) is edge-L|E(G)\E(H)-colorable,
then G is edge-L-colorable.

Proof. We only illustrate the proof for H = F1; the other cases can be treated
in a similar way. For refereeing purposes we added an appendix, but we
suggest to omit it from the final version. Suppose H = F1 and let the vertices
be labeled as in Figure 2.1. Assign x i to vvi for i ∈ [1,3], and x4 to v1v2.
Using Eq. (2.1),

PH = PH,v · PH,v1
· PH,v2

= (x1− x2)(x2− x3)(x1− x3) · (x1− x4) · (x2− x4).

Straightforward calculations show that the coefficient of the monomial x2
1 x2

x3 x4 in PH is 1, hence nonzero. In order to verify that condition (2) of
Lemma 2.5 holds, we refer to Figure 2.1 to check whether 0≤ t i < |L(ei)| −
dH(u) − dH(w) for each ei = uw ∈ E(H), where t i is the exponent of x i
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Figure 2.1: Fourteen forbidden configurations.

associated with the edge ei in the above monomial. Below are the details for
the edges vv1, vv2, vv3 and v1v2, respectively, showing that (2) indeed holds.
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7− dH(v)− dH(v1) = 7− (dG(v)− dH(v))− (dG(v1)− dH(v1))≥ 3> 2,

7− dH(v)− dH(v2) = 7− (dG(v)− dH(v))− (dG(v2)− dH(v2))≥ 2> 1,

7− dH(v)− dH(v3) = 7− (dG(v)− dH(v))− (dG(v3)− dH(v3))≥ 2> 1,

7− dH(v1)− dH(v2) = 7− (dG(v1)− dH(v1))− (dG(v2)− dH(v2))≥ 2> 1.

Since H is edge-L|E(H)-colorable, G is edge-L-colorable by Lemma 2.5.

Proofs of other cases are given in Appendix A.

2.3 Proof of Theorem 2.3

In this section, we will prove Theorem 2.3 by contradiction. Suppose that G
is a planar graph with maximum degree ∆ ≤ 6, and let L be an edge 7-list
assignment of G such that

(a) every 7-cycle of G (if any) contains no chords;

(b) G is not edge-L-colorable;

(c) every proper subgraph G′ of G is edge-L|E(G′)-colorable.

In fact, we may assume ∆= 6, since it was recently shown in [28] that
χ ′`(G)≤∆+ 2 for every finite simple graph G. Clearly, we may also assume
that G is connected. We next prove the following two claims.

Claim 1. For any uv ∈ E(G), dG(u) + dG(v)≥∆+ 3.

Proof. Suppose not, let e = uv ∈ E(G) such that dG(u) + dG(v) ≤ ∆+ 2.
Using (c), assume φ is an edge-L|E(G−e)-coloring of G − e. Then Sφ(e) =
L(e) \ {φ(h) : h ∈ EG−e(u)∪ EG−e(v)} 6= ;. Hence, G has an edge-L-coloring
obtained from φ by coloring e with a color c ∈ Sφ(e), a contradiction to
(b).

Claim 2. There is no even cycle H in G such that dG(u) + dG(v) = ∆+ 3 for
every uv ∈ E(H).
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Proof. Suppose to be contrary that H is an even cycle of G such that dG(u) +
dG(v) = ∆+ 3 for every uv ∈ E(H). Using (c), assume φ is an edge-L|E(H)-
coloring of H = G− E(H). For uv ∈ E(H), let

Sφ(uv) = L(uv) \ {φ(h) : h ∈ EH(u)∪ EH(v)}.

Then |Sφ(uv)| ≥ (∆+ 1)− (dG(u) + dG(v)) + (dH(u) + dH(v)) = 2. Since H
is an even cycle, it has a proper edge coloring ϕ with ϕ(uv) ∈ Sφ(uv) for
uv ∈ E(H). Hence G has an edge-L-coloring ϕ defined by ϕ(e) = φ(e) if
e ∈ E(H) and φ(e) = ϕ(e) if e ∈ E(H), a contradiction to (b).

Note that δ = δ(G)≥ 3 by Claim 1. Recall that Vi is the set of i-vertices
of G for i ∈ [3,∆]. Let G3 be the subgraph of G induced by all edges incident
with V3, i.e., all edges that have at least one end vertex in V3 (if we assume
V3 6= ;). Noting that ∆ = 6 and using Claim 1, all edges of G3 in fact have
exactly one end vertex in V3. Moreover, by Claim 1 and 2, G3 is a forest. Based
on this, we next define the concept of a 3-master, which will be relevant in the
discharging. For any component T of G3, pick a vertex r /∈ V3 as the root of T .
Then every 3-vertex x in T has exactly two children (i.e., neighbors of x in T
that are not on the path from r to x in T). Such a child of a 3-vertex x in T is
called a 3-master of x . Note that every edge uv ∈ E(G3) with u ∈ V3 is part
of such a rooted tree. Hence, each 3-vertex of G has exactly two 3-masters,
and each 3-master (which is in fact a ∆-vertex) is the 3-master of exactly one
3-vertex.

Recall that, for a vertex v ∈ V (G), N(v) = {v1, v2, . . . , vk}, fi is the face
which is incident with the edges vvi and vvi+1 for i ≤ k−1, and with vvk and
vv1 for i = k, λi(v) (λi+(v),λi−(v)) denotes the number of i-faces (i+-faces
i−-faces ) of G incident with v. Before we define the discharging rules, we
first prove four additional claims. The first claim follows directly from (a).

Claim 3. Let v be a 6-vertex of G. Then λ3(v)≤ 4.

Proof. Recall that by (a), any 7-cycle of G contains no chords in G. Hence,
the induced subgraph G[N(v)] contains no paths with length 5, and so
λ3(v)≤ 4.
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The remaining claims reveal more details on the local structure around a
vertex of G.

Claim 4. Let v be a k-vertex of G with 5 ≤ k ≤ 6. Then the following
statements hold.

(1) Let λ3(v) = k− 2 and λ4(v) = 1. Then either λ7+(v) = 1 or λ6(v) = 1,
and the local structure around v is as illustrated in one of the configura-
tions in Fig. 2.2.

(2) Let k = 5, λ3(v) = 4, and λ4(v) = 1. Then λ4−(x) ≤ 2 for any 4-
neighbor x of v.

(3) Let k = 5 and λ3(v)≥ 4. Then λ3(x)≤ 3 for any 5-neighbor x of v.

(4) Let k = 6 and λ3(v) = λ4(v) = 3. Then the degrees of any two
consecutive faces around v are different (so they alternate between 3
and 4).

v
v1

v2

v3

v4
v5

(a)

v
v1

v2

v3

v4
v5

(b)

v
v1

v2

v3

v4
v5

(c)

v

v3

v2

v1

v6 v5

v4

(d)

v

v3v2

v1

v6 v5

v4

(e)

v

v3v2

v1

v6 v5

v4

( f )

Figure 2.2: Possible local configurations around a k-vertex v
with λ3(v) = k− 2 and λ4(v) = 1.
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Proof. We assume that NG(v) = {v1, v2, . . . , vk} and Fv = { f1, f2, . . . , fk} in
cases when v is not a cut vertex. By Claim 1, we have d(vi)≥∆+3−k = 9−k.

(1) Since λ3(v) = k − 2 and λ4(v) = 1, v is not a cut vertex. Without
loss of generality, assume that the unique 4-face in Fv is fk, and the unique
5+-face in Fv is f` with ` ∈ [3, k−1]. Let C = vv1uvkv be the facial cycle of fk.
Since any 7-cycle of G contains no chords and d(v1) ≥ 3, u ∈ {v3, . . . , vk−1}.
Furthermore, we can deduce the following facts. If k = 5 and ` = 3, then
u 6= v4; otherwise d(v5) = 2. If k = 6 and ` = 3, then u 6= v5; otherwise
d(v6) = 2. Moreover then u 6= v4; otherwise vv6v5v4v1v2v3v is a 7-cycle
with chords. Furthermore u 6= v3; otherwise vv1v2v3v6v5v4v is a 7-cycle with
chords. If k = 6 and `= 4, then u 6= v5; otherwise d(v6) = 2. Moreover then
u 6= v4; otherwise vv5v6v4v1v2v3v is a 7-cycle with chords. If k = 6 and `= 5,
then u 6= v5; otherwise vv1v2v3v4v5v6v is a 7-cycle with chords. These facts
together imply that the local structure around v is restricted to the six possible
cases (a)∼(f) that are illustrated in Fig. 2.2.

Suppose first that the local structure around v is as in (a). Then k = 5 and
`= 4. To show that (1) holds in this case, we make the following additional
observations. If the boundary of f4 does not contain the edge v4v5, then
d( f4) ≥ 6; otherwise the union of the boundaries of f1, f2, f3, f4 contains a
7-cycle with chords. If the boundary of f4 contains the edge v4v5, then v5 is
a cut vertex of G. This implies that either d( f4) ≥ 7 or d( f4) = 6, and the
boundary of f4 consists of two 3-cycles with a common vertex v5. So, in all
these situations referring to the local structure of (a) the statement in (1)
holds.

By analogous arguments, it can be shown that d( f`) ≥ 7 for the local
structures that are illustrated in (b)∼(f) of Fig. 2.2. We omit the details. This
completes the proof of (1).

For (2) and (3), we note that the assumptions k = 5 and λ3(v) ≥ 4
directly imply the existence of a 6-cycle with chords. By a careful analysis
of the possible local structures, (2) and (3) can be obtained in a rather
straightforward way by using the assumption that G contains no 7-cycle with
chords. We omit the details.

For (4), note that the assumptions imply that v is not a cut vertex. Suppose
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that the conclusion does not hold. Without loss of generality, assume that
f1, f2, f` are three 3-faces with ` ∈ [3,4]. Suppose first that ` = 3. Then
both f4 and f6 are 4-faces. Let the facial cycles of f4 and f6 be vv4u1v5 and
vv1u2v6, respectively. Recall that d(v4) ≥ δ(G) ≥ 3 by Claim 1. Now the
assumption that G contains no 7-cycle with chords implies that u1 ∈ {v1, v2}.
By symmetry, we also get that u2 ∈ {v3, v4}. Now the edges v5u1 and v6u2

contradict that G is a plane embedding. The case when `= 4 can be treated
is a similar way to obtain a contradiction with planarity. We omit the details.
So (4) holds. This completes the proof of Claim 4.

The next two claims deal with the local structure around a 6-vertex with
two 3-neighbors.

Claim 5. Let v be a 6-vertex of G. If v is incident with two edge-disjoint
triangles vx yv and vuwv with d(x) = d(u) = 3, then the other neighbors of
v are 6-vertices.

Proof. Suppose to be contrary that z is a 5−-neighbor of v. Let x ′ be the vertex
in N(x)\{v, y}, and let u′ be the vertex in N(u)\{v, w}. Then d(x ′) = d(y) =
d(w) = d(u′) = 6 by Claim 1, and u′ 6= x ′ by Claim 2. Let G′ = G − {x , u}.
Using assumption (c), let φ be an arbitrary edge-L|E(G′)-coloring of G′. For
any e ∈ E(G), let

Sφ(e) = L(e) \ {φ(h) : h ∈ E(G′) is adjacent to e in G}. (2.2)

Then |Sφ(e)| ≥ 2 for e ∈ {x x ′, x y, uu′, uw} and |Sφ(e)| ≥ 3 for e ∈ {x v, uv}.
If |Sφ(x y)| ≥ 3, then we can obtain an edge-L-coloring of G from φ by
choosing a color from Sφ(uu′), Sφ(uw), Sφ(uv), Sφ(x v), Sφ(x x ′) and Sφ(x y)
to color uu′, uw, uv, x v, x x ′ and x y respectively. This contradicts (b), and
thus |Sφ(x y)|= 2. Similar arguments are used to establish that |Sφ(x x ′)|=
|Sφ(uu′)|= |Sφ(uw)|= 2 and |Sφ(x v)|= |Sφ(uv)|= 3.

We claim that Sφ(x y) = Sφ(x x ′) and Sφ(uu′) = Sφ(uw). Suppose to be
contrary that Sφ(x y)\Sφ(x x ′) 6= ;. Then we can obtain an edge-L-coloring of
G from φ by choosing a color from Sφ(x y)\Sφ(x x ′), S(uu′), Sφ(uw), Sφ(uv),
Sφ(x v) and Sφ(x x ′) to color x y, uu′, uw, uv, x v and x x ′, a contradiction to
(b). By symmetry, Sφ(uu′) = Sφ(uw).
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Since φ was chosen arbitrarily, using the above claim it is sufficient to
prove that G′ has an edge-L|E(G′)-coloring, denoted by ψ, satisfying either
Sψ(x y) 6= Sψ(x x ′) or Sψ(uu′) 6= Sψ(uw). For this, we make use of an auxiliary
directed graph.

Let D be a directed graph with vertex set V (D) = {v y, vz, vw} and arc
set A(D) = {(e1, e2) : φ(e1) ∈ S′φ(e2),∀ e1, e2 ∈ V (D)}, where (e1, e2) ∈ A(D)
means that e1 is an in-neighbor of e2 in D, and for any e ∈ E(G),

S′φ(e) = L(e) \ {φ(h) : h ∈ E(G′− {v y, vz, vw}) is adjacent to e in G}.

Note that |S′φ(e)| ≥ 2 for e ∈ {v y, vz, vw}. We construct ψ as follows. If
|A(D)| = ;, then let ψ be the mapping obtained from φ by recoloring v y
with a color in S′φ(v y) \ {φ(v y)}. If D contains a directed cycle e1e2 . . . et et+1

with t ∈ [2, 3] and e1 = et+1, then let ψ be the mapping obtained from φ by
replacing the color of ei with φ(ei−1) for i ∈ [2, t+1]. If D contains a maximal
directed path e1e2 . . . et with t ∈ [2,3], then let ψ be the mapping obtained
from φ by replacing the color of e1 with a color in S′φ(e1) \ {φ(e1)} and the
color of ei with φ(ei−1) for i ∈ [2, t]. In each case, it is not difficult to check
that ψ is an edge-L|E(G′)-coloring of G′. Moreover, either ψ(v y) 6= φ(v y), or
ψ(vw) 6= φ(vw), or ψ(v y) 6= φ(v y) and ψ(vw) 6= φ(vw). Without loss of
generality, assume that ψ(v y) 6= φ(v y).

Note that Sψ(x y) = (Sφ(x y) ∪ {φ(v y)}) \ {ψ(v y)} and Sψ(x x ′) =
Sφ(x x ′). Since ψ(v y) 6= φ(v y), φ(v y) ∈ Sψ(x y). Since |Sφ(x y)| = 2,
φ(v y) /∈ Sφ(x y) by Eq. (2.2), and thus φ(v y) /∈ Sφ(x x ′) = Sψ(x x ′). Hence
Sψ(x y) 6= Sψ(x x ′), and thus the proof of Claim 5 is complete.

The proof of the following claim is similar to the proof of Claim 5 (and to
Case 3 of Theorem 6 in [34]) and therefore omitted.

Claim 6. Let v be a 6-vertex of G. If v is incident with five neighbors
u, w, x , y, z such that d(u) = d(y) = 3 and x y, yz ∈ E(G), then uw /∈ E(G).

The next claim follows directly from Lemma 2.6 and assumption (b).

Claim 7. G contains no F1–F14.
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In the remainder of this section, we will obtain a contradiction by using
the discharging method. We assign the initial charge w(v) = 3d(v)− 10 to
every vertex v, and w( f ) = 2d( f )− 10 to every face f . By straightforward
calculations we obtain

∑

v∈V (G)

(3d(v)− 10) +
∑

f ∈F(G)

(2d( f )− 10) =−20.

In order to reach a contradiction, we redistribute the charges among the
vertices and the faces in G by the following discharging rules. After that, we
will show that the new charges of all the vertices and faces are nonnegative,
our final contradiction.

In our discharging, we use the following five discharging rules, in which
we introduce several subrules for a number of distinguished cases regarding
rules 4 and 5.

(R1) Every 3-vertex receives 1
2

from each of its 3-masters.

(R2) Each 6+-face gives 2d( f )−10
d( f ) to each vertex on its boundary.

(R3) Let v be a 4-vertex. If λ4−(v) ≤ 2, then v gives 1 to each incident
4−-face; otherwise, v gives 1

2
to each incident face.

(R4) Let v be a 5-vertex.

(R4.1) v gives 1
2

to each incident 4-face;

(R4.2) v gives the following charge to each incident 3-face f = [vwu].

(R4.2.1) If λ3(v)≤ 2 or d(w) = 4 and d(u) = 5, then v gives 7
4

to f .

(R4.2.2) If d(w) = 4 and d(u) = 6, then v gives a to f , where

a =







7
4

if λ4−(w)> 2 and u has a 3-neighbor;
6
4

if λ4−(w)> 2 and u has no 3-neighbor;
5
4

if λ4−(w)≤ 2.
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(R4.2.3) If d(w) = d(u) = 5, then v gives a to f , where

a =

(

6
4

if λ3(v) = 3;

1 if λ3(v)≥ 4.

(R4.2.4) If d(u) = 5 and d(w) = 6, then v gives a to f , where

a =







6
4

if λ3(v) = 3;
3
4

if λ3(v)≥ 4 and w has a 3-neighbor;
2
4

if λ3(v)≥ 4 and w has no 3-neighbor.

(R4.2.5) If d(u) = d(w) = 6, then v gives a to f , where

a =

(

2
4

if both u and w have 3-neighbors;
1
4

if at least one of u, w has no 3-neighbor.

(R5) Let v be a 6-vertex.

(R5.1) v gives a to each incident 3-face f = [vwu], where

a =







4
3

if f is a (6, 6,6)-face;
7
4

if f contains 4- or 5-vertices and v has a 3-neighbor;

2 otherwise.

(R5.2) v gives a to each 4-face f = [vx yz] incident with v, where

a =







1
2

if d(x), d(y), d(z)≥ 4;
2
3

if either d(y) = 3 or d(x) = 3 and d(z) = 6;
3
4

if d(x) = 3 and d(z)< 6.

We next show that the final charge, denoted by w′, of every vertex and face is
nonnegative.

We first consider the final charge of an arbitrary face f ∈ F(G). When
d( f )≥ 6, then w′( f )≥ w( f )− d( f )× 2d( f )−10

d( f ) = 0 by (R2). When d( f ) = 5,
then f retains its initial charge and it follows that w′( f ) = w( f ) = 2d( f )−
10 = 0. When d( f ) = 4, then the boundary of f contains at most one 3-vertex
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by Claim 2, so w′( f ) = w( f )+min{1
2
+2× 3

4
, 3× 2

3
, 4× 1

2
} = 0 by (R3), (R4.1)

and (R5.2).

When d( f ) = 3, let f = [x yz]. If d(x) = 3, then d(y) = d(z) = 6
by Claim 1, so w′( f ) = w( f ) + 2 × 2 = 0 by (R5.1). If d(x) = 4 and
d(y) = d(z) = 5, then f receives at least 1

2
from x and 7

4
from each of y and z

by (R3) and (R4.2.1), so w′( f )≥ w( f )+ 1
2
+2× 7

4
= 0. If d(x) = 4, d(y) = 5

and d(z) = 6, then w′( f )≥ w( f )+min{1
2
+2× 7

4
, 1

2
+ 6

4
+2, 1+ 5

4
+ 7

4
} = 0 by

(R3), (R4.2.2) and (R5.1). Note that if uv ∈ E(G) with d(u) = d(v) = 5, then
at most one of u and v is incident with at least four 3-faces by Claim 4-(4).
If d(x) = d(y) = d(z) = 5, then w′( f ) = w( f ) +min{2× 6

4
+ 1,3× 6

4
} = 0

by (R4.2.3). If d(x) = d(y) = 5 and d(z) = 6, then w′( f ) = w( f ) +min{2×
6
4
+ 7

4
, 6

4
+ 3

4
+ 7

4
, 6

4
+ 2

4
+ 2} = 0 by (R4.2.4) and (R5.1). If d(x) = 5 and

d(y) = d(z) = 6, then w′( f ) = w( f )+min{2
4
+2× 7

4
, 1

4
+ 7

4
+2, 1

4
+2×2} = 0 by

(R4.2.5) and (R5.1). If d(x) = d(y) = d(z) = 6, then w′( f ) = w( f )+3× 4
3
= 0

by (R5.1). This completes the analysis for the faces and shows that indeed
the final charges of all the faces are nonnegative.

Now we consider the final charge of an arbitrary k-vertex v ∈ V (G). We
recall the assumption on the clockwise ordering of NG(v) = {v1, v2, . . . , vk}.
Recall that ni(v) denotes the number of i-neighbors of v. If k = 3, then v
has two 3-masters, thus w′(v) = w(v) + 2× 1

2
= 0 by (R1). If k = 4, then

w′(v) = w(v)−max{2× 1, 4× 1
2
} = 0 by (R3). To complete the analysis, it is

sufficient to consider the two cases k = 5 and k = 6.

(1) Suppose first that k = 5.

Note that every d-face incident with v receives 0 from v if d ≥ 5, 1
2

from
v if d = 4, and at most 7

4
from v if d = 3 by (R4). It follows that w′(v) ≥

w(v)−3× 1
2
−2× 7

4
= 0 if λ3(v)≤ 2. In the rest of this case, we will apply (R4)

to evaluate w′(v) by distinguishing the following three subcases according to
the value of λ3(v).

(1.1) λ3(v) = 3.

Then λ4(v) ≤ 1 since every 7-cycle of G contains no chords. No matter
whether v is a cut vertex or not, we may assume that f1, f2, f` are three
3-faces incident with the edges vv1 and vv2, vv2 and vv3, and vv` and vv`+1,
respectively, with ` ∈ {3,4}. Assume first that ` = 3. Then there are at



2.3. Proof of Theorem 2.3 35

most two 4-vertices in {v1, v2, v3, v4} by Claim 1. Note that by (R4), every
4-face incident with v receives 1

2
from v; every (d1, d2, d3)-face incident with

v receives at most 2
4

from v if (d1, d2, d3) = (5,6,6), 6
4

from v if either
(d1, d2, d3) ∈ {(5, 5, 5), (5, 5, 6)} or (d1, d2, d3) = (4, 5, 6) in which the unique
6-vertex has no 3-neighbor, and at most 7

4
from v if either (d1, d2, d3) = (4, 5, 5)

or (d1, d2, d3) = (4,5,6) in which the unique 6-vertex has at least one 3-
neighbor. If there is no 4-vertex in {v1, v2, v3, v4}, then w′(v)≥ w(v)−(3× 6

4
+

1
2
) = 0. If there are two 4-vertices in {v1, v2, v3, v4}, then by the symmetry of
{v1, v2} and {v4, v3}, d(v1) = d(v4) = 4 and d(v2) = d(v3) = 6, for otherwise
G contains F1 or F5 of Fig. 2.1, and so w′(v) ≥ w(v)− (2× 7

4
+ 2

4
+ 1

2
) > 0.

Thus we may assume that there is one 4-vertex in {v1, v2, v3, v4} below. By the
symmetry of {v1, v2} and {v4, v3}, assume further that d(v1) = 4 or d(v2) =
4. Then v is incident with at most two (4,5,5+)-faces. When λ4(v) = 0,
w′(v) ≥ w(v)− (2× 7

4
+ 6

4
) = 0. When λ4(v) = 1, λ6+(v) = 1 by Claim 4-

(1), and thus it follows from (R2) that v receives at least 1
3

from the unique
incident 6+-face. If d(v1) = 4, then v is incident with one (4,5,5+)-face,
and thus w′(v) ≥ w(v) + 1

3
− (7

4
+ 2× 6

4
+ 1

2
) > 0. If d(v2) = 4 and there

is no 5-vertex in {v1, v3, v4}, then w′(v) ≥ w(v) + 1
3
− (2× 7

4
+ 2

4
+ 1

2
) > 0.

If d(v2) = 4 and there is at least one 5-vertex in {v1, v3, v4}, then w′(v) ≥
w(v)+ 1

3
− (7

4
+2× 6

4
+ 1

2
)> 0. This is for the following reasons. If d(v1) = 5,

then d(v3) = 6 and v3 has no 3-neighbor, for otherwise G contains F3 or F4;
if d(v3) = 5, then d(v1) = d(v4) = 6 and v1 has no 3-neighbor, for otherwise
G contains one of {F2, F3, F4}; if d(v4) = 5, then d(v3) = 6 and v3 has no
3-neighbor, for otherwise G contains F2 or F8.

Now assume that ` = 4. By Claim 4-(1), λ7+(v) = 1 when λ4(v) = 1.
Note that v receives at least 4

7
from the incident 7+-face, and sends at most 7

4
to each (4, 5, 5)-face and each (4, 5, 6)-face in which the unique 6-vertex has
a 3-neighbor, 6

4
to each (5,5+, 5+)-face and each (4,5,6)-face in which the

unique 6-vertex has no 3-neighbor, and 2
4

to each (5, 6, 6)-face. If there is one
of f1, f2, f4 which is not a (4, 5, 5+)-face, then w′(v)≥ w(v)− (2× 7

4
+ 6

4
) = 0

when λ4(v) = 0, and w′(v)≥ w(v)+ 4
7
− (2× 7

4
+ 6

4
+ 1

2
) = 0 when λ4(v) = 1.

If each of f1, f2, f4 is a (4,5,5+)-face, since G contains no F1, all of f1, f2, f4
are (4,5,6)-faces. Further, since G contains no F5, either d(v2) = d(v4) = 4
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or d(v2) = d(v5) = 4. Moreover, d(v1) = d(v3) = 6 and v1, v3 have no 3-
neighbor, for otherwise G contains F7. Thus w′(v)≥ w(v)− (2× 6

4
+ 7

4
)> 0

when λ4(v) = 0, and w′(v)≥ w(v)+ 4
7
− (2× 6

4
+ 7

4
+ 1

2
)> 0 when λ4(v) = 1.

(1.2) λ3(v) = 4.

Clearly, v is not a cut vertex. Without loss of generality, assume that f1, f2, f3,
f4 are four 3-faces. Since G contains no F6, n4(v)≤ 2.

(1.2.1) Assume n4(v) = 0. Then fi for i ∈ [1,4] is a (5,5+, 5+)-face and
thus receives at most 1 from v. Hence w′(v)≥ w(v)− 4× 1− 1

2
> 0, since f5

is a 4+-face.

(1.2.2) Assume n4(v) = 1. By the symmetry of {v1, v2} and {v5, v4},
assume that d(v1) = 4, or d(v2) = 4, or d(v3) = 4. Note that n5(v)≤ 2 since
G contains none of {F2, F3, F10, F11, F12}.

When λ4(v) = 0, v gives at most 7
4

to each (4, 5, 5)-face and each (4, 5, 6)-
face in which the unique 6-vertex has a 3-neighbor, 1 to each (5,5,5)-face,
and 3

4
to each (5,5,6)-face. If d(v1) = 4, then v is incident with at most

one (4,5,5+)-face, thus w′(v) ≥ w(v)− 7
4
− 3× 1 > 0. If d(v3) = 4, then v

is incident with no (5,5,5)-face, for otherwise G contains F1, thus w′(v) ≥
w(v)− 2× 7

4
− 2× 3

4
= 0. If d(v2) = 4 and n5(v) ≤ 1, then there are two

(4,5,5+)-faces and two (5,5+, 6)-faces in { f1, f2, f3, f4}, and thus w′(v) ≥
w(v)− 2× 7

4
− 2× 3

4
= 0. Next, assume that d(v2) = 4 and n5(v) = 2 below.

Since G contains no F2 and F3, either d(v1) = d(v4) = 5, or d(v1) = d(v5) = 5,
or d(v3) = d(v5) = 5, or d(v4) = d(v5) = 5. For the former three cases, there
are two (4,5,5+)-faces and two (5,5+, 6)-faces in { f1, f2, f3, f4}. For the last
case, there are two (4,5,6)-faces, one (5,5,6)-face and one (5,5,5)-face in
{ f1, f2, f3, f4}, and v3 has no 3-neighbor, for otherwise G contains F8. Hence
w′(v)≥ w(v)−max{2× 7

4
+ 2× 3

4
, 7

4
+ 6

4
+ 2

4
+ 1}= 0.

When λ4(v) = 1, the facial cycle of f5 is the 4-cycle vv1v3v5, since every 7-
cycle of G contains no chords. So d(v3)≥ 5, and d(v1) = 4 or d(v2) = 4. Since
every 4-neighbor of v is incident with at most two 4−-faces by Claim 4-(2), v
sends at most 7

4
to each (4, 5, 5)-face, 5

4
to each (4, 5, 6)-face, 1 to each (5, 5, 5)-

face, and at most 3
4

to each (5,5,6)-face. If d(v1) = 4, then there is at most
one (4,5,5)-face and at least one (5,5+, 6)-face in { f1, f2, f3, f4}, and thus
w′(v)≥ w(v)− 1

2
− (7

4
+ 3

4
+2×1) = 0. Next, assume that d(v2) = 4 below. If
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d(v1) = 5, then d(v3) = 6, since G contains no F3, and there is no (5, 5, 5)-face
in { f1, f2, f3, f4}, since n5(v)≤ 2. If d(v1) = 6 and d(v3) = 5, then d(v4) = 6,
since G contains no F2, and so { f1, f2, f3, f4} consists of one (4, 5, 5)-face, one
(4, 5, 6), one (5, 5, 6)-face and one (5, 5+, 6)-face. If d(v1) = 6 and d(v3) = 6,
then { f1, f2, f3, f4} consists of two (4,5,6)-faces, one (5,5+, 6)-face and one
(5, 5+, 5+)-face. Hence w′(v)≥ w(v)− 1

2
−max{7

4
+ 5

4
+2× 3

4
, 2× 5

4
+ 3

4
+1} ≥ 0.

(1.2.3) Assume n4(v) = 2. By the symmetry of {v1, v2} and {v5, v4},
assume that either d(v1) = d(v3) = 4, or d(v1) = d(v4) = 4, or d(v1) =
d(v5) = 4, or d(v2) = d(v4) = 4. Then either d(v1) = d(v4) = 4 or d(v1) =
d(v5) = 4, since G contains no F6. If d(v1) = d(v4) = 4, then d(v2) = d(v3) =
d(v5) = 6, since G contains no F1, and either of v3, v5 has no 3-neighbor, since
G contains no F7. If d(v1) = d(v5) = 4, then d(v2) = d(v3) = d(v4) = 6, for
otherwise G contains F1 or F9. Hence w′(v)≥ w(v)−max{7

4
+ 1

4
+ 6

4
+ 6

4
, 2× 7

4
+

2× 2
4
} = 0 if λ4(v) = 0, and w′(v)≥ w(v)− 1

2
−max{3× 5

4
+ 2

4
, 2× 5

4
+2× 2

4
}> 0

if λ4(v) = 1.

(1.3) λ3(v) = 5.

Clearly, v is not a cut vertex. Then n4(v)≤ 1, since G contains no F6, and
each 5-neighbor of v is incident with at most three 3-faces by Claim 4-(3). By
(R4.2), v gives at most 7

4
to each (4, 5, 5)-face and each (4, 5, 6)-face in which

the unique 6-vertex has a 3-neighbor, 1 to each (5, 5, 5)-face, 3
4

to each (5, 5, 6)-
face in which the unique 6-vertex has a 3-neighbor, 2

4
to each (5, 5, 6)-face in

which the unique 6-vertex has no 3-neighbor and to each (5,6,6)-face. It is
obvious that w′(v)≥ w(v)−5×1 = 0 if n4(v) = 0. Next, assume that n4(v) =
1, say d(v1) = 4. Then n5(v) ≤ 1, since G contains none of {F2, F3, F13, F14}.
If n5(v) = 0, then { f1, f2, f3, f4, f5} consists of two (4,5,6)-faces and three
(5,6,6)-faces, and so w′(v) ≥ w(v)− 2× 7

4
− 3× 2

4
> 0. If n5(v) = 1, then

by symmetry, assume that d(v2) = 5 or d(v3) = 5. Since G contains no F4

(resp., F8), v5 has no 3-neighbor if d(v2) = 5 (resp., v2 has no 3-neighbor if
d(v3) = 5). Thus w′(v)≥ w(v)−max{7

4
+ 3

4
+ 2

4
+ 2

4
+ 6

4
, 6

4
+ 2

4
+ 3

4
+ 2

4
+ 7

4
} = 0.

(2) k = 6.

By Claim 3, λ3(v) ≤ 4. Moreover, when λ3(v) = 4, λ4(v) ≤ 1 with equality
only if λ7+(v) = 1, by Claim 4-(1). We distinguish two cases.

(2.1) v adjacent to no 3-vertex. Then v is not a 3-master.
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If λ3(v) = 4 and λ4(v) = 1, then λ7+(v) = 1, and all vertices of the unique
4-face incident with v are in N(v) ∪ {v}, and so w′(v) ≥ w(v) + (2− 10

7
)−

2× 4− 1
2
> 0 by (R2) and (R5). If λ3(v) = 4 and λ4(v) = 0, then w′(v) ≥

w(v)− 2× 4 = 0, since v gives at most 2 to each incident 3-face by (R5.1).
If λ3(v)≤ 3, then every 4-face incident with v is not a (6,3,6,5−)-face, and
thus receives at most 2

3
from v by (R5.2). So w′(v)≥ w(v)−3×2−3× 2

3
= 0.

(2.2) v adjacent to some 3-vertices. Then v is a 3-master of exactly one
3-neighbor, and so sends 1

2
to this 3-neighbor by (R1). By Claims 5 and 6, v is

incident with at most two (3, 6,6)-faces.

If λ3(v)≤ 2, then w′(v)≥ w(v)− 1
2
−max{2×2+4× 3

4
, 2+5× 3

4
, 6× 3

4
}> 0

by (R5.1) and (R5.2). Assume that λ3(v) = 3. Then λ4(v)≤ 3. If λ4(v)≤ 2,
then w′(v) ≥ w(v)− 1

2
− (2× 2+ 7

4
+ 2× 3

4
) > 0 by (R5.1) and (R5.2). If

λ4(v) = 3, then the degrees of any two consecutive faces around v are 3 and
4 by Claim 4-(2). Note that v is incident with at least one (3, 6, 6)-face since v
adjacent to at least one 3-vertex. When v is incident with two (3, 6, 6)-faces, it
follows from Claim 5 that v is incident with one (6, 6, 6)-face, one (6, 6, 6, 3+)-
face and two (3, 6, 6, 6)-faces, and so w′(v)≥ w(v)− 1

2
−(2×2+ 4

3
+3× 2

3
)> 0

by (R5.1) and (R5.2). When v is incident with one (3, 6, 6)-face, it is incident
with at most one (3,6,5−, 6)-face. If v is incident with at least one (6,6,6)-
face, then w′(v) ≥ w(v)− 1

2
− (2+ 7

4
+ 4

3
+ 3

4
+ 2× 2

3
) > 0 by (R5.1) and

(R5.2). If v is not incident with a (6, 6, 6)-face, then v is incident with at least
one (6, 4+, 4+, 4+)-face, thus w′(v)≥ w(v)− 1

2
− (2+ 2× 7

4
+ 3

4
+ 2

3
+ 1

2
)> 0

by (R5.1) and (R5.2).

Assume that λ3(v) = 4. If λ4(v) = 0, then w′(v) ≥ w(v) − 1
2
− (2 ×

2+ 2× 7
4
) = 0 by (R5.1). If λ4(v) = 1 and the unique 4-face is incident

with no 3-vertex, then λ7+(v) = 1 by Claim 4-(1), and the unique 4-face
receives 1

2
from v by (R5.2). It follows from (R2) and (R5) that w′(v) ≥

w(v)− 1
2
+(2− 10

7
)−(2×2+2× 7

4
+ 1

2
)> 0. Hence assume further that λ4(v) = 1

and the unique 4-face is incident with a 3-vertex. Then λ7+(v) = 1 by Claim 4-
(1) again, and v has one of the local structures (d), (e), ( f ) shown in Fig. 2.2.
Recall Claim 2 that there is no even cycle in G such that d(x) + d(y) = 9 for
each edge x y of the cycle.
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For structure (d), either d(v1) = 3 or d(v6) = 3, since the 4-face is incident
with a 3-vertex and d(v3)≥ 5. If d(v1) = 3, then d(v2) = d(v3) = 6, d(v4) 6= 3
and d(v6) 6= 3, and so w′(v)≥ w(v)− 1

2
+ (2− 10

7
)− (2× 2+ 4

3
+ 7

4
+ 3

4
)> 0

by (R5); if d(v6) = 3, then d(v3) = d(v5) = 6, d(v2) 6= 3, d(v4) 6= 3, and so
w′(v)≥ w(v)− 1

2
+ (2− 10

7
)− (2+ 3× 7

4
+ 3

4
)> 0 by (R5).

For structure (e), either d(v1) = 3 or d(v6) = 3, since the 4-face is incident
with a 3-vertex and d(v3)≥ 5. If d(v1) = 3, then d(v2) = d(v3) = 6, d(v4) 6= 3
and d(v6) 6= 3, and so w′(v)≥ w(v)− 1

2
+(2− 10

7
)−max{2×2+2× 4

3
+ 3

4
, 2+

4
3
+ 2× 7

4
+ 3

4
}> 0; if d(v6) = 3, then d(v3) = 6 and d(v1) 6= 3, d(v2) 6= 3 and

d(v4) 6= 3, so w′(v)≥ w(v)− 1
2
+(2− 10

7
)−max{2+2× 7

4
+ 4

3
+ 3

4
, 4× 7

4
+ 3

4
}> 0.

For structure (f), either d(v1) = 3 or d(v6) = 3, since the 4-face is incident
with a 3-vertex and d(v4) ≥ 5. If d(v1) = 3, then d(v2) = d(v4) = 6 and
d(v3) 6= 3, d(v5) 6= 3 and d(v6) 6= 3, so w′(v) ≥ w(v) − 1

2
+ (2 − 10

7
) −

(2 + 3 × 7
4
+ 3

4
) > 0 by (R5). If d(v6) = 3, then d(v4) = 6, d(v1) 6= 3,

d(v3) 6= 3 and d(v5) 6= 3. If d(v2) = 3, then d(v1) = d(v3) = 6, so w′(v) =
w(v)− 1

2
+ (2− 10

7
)− (2× 2+ 4

3
+ 7

4
+ 2

3
) > 0 by (R5); if d(v2) 6= 3, then

w′(v)≥ w(v)− 1
2
+ (2− 10

7
)− (4× 7

4
+ 3

4
)> 0 by (R5).

The above analysis shows that all final charges of the vertices and faces
are nonnegative, as we claimed. This completes the proof of Theorem 2.3.

2.4 Conclusion and future work

In this chapter, we proved Conjecture 1.3 holds for planar graphs with ∆≥ 6
in which each 7-cycle contains no chords.

Recall that earlier results: χ ′(G) = ∆ for planar graphs with ∆ ≥ 7 and
χ ′`(G) = ∆ for planar graphs with ∆≥ 12. This means there is still a large gap
for Conjecture 1.2. In the future, we may work on Conjecture 1.2 with∆= 11.
And Conjecture 1.3 remains open for ∆ = 5,6,7. It might be interesting to
weaken the conjecture and we may consider whether all planar graphs are
edge-(∆+ 2)-choosable.





Chapter 3

Critical signed edge graphs

In the study of edge colorings of graphs, critical graphs are of particular
interest. On one hand, each graph G contains a critical graph H with χ ′(H) =
χ ′(G) as a subgraph. On the other hand, critical graphs have more structure
than arbitrary graphs. In this chapter, we study the structure of ∆-critical
signed graphs.

3.1 Introduction

A graph G or signed graph (G,σ) with maximum degree ∆ is said to be
∆-critical (or simply critical) if it is not ∆-edge-colorable, but G− e is ∆-edge-
colorable for any edge e ∈ E(G).

The study of critical graphs was initiated by Vizing. In his paper [62]
about edge coloring, he established a result about the neighborhood of an
edge in a ∆-critical graph, which known as Vizing’s Adjacency Lemma.

Lemma 3.1 (Vizing’s Adjacency Lemma [62]). Let G be a ∆-critical graph
with ∆ ≥ 2. Then for each edge x y, x has at least max{2,∆ − d(y) + 1}
neighbors of degree ∆ other that y.

Many similar adjacency lemmas have been established over the years by
various researchers.

41
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Lemma 3.2 (Luo and Zhang [50]). Let G be a ∆-critical graph and u be a 3-
vertex of G. Suppose that the three neighbors of u are all ∆-vertices. If v ∈ N(u)
has a (∆− 2)−-neighbor w 6= u, then u has a neighbor distinct from v which
has no (∆− 2)−-neighbors other than u.

Lemma 3.3 (Zhang [80]). Let G be a ∆-critical graph. If uv ∈ E(G) and
d(u) + d(v) = ∆+ 2, then

(i) every vertex of N(N(u, v)) \ {u, v} is of degree at least ∆− 1;

(ii) if both d(u), d(v)<∆, then every vertex of N(N(u, v))\{u, v} is of degree
at least ∆.

Lemma 3.4 (Sanders and Zhao [54]). No∆-critical graph. has distinct vertices
x , y, z such that x is adjacent to y and z, d(z)< 2∆− d(x)− d(y) + 2, and
xz is in at least d(x) + d(y)−∆− 2 triangles not containing y.

These adjacency results have broad applications and are extensively used
in edge coloring. It is natural to explore the possible existence and potential
applications of analogues of Adjacency Lemmas for signed graph. Cao, Luo,
Miao and Zhao extend Lemma 3.1 and Lemma 3.2 to signed graphs with even
maximum degree.

Lemma 3.5 (Signed Vizing’s Adjacency Lemma [12]). Let (G,σ) be a ∆-
critical graph with even∆≥ 2. Then for each edge x y, x has at least max{2,∆−
d(y) + 1} neighbors of degree ∆.

Lemma 3.6 (Cao, Luo, Miao and Zhao [12]). Let (G,σ) be a ∆-critical signed
graph with even ∆ and x be a 3-vertex of G. Suppose that the three neighbors of
x are all ∆-vertices. If y ∈ N(x) has a (∆− 2)−-neighbor z 6= x, then x has a
neighbor distinct from y which has no (∆− 2)−-neighbors other than x.

In this chapter, we establish the following analogue of this statement for
signed graphs with maximum degree 8.

Lemma 3.7. Let (G,σ) be an 8-critical signed graph with ∆(G) = 8 and let
x y ∈ E(G). Then d(x) + d(y)≥ 10 and the following statements hold.
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(a) If d(x)+d(y) = 10, then x is adjacent to at least (8−d(y)+1) 8-vertices
other than y.

(b) If d(x)+d(y) = 11, then x is adjacent to at least (8−d(y)+1) 7+-vertices
other than y.

(c) If d(x) + d(y) = 12 and d(x) ∈ {7,8}, then x is adjacent to at least
(8− d(y)+1) 6+-vertices other than y, and at least three of these vertices
are 7+-vertices.

And we extend Lemma 3.3-(2) to signed graphs with even maximum
degree.

Lemma 3.8. Let G be a ∆-critical graph with even ∆, let uv be an edge in G. If
d(u)+d(v) = ∆+2, and d(u), d(v)<∆, then every vertex in N(N(u, v))\{u, v}
is a ∆-vertex.

In order to present our proof of Lemma 3.7 and Lemma 3.8, we need some
additional terminology and notation, and we prove one auxiliary lemmas in
the next section.

3.2 Signed Kempe chain

The set of all k-edge-colorings of a signed graph (G,σ) is denoted byC k(G,σ).
Let ϕ ∈ C k(G,σ). For a vertex u ∈ V (G), define the two color sets

ϕ(u) = {ϕ(hu
e) : e ∈ E(G)} and ϕ(u) = Mk \ϕ(u).

We call ϕ(u) the set of colors present at u and ϕ(u) the set of colors missing
at u. Recalled that the colors of the two half edges on negative edge are the
same, we can simply denote the colors of both half edges of e by ϕ(e) for each
negative edge e.

Kempe chains have been a useful tool in the study of edge coloring of
graphs. In [3], Behr extended this concept to signed graphs. We repeat the
relevant terminology and notation here.

For {v0, v1, . . . , vm} ⊆ V (G), and {e1, . . . , em} ⊆ E(G), the alternating se-
quence v0e1v1 . . . vm−1emvm is called a signed trail if all ei = vi−1vi with sign
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σ(ei) for i ∈ [1, m] are distinct (but vertices may be repeated). See Fig. 3.1
for an example. Since all the edges in the trail are specified by their end
vertices, we use the shorthand (v0, v1, . . . , vm) for such a trail.

Definition 3.1 (Behr [3]). Let ϕ be a k-edge-coloring of a signed graph
(G,σ). A signed trail T = (v0, v1, . . . , vm) in G is called an a/b-chain at v0

with respect to ϕ (See Fig. 3.1) if the following four conditions hold.

(1) a ∈ ϕ(v0) and b ∈ ϕ(v0);

(2) The edge magnitudes alternate between |a| and |b| along T (starting
with |b|);

(3) {ϕ(hvi
ei
),ϕ(hvi

ei+1
)} = {(−1)t i a, (−1)t i b} for i ∈ [1, m− 1], where t i is

the number of positive edges that appear on T between v0 and vi;

(4) The length m of T is maximal.

v0 v1 v2(v6) v3

v4v5

v7

b

b

a

−a
−b b

a

ab−b−aabb

An a/b-chain

v0 v1 v2(v6) v3

v4v5

v7

a

a

b

−b
−a a

b

ba−a−bbaa

A b/a-chain

Figure 3.1: Two signed Kempe chains.

Denote by Pv0
(a, b,ϕ) the a/b-chain starting at v0 with respect to ϕ.

When a 6= 0 and b 6= 0, let ϕ/Pv0
(a, b,ϕ) denote the edge k-coloring obtained

from ϕ by swapping colors a and b, and swapping colors −a and −b on
Pv0
(a, b,ϕ). Clearly this swapping does not change the present or missing

colors at any vertex except the two ends of the chain.

In [12], Cao et al. gave some basic properties of a/b-chain which applied
frequently.
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Proposition 3.9 (Cao, Luo, Miao and Zhao [12]). Let ϕ ∈ C k(G,σ) and
a, b 6= 0 be two colors. Then we have the following:

(1) ϕ/Pv(a, b,ϕ) is a proper coloring in C k(G,σ);

(2) For any two vertices u, v ∈ V , if Pv(b, a,ϕ) and Pv(−a,−b,ϕ) and
Pu(a, b,ϕ) exist, then

(2.1) Pv(b, a,ϕ) and Pu(a, b,ϕ) are either identical (the underlying graphs
of this two trails are the same subgraph of G) or are edge-disjoint;

(2.2) Pu(a, b,ϕ) and Pv(−a,−b,ϕ) are either identical or are edge-disjoint.

Proposition 3.10 (Cao, Luo, Miao and Zhao [12]). Let (G,σ) be a ∆-critical
signed graph with ∆≥ 2. Then G is 2-connected and d(u) + d(v)≥∆+ 2 for
any edge uv ∈ E(G).

Lemma 3.11. Let (G,σ) be a ∆-critical graph and uv be a negative edge in G.
Let ϕ ∈ C∆(G−uv,σ|G−uv). Let a ∈ ϕ(u) and b ∈ ϕ(v) be two nonzero colors.
Then ϕ(u)∩ϕ(v) = ; and Pu(a, b,ϕ) = Pv(b, a,ϕ).

Proof. If ϕ(u) ∩ϕ(v) 6= ;, then ϕ can be extended to a ∆-edge-coloring of
G by coloring uv with a color in ϕ(u) ∩ ϕ(v), a contradiction to (G,σ) is
∆-critical.

Let ϕ′ = ϕ/Pu(a, b,ϕ). If Pu(a, b,ϕ) 6= Pv(b, a,ϕ), then ϕ′(u)∩ϕ′(v) 6= ;,
and so ϕ′ can be extended to a ∆-edge-coloring of G by coloring uv with a
color in ϕ′(u)∩ϕ′(v), a contradiction to (G,σ) is ∆-critical.

3.3 Proof of Lemma 3.7

Since the relevant case in our proof of Theorem 4.1 in Chapter 4 deals with
∆(G) = 8, we restrict ourselves in this section to 8-critical signed graphs and
to 8-edge-colorings. We will prove a number of structural results that will
help us to reduce the number of cases in the discharging proof of Chapter 4.

For any S ⊆ M8, let −S = {−a : a ∈ S}. Obviously, −S ⊆ M8. For a fixed
vertex x ∈ V (G), we can ensure that all edges incident with x are negative
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by switching at some vertices in N(x). In the remainder of this section, we
always assume that the edges incident with x are negative. So for any vertex
y ∈ N(x), we can treat the colors of the two half edges hx

x y and hy
x y as the

color of the edge x y .

Let G be an 8-critical signed graph and let x be this fixed vertex in G.
Assume that N(x) = {y0, y1, . . . , yd(x)−1}, where y0 = y and ϕ is an 8-edge-
coloring of G− x y . By Lemma 3.11,

ϕ(y)⊆ ϕ(x) = {ϕ(x y1), . . . ,ϕ(x yd(x)−1)}.

Without loss of generality, assume that ϕ(x) = {a1, a2, . . . , a|ϕ(x)|}, ϕ(y) =
{b1, b2, . . . , bq} where q = |ϕ(y)| and bi = ϕ(x yi) for each i ∈ [1, q].

For each i ∈ [1, q], let ϕi be obtained from ϕ by uncoloring x yi , coloring
x y with ϕ(x yi), and without changing the colors of the other half edges. For
each i ∈ [0, q], let Px(a, b,ϕi) be the a/b-chain starting at x with respect to
ϕi .

Lemma 3.12. Let G be an 8-critical signed graph, and let x y be an edge of G.
Assume that ϕ is an 8-edge-coloring of G− x y. For each pair {i, j} ⊆ [1, q], the
following statements hold.

(1) If b ∈ ϕ(y)∩ϕ(yi), then

(1.1) there is an index k ∈ [1, q] \ {i} such that b = ϕ(x yk);

(1.2) Px(a, b,ϕ) = (x , yk, . . . , u, x , yi , . . . , y) where a ∈ ϕ(x), u ∈ N(x),
{ϕ(xu),ϕ(x yi)}= {−a,−b}.

(2) If a ∈ ϕ(x) and b ∈ ϕ(x)∩ϕ(y)∩ϕ(yi)∩ϕ(y j), then

(2.1) there is a vertex u ∈ N(x) \ {y1, . . . , yq} such that b = ϕ(xu);

(2.2) ϕ(x yi) ∈ {−a,−b} or ϕ(x y j) ∈ {−a,−b};

(2.3) {ϕ(x yi),ϕ(x y j)} 6= {−a,−b};

(2.4)

Px(a, b,ϕi) =

¨

(x , u, . . . , w, x , y, . . . , yi) if ϕ(x yi) ∈ {−a,−b};
(x , u, . . . , w, x , y j , . . . , yi) if ϕ(x y j) ∈ {−a,−b}
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where w ∈ N(x) and ϕ(xw) = {−a,−b} \ {ϕ(x yi),ϕ(x y j)}.

Proof. (1.1) It can be obtained directly from ϕ(y) = {ϕ(x y1), . . . ,ϕ(x yq)}
and b ∈ ϕ(y)∩ϕ(yi).

(1.2) Suppose to the contrary that Px(a, b,ϕ) 6= (x , yk, . . . , u, x , yi , . . . , y).
By Lemma 3.11, Px(a, b,ϕ) ends at y. Since a ∈ ϕ(x), by (1.1) and
the definition of a/b-chain, Px(a, b,ϕ) = (x , yk, . . . , y) or Px(a, b,ϕ) =
(x , yk, . . . , u, x , v, . . . , y) where {ϕ(xu),ϕ(x v)} = {−a,−b} and u, v are dis-
tinct neighbors of x . Note that a ∈ ϕi(x) and b ∈ ϕi(yi) = ϕ(yi)∪ {ϕ(x yi)}
with respect to ϕ. In the following, we will show that Px(a, b,ϕi) either
does not end at yi, or ends at yi but ϕi(h

yi
e ) 6= a, where e is the last edge of

Px(a, b,ϕi). This is a contradiction to Lemma 3.11.

If Px(a, b,ϕ) = (x , yk, . . . , y) or Px(a, b,ϕ) = (x , yk, . . . , u, x , v, . . . , y) and
yi /∈ {u, v}, then Px(a, b,ϕi) ends at y, a contradiction. If Px(a, b,ϕ) =
(x , yk, . . . , yi , x , v, . . . , y), then Px(a, b,ϕi) ends at yi since ϕ(x yi) ∈ ϕi(yi),
however, ϕi(h

yi
e ) ∈ {−a,−b} where e is the last edge of Px(a, b,ϕi), a contra-

diction. This completes the proof of (1).

Before we prove (2) of the lemma, we first make some general obser-
vations. For ` ∈ {i, j}, we have a ∈ ϕ`(x), b ∈ ϕ`(y`) = ϕ(y`) ∪ {ϕ(x y`)}
(b 6= ϕ(x y`)). By Lemma 3.11, Px(a, b,ϕi) ends at yi. We will show that
Px(a, b,ϕ j) does not end at y j, or ends at y j but ϕi(h

y j
e ) 6= a, where e is the

last edge of Px(a, b,ϕ j). This is a contradiction to Lemma 3.11.

(2.1) It can be obtained directly from b /∈ ϕ(y) = {ϕ(x y1), . . . ,ϕ(x yq)}
and b ∈ ϕ(x).

By (2.1), ϕ(xu) = b where u ∈ N(x) \ {y1, . . . , yq}.

(2.2) Suppose to the contrary that ϕ(x yi) /∈ {−a,−b} and ϕ(x y j) /∈
{−a,−b}. For each ` ∈ {i, j}, since ϕ(x y`) /∈ {a,−a,−b}, x y, x y j /∈ E(Px(a,
b,ϕi)). Then Px(a, b,ϕ j) ends at yi since b ∈ ϕ j(yi) = ϕ(yi), a contradiction.

(2.3) Suppose to the contrary that {ϕ(x yi),ϕ(x y j)} = {−a,−b}. With
respect to ϕi, ϕi(x y) ∈ {−a,−b}. We claim that x y ∈ E(Px(a, b,ϕi)). If
not, then Px(a, b,ϕi) = (x , u, . . . , yi), and so Px(a, b,ϕ j) ends at yi, a con-
tradiction. Thus {−a,−b} ⊆ ϕi(y) = ϕ(y) ∪ {ϕ(x yi)}. Since ϕ(x y j) =
{−a,−b} \ {γ0(x yi)}, ϕ(x y j) ∈ ϕ(y), a contradiction to ϕ(x y j) ∈ ϕ(y).
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(2.4) Suppose to the contrary that Px(a, b,ϕi) 6= (x , u, . . . , w, x , y, . . . , yi)
when ϕ(x yi) ∈ {−a,−b} and Px(a, b,ϕi) 6= (x , u, . . . , w, x , y j , . . . , yi) when
ϕ(x y j) ∈ {−a,−b}. If ϕ(x yi) ∈ {−a,−b}, then ϕ(x y j) /∈ {−a,−b} by (2.3).
Since Px(a, b,ϕi) 6= (x , u, . . . , w, x , y, . . . , yi), Px(a, b,ϕi) = (x , u, . . . , yi) or
Px(a, b,ϕi) = (x , u, . . . , y, x , w, . . . , yi) where {ϕi(x y),ϕi(xw)} = {−a,−b}.
For the first case, Px(a, b,ϕ j) ends at yi, a contradiction; for the last case,
Px(a, b,ϕ j) ends at y since ϕ(x yi) ∈ ϕ j(y), a contradiction.

If ϕ(x y j) ∈ {−a,−b}, then ϕ(x yi) /∈ {−a,−b} by (2.3). Since

Px(a, b,ϕi) 6= (x , u, . . . , w, x , y j , . . . , yi),

Px(a, b,ϕi) = (x , u, . . . , yi) or Px(a, b,ϕi) = (x , u, . . . , y j , x , w, . . . , yi) where
{ϕi(x y j) = ϕ(x y j),ϕi(xw)}= {−a,−b}. For the first case, Px(a, b,ϕ j) ends
at yi, a contradiction; for the last case, Px(a, b,ϕ j) ends at y j but ϕ j(h

y j
e ) ∈

{−a,−b}, where e is the last edge of Px(a, b,ϕ j), a contradiction.

In the following lemma, we show which colors must be present at vertices
y1, . . . , yq with respect to ϕ.

Lemma 3.13. Let G be an 8-critical signed graph, and let x y be an edge of G.
Assume that ϕ is an 8-edge-coloring of G − x y and P = ϕ(x)∩ϕ(y). For each
i ∈ [1, q], the following statements hold.

(1) If either d(x)< 8 or d(x) = 8 and −ϕ(x)⊆ ϕ(y), then

ϕ(yi)⊇
¨

ϕ(y) \ {−ϕ(x yi)} if −ϕ(x)⊆ P ∩ϕ(yi);
ϕ(y) otherwise.

(2) If d(x) = 8 and −ϕ(x)⊆ ϕ(y), then

ϕ(yi)⊇
¨

ϕ(y) \ (−P) if −ϕ(x yi) ∈ ϕ(x).
ϕ(y) otherwise.

(3) Let d(x) = 8 and −ϕ(x) = {−a1} ⊆ ϕ(y). If c ∈ ϕ(y)∩ϕ(yi)∩ (−P)
where ϕ(x yi) =−a1, then −c ∈ ϕ(yi).
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Proof. (1) Suppose to the contrary that there is a color inϕ(y)\{−ϕ(x yi)} but
not in ϕ(yi). Without loss of generality, denote this color by b (b 6=−ϕ(x yi)).
By Lemma 3.12-(1.1), there is an index k ∈ [1, q] \ {i} such that ϕ(x yk) = b.
If dG(x) ≤ 7, then {a1, a2} ⊆ ϕ(x). There is a color a ∈ {a1, a2} such that
a 6= −ϕ(x yi). Without loss of generality, assume that a = a1. By Lemma
3.12-(1.2), Px(a1, b,ϕ) = (x , yk, . . . , u, x , yi , . . . , y) where {ϕ(xu),ϕ(x yi)} =
{−a1,−b}. Since ϕ(x yi) 6=−b, ϕ(x yi) =−a1, a contradiction to assumption.
If dG(x) = 8, then ϕ(x) = {a1}. Since b 6= −ϕ(x yi), by Lemma 3.12-(1.2),
−a1 = ϕ(x yi) ∈ ϕ(y), a contradiction to {−a1} = −ϕ(x) ⊆ ϕ(y). Hence
ϕ(y) \ {−ϕ(x yi)} ⊆ ϕ(yi).

Now we only need to show that the color b = −ϕ(x yi) ∈ ϕ(yi) when
−ϕ(x) 6⊆ ϕ(x)∩ϕ(yi)∩ϕ(y). Suppose to the contrary that b =−ϕ(x yi) /∈
ϕ(yi). If −ϕ(x) 6⊆ ϕ(x) ∩ ϕ(yi) ∩ ϕ(y), then there is a color a ∈ ϕ(x)
such that −a /∈ ϕ(x), or −a /∈ ϕ(yi), or −a /∈ ϕ(y). By Lemma 3.12-
(1.2), Px(a, b,ϕ) = (x , yk, . . . , u, x , yi , . . . , y). If −a /∈ ϕ(x) or −a /∈ ϕ(yi),
then Px(a, b,ϕ) = (x , yk, . . . , y), a contradiction. Note that a ∈ ϕi(x) and
b ∈ ϕi(yi) with respect to ϕi. If −a /∈ ϕ(y), then Px(a, b,ϕi) ends at y
since −a ∈ ϕi(y) = ϕ(y) \ {ϕ(x yi)}, a contradiction to Lemma 3.11. This
completes the proof of (1).

(2) We first note that since dG(x) = 8, −ϕ(x) = {−a1}. When ϕ(x yi) =
−a1, suppose to the contrary that there is a color in ϕ(y) \ (−P) but not in
ϕ(yi). Without loss of generality, denote this color by b. By Lemma 3.12-
(1.1) and (1.2), there is an index k ∈ [1, q] \ {i} such that ϕ(x yk) = b and
Px(a1, b,ϕ) = (x , yk, . . . , u, x , yi , . . . , y) where ϕ(xu) = −b. Note that a1 ∈
ϕi(x) and b ∈ ϕi(yi) with respect to ϕi . Since b /∈ (−P) and {b,−b} ⊆ ϕ(x),
−b ∈ ϕ(y) = ϕi(y)∪ {−a1}. Then Px(a1, b,ϕi) ends at y , a contradiction to
Lemma 3.11.

When ϕ(x yi) 6= −a1, suppose to the contrary that there is a color in
ϕ(y) but not ϕ(yi). Without loss of generality, denote this color by b. By
Lemma 3.12-(1.1) and (1.2), there is an index k ∈ [1, q] \ {i} such that
ϕ(x yk) = b and Px(a1, b,ϕ) = (x , yk, . . . , u, x , yi , . . . , y) where ϕ(xu) =−a1

and ϕ(x yi) = −b. Note that a1 ∈ ϕi(x) and b ∈ ϕi(yi) with respect to ϕi.
Then Px(a1, b,ϕi) ends at y since−a1 ∈ ϕi(y)∪{−b} = ϕ(y), a contradiction
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to Lemma 3.11. This completes the proof of (2).

(3) Suppose to the contrary that −c /∈ ϕ(yi). Note that {a1} = ϕ(x)
and c ∈ ϕ(y). By Lemma 3.12-(1.1) and (1.2), there is an index k ∈
[1, q] \ {i} such that ϕ(x yk) = c and Px(a1, c,ϕ) = (x , yk, . . . , u, x , yi , . . . , y).
where ϕ(x yi) = −a1 and ϕ(xu) = −c. Since −c /∈ ϕ(yi), Px(a1, c,ϕ) =
(x , yk, . . . , y), a contradiction. This completes the proof of (3).

Lemma 3.11–3.13 will be used in the proof of the next lemma. The
main aim of these four lemmas is to obtain Lemma 3.7, an analogue of
Vizing’s Adjacency Lemma. This final Lemma 3.7 will provide us with essential
structural information on the vertex degrees in an 8-critical signed graph. As
such, it will play a key role in our discharging proof of Theorem 4.1 that will
be presented in Chapter 4.

Lemma 3.14. Let G be an 8-critical signed graph, and let x y be an edge
of G with d(x) = 7 and d(y) = 5. Assume that ϕ is an 8-edge-coloring of
G − x y and ϕ(x) = {a1, a2}. For each pair {i, j} ⊆ [1, q], if there is a color
b ∈ ϕ(yi)∩ϕ(y j), then

(1) b ∈ ϕ(x)∩ϕ(y);

(2) −a1 6= a2;

(3) {ϕ(x yi),ϕ(x y j)}= {−a1,−a2};

(4) −b ∈ ϕ(y)∩ϕ(yi).

Proof. Before we prove the four statements of the lemma, we first make
some general observations. Note that ϕi(x) = ϕ j(x) = ϕ(x) = {a1, a2} and
b ∈ ϕi(yi)∩ϕ j(y j). By Lemma 3.11, Px(a1, b,ϕi) and Px(a2, b,ϕi) end at yi

with respect to ϕi .

In the following, with respect to ϕ j , we consider Px(a1, b,ϕi) and Px(a2,
b,ϕi). We will show that there is a color a ∈ {a1, a2} such that Px(a, b,ϕ j)
does not end at y j, or ends at y j but ϕ j(h

y j
e ) 6= a where e is the last edge of

Px(a, b,ϕ j), a contradiction to Lemma 3.11.
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(1) Suppose to the contrary that b /∈ ϕ(x) ∩ϕ(y). If b /∈ ϕ(x), that is,
b ∈ ϕ(x), then coloring x y with ϕ(x yi) and coloring x yi with b, results in
an 8-edge-coloring of G, a contradiction. If b /∈ ϕ(y), that is, b ∈ ϕ(y), then
b =−ϕ(x yi) and b =−ϕ(x y j) by Lemma 3.13-(1), a contradiction to i 6= j.
Thus b ∈ ϕ(x)∩ϕ(y).

By (1) and Lemma 3.12-(2.1), b /∈ {a1, a2} and there is a vertex u ∈
N(x) \ {y1, . . . , yq} such that b = ϕ(xu).

(2) Suppose to the contrary that −a1 = a2. Since −a1 ∈ ϕ(x), Px(a1, b,
ϕi) = (x , u, . . . , yi). And so Px(a1, b,ϕ j) ends at yi, a contradiction. Thus
−a1 6= a2.

(3) Suppose to the contrary that {ϕ(x yi),ϕ(x y j)} 6= {−a1,−a2}. Without
loss of generality, assume that ϕ(x yi) 6=−a1. We consider two different cases:
ϕ(x yi) =−a2 and ϕ(x yi) 6=−a2.

When ϕ(x yi) = −a2, clearly, ϕ(x y j) 6= −a1. By Lemma 3.12-(2.3),
ϕ(x y j) 6= −b. It is easy to check that x y, x y j /∈ E(Px(a1, b,ϕi)). Then
Px(a1, b,ϕ j) ends at yi , a contradiction.

When ϕ(x yi) 6= −a2 and −b /∈ {ϕ(x yi),ϕ(x y j)}, by Lemma 3.12-(2.2)
and (2.3), ϕ(x y j) ∈ {−a1,−a2}. Let −a ∈ {−a1,−a2} \ {ϕ(x y j)}. It is
easy to check that x y, x y j /∈ E(Px(a, b,ϕi)). Then Px(a, b,ϕ j) ends at yi, a
contradiction.

When ϕ(x yi) 6= −a2 and −b ∈ {ϕ(x yi),ϕ(x y j)}, it implies that −b ∈
ϕ(y) and b /∈ {−a1,−a2}. Since d(y) = 5, a1 6= −a2 and b ∈ ϕ(y),
{−a1,−a2} 6⊆ ϕ(y). Without loss of generality, assume that −a1 /∈ ϕ(y).
If ϕ(x yi) =−b, then Px(a1, b,ϕi) = (x , u, . . . , yi), a contradiction to Lemma
3.12-(2.4). If γ0(x y j) = −b, then Px(a1, b,ϕi) = (x , u, . . . , w, x , y j , . . . , yi)
by Lemma 3.12-(2.4). And so Px(a1, b,ϕ j) ends at y since −a1 /∈ ϕ j(y) =
ϕ(y)∪ {−b}, a contradiction. Thus {ϕ(x yi),ϕ(x y j)}= {−a1,−a2}.

(4) Suppose to the contrary that −b /∈ ϕ(y) ∩ ϕ(yi). By (2) and (3),
−a1 6= a2 and {ϕ(x yi),ϕ(x y j)} = {−a1,−a2}. Since b ∈ ϕ(x) ∩ϕ(y), b /∈
{−a1,−a2} and so −b /∈ {a1, a2}. By Lemma 3.12-(2.4), Px(−ϕ(x yi), b,ϕi)
= (x , u, . . . , w, x , y, . . . , yi) where w ∈ N(x) and ϕ(xw) =−b. If −b /∈ ϕ(y),
then Px(−ϕ(x yi), b,ϕi) = (x , u, . . . , yi), a contradiction. If −b /∈ ϕ(yi),
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then Px(−ϕ(x yi), b,ϕ j) ends at yi, a contradiction to Lemma 3.11. Thus
−b ∈ ϕ(y)∩ϕ(yi).

Proof of Lemma 3.7 Before we prove the three statements of the lemma,
we first make some general observations. Since G is 8-critical, G − x y has
an 8-edge-coloring ϕ. Recall that all edges incident with x are negative in
G. Also recall that ϕ(x) = {a1, a2, . . . , a|ϕ(x)|}, ϕ(y) = {b1, b2, . . . , bq} where
|ϕ(y)|= q and bi = ϕ(x yi) for each i ∈ [1, q]. Clearly, q = 8− (d(y)− 1) =
8− d(y) + 1. Let P = ϕ(x)∩ϕ(y). It follows directly from the definitions
that

ϕ(x)∪ϕ(y) = (M8 \ϕ(x))∪ (M8 \ϕ(y)) = M8 \ P. (3.1)

By Lemma 3.11, ϕ(y)⊆ ϕ(x), so ϕ(x)∪ϕ(y)⊇ ϕ(y)∪ϕ(y) = M8. And

|P|= |ϕ(x)|+ |ϕ(y)| − |ϕ(x)∪ϕ(y)|= d(x) + d(y)− 2− |M8|

= d(x) + d(y)− 10.
(3.2)

This implies that d(x) + d(y)≥ 10.

For each i ∈ [1, q], when d(x) ≤ 7 or d(x) = 8 and −ϕ(x) ⊆ ϕ(y),
by Lemma 3.11 and Lemma 3.13-(1), ϕ(yi) ⊇ ϕ(x)∪ϕ(y) \ {−γ0(x yi)} if
−ϕ(x)⊆ ϕ(yi)∩ P; ϕ(yi)⊇ ϕ(x)∪ϕ(y) otherwise. By Eq. (3.1),

ϕ(yi)⊇
¨

M8 \ P \ {−ϕ(x yi)} if −ϕ(x)⊆ ϕ(yi)∩ P;
M8 \ P otherwise.

(3.3)

When d(x) = 8 and−ϕ(x) = {−a1} ⊆ ϕ(y), by Lemma 3.11, Lemma 3.13-(2)
and Eq. (3.1),

ϕ(yi)⊇
¨

ϕ(x)∪ϕ(y) \ (−P) = M8 \ P \ (−P) if ϕ(x yi) =−a1;
ϕ(x)∪ϕ(y) = M8 \ P otherwise.

(3.4)

We next prove the three statements of the lemma in the same order.

For (a), since d(x) + d(y) = 10, we have |P| = 0 by Eq. (3.2), that is
P = ;. If d(x)< 8, then −ϕ(x) 6⊆ ϕ(yi)∩ P = ;. If d(x) = 8, then −ϕ(x)⊆
ϕ(y). For each i ∈ [1, q], by Eqs. (3.3) and (3.4), ϕ(yi) ⊇ M8 \ P = M8 or
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ϕ(yi)⊇ M8 \ P \ (−P) = M8. Thus x is adjacent to q = 8− d(y)+1 8-vertices
(other than y).

For (b), since d(x) + d(y) = 11, we have |P| = 1 by Eq. (3.2). For each
i ∈ [1, q], if d(x) 6= 8, then |ϕ(x)| ≥ 2, and so there is a color a ∈ ϕ(x) such
that −a /∈ P, which implies that −ϕ(x) 6⊆ P. By Eq. (3.3), d(yi) = |ϕ(yi)| ≥
|M8 \ P|= 7.

When d(x) = 8 and −ϕ(x) = {−a1} ⊆ ϕ(y), if −a1 /∈ ϕ(yi), then
d(yi) = |ϕ(yi)| ≥ |M8 \ P| = 7; otherwise d(yi) = |ϕ(yi)| ≥ |M8 \ P \
{−ϕ(x yi)}|+ |{−a1}|= 7 by Eq. (3.3).

When d(x) = 8 and −ϕ(x) = {−a1} ⊆ ϕ(y), assume that P = {c}.
Clearly, −c ∈ ϕ(y)∩ (−P). By Eq. (3.4), if ϕ(x yi) 6= −a1 or ϕ(x yi) = −a1

and−P = {−c} ⊆ ϕ(yi), then d(yi) = |ϕ(yi)| ≥ |M8\P| = 7; if ϕ(x yi) =−a1

and −c ∈ ϕ(yi), then c ∈ ϕ(yi) by Lemma 3.13-(3), and so d(yi) = |ϕ(yi)| ≥
|M8 \ P \ (−P)|+ |{c}|= 7.

Thus in all cases x is adjacent to (8− d(y) + 1) 7+-vertices.

For (c), since d(x) + d(y) = 12, by Eq. (3.2), |P|= 2. We distinguish two
cases: d(x) = 7 and d(x) = 8.

Case 1. d(x) = 7 and d(y) = 5.

Then ϕ(x) = {a1, a2}, |ϕ(y)| = q = 4. Let P = {ϕ(xz1),ϕ(xz2)}, where
{z1, z2} ⊆ NG(x) \ {y, y1, y2, y3, y4}. By Lemma 3.11 and d(y) = 5, ϕ(y) =
{a1, a2} ∪ P.

By Eq. (3.3), for each i ∈ [1,4], if −ϕ(x) ⊆ ϕ(yi) ∩ P, it implies
P = {−a1,−a2} ⊆ ϕ(yi). Then d(yi) = |ϕ(yi)| ≥ |(M8 \ P) \ {−ϕ(x yi)}|+
|{−a1,−a2}|= 7.

If −ϕ(x) 6⊆ ϕ(yi)∩ P, then d(yi) = |ϕ(yi)| ≥ |(M8 \ P)| = 6. Let J = { j ∈
[1,4] : d(y j) = 6}. We claim that |J | ≤ 1. If not, without loss of generality,
assume that d(y1) = d(y2) = 6, then ϕ(y1) = ϕ(y2) = P. By Lemma 3.14-
(1)∼(4), a1 6= −a2, {ϕ(x y1),ϕ(x y2)} = {−a1,−a2}, {ϕ(xz1),−ϕ(xz1)} ⊆
ϕ(y) = {a1, a2} ∪ P, −ϕ(xz1) ∈ ϕ(y1). Since ϕ(xz1) 6= a1, a2, −ϕ(xz1) 6=
a1, a2, −ϕ(xz1) = ϕ(xz2), a contradiction to ϕ(xz2) ∈ ϕ(y1). Thus there are
at least three 7+-vertices in {y1, . . . , y4}.

Case 2. d(x) = 8 and d(y) = 4.
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Then q = 8− d(y)+1 = 5. We distinguish two subcases: −a1 ∈ ϕ(y) and
−a1 ∈ ϕ(y).

Subcase 2.1. −ϕ(x) = {−a1} ⊆ ϕ(y).

Without loss of generality, assume that ϕ(y) = {a1,−a1, c}. Then P =
{−a1, c}.

For each i ∈ [1,5], by Eq. (3.3), if −a1 /∈ ϕ(yi) or −a1 ∈ ϕ(yi) and
−ϕ(x yi) ∈ P, then d(yi) = |ϕ(yi)| ≥ |(M8 \ P)| = 6; if −a1 ∈ ϕ(yi) and
−ϕ(x yi) /∈ P, then d(yi) = |ϕ(yi)| ≥ |(M8 \ P) \ {−ϕ(x yi)}|+ |{−a1}|= 6.

Let J = { j ∈ [1, 5] : d(y j) = 6}. We claim that |J | ≤ 2. If not, without loss
of generality, assume that d(y1) = d(y2) = d(y3) = 6 and ϕ(x y1),ϕ(x y2) 6=
−c. It is easy check that c ∈ ϕ(y1)∩ϕ(y2)∩ϕ(x)∩ϕ(y). By Lemma 3.12-
(2.2), −a1 = ϕ(x y1) ∈ ϕ(y) or −a1 = ϕ(x y2) ∈ ϕ(y), a contradiction to
{−a1} ⊆ ϕ(y).

Subcase 2.2. −ϕ(x) = {−a1} ⊆ ϕ(y).

Without loss of generality, assume that ϕ(y) = {a1, c1, c2}, ϕ(x y5) =−a1,
and so P = {c1, c2}.

By Eq. (3.4), for vertex y5, when c1 = −c2, it implies that P = −P,
thus d(yi) = |ϕ(yi)| ≥ |M8 \ P \ (−P)| = 6. When c1 6= −c2, if there is a
color −c ∈ (−P)∩ϕ(y)∩ϕ(y5), then c ∈ ϕ(y5) by Lemma 3.13-(3). Thus
d(y1) = |M8 \ P \ (−P)|+ |(−P)∩ϕ(y5)|+ | − ((−P) \ϕ(y5))|= 6.

For each i ∈ [1, 4], by Eq. (3.4), d(yi) = |ϕ(yi)| ≥ |M8 \ P|= 6.

Let J = { j ∈ [1, 4] : d(y j) = 6}. We claim that |J | ≤ 1. If not, without loss
of generality, assume that d(y1) = d(y2) = 6. Clearly, ϕ(y1) = ϕ(y2) = P =
{c1, c2}. And there is a color c ∈ {c1, c2} such that ϕ(x y1) 6= −c. By Lemma
3.12-(2.1), there is a vertex u ∈ N(x) \ {y1, . . . , yq} such that c = ϕ(xu).
Since ϕ(x y1),ϕ(x y2) 6=−a1, ϕ(x y2) =−c by Lemma 3.12-(2.2). By Lemma
3.12-(2.4), Px(a1, c,ϕ1) = (x , u, . . . , w, x , y2, . . . , y1) where w = y5. Note that
a1 ∈ ϕ2(x) and c ∈ ϕ2(y2). Then Px(a1, c,ϕ2) ends at y since −a1 ∈ ϕ2(y) =
ϕ(y) \ {−c}, a contradiction to Lemma 3.11. Thus there are at least three
7+-vertices in {y1, . . . , y4}.

This completes the proof of the lemma.
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3.4 Proof of Lemma 3.8

Proof. Recall that for each negative edge x y , we can treat the colors of the two
half edges hx

x y and hy
x y as the color of edge x y . By switching, we assume that

edge uv is negative. Let us consider an arbitrary coloring ϕ ∈ C∆(G − uv).
Such a ϕ exists, since G is ∆-critical and uv is a critical negative edge of
G. By Proposition 3.11, ϕ(u) ∩ ϕ(v) = ;. Since d(u) + d(v) = ∆ + 2,
ϕ(u)∪ϕ(v) = M∆. Note that each vertex x of G satisfies |ϕ(x)| =∆−dG(x)+1
if x ∈ {u, v} and |ϕ(x)|=∆− dG(x) otherwise.

Now, let us consider an arbitrary vertex in N(N(u, v)) \ {u, v}. If z ∈
N(u, v) \ {u, v}, then Signed Vizing’s Adjacency Lemma (Lemma 3.5) implies
that dG(z) = ∆ and we are done. Otherwise, there is an edge wz ∈ E(G) for
some vertex w ∈ NG(u, v) \ {u, v}. By symmetry and switching at z, we may
assume that w ∈ NG(v) and wz ∈ E(G) is a negative edge where dG(z) <∆.
Thus path (u, uv, v, vw, w, wz, z) is a all negative path in G. Since ϕ(z) 6= ;,
suppose that γ ∈ ϕ(z). Clearly, ϕ(vw) 6= ϕ(wz) 6= γ. Since |ϕ(u)∪ϕ(v)| =∆,
it follows that ϕ(vw) ∈ ϕ(u) and γ,ϕ(wz) ∈ ϕ(u) ∪ ϕ(v). We distinguish
two cases with two subcases each, depending on whether ϕ(wz) ∈ ϕ(v) or
ϕ(wz) ∈ ϕ(u), as follows.

Case 1. ϕ(wz) ∈ ϕ(v).

Subcase 1.1. γ ∈ ϕ(v).

By Proposition 3.11, we know that Pu(ϕ(vw),γ,ϕ) = Pv(γ,ϕ(vw),ϕ) is
edge-disjoint from Pz(γ,ϕ(vw),ϕ). If wz ∈ E(Pv(γ,ϕ(vw),ϕ)), then ϕ(wz)
∈ {−γ,−ϕ(vw)} since γ ∈ ϕ(z), and let {α} = {−γ,−ϕ(vw)} \ {ϕ(wz)}.
Let ϕ′ = ϕ/Pv(γ,ϕ(vw),ϕ). It can check easily that γ ∈ ϕ′(u). If wz /∈
E(Pv(γ,ϕ(vw),ϕ)) or wz ∈ E(Pv(γ,ϕ(vw),ϕ)) and α ∈ ϕ(v), then we can
construct a proper coloring ϕ′′ of G − wz by setting ϕ′′(uv) = ϕ′(vw),
ϕ′′(vw) = ϕ′(wz) ∈ ϕ′(v). And so γ ∈ ϕ′′(w) ∩ ϕ′′(z), a contradiction. If
wz ∈ E(Pv(γ,ϕ(vw),ϕ)) and α ∈ ϕ(v), then α ∈ ϕ(u). By Proposition 3.9 and
3.11, Pu(α,ϕ(wz),ϕ) = Pv(ϕ(wz),α,ϕ) is edge-disjoint from Pv(γ,ϕ(vw),ϕ).
Let ϕ′′ = ϕ′/Pv(ϕ(wz),α,ϕ). Then ϕ′′(wz) = ϕ′(wz) ∈ ϕ′′(v), and so we
are back in an earlier subcase with wz ∈ E(Pv(γ,ϕ(vw),ϕ)) and α ∈ ϕ′′(v)
with respect to ϕ′′.
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Subcase 1.2. γ ∈ ϕ(u).

Since dG(v) < ∆, |ϕ(v)| ≥ 2. Let δ ∈ ϕ(v) \ {ϕ(wz)}. Clearly, δ /∈
{ϕ(vw),ϕ(wz)} and γ 6= ϕ(wz). We claim that γ 6= ϕ(vw). If not, then
Pv(ϕ(wz),γ,ϕ) ends at z, a contradiction to Proposition 3.11. By Proposition
3.11, Pu(γ,δ,ϕ) = Pv(δ,γ,ϕ). Let ϕ′ = ϕ/Pv(δ,γ,ϕ). Then ϕ′ belongs to
C∆(G− uv), and ϕ′(u) = ϕ(u) \ {γ} ∪ {δ}, ϕ′(v) = ϕ(v) \ {δ} ∪ {γ}.

We claim that {vw, wz} 6⊆ E(Pv(δ,γ,ϕ)). If not, then {ϕ(vw),ϕ(wz)} =
{−γ,−δ} and {−γ,−δ} ⊆ ϕ(v), a contradiction to ϕ(wz) ∈ ϕ(v). When
vw ∈ E(Pv(δ,γ,ϕ)), it implies that ϕ(vw) ∈ {−γ,−δ} ⊆ ϕ(v), and so
{−γ,−δ} ⊆ ϕ(u). When wz ∈ E(Pv(δ,γ,ϕ)), it implies that ϕ(wz) ∈ {−γ,
−δ}, let {α}= {−γ,−δ} \ {ϕ(wz)}.

If vw, wz /∈ E(Pv(δ,γ,ϕ)), or vw ∈ E(Pv(δ,γ,ϕ)), or wz ∈ E(Pv(δ,γ,ϕ))
and α ∈ ϕ(v), then γ ∈ ϕ′(v) ∩ϕ′(z), ϕ′(vw) ∈ ϕ′(u) and ϕ′(wz) ∈ ϕ′(v).
Hence, we are back to Subcase 1.1.

Recall that ϕ(wz) ∈ ϕ(v). If wz ∈ E(Pv(δ,γ,ϕ)) and α ∈ ϕ(v), then
α ∈ ϕ(u). By Proposition 3.9 and 3.11, Pu(α,ϕ(wz),ϕ) = Pv(ϕ(wz),α,ϕ)
is edge-disjoint from Pv(δ,γ,ϕ) and vw /∈ E(Pv(ϕ(wz),α,ϕ)). Let ϕ′′ =
ϕ/Pv(ϕ(wz),α,ϕ). Then we are back in an earlier subcase with wz ∈
E(Pv(δ,γ,ϕ)) and α ∈ ϕ′′(v) with respect to ϕ′′.

Case 2. ϕ(wz) ∈ ϕ(u).

Subcase 2.1. γ ∈ ϕ(v).

Since γ ∈ ϕ(v) and ϕ(wz) ∈ ϕ(u), Pu(ϕ(wz),γ,ϕ) = Pv(γ,ϕ(wz),ϕ).
Clearly, wz /∈ E(Pv(γ,ϕ(wz),ϕ)) since γ ∈ ϕ(z). Let ϕ′ = ϕ/Pv(γ,ϕ(wz),ϕ).
Then ϕ′ belongs to C∆(G− uv), ϕ′(u) = ϕ(u) \ {ϕ(wz)} ∪ {γ} and ϕ′(v) =
ϕ(v) \ {γ} ∪ {ϕ(wz)}. If vw /∈ E(Pv(γ,ϕ(wz),ϕ)), then {γ,ϕ′(vw) = ϕ(vw)}
⊆ ϕ′(u) = ϕ(u), ϕ′(wz) = ϕ(wz) ∈ ϕ′(v). Hence, we are back in Subcase
1.2. If vw ∈ E(Pv(γ,ϕ(wz),ϕ)), then ϕ(vw) ∈ {−γ,−ϕ(wz)} ⊆ ϕ(v), this
implies that {−γ,−ϕ(wz)} ⊆ ϕ(u). Then ϕ′(vw) ∈ ϕ′(u), ϕ′(wz) ∈ ϕ′(v)
and γ ∈ ϕ′(u), we are also back in Subcase 1.2.

Subcase 2.2. γ ∈ ϕ(u).
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Since |ϕ(v)| ≥ 2, there is a color at least one color δ ∈ ϕ(v). Then
δ 6= ϕ(vw). Since {ϕ(wz),γ} ⊆ ϕ(u), δ 6= ϕ(wz),γ. By Proposition 3.11,
Pu(δ,γ,ϕ) = Pv(γ,δ,ϕ). Let ϕ′ = ϕ/Pv(γ,δ,ϕ). Then ϕ′ belongs to C∆(G−
uv).

We first consider γ 6= ϕ(vw). When vw ∈ E(Pv(δ,γ,ϕ)), it implies that
ϕ(vw) ∈ {−γ,−δ} ⊆ ϕ(v), and {−γ,−δ} ⊆ ϕ(u). If vw, wz /∈ E(Pv(δ,γ,ϕ)),
or vw ∈ E(Pv(δ,γ,ϕ)), then {ϕ′(vw),ϕ′(wz)} ⊆ ϕ′(u), and γ ∈ ϕ′(v). In that
case we are back in Subcase 2.1. If only wz ∈ E(Pv(δ,γ,ϕ)), then ϕ(wz) ∈
{−γ,−δ}, and {ϕ(vw)} 6= {−γ,−δ} \ {ϕ(wz)}. If {−γ,−δ} \ {ϕ(wz)} ∈
ϕ(u), then ϕ′(wz) ∈ ϕ′(u), and so we are again back in Subcase 2.1; if
{−γ,−δ} \ {ϕ(wz)} ∈ ϕ(v), then we are back in Subcase 1.1.

The subcase in which γ = ϕ(vw) can be treated in a similar way. We omit
the details. This completes the proof of the lemma.

3.5 Conclusion and future work

In this chapter, we established two adjacent lemmas about critical signed
graphs with even maximum degree.

In the future, we may consider the question was asked by Cao, Luo, Miao
and Zhao.

Question 3.1 (Cao, Luo, Miao and Zhao [12]). Is the signed Vizing’s Adja-
cency Lemma true for critical signed graphs with odd maximum degree?





Chapter 4

Signed edge coloring of planar
graphs

In this chapter, we show that Conjecture 1.4 is true for signed planar graphs
with ∆ ≥ 8, and true for signed planar graphs with ∆ ≥ 6 and each 6-cycle
contains at most one chord by using the lemmas obtained in Chapter 3.

4.1 Introduction

In [82], Zhang et al. prove that every signed planar graph G with maximum
degree ∆ is ∆-edge-colorable if either ∆≥ 10 or ∆ ∈ {8,9} and G does not
contain any adjacent triangles. We improve the above result by applying
Lemma 3.7 to prove that every signed planar graph with maximum degree
∆≥ 8 is ∆-edge-colorable.

Theorem 4.1. Every signed planar graph with maximum degree ∆ ≥ 8 is
∆-edge-colorable.

In [75], Xue and Wu proved that the planar graph G with ∆≥ 6 and any
6-cycle contains at most one chord is ∆-edge-colorable. We extend this result
to signed graphs by applying Lemma 3.5, Lemma 3.6 and Lemma 3.8.

59
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Theorem 4.2. Let (G,σ) be a signed planar graph in which each 6-cycle contains
at most one chord. If ∆≥ 6, then (G,σ) is ∆-edge-colorable.

Before presenting the proofs of the theorems, we first introduce the known
results.

Theorem 4.3 (Tutte [60]). A graph G has a perfect matching if and only if
o(G−S)≤ |S| for all S ⊆ V (G), where o(G−S) is the number of odd components
of G− S.

Proposition 4.4. Let G be a planar graph with order at least three. Then
|E(G)| ≤ 3|V (G)| − 6.

For any two sets X , Y ⊆ V (G), denote by EG(X , Y ) the set of edges of G
joining a vertex of X and a vertex of Y , and denote by ∂G(X ) = EG(X , V (G)\X )
the boundary edge set of X , that is, the set of edges with exactly one end in X .
Recall that Vd(G) (Vd+(G), Vd−(G) respectively) is the set of d-vertices (d+-
vertices, d−-vertices, respectively) in G. The following result is an immediate
corollary of Proposition 4.4.

Corollary 4.5. Let G be a planar graph with maximum degree ∆ ≥ 6 and
A ⊆ V∆(G). Then |∂G(A)| ≥ 3(∆− 2) if |A| ≥ 3, |∂G(A)| = ∆ if |A| = 1, and
|∂G(A)| ≥ 2(∆− 1) if |A|= 2.

We obtained the following lemma.

Lemma 4.6. Let G be a planar graph with maximum degree ∆ ≥ 6. Then G
has a matching M such that every ∆-vertex of G is an end of some edge in M.

Proof. Assume that G is connected and denote |V (G)| = n. Construct an
auxiliary graph G′ from G and a complete graph Kn vertex-disjoint from
G such that every vertex in Kn is adjacent to every vertex in V(∆−1)−(G).
Then it is sufficient to show that G′ has a perfect matching. Suppose to the
contrary that G′ has no perfect matching. Then there is a set of vertices
S ⊆ V (G′) such that o(G′− S)≥ |S|+ 1 by Theorem 4.3. If V (Kn)⊆ S, then
o(G′− S) = o(G − S)≤ |V (G − S)| ≤ |V (G)|= |V (Kn)| ≤ |S|, a contradiction.
Thus V (Kn) 6⊆ S. Let O1, . . . , Ot be the set of odd components of G′ − S
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where t = o(G′ − S). By the construction of G′, there is a component Q of
G′− S such that Q contains all vertices in [V(∆−1)−(G)∪ V (Kn)] \ S. Without
loss of generality, we assume Oi 6= Q for each i = 1, . . . , t − 1 and thus
V (Oi) ⊆ V∆(G). Hence ∂G′(V (Oi)) = ∂G(V (Oi)). Since Oi is a planar graph
and every vertex in Oi is a ∆-vertex in G, we have |∂G′(V (Oi))| ≥ ∆ by
Corollary 3.4. Let S1 = S \ V (Kn). Then for each i = 1, . . . , t − 1, we further
have ∂G′(V (Oi)) = ∂G(V (Oi)) = ∂G(V (Oi), S1), and thus |∂G(V (Oi), S1)| ≥∆.
Since t − 1≥ |S| ≥ |S1|,

t−1
∑

i=1

|∂G(V (Oi), S1)| ≥∆(t − 1)≥∆|S1|.

If S1 ∩ V(∆−1)−(G) 6= ;, then ∆|S1| ≤
∑t−1

i=1 |∂G(V (Oi), S1)| ≤ |∂G(S1)| ≤
∆|S1| − 1, a contradiction. If S1 ∩ V(∆−1)−(G) = ;, then V (Q) ∩ S1 = ;
and |∂G(V (Q) \ V (Kn), S1)| ≥ 1 since G is connected. Thus ∆|S1| + 1 ≤
∑t−1

i=1 |∂G(V (Oi), S1)|+ |∂G(V (Q) \ V (Kn), S1)| ≤ |∂G(S1)| ≤∆|S1|, a contradic-
tion again. This proves the lemma.

4.2 Proof of Theorem 4.1

Suppose to the contrary that Theorem 4.1 is not true. Let G = (V, E, F) be a
minimal counterexample, i.e., with |E| as small as possible. This implies that
G is connected. Then ∆=∆(G) ∈ {8, 9} by Theorem 1.2, and G is ∆-critical
by the minimality of G.

Before we start the discharging procedure, we first deal with the case that
∆= 9.

If ∆ = 9, then by Lemma 4.6, there is a matching M in G such that
∆(G−M) = 8. By the minimality of G, we know that G−M has an 8-edge-
coloring ϕ with ϕ(e) ∈ {±1,±2,±3,±4} for each e ∈ E \ M . Thus G has a
9-edge-coloring obtained from ϕ by coloring every edge of M with color 0, a
contradiction.

Thus ∆ = 8 and G is an 8-critical signed graph. The following claim
follows from Proposition 1.
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Claim 1. d(u) + d(v)≥ 10 for uv ∈ E.

In the remainder of this section, we will obtain a contradiction by using
the discharging method. We assign the initial charge w : V ∪ F → Z defined
by

¨

w(v) = 3d(v)− 10 for v ∈ V
w( f ) = 2d( f )− 10 for f ∈ F

to the vertices and faces of G. Then

∑

v∈V

(3d(v)− 10) +
∑

f ∈F

(2d( f )− 10) =−20.

In order to reach a contradiction, we redistribute the charges among the
vertices and the faces in G by a number of discharging rules. In our discharg-
ing, we use the following discharging rules, depending on the degrees of the
vertices and faces.

(R1) Every 3−-vertex v receives 10−3d(v)
d(v) from each of its neighbors.

(R2) Every k-vertex v with k ∈ {4,6} sends 3d(v)−10
d(v) to each of its incident

faces.

(R3) Every 5-vertex v sends a to each incident face f , where

a =















5
4

if f is a (5,5, 8)-face;
4
3

if f is a (5,6, 6)-face;

1 if f is a (5,6, 7+)-face;
5
6

otherwise.

(R4) Every 7+-vertex v sends a to each incident face f , where
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a =















































2 if f is a (3−, 7+, 7+)-face;
13
6

if f is a (4,6, 8)-face;
7
4

if f is a (4,7+, 7+)-face;
3
2

if f is a (5,5, 8)-face;
5
3

if f is a (5,6, 7+)-face;
19
12

if f is a (5,7+, 7+)-face;
4
3

if f is a (6+, 6+, 7+)-face;

1 otherwise.

After applying all of the above rules of the discharging process, denote the
final charge by w′ : V ∪ F → Z. To obtain a contradiction, it is sufficient to
prove that w′(z)≥ 0 for each z ∈ V ∪ F .

We do this in a systematic case-by-case way, starting with the faces of G. If
d( f )≥ 5, then f retains its initial charge and it follows that w′( f ) = w( f ) =
2d( f )− 10≥ 0.

We next prove that w′( f )≥ 0 for the other faces of G, distinguishing the
cases that d( f ) = 3 and d( f ) = 4.

(1.1) d( f ) = 3. Let f = [v1v2v3] with d(v1)≤ d(v2)≤ d(v3).

First suppose d(v1) ≤ 3. Then d(v3) ≥ d(v2) ≥ 7 by Claim 1, thus
w′( f ) = w( f ) + 2× 2= 0 by (R4.1).

Next suppose d(v1) = 4. If d(v2) = 6, then d(v3) = 8 by Lemma 3.7-(a);
if d(v2) ≥ 7, then d(v3) ≥ 7. Hence in these cases, w′( f ) ≥ w( f ) +min{1

2
+

4
3
+ 13

6
, 1

2
+ 2× 7

4
}= 0 by (R2) and (R4.2)∼(R4.3).

Then suppose d(v1) = 5. If d(v2) = 5, then d(v3) = 8 by Lemma 3.7-(a);
if d(v2) = 6, then 6≤ d(v3)≤ 8; if d(v2)≥ 7, then d(v3)≥ 7. Hence in these
cases, w′( f )≥ w( f )+min{2× 5

4
+ 3

2
, 3× 4

3
, 1+ 4

3
+ 5

3
, 5

6
+2× 19

12
} = 0 by (R2),

(R3) and (R4.4)∼(R4.6).

Finally suppose d(v1) ≥ 6. Then d(v3) ≥ d(v2) ≥ 6, so w′( f ) = w( f ) +
3× 4

3
= 0 by (R2) and (R4.7). This completes the case that d( f ) = 3.

(1.2) d( f ) = 4. If f is incident with a 3−-vertex, then f is incident with at

least two 7+-vertices by Claim 1; otherwise f is incident with four 4+-vertices.
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By (R2), (R3.4) every k-vertex (4≤ k ≤ 6) sends at least 1
2

to each incident
4-face, and by (R4.8), every 7+-vertex sends 1 to each incident 4-face. Hence
in these cases, w′( f )≥ w( f ) +min{2× 1,4× 1

2
}= 0.

This completes the case that d( f ) = 4 and shows that indeed w′( f )≥ 0
for each f ∈ F . It remains to prove that w′(v) ≥ 0 for each v ∈ V . This
requires a more tedious case distinction.

We start by assuming that u ∈ NG(v) is a vertex with the smallest degree
among all neighbors of v in G. Recall that ni(v) (resp., ni+(v), ni−(v)) be the
number of i-vertices (resp., i+-vertices, i−-vertices) adjacent to v in G. We
deal with the following cases separately, depending on the degree of v. By
Claim 1 and the assumption that ∆= 8, we know that d(v)≥ 2.

(2.1) 2≤ d(v)≤ 3.

By Claim 1, we know that all the neighbors of v are 7+-vertices. So, by
(R1), w′(v) = w(v) + d(v)× 10−3d(v)

d(v) = 0.

(2.2) d(v) = 4 or d(v) = 6.

It is evident that v is incident with at most d(v) faces. So, by (R2),
w′(v) = w(v)− d(v)× 10−3d(v)

d(v) = 0.

(2.3) d(v) = 5.

By Claim 1, d(u)≥ 5. By (R3), v sends 5
4

to each (5, 5, 8)-face, 4
3

to each
(5,6,6)-face, 1 to each (5,6,7+)-face, and 5

6
to each other (5,7+, 7+)-face

and each 4-face. We distinguish a number of cases, depending on the value of
d(u), as follows.

If d(u) = 5, then n8(v) ≥ 8 − d(u) + 1 = 4 by Lemma 3.7-(a). It is
easy to check that v is incident with at most two (5,5, 8)-faces and the other
faces incident with v are either (5,8,8)-faces or 4+-faces. Thus w′(v) ≥
w(v)− 2× 5

4
− 3× 5

6
= 0.

If d(u) ≥ 6, then n7+(v) ≥ 8 − d(u) + 1 = 3 by Lemma 3.7-(b). And
so n6(v) = 5− n7+(v) ≤ 2, and v is incident with at most one (5,6,6)-face.
If v is incident with a (5,6,6)-face, then v is incident with at most two
(5, 6, 7+)-faces and the other faces incident with v are either (5, 7+, 7+)-faces
or 4+-faces; otherwise v is incident with at most five faces such that any of
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them is either a (5,6+, 7+)-face or a 4+-face. Thus w′(v)≥ w(v)−max{4
3
+

2× 1+ 2× 5
6
, 5× 1}= 0.

(2.4) d(v) = 7.

By Claim 1, d(u) ≥ 3. By Lemma 3.7-(a), v is incident with no (4,6,7)-
face, and no (5,5,7)-face. By (R1) and (R4), v sends 1

3
to each neighbor

with degree 3, 2 to each (3,7,7+)-face, 7
4

to each (4,7,7+)-face, 5
3

to each
(5,6,7)-face, 19

12
to each (5,7,7+)-face, 4

3
to each (6+, 7, 7+)-face, and 1 to

each 4-face. We again distinguish a number of cases, depending on the value
of d(u), as follows.

If d(u) = 3, then n8(v) = d(v) − 1 = 6 by Lemma 3.7-(a). It is easy
to check that v is incident with at most two (3,7,8)-faces and the other
faces incident with v are either (7,8,8)-faces or 4+-faces. Thus w′(v) ≥
w(v)− 1

3
− 2× 2− 5× 4

3
= 0.

If d(u) = 4, then n7+(v) ≥ 8 − d(u) + 1 = 5 by Lemma 3.7-(b). It is
easy to check that v is incident with at most four (4,7,7+)-faces and the
other faces incident with v are (7,7+, 7+)-faces or 4+-faces. Thus w′(v) ≥
w(v)− 4× 7

4
− 3× 4

3
= 0.

If d(u) = 5, then n6+(v)≥ 8− d(u) + 1= 4 by Lemma 3.7-(c), and there
are at least three 7+-vertices among those 6+-vertices. It is easy to check
that v is incident with a (6+, 6+, 7)-face or a 4+-face. If v is incident with
a 4+-face or v is incident with at least two (6+, 6+, 7)-faces, then w′(v) ≥
w(v)−max{1+ 6× 5

3
, 2× 4

3
+ 5× 5

3
}= 0. So assume that all faces incident

with v are 3-faces, and v is incident with exactly one (6+, 6+, 7)-face. This
implies that n5(v) = 3. Since n7+(v) ≥ 3, v is incident with at least four
(5,7, 7+)-faces, thus w′(v)≥ w(v)− 4

3
− 4× 19

12
− 2× 5

3
= 0.

If d(u)≥ 6, then w′(v)≥ w(v)− 7× 4
3
> 0.

(2.5) d(v) = 8.

By (R1) and (R4), v sends 2 to each neighbor with degree 2, 2 to each
(3−, 7+, 8)-face, 13

6
to each (4,6,8)-face, 7

4
to each (4,7+, 8)-face, 4

3
to each

(6+, 6+, 7+)-face, and 1 to each 4-face. By Claim 1, d(u) ≥ 2. We again
distinguish a number of cases, depending on the value of d(u), as follows.

If d(u) = 2, then n8(v) = 8− d(u) + 1 = 7 by Lemma 3.7-(a). So v is
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incident with at most one (2, 8, 8)-face, at least one 4+-face, and the other 3-
faces incident with v are (8, 8, 8)-faces. Thus w′(v)≥ w(v)−2−2−1−6× 4

3
>

0.

If d(u) = 3, then n7+(v) ≥ 8− d(u) + 1 = 6 by Lemma 3.7-(b), and so
n5−(v)≤ 2. It is easy to check that v is incident with at most four (3,7+, 8)-
faces and the other faces incident with v are either (7+, 7+, 8)-faces or 4+-
faces. Thus w′(v)≥ w(v)− 2× 1

3
− 4× 2− 4× 4

3
= 0.

If d(u) = 4, we consider the faces incident with v. If v is incident with
no (4,6,8)-face, then every face incident with v is a (4,7+, 8)-face, or a
(5+, 5+, 8)-face, or a 4+-face. By (R4), v sends at most 7

4
to each incident

face, thus w′(v) ≥ w(v)− 8× 7
4
= 0. Next assume that v is incident with a

(4,6,8)-face. By Lemma 3.7-(c), n5−(v) ≤ 3 and n6+(v) ≥ 5, and there are
at least three 7+-vertices among those 6+-vertices. By Lemma 3.7-(a), for
every edge vw with d(v) + d(w) = 10, every vertex in (N(v)∪ N(w)) \ {v, w}
is an 8-vertex. So v is incident with at most two (4,6,8)-faces for otherwise
n7+(v) = 8−6 = 2< 3. If v is incident with at most seven faces, then w′(v)≥
w(v)− 2× 13

6
− 5× 7

4
> 0. If v is incident with eight faces, then v is incident

with at least two faces such that any one of them is either a (6+, 6+, 8)-face or
a 4+-face since n6+(v)≥ 5. Thus w′(v)≥ w(v)− 2× 13

6
− 2× 4

3
− 4× 7

4
= 0.

If d(u) ≥ 5, by (R4), v sends at most 5
3

to each incident face, thus
w′(v)≥ w(v)− 8× 5

3
> 0.

This completes the proof of Theorem 4.1.

4.3 Proof of Theorem 4.2

Suppose to the contrary that Theorem 4.2 is not true. Let G = (V, E, F) be a
minimal counterexample, i.e., with |E| as small as possible. This implies that
G is connected. Then ∆=∆(G) ∈ {6, 7} by Theorem 4.1, and G is ∆-critical
by the minimality of G.

Recall that λi(v) (λi+(v),λi−(v)) be the number of i-faces (i+-faces i−-
faces ) of G incident with v.

Before we start the discharging procedure, we first deal with the case that
∆= 7.
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If ∆ = 7, then by Lemma 4.6, there is a matching M in G such that
∆(G − M) = 6. By the minimality of G, we know that G − M has an 6-
edge-coloring ϕ with ϕ(e) ∈ {±1,±2,±3} for each e ∈ E \M . Thus G has a
7-edge-coloring obtained from ϕ by coloring every edge of M with color 0, a
contradiction.

Thus ∆= 6 and G is a 6-critical signed graph. The following claim follows
from Proposition 1.

Claim 1. d(u) + d(v)≥ 8 for uv ∈ E.

Since any 6-cycle of G contains at most one chord, we have the following
three claims.

Claim 2. If v is a 5+-vertex of G, then λ3(v)≤ b
3
4
d(v)c.

Proof. Since G contains no 6-cycles with two chords, v is not incident with
four consecutive 3-faces. So λ3(v)≤ b

3
4
d(v)c.

Claim 3. Let f , f ′, f ′′ be three faces incident with v such that f ′ is adjacent
to f and f ′′. If d(v) ≥ 5, f and f ′′ are 3-faces contain no 2-vertex, then f ′

must be a 3-face or a 5+-face.

Proof. Suppose to be contrary that f ′ be a 4-face. Let v1, v2, . . . , vd(v) are
neighbors of v. Since d(v) ≥ 5, f and f ′′ are not incident. Without loss of
generality, suppose that f = [vv1v2], f ′′ = [vv3v4] and f ′ contains edges
vv2, vv3. Since d( f ′) = 4, there is a vertex u ∈ V such that v2u, v3u ∈ E(G).
Clearly, u /∈ {v2, v3}. We claim that u /∈ {v1, v4}. If not, then d(v2) = 2 or
d(v3) = 2, a contradiction with f and f ′′ contain no 2-vertex. Then 6-cycle
vv1v2uv3v4v contains two chords vv2, vv3, a contradiction.

Claim 4. Let v be a 6-vertex of G.

(1) If λ3(v) = 4, then λ4(v) = 0.

(2) If λ3(v) = 3, then λ4(v)≤ 2.

Proof. Suppose that N(v) = {v1, v2, . . . , v6}.
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To prove (1). Since λ3(v) = 4, without loss of generality, suppose that
f1, f2, f4, f5 or f1, f2, f3, f5 are 3-faces. If v has no 2-neighbor, then f3, f6 or
f4, f6 are 5+-faces by Claim 3. Thus assume that v has a 2-neighbor. By
Lemma 3.1, other neighbors of v are 6-vertices. When f1, f2, f4, f5 are 3-faces,
w.l.o.g., assume that d(v1) = 2, by Claim 2, f3 and f4 are 4+-faces, by Claim
3, f3 is a 5+-face. If f6 is a 5+-face, then we are done. Otherwise, f6 is a
4-face, that is, v6v2 ∈ E(G). Then 6-cycle v2v3vv4v5v6v2 contains three chords
vv2, vv5, vv6, a contradiction. The case of f1, f2, f3, f5 are 3-faces is similarly
above, we omit it.

To prove (2). Suppose to be contrary that λ4(v) = 3. Since λ3(v) = 3,
there are three structures. Without loss of generality, suppose that f1, f3, f5
or f1, f2, f4 or f1, f2, f3 are 3-faces. Recall that if n2(v) = 1, then n6(v) = 5.
When f1, f3, f5 are 3-faces, there are at least two 3-faces contain no 2-vertex.
By Claim 3, there is at least one 5+-face in { f2, f4, f6}, a contradiction. When
f1, f2, f4 are 3-faces, if d(v3), d(v4)≥ 3, then f3 is a 5+-face, a contradiction.
If d(v3) = 2, then v2v4 ∈ E(G) since f3 is a 4-face. Since d( f5) = 4, there
is a vertex u ∈ V such that vv5uv6v is a 4-face. We Claim that u ∈ N(v) \
{v5, v6}. If not, there is a 6-cycle vv6uv5v4v2v contains two chords vv4, vv5,
a contradiction. Since d(v3) = 2, u 6= v3. If u = v4, then d(v5) = 2, a
contradiction. If u = v2, then d(v1) = 2 since d( f6) = 4, a contradiction.
If u = v1, then 6-cycle vv4v5v1v2v3v contains three chords vv1, vv2, vv5, a
contradiction. The subcase of d(v4) = 2 is similar to d(v3) = 2, we omit it.
The case of f1, f2, f3 are 3-faces is similar to above case, we omit it.

In the remainder of this section, we will obtain a contradiction by using
the discharging method.

Let w(v) = 3d(v)− 10 be the initial charge of each vertex v and w( f ) =
2d( f )− 10 be the initial charge of each face f . So

∑

x∈V∪F w(x) =−20< 0.
In the following, we will reassign a new charge denoted by w′(x) to each
x ∈ V ∪ F according to the discharging rules. We will show that w′(x)≥ 0 for
each x ∈ V ∪ F , then we get an obvious contradiction, which completes our
proof. The discharging rules are defined as follows.

(R1) Every 3−-vertex v receives 10−3d(v)
d(v) from each of its neighbors.
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(R2) Every 4-vertex v sends 3d(v)−10
d(v) to each of its incident faces.

(R3) Let v be a 5-vertex.

(R3.1) v sends a to each incident 3-face f = [vwu], where

a =

(

7
4

if d(w) = 4 and d(u) = 5;
4
3

otherwise.

(R3.2) v sends a to each incident 4-face f , where

a =

¨

1
2

if f contains no 3−-vetex;
2
3

otherwise.

(R4) Let v be a 6-vertex.

(R4.1) v sends a to each incident 3-face f = [vwu], where

a =























































2 if d(u) = 2, d(w) = 6;
8
3

if d(u) = 3, d(w) = 5;
7
3

if d(u) = 3, d(w) = 6 and |N4−(v)|= 1;

2 if d(u) = 3, d(w) = 6 and |N4−(v)|= 2, |N4−(w)|= 2;
5
3

if d(u) = 3, d(w) = 6 and |N4−(v)|= 2, |N4−(w)|= 1;

3 if d(u) = 4, d(w) = 4;
13
6

if d(u) = 4, d(w) = 5;
7
4

if d(u) = 4, d(w) = 6;
4
3

if f contains no 4−-vertex.

(R4.2) v sends a to each incident 4-face f , where

a =















1
2

if f contains no 3−-vetex;
1 if f contains two 3−-vetices;
3
4

if f contains a 3-vetex and a 4-vertex;
2
3

otherwise.

Now, let’s begin to check w′(x)≥ 0 for each x ∈ V ∪ F . We start with the
faces of G. If d( f ) ≥ 5, then f retains its initial charge and it follows that
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w′( f ) = w( f ) = 2d( f )− 10≥ 0.

We next prove that w′( f )≥ 0 for the other faces of G, distinguishing the
cases that d( f ) = 3 and d( f ) = 4.

(1.1) d( f ) = 3. Let f = [v1v2v3] with d(v1)≤ d(v2)≤ d(v3).

First suppose d(v1) = 2. Then d(v3) ≥ d(v2) ≥ 6 by Claim 1. By (R3.1),
each 6-vertex sends 2 to each (2,6, 6)-face, thus w′( f ) = w( f ) + 2× 2= 0.

Then suppose d(v1) = 3. Then d(v2) ≥ 5 and d(v3) = 6 by Claim 1
and Lemma 3.5. By (R3.1) and (R4.1), each (3,5,6)-face receives 4

3
and 8

3
,

respectively, from its incident 5-vertex and 6-vertex. Each (3,6,6)-face, if
one of its incident 6-vertices adjacent to one 4−-neighbor, then it receives 7

3
from that 6-vertex; if each of its incident 6-vertices has two 4−-neighbors,
then it receives 2 from each 6-vertex; if one of its incident 6-vertices has two
4−-neighbors and another 6-vertex has one 4-neighbor, then it receives 5

3
from

the 6-vertex with two 4-neighbors. Thus w′( f ) = w( f )+min{4
3
+ 8

3
, 7

3
×2, 7

3
+

5
3
, 2× 2}= 0.

Next suppose d(v1) = 4. If d(v2) = 4, then d(v3) = 6 by Lemma 3.5;
if d(v2) ≥ 5, then d(v3) ≥ 5. By (R2), each 4-vertex sends 1

2
to each of

its incident faces. By (R3.1) and (R4.1), each (4,4,6)-face receives 3 from
its incident 6-vertex. Each (4,5,5)-face receives 7

4
from each of its incident

5-vertices. Each (4, 5, 6)-face receives 4
3

from its incident 5-vertex and 13
6

from
its incident 6-vertex. Finally, each (4,6,6)-face receives 7

4
from each of its

incident 6-vertices. Thus w′( f )≥ w( f )+min{2× 1
2
+3, 1

2
+2× 7

4
, 1

2
+ 4

3
+ 13

6
} =

0.

Finally suppose d(v1) ≥ 5. Then d(v3) ≥ d(v2) ≥ 5, so w′( f ) = w( f ) +
3× 4

3
= 0 by (R3.1) and (R4.1). This completes the case that d( f ) = 3.

(1.2) d( f ) = 4.

By Claim 1 and Lemma 3.5, if f is incident with a 2-vertex, then f is
incident with three 6-vertices; if f is incident with two 3-vertices, then f
is incident with two 6-vertices; if f is incident with one 3-vertex and one
4-vertex, then f is incident with two 6-vertices; otherwise f is incident with
four 4+-vertices. By (R2), (R3.2) and (R4.2), w′( f )≥ w( f ) +min{3× 2

3
, 2×

1, 1
2
+ 2× 3

4
, 4× 1

2
}= 0.
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This completes the case that d( f ) = 4 and shows that indeed w′( f )≥ 0
for each f ∈ F . It remains to prove that w′(v) ≥ 0 for each v ∈ V . This
requires a more tedious case distinction.

We start by assuming that u ∈ NG(v) is a vertex with the smallest degree
among all neighbors of v in G. We deal with the following cases separately,
depending on the degree of v. By Claim 1 and the assumption that ∆= 6, we
know that d(v)≥ 2.

(2.1) 2≤ d(v)≤ 3.

By Claim 1, we know that all the neighbors of v are 5+-vertices. So, by
(R1), w′(v) = w(v) + d(v)× 10−3d(v)

d(v) = 0.

(2.2) d(v) = 4.

It is evident that v is incident with at most d(v) faces. So, by (R2),
w′(v) = w(v)− d(v)× 10−3d(v)

d(v) = 0.

(2.3) d(v) = 5.

By Claim 1, d(u) ≥ 3. By Lemma 3.5, v is incident with no (3,5,3,5+)-
face. By (R3), v sends 7

4
to each (4,5,5)-face, 4

3
to each other 3-face, 1

2
to

each 4-face that does not contain a 3−-vertex, 2
3

to each other 4-face. We
distinguish a number of cases, depending on the value of d(u), as follows.

If d(u) = 3, then n6(v)≥ 6−d(u)+1 = 4 by Lemma 3.5. It is easy to check
that v is incident no (4, 5, 5)-face. If λ3(v)≤ 2, then w′(v)≥ w(v)− 1

3
−2× 4

3
−

3× 2
3
= 0. If λ3(v) = 3, then λ4(v)≤ 1, thus w′(v)≥ w(v)− 1

3
−3× 4

3
− 2

3
= 0.

If d(u) = 4, then n6(v) ≥ 6− d(u) + 1 = 3 by Lemma 3.5, and so v is
incident with no (4,4,5)-face and at most one (4,5,5)-face. If v is incident
with no (4, 5, 5)-face, then w′(v)≥max{5× 2

3
, 4

3
+4× 2

3
, 2× 4

3
+3× 2

3
, 3× 4

3
+

2
3
}> 0. So suppose that v is incident with a (4,5,5)-face. If λ3(v) = 2, then

v is incident with a 5+-face or a 4-face contains no 3−-vertex; if λ3(v) = 3,
then λ4(v) ≤ 1 and v is incident with a 4-face contains no 3−-vertex. Thus
w′(v)≥max{5× 2

3
, 7

4
+ 4× 2

3
, 7

4
+ 4

3
+ 1

2
+ 2× 2

3
, 7

4
+ 2× 4

3
+ 1

2
}= 0.

If d(u) = 5, then v sends at most 4
3

to each (5, 5+, 5+)-face. Thus w′(v)≥
w(v)−max{5× 2

3
, 4

3
+ 4× 2

3
, 2× 4

3
+ 3× 2

3
, 3× 4

3
+ 2

3
}= 0.

(2.5) d(v) = 6.
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By Claim 1, d(u) ≥ 2. By Claim 4, if λ3(v) = 3, then λ4(v) ≤ 2; if
λ3(v) = 4, then λ4(v) = 0. We again distinguish a number of cases, depending
on the value of d(u), as follows.

If d(u) = 2, then n6(v) = 8− d(u) + 1= 7 by Lemma 3.5. So each 3-face
incident with v is either a (2, 6, 6)-face or a (6, 6, 6)-face and v is incident with
no (2,6,4−, 6)-face. By (R1) and (R4), v sends 2 to each of its 2-neighbors,
2 to each (2,6,6)-face, and 4

3
to each (6,6,6)-face, at most 2

3
to each 4-face.

Thus w′(v)≥ w(v)− 2−max{6× 2
3
, 2+ 5× 2

3
, 2+ 4

3
+ 4× 2

3
, 2+ 2× 4

3
+ 2×

2
3
, 2+ 3× 4

3
}= 0.

If d(u) = 3, then n6(v) ≥ 6 − d(u) + 1 = 4 by Lemma 3.5, and so
n5−(v) ≤ 2. We first consider the case of n3(v) = 2. By (R4.1), v sends at

most 2 to (3, 6, 6)-faces. If v is incident with at most two (3, 6, 6)-faces, then v
is incident with at most one (3, 6, 3, 6)-face; if v is incident with three (3, 6, 6)-
faces, then v is incident with no (3, 6, 3, 6)-face. Thus w′(v)≥ w(v)− 2× 1

3
−

max{1+ 5× 2
3
, 2+ 1+ 4× 2

3
, 2× 2+ 1+ 3× 2

3
, 3× 2+ 2× 2

3
, 3× 2+ 4

3
} = 0.

If v is incident with four (3,6,6)-faces, then there is only one structure.
W.L.O.G., assume that f1, f2, f4, f5 are 3-faces and d(v2) = d(v5) = 3. By
Lemma 3.6, there is at least one 6-vertex w ∈ {v1, v3} such that n4−(w) ≤ 1,
and at least one 6-vertex w′ ∈ {v4, v6} such that n4−(w′) ≤ 1. W.L.O.G.,
suppose that w = v1 and w′ = v4. By (4.1), v sends 5

3
to f1 and f4, thus

w′(v)≥ w(v)− 2× 1
3
− 2× 2− 2× 5

3
= 0.

Now we consider the case of n3(v) = 1 and n4(v) = 1. Then each 3-faces
incident with v is a (4−, 6, 6)-face or a (6,6,6)-face and v is incident with
at most two (3,6,6)-faces. By (R4.1), v sends 2 to each (3,6,6)-face, 7

4
to each (4,6,6)-face and at most 3

4
to each incident 4-face. Thus w′(v) ≥

w(v)− 1
3
−max{6× 3

4
, 2+5× 3

4
, 2×2+4× 3

4
, 2×2+ 7

4
+2× 3

4
, 2×2+2× 7

4
}> 0.

Last we consider the case of n3(v) = 1 and n5(v) = 1. Then v is incident
with no (3,6,4−, 6)-face. By (R4.1), v sends 8

3
to each (3,5,6)-face, 7

3
to

each (3,6,6)-face, and at most 2
3

to each incident 4-face. If v is incident
with a (3,5,6)-face, then each of its incident 3-faces is either a (3,6,6)-face
or a (5+, 6, 6)-face, and v is incident with at most one (3,6,6)-face. Thus
w′(v) ≥ w(v)− 1

3
− 8

3
−max{5× 2

3
, 7

3
+ 4× 2

3
, 7

3
+ 4

3
+ 2× 2

3
, 7

3
+ 2× 4

3
}= 0.
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If v is incident with no (3, 5, 6)-face, then each of its incident 3-faces is either
a (3,6,6)-face or a (6,6,6)-face, and v is incident with at most two (3,6,6)-
faces. Thus w′(v) ≥ w(v)− 1

3
−max{6× 2

3
, 7

3
+ 5× 2

3
, 2× 7

3
+ 4× 2

3
, 2× 7

3
+

4
3
+ 2× 2

3
, 2× 7

3
+ 2× 4

3
}> 0.

If d(u) = 4, then n6(v) = 6 − d(u) + 1 = 3 by Lemma 3.5. And so
v is incident with no (3,6,4,6)-face. By (R4.1) and (R4.2), v sends 3 to
each (4, 4,6)-face, 13

6
to each (4,5, 6)-face, 7

4
to each (4,6, 6)-face, 4

3
to each

(6, 6, 6)-face and at most 2
3

to each 4-face. If v is incident with no (4, 4, 6)-face,
then each of its incident 3-faces is either a (4, 5, 6)-face, or a (4, 6, 6)-face, or
a (5+, 6, 6)-face. Since n6(v) = 3, v is incident with at most two (4, 5, 6)-faces.
Moreover, when λ3(v) = 4 and v is incident with two (4,5,6)-faces, v is
incident with at least one (6, 6, 6)-face. Thus w′(v)≥ w(v)−max{6× 2

3
, 13

6
+

5× 2
3
, 2× 13

6
+4× 2

3
, 2× 13

6
+ 7

4
+2× 2

3
, 2× 13

6
+ 7

4
+ 4

3
}> 0. Next assume that

v is incident with a (4,4,6)-face. By Lemma 3.8, n6(v) = 4, which implies
that v is incident with no (4, 5, 6)-face, each other 3-face incident with v is a
(4, 6, 6)-face or a (6, 6, 6)-face and v is incident with at most two (4, 6, 6)-face.
Moreover, when λ3(v) = 4, v is incident with at least one (6, 6, 6)-face. Thus
w′(v)≥ w(v)−max{3+5× 2

3
, 3+ 7

4
+4× 2

3
, 3+2× 7

4
+2× 2

3
, 3+2× 7

4
+ 4

3
}> 0.

This completes the proof of Theorem 4.2.

4.4 Conclusion and future work

In this chapter, we showed that Conjecture 1.4 holds for signed planar graphs
with ∆≥ 8 or ∆≥ 6 and each 6-cycle contains at most one chord.

In the future, we may give some other sufficient conditions in signed
planar graphs with ∆ = 6 such that Conjecture 1.4 holds. And in the case
of edge coloring, we know that χ ′(Kn,n) = n. However, in the case of signed
edge coloring, this doesn’t hold when n is even. We are interested in whether
it holds when n is odd.





Chapter 5

Edge DP-coloring of planar
graphs

5.1 Introduction

As we mentioned in Chapter 1, edge DP-coloring is a generalization of list
edge coloring and χ ′DP(G) ≥ χ

′
l (G). In this chapter, we extend some results

on list edge coloring to edge DP-coloring.

Let G be a planar graph with maximum degree∆≥ 7. Borodin [7] showed
that χ ′`(G) = ∆ if G without 3-cycles and Hou, Liu and Cai [30] showed that
χ ′`(G) = ∆ if G without 4-cycles. We partially extend those results to edge
DP-coloring.

Theorem 5.1. Let G be a planar graph with maximum degree ∆ such that G
has no cycle of length k. Then χ ′DP(G) = ∆ if either ∆≥ 7 and k = 4 or ∆≥ 8
and k = 3.

Borodin [7] confirmed Conjecture 1.3 for planar graphs of maximum
degree at least 9 (a simpler proof was later found by Cohen and Havet [14]).
We extend this result to edge DP-coloring.

Theorem 5.2. If G is a planar graph with ∆≥ 9, then χ ′DP(G)≤∆+ 1.

75
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5.2 Main Lemmas

Before presenting the proof of Theorem 5.1 and 5.2, we first introduce some
lemmas.

Let G be a graph with an edge list assignment L, andML be a matching
assignment over L. Suppose that H is a subgraph of G and G′ = G− E(H) has
anML′-coloring with

ML′ = {ML,ee′ ∈ML : e ∼G′ e′}, (5.1)

that is there is an independent set I ′ of theML′ -cover G̃′ with |I ′| = |E(G′)| =
|E(G)| − |E(H)|. Define

L∗(e) = L(e) \
⋃

e′∼e

{c ∈ L(e) : ∃(e′, c′) ∈ I ′ s.t. (e′, c′)(e, c) ∈ ML,ee′ ∈ML},

∀e ∈ E(H)

(5.2)

and

ML∗,ee′ = {(e, c)(e′, c′) ∈ ML,ee′ ∈ML : c ∈ L∗(e), c′ ∈ L∗(e′)}, ∀e ∼H e′.
(5.3)

It is not difficult to check that, if H has anML∗ -coloring withML∗ = {ML∗,ee′ :
e ∼H e′}, that is theML∗ -cover H̃ has an independent set I∗ with |I∗| = |E(H)|,
then I ′∪ I∗ is an independent set of theML-cover G̃ with |I ′∪ I∗| = |E(G)|, and
hence G has anML-coloring. The following result is obtained straightforward.

Lemma 5.3. Let G be a graph with an edge list assignment L and a matching
assignmentML , and let H be a subgraph of G. If G− E(H) has anML′ -coloring
and H has anML∗-coloring, then G has anML-coloring, whereML′ , L∗ and
ML∗ are defined as above.

By the definition of edge DP-coloring, the following result is straightfor-
ward.
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Lemma 5.4. Let P = v1v2 . . . vn (n ≥ 3) be a path and L be an edge list
assignment of P. If |L(vi vi+1)| ≥ 2 for i ∈ [1, n− 2] and |L(vn−1vn)| ≥ 1, then
P has anML-coloring for any matching assignmentML .

Lemma 5.5. Let G be a cycle with a pendant edge or a chord, and L be an edge
list assignment of G satisfying |L(uv)| ≥ d(u) + d(v)− 2 for every uv ∈ E(G).
Then G has anML-coloring for any matching assignmentML .

Proof. Let G = C + e0, where C = v1v2 . . . vnv1 is a cycle and e0 = uv1 is a
pendant edge or a chord of C . Fix an arbitrary matching assignmentML .

If e0 = uv1 is a pendant edge, then dG(u) = 1. Let H = uv1v2 . . . vn and
G′ = G − E(H). Then E(G′) = {vnv1}. Note that |L(vnv1)| ≥ 3, |L(v1v2)| ≥ 3
and |L(e)| ≥ 2 for e ∈ E(G) \ {vnv1, v1v2} by the assumption of L. Since
|L(vnv1)| ≥ 3 and |L(e0)| ≥ 2, there is a member c ∈ L(vnv1) such that
|L∗(e0)| ≥ 2 by Eq. (5.2). By Eq. (5.2) again, |L∗(e)| ≥ |L(e)| − 1 for e ∈
{vn−1vn, v1v2} and |L∗(e)|= |L(e)| for e ∈ E(H) \ {vn−1vn, v1v2}. So H has an
ML∗ -coloring I∗ by Lemma 5.4, and thus I∗ ∪ {(vnv1, c)} is anML-coloring of
G by Lemma 5.3.

If e0 = uv1 is a chord of C , then n≥ 4. Assume that u = vi with i ∈ [3, n−
1], and then |L(e0)| ≥ 4, |L(e)| ≥ 3 for e ∈ {v1v2, v1vn, vi vi−1, vi vi+1}, and
|L(e)| ≥ 2 for e ∈ E(G − {v1, vi}) by the assumption of L. Let H = v1v2 . . . vn

and G′ = G−E(H). Then G′ = vi v1vn is a path of length 2. Since |L(vi v1)| ≥ 4
and |L(v1v2)| ≥ 3, by Eqs. (5.1) and (5.2), we can pick c1 ∈ L(vi v1) and then
c2 ∈ L(v1vn) such that I ′ = {(vi v1, c1), (v1vn, c2)} is anML′ -coloring of G′ and
|L∗(v1v2)| ≥ 2. It is easy to check that |L∗(vi vi+1)| ≥ 2 for i ∈ [2, n− 2] and
|L∗(vn−1vn)| ≥ 1 by Eq. (5.2). So H has anML∗-coloring I∗ by Lemma 5.4,
and thus I∗ ∪ I ′ is anML-coloring of G by Lemma 5.3.

Lemma 5.6. Let G = C + {v1v2i : i ∈ [2, t − 1]}+ v1u (t ≥ 3), where C =
v1v2 . . . v2t v1 is a cycle and v1u is a pendant edge. If L is an edge list assignment
of G satisfying |L(v1u)| ≥ t, |L(v1v2i)| ≥ t+1 for i ∈ [1, t], |L(e)| ≥ 2 for other
edges e of G, then G has anML-coloring for any matching assignmentML .

Proof. Let V ′ = (NG(v1) \ {v2})∪ {v1}, H = G[V ′] and G′ = G− E(H). Then
H = K1,t is a star and G′ = v1v2 . . . v2t is a path of length 2t − 1. Since
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|L(v1u)| ≥ t, |L(v1v2)| ≥ t + 1 and |L(vi vi+1)| ≥ 2 for i ∈ [2,2t − 1], by
Eqs. (5.1) and (5.2), we can pick c1 ∈ L(v1v2) and then ci ∈ L(vi vi+1) for
i ∈ [2, 2t − 1] such that I ′ = {(vi vi+1, ci) : i ∈ [1, 2t − 1]} is anML′-coloring
of G′ and |L∗(v1u)| ≥ t. It follows from Eq. (5.2) and the assumption of L
that |L∗(v1v2i)| ≥ t − 2 for i ∈ [2, t − 1] and |L∗(v1v2t)| ≥ t − 1. Thus we can
get anML∗-coloring I∗ of H = K1,t by choosing a member c′2i from L(v1v2i)
and adding (v1v2i , c′2i) to I∗ in the order v2i = v4, v6, . . . , v2t , u. By Lemma 5.3,
I ′ ∪ I∗ is anML-coloring of G.

A graph G is minimally non edge DP-k-colorable if it is not edge DP-k-
colorable, but each of its proper subgraphs is edge DP-k-colorable.

Lemma 5.7. Let G be a graph with maximum degree ∆≤ k. If G is minimally
non edge DP-k-colorable, then the following statements hold.

(a) G is connected.

(b) d(u) + d(v)≥ k+ 2 for any uv ∈ E(G).

(c) If G has an even cycle C = v1v2 . . . v2t v1 with d(v2i) = 2 for i ∈ [1, t],
then for j ∈ [1, t], every vertex in NG(v2 j−1) \ V (C) is a 3+-vertex of G.

(d) If k >∆, then G has no even cycle v1v2 . . . v2t v1 with d(v2i)≤ k+ 2−∆
for i ∈ [1, t].

Proof. Since G is not edge DP-k-colorable, there is an edge list assignment
L of G with |L(e)| ≥ k for every e ∈ E(G) and a matching assignment ML

such that G has noML-coloring. By Eq. (5.1) and the minimality of G, every
proper subgraph G′ has anML′-coloring. So (a) holds.

We prove (b). Suppose to the contrary that uv is an edge with dG(u) +
dG(v) ≤ k + 1. Fix G′ = G − uv and let I ′ be an ML′-coloring of G′ with
|I ′|= |E(G′)|= |E(G)| − 1. Since dG(u) + dG(v)≤ k+ 1 and |L(uv)| ≥ k,

|L∗(uv)| ≥ |L(uv)| − (dG(u) + dG(v)− 2)≥ 1

by Eq. (5.2). Let c∗ ∈ L∗(uv). Then I ′ ∪ {(uv, c∗)} is anML-coloring of G by
Lemma 5.3, a contradiction.
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We prove (c). Suppose to the contrary that there is an odd i ∈ [1,2t]
such that vi has a neighbor u with u /∈ V (C) and dG(u)≤ 2. Let H = C + viu
and G′ = G− E(H). Note that every edge of H is incident with at least one 2-
vertex since C = v1v2 . . . v2t v1 satisfies that dG(v2i) = 2 for i ∈ [1, t]. For every
x y ∈ E(H), |L(x y)| ≥∆ ≥ dG(x) + dG(y)− 2 since |L(x y) ≥ k ≥∆. Since
G′ is a proper subgraph of G, it has anML′-coloring I ′ with |I ′|= |E(G′)| by
Eq. (5.1). Thus, for each x y ∈ E(H), it follows from Eq. (5.2) that

|L∗(x y)| ≥ |L(x y)| − dG′(x)− dG′(y)≥ dG(x) + dG(y)− 2− dG′(x)−

dG′(y) = dH(x) + dH(y)− 2.

By Lemma 5.5, H has anML∗-coloring I∗. Hence we get a contradiction that
I ′ ∪ I∗ is anML-coloring of G by Lemma 5.3.

We prove (d). Suppose that G contains an even cycle C = v1v2 . . . v2t v1

with d(v2i) ≤ k + 2 − ∆ for i ∈ [1, t]. Further, dG(v2i) = k + 2 − ∆ by
(b). Since k > ∆, dG(v2) ≥ 3. Let u ∈ NG(v2) \ {v1, v3} and H = C + v2u.
Note that every edge of H has at least an end in {v2i : i ∈ [1, t]}. For
any x y ∈ E(H), assume that x ∈ {v2i : i ∈ [1, t]} and thus |L(x y)| ≥ k =
dG(x) +∆− 2≥ dG(x) + dG(y)− 2. Let I ′ be anML′-coloring of the proper
subgraph G′ = G − E(H) by Eq. (5.1). By Eq. (5.2), every edge x y ∈ E(H)
satisfies that

|L∗(x y)| ≥ |L(x y)| − dG′(x)− dG′(y)≥ dG(x) + dG(y)− 2− dG′(x)−

dG′(y) = dH(x) + dH(y)− 2.

Therefore, H has an ML∗-coloring I∗ by Lemma 5.5, and thus I∗ ∪ I ′ is an
ML-coloring of G by Lemma 5.3, a contradiction.

5.3 Proofs of Theorems 5.1 and 5.2

Recall that λi(v) be the number of i-faces incident with v, and Vi is the set of
i-vertices of G.
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5.3.1 Proof of Theorem 5.1

Let G be a counterexample to Theorem 5.1 with |E(G)| minimum. Then
there are an edge list assignment L of G with |L(e)|=∆ for e ∈ E(G) and a
matching assignmentML such that G has noML-coloring. By the minimality
of G, every proper subgraph of G has anML-coloring, and thus G is minimally
non edge DP-∆-colorable. By (b) and (c) of Lemma 5.7, the following two
claims are immediate.

Claim 1. d(u) + d(v)≥∆+ 2 for any uv ∈ E(G).

Claim 2. If G has an even cycle C = v1v2 . . . v2t v1 with dG(v2i) = 2 for
i ∈ [1, t], then for j ∈ [1, t], every vertex in NG(v2 j−1) \ V (C) is a 3+-vertex
of G.

Let G2 be the subgraph of G induced by the edges incident with at least
one 2-vertex.

Claim 3. Every component of G2 is an even cycle or a tree, and thus G2 has a
matching, denoted by M2, saturating all vertices in V2(G).

Proof. Let Q be a component of G2.

Assume that C is a cycle of Q. Note that every edge of G2 is incident with
a 2-vertex in G. By Claim 1, every edge of C has an end with degree ∆ in G.
Since ∆≥ 7, C is an even cycle. Further, C =Q by Claim 2. This proves the
first statement.

In order to prove the second statement, we only need to prove that Q has
a matching MQ saturating all vertices in V (Q)∩ V2(G). If Q is an even cycle,
then the existence of MQ is obvious. If Q is a tree, we add all pendant edges of
Q to MQ, delete their ends from Q, and obtain MQ by repeating this procedure
until Q becomes a single vertex.

For every uv ∈ M2 with d(u) = 2, we call v the 2-master of u. Since M2 is
a matching and saturates all 2-vertices of G, every 2-vertex of G has a unique
2-master and every ∆-vertex of G is the 2-master of at most one 2-vertex.

Claim 4. If G contains no 4-cycles, then every vertex v is incident with at
most b dG(v)

2
c 3-faces.
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Proof. Since G contains no 4-cycles, any two 3-cycles are edge-disjoint, and
so the claim follows.

Claim 5. If G has an even cycle C = v1v2 . . . v2t v1 (t ≥ 3) with t − 2 chords
{v1v2i : i ∈ [2, t − 1] and for i ∈ [1, 2t], d(vi)≥∆− 1 if i is odd, d(vi) = 2 if
i ∈ {2,2t}, and d(vi) = 3 otherwise, then every vertex in NG(v1) \ V (C) is a
3+-vertex of G.

Proof. Suppose to be contrary that v1 has a neighbor u not in V (C) and
dG(u) = 2. Let H = C + v1u+ {v1v2 j : j ∈ [2, t − 1]}. By the minimality of G
and Eq. (5.1), G′ = G − E(H) admits anML′-coloring I ′. By (5.2), for each
x y ∈ E(H),

|L∗(x y)| ≥ |L(x y)| − dG′(x)− dG′(y)

= ∆− (dG(x)− dH(x))− (dG(y)− dH(y))

=







∆− (∆− t − 1)− 1= t if x y = v1u;
∆− (∆− t − 1)− 0= t + 1 if x y ∈ {v1v2 j : j ∈ [1, t]};
∆− (∆− 2)− 0= 2 otherwise.

By Eq. (5.3) and Lemma 5.6, H admits an ML∗-coloring I∗, and hence we
obtain a contradiction that I∗ ∪ I ′ is anML-coloring of G by Lemma 5.3.

In the rest of this subsection, we complete the proof of Theorem 5.1
by applying discharging method to get a contradiction. We distinguish the
following two cases.

Case 1. ∆≥ 7 and G contains no 4-cycles.

Let w be an initial charge on V (G)∪ F(G) satisfying

w(z) =

¨

2d(z)− 6 if z ∈ V (G);
d(z)− 6 if z ∈ F(G).

Then
∑

v∈V (G)(2d(v)− 6) +
∑

f ∈F(G)(d( f )− 6) =−8.

To redistribute charges among vertices and faces, we design some dis-
charging rules as follows.
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(R1) Each 2-vertex receives 2 from its 2-master.

(R2) Let f = [v1v2v3] with d(v1)≤ d(v2)≤ d(v3).

(R2.1) If d(v1)≤ 3, then f receives 3
2

from each (∆− 1)+-vertex incident
with f .

(R2.2) If d(v1)≥ 4, then f receives 1 from each 4+-vertex incident with
f .

(R3) If f is a 5-face, then it receives 1
3

from each 5+-vertex incident with f .

After the discharging process, let w′(z) denote the final charge of every
element z in V (G)∪ F(G). Since the rules only move charge around and do
not affect the sum,

∑

z∈V (G)∪F(G)

w′(z) =
∑

z∈V (G)∪F(G)

w(z) =−12.

We will obtain a contradiction by showing w′(z)≥ 0 for every z ∈ V (G)∪F(G).

Let z = f ∈ F(G). If d( f )≥ 6, then w′( f ) = d( f )− 6≥ 0. We next prove
that w′( f )≥ 0 for the other faces of G, distinguishing the cases that d( f ) = 3
and d( f ) = 5.

(1.1) d( f ) = 3.

Let f = [v1v2v3] with d(v1) ≤ d(v2) ≤ d(v3). By Claim 1, if d(v1) ≤ 3,
then d(v3) ≥ d(v2) ≥ ∆− 1; if d(v1) ≥ 4, then d(v3) ≥ d(v2) ≥ 5. Thus it
follows from (R2) that w′( f ) = 3− 6+max{2× 3

2
, 3× 1}= 0.

(1.2) d( f ) = 5.

Since ∆≥ 7, by Claim 1, f is incident with at least three 5+-vertices. Thus
w′( f )≥ 5− 6+ 3× 1

3
= 0 by (R3).

It remains to prove that w′(v) ≥ 0 for each v ∈ V . Let d(v) = k. By
Claim 4, if k ∈ [5,∆], then λ3(v) ≤ b

k
2
c and λ3(v) + λ5(v) ≤ d(v) = k. We

distinguish a number of cases, as follows.

(2.1) k = 2. Then v has a unique 2-master and so w′(v) = 2×2−6+2 = 0
by (R1).
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(2.2) k = 3 or 4. If k = 3, then w′(v) = w(v) = 2 × 3 − 6 = 0. If
k = 4, by Claim 4, v is incident with at most two 3-faces, and so w′(v) =
2× 4− 6− 2× 1= 0 by (R2.2).

(2.3) k ∈ [5,∆− 2]. It follows from Claim 1 that the neighbors of v have
degree at least 4, and by (R2.2) and (R3), w′(v) = 2k − 6− λ3(v)× 1−
λ5(v)×

1
3
≥ 2k− 6− b k

2
c × 1− (k− b k

2
c)× 1

3
> 0.

(2.4) k =∆−1. By (R2) and (R3), w′(v)≥ 2k−6−λ3(v)×
3
2
−λ5(v)×

1
3
≥

2(∆− 1)− 6− b∆−1
2
c × 3

2
− (∆− 1− b∆−1

2
c)× 1

3
> 0.

(2.5) k = ∆. Since every ∆-vertex of G is the 2-master of at most one
2-vertex, it follows from (R1)∼(R3) that w′(v) ≥ 2k− 6− 2− λ3(v)×

3
2
−

λ5(v)×
1
3
≥ (2∆− 6)− 2− b∆

2
c × 3

2
− (∆− b∆

2
c)× 1

3
> 0.

The proof of Case 1 is complete.

Case 2. ∆≥ 8 and G contains no 3-cycles.

Let w(z) = d(z)− 4 be an initial charge of every z ∈ V (G) ∪ F(G), and
define some discharging rules as follows:

(S1) Every 2-vertex receives charge 1 from its 2-master.

(S2) Every k-face f sends k−4
b k

2
c

to each 3−-vertex incident with f .

(S3) Every k-vertex (2 ≤ k ≤ 3) v receives 1
k

from each of NG(v) if v is
incident with no 5+-faces, and 1

2k
from each of NG(v) if v is incident

with exactly one 5+-face.

Similar to Case 1, let w′(z) denote the final charge of every member z
in V (G) ∪ F(G) after the discharging. Since G is a planar graph, by Euler’s
formula,

∑

z∈V (G)∪F(G)

w′(z) =
∑

z∈V (G)∪F(G)

w(z) =−8.

This implies that there is a member z0 ∈ V (G)∪ F(G) such that w′(z0) < 0.
Thus, we only need to prove w′(z)≥ 0 for every z ∈ V (G)∪ F(G), and then
get a contradiction.
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Let f be a k-face of G. Then f is incident with at most b k
2
c 3−-vertices

by Claim 1. Since G contains no 3-cycles, k ≥ 4 and so, by (S2), w′( f ) ≥
k− 4− b k

2
c × k−4

b k
2
c
= 0.

Let v be a k-vertex of G. Note that k−4
b k

2
c
≥ 1

2
for k ∈ [5,∆].

If k = 2, then v has a unique 2-master. Thus, w′(v)≥ 2− 4+ 1+min{0+
2× 1

2
, 1× 1

2
+ 2× 1

4
, 2× 1

2
+ 0} ≥ 0 by (S1)∼(S3).

If k = 3, then by (S2) and (S3), we have w′(v) ≥ 3− 4+min{0+ 3×
1
3
, 1× 1

2
+ 3× 1

6
, 2× 1

2
+ 0} ≥ 0.

If k ∈ [4,∆− 2], then every neighbor of v is a 4+-vertex of G by Claim 1,
and thus w′(v) = w(v) = k− 4≥ 0.

If k = ∆ − 1, then every neighbor of v is a 3+-vertex of G by Claim
1, and by (S3), v sends at most 1

3
to each member in NG(v). So w′(v) =

∆− 1− 4− ∆−1
3
≥ 0 since ∆≥ 8.

Assume that k =∆ below. Recall that ni(v) (resp., ni+(v), ni−(v)) be the
number of i-vertices (resp., i+-vertices, i−-vertices) adjacent to v in G, Then
n2(v)+n3(v)≤ k =∆. We need the facts that v is the 2-master of at most one
2-vertex, and that, when n2(v) ≥ 3, every 4-face incident with v is incident
with at most one 2-vertex by Claims 1 and 2.

If n2(v) ∈ [0, 2], then, by (S1) and (S3), w′(v)≥ w(v)− 1− n2(v)×
1
2
−

n3(v)×
1
3
≥∆− 5− 2× 1

2
− (∆− 2)× 1

3
≥ 0 since ∆≥ 8.

If n2(v) ∈ [3, b∆
2
c] and n2(v)+n3(v)<∆, then by (S1) and (S3), w′(v)≥

w(v)−1− n2(v)×
1
2
− n3(v)×

1
3
≥∆−5−b∆

2
c× 1

2
− (∆−1−b∆

2
c)× 1

3
≥ 0

since ∆≥ 8.

If n2(v) ∈ [3, b∆
2
c] and n2(v) + n3(v) = ∆, then it follows from Claim 5

that λ4(v)<∆ and λ5(v)≥ 1 since Claim 2 implies that every 4-face incident
with v is a (∆, 2,∆, 3)- or (∆, 3,∆, 3)-face. Note that each 5+-face incident
with v contains either two 2-vertices, or a 2-vertex and a 3-vertex, or two 3-
vertices of NG(v). Since∆≥ 8, by (S1) and (S3), w′(v)≥∆−4−1−max{2×
1
4
+ n2(v)−2

2
+ ∆−n2(v)

3
, 1

4
+ n2(v)−1

2
+ 1

6
+ ∆−n2(v)−1

3
, n2(v)

2
+2× 1

6
+ ∆−n2(v)−2

3
} ≥ 0.
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In the final case that n2(v) = b
∆
2
c+ i (1 ≤ i ≤ d∆

2
e), let N2 be the set of

2-vertices of NG(v) and N ′2 be the set of vertices of N2 incident with at least
one 5+-face. Then |N2|= n2(v) = b

∆
2
c+ i. We claim that |N ′2| ≥ 2i. Suppose

to the contrary that |N ′2| ≤ 2i− 1. Then

|NG(v) \ N ′2|=∆− |N
′
2| ≤ 2b

∆
2
c+ 1− |N ′2|

= 2(|N2| − i) + 1− |N ′2|

= 2|N2 \ N ′2|+ (|N
′
2| − 2i+ 1)≤ 2|N2 \ N ′2|.

This implies that there are two vertices u1 ∈ N2 \ N ′2 and u2 ∈ N2 \ {u1} such
that {v, u1, u2} is incident with a 4-face, a contradiction. So the claim holds.
Combining the claim with (S1) and (S3), we have w′(v)≥∆−4−1−(n2(v)−
2i)× 1

2
− 2i× 1

4
− ∆−n2(v)

3
≥ 0 since ∆≥ 8.

The proof of Case 2 is complete and so Theorem 5.1 is true. �

5.3.2 Proof of Theorem 5.2

Let G be a counterexample to Theorem 5.2 with |E(G)| minimum. Then there
are an edge list assignment L of G with |L(e)| = ∆+ 1 for e ∈ E(G) and a
matching assignmentML such that G has noML-coloring. By the minimality
of G, G is minimally non edge DP-(∆+ 1)-colorable.

The following claim follows from (b) in Lemma 5.7 directly.

Claim 1. d(u) + d(v)≥∆+ 3 for every uv ∈ E(G).

Claim 2. |V∆|> 2|V3|.

Proof. Let G3 be the subgraph of G induced by the set of edges incident
with a 3-vertex. By Claim 1, for every uv ∈ E(G3), one of {u, v} is in V3

and the other is in V∆. Hence, |V (G3)| ≤ |V∆| + |V3| and |E(G3)| = 3|V3|.
Further, if C = v1v2 . . . vnv1 is a cycle of G3 with dG(v1) = 3, then n is
even, dG(vi) = 3 for each odd i ∈ [1, n] and dG(vi) = ∆ for each even
i ∈ [1, n]. By (d) in Lemma 5.7, G3 is a forest and so |V (G3)|> |E(G3)|. Thus
|V∆|+ |V3| ≥ |V (G3)|> |E(G3)|= 3|V3|. The claim is true.
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For each x ∈ V (G)∪ F(G), let w(x) = d(x)− 4 be the initial charge of x .
The discharging rules are defined as follows:

(T1) Every ∆-vertex sends 1
2

to a common pot from which each 3-vertex
receives 1.

(T2) Let f = [v1v2v3] be a 3-face with d(v1)≤ d(v2)≤ d(v3).

(T2.1) If d(v1)≤ 4, then f receives 1
2

from each of {v2, v3}.

(T2.2) If d(v1) = 5, then f receives 1
5

from v1 and 2
5

from each of {v2, v3}.

(T2.3) If d(v1)≥ 6, then f receives 1
3

from each of {v1, v2, v3}.

Let w′(x) denote the final charge of every element x in V (G)∪ F(G) after
the discharging process.

Note that the final charge of the common pot is equal to 1
2
|V∆| − |V3| by

(T1) and 1
2
|V∆| − |V3|> 0 by Claim 2.

Therefore, similar to Case 2 in the proof of Theorem 5.1, we only need to
prove w′(z)≥ 0 for every z ∈ V (G)∪ F(G), and then get a contradiction.

We first consider the final charge of each face f ∈ F(G).

If d( f ) ≥ 4, then w′( f ) = w( f ) = d( f ) − 4 ≥ 0. If d( f ) = 3, let
f = [v1v2v3] with d(v1) ≤ d(v2) ≤ d(v3), then by Claim 1, either d(v1) ≤ 4
and d(v3)≥ d(v2)≥∆−1, or d(v1) = 5 and d(v3)≥ d(v2)≥∆−2, or d(v3)≥
d(v2)≥ d(v1)≥ 6. By (T2), w′( f ) = 3− 4+min{2× 1

2
, 1

5
+ 2× 2

5
, 3× 1

3
} = 0.

Now we consider the final charge of each k-vertex v of G.

If k = 3, then w′(v) = 3−4+1 = 0 by (T1). If k = 4, then w′(v) = w(v) =
4− 4 = 0. Note the assumption that ∆ ≥ 9. If k ∈ [5,6], then by Claim 1,
d(u) ≥ ∆+ 3− d(v) ≥ 6 ≥ k for each u ∈ NG(v). By (T2.2) and (T2.3), v
sends k−4

k
to each 3-face incident with v, and so w′(v)≥ k− 4− k× k−4

k
= 0.

If k ∈ [7,∆−2], then every neighbor of v has degree at least 5 by Claim 1,
and k−4

k
>max{2

5
, 1

3
}. By (T2.2) and (T2.3) again, w′(v)≥ k−4−k× k−4

k
≥ 0.

If k ∈ [∆− 1,∆], together (T1) with (T2.1)∼(T2.3), we have w′(v) ≥
k− 4− (k−∆+ 1)× 1

2
− k×max{1

2
, 1

5
, 2

5
, 1

3
} ≥ 0.

The proof of Theorem 5.2 is complete. �
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5.4 Conclusion and future work

In this chapter, we proved that χ ′DP(G) = ∆ if G has no 4-cycles and ∆≥ 7 or
G no 3-cycles and ∆≥ 8. Moreover, we proved that χ ′DP(G)≤∆+ 1 if ∆≥ 9.

For the known result in list edge coloring such as: χ ′`(G)≤∆+1 for planar
graphs with ∆ ≥ 8. It’s very difficult for us to extend to edge DP-coloring
since some base results in list edge coloring may not hold in edge DP-coloring.
We would like to ask the following question.

Question 5.1. Is χ ′DP(G)≤∆+ 2 true for all planar graphs?





Summary

The results in this thesis all deal with edge colorings of planar graphs, in
particular with bounds and exact values of the edge chromatic number with
respect to three different variants of edge coloring.

Research related to edge coloring graphs can be generally classified into
two types. One direction of research is focused on determining the edge
chromatic number of graphs, or bounds for this number. The other direction
is focused on studying conditions for the existence of subgraphs with certain
coloring characteristics in a graph that has already been edge colored. All our
results fall into the first category, and are all restricted to planar graphs, a
class of graphs that have received a lot of attention, motivated and inspired
by the first studies of graph coloring related to the Four Color Problem. Since
then, graph coloring has developed into a rich area, with many celebrated
results and a number of conjectures, some of which are still open.

One of the central and classic results regarding edge coloring states that
the edge chromatic number of any graph is either equal to its maximum
degree or its maximum degree plus one. For generalizations of edge coloring
this classic result leads to two natural questions. The first question is whether
the edge chromatic number for the new edge coloring concept is equal to
the edge chromatic number; the second question is whether this new edge
chromatic number is bounded from above by the maximum degree plus one.
Both questions are usually posed as conjectures, with the second one clearly
weaker than the first one. All our results provide partial answers to these
questions, for three different types of generalizations of edge colorings.

In this thesis, we focus on list edge coloring, signed edge coloring, and

89



90 Summary

edge DP-coloring. With regard to list edge coloring the second question and
the associated conjecture are still open for planar graphs with maximum
degree at least 5. In Chapter 2, we prove that this conjecture holds for planar
graphs with maximum degree at least 6 in which every 7-cycle is induced.
This means that any existing cycles on exactly 7 vertices in the graph have
the property that there are no additional edges in the graph between pairs of
vertices on the cycle, apart from the cycle edges. Our result improves a result
which recently appeared in the literature.

The key idea in our proof is to apply the so-called Combinatorial Nullstel-
lensatz, combined with some recoloring arguments. We use the Combinatorial
Nullstellensatz to determine several configurations which cannot appear in an
assumed minimal counterexample to our main result. We use recoloring argu-
ments to deal with configurations that are not excluded by the Combinatorial
Nullstellensatz.

Our next main result deals with an extension of edge colorings to signed
graphs, i.e., graphs in which each edge has an assigned positive or negative
signature. The study of edge colorings of signed graphs just started recently,
since its introduction by Behr in a paper of 2020. It can be seen as a natural
extension of edge coloring for graphs. In his paper, Behr proved that the edge
chromatic number of a signed graph is equal to its maximum degree or its
maximum degree plus one. In a more recent paper due to Zhang et al., the
authors conjecture that the edge chromatic number of a signed planar graph
with maximum degree at least 6 is equal to its maximum degree. In Chapter 3,
we study the structure of critical signed graphs. We extend some partial
adjacency lemmas on edge coloring to signed edge coloring. In Chapter 4,
we apply the lemmas obtained in Chapter 3 to prove that the conjecture of
Zhang et al. is true for signed planar graphs with maximum degree at least 8,
as well as for signed planar graphs with maximum degree at least 6 in which
each 6-cycle contains at most one chord.

Our final main results deal with another generalization of edge coloring
which is known under the name of edge DP-coloring. There are currently
just a few known results about edge DP-coloring and the associated edge
chromatic number χ ′DP(G). In Chapter 5, we prove three theorems. Let G
be a planar graph with maximum degree ∆. We prove that χ ′DP(G) = ∆ if
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G has no 4-cycles and ∆≥ 7. Moreover, we prove that χ ′DP(G) = ∆ if G has
no 3-cycles and ∆ ≥ 8. In our final result, we prove that χ ′DP(G) ≤∆+ 1 if
∆≥ 9. The key idea in the proofs lies in the discharging method.

Throughout this thesis, we have determined the list edge chromatic num-
ber, signed edge chromatic number and DP-edge chromatic number for classes
of planar graphs which are subjected to certain structural conditions. Despite
our new contributions, some problems and conjectures remain unresolved.
We also present several problems we will consider in future at the end of
each chapter. We hope that these problems and open conjectures attract more
attention from other researchers.





Samenvatting

De resultaten in dit proefschrift hebben zonder uitzondering betrekking op
lijnkleuringen van planaire grafen, in het bijzonder op grenzen en exacte
waarden van het lijnchromatisch getal, voor drie verschillende varianten van
lijnkleuring.

Onderzoek op het gebied van lijnkleuring van grafen kan in het algemeen
ingedeeld worden in twee typen. Binnen de ene richting richt men het on-
derzoek op het bepalen van het lijnchromatisch getal van grafen, ofwel op
grenzen voor dit getal. De andere richting is gericht op het bepalen van
voorwaarden voor het bestaan van deelgrafen met bepaalde kleuringseigen-
schappen in grafen die een lijnkleuring hebben gekregen. De resultaten van
dit proefschrift vallen onder de eerste categorie, en zijn beperkt tot planaire
grafen. Dit is een veel bestudeerde klasse van grafen, gemotiveerd en geïn-
spireerd door de eerste studies betreffende graafkleuring in het kader van het
Vierkleurenprobleem. Sinds die tijd heeft het gebied zich sterk ontwikkeld, en
is het rijk aan gevierde resultaten en vermoedens, waarvan een aantal nog
steeds open is.

Een van de centrale en klassieke resultaten betreffende lijnkleuring is de
stelling dat het lijnchromatisch getal van elke graaf gelijk is aan de maximale
graad in de graaf of de maximale graad plus één. Voor generalisaties van
lijnkleuring leidt deze klassieke stelling tot twee natuurlijke vragen. De eerste
vraag is of het lijnchromatisch getal voor de nieuwe variant van lijnkleuring
gelijk is aan het lijnchromatisch getal van klassieke lijnkleuring; de tweede
vraag is of het nieuwe lijnchromatisch getal van boven begrensd is door de
maximale graad plus één. Beide vragen worden veelal geformuleerd als
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vermoedens, waarbij het tweede vermoeden duidelijk zwakker is dan het
eerste. Alle resultaten uit dit proefschrift geven gedeeltelijke antwoorden op
deze vragen, voor drie verschillende generalisaties van lijnkleuring.

In dit proefschrift ligt de focus op lijst lijnkleuring, gesigneerde lijnkleuring
en DP-lijnkleuring.

Wat betreft lijst lijnkleuring zijn de tweede vraag en het bijbehorende
vermoeden nog open voor planaire grafen met maximale graad minstens
5. In Hoofdstuk 2 wordt bewezen dat dit vermoeden waar is voor planaire
grafen met maximale graad minstens 6 waarin elke 7-cykel geïnduceerd is.
Dat laatste wil zeggen dat elke eventueel aanwezige 7-cykel de eigenschap
heeft dat er geen andere lijnen in de graaf aanwezig zijn tussen punten van
de cykel, naast de lijnen van de cykel zelf. Dit resultaat is een verbetering van
een bekend resultaat uit de literatuur. Het sleutelidee in ons bewijs van dit
resultaat is het toepassen van de zogenoemde Combinatorial Nullstellensatz,
gecombineerd met bepaalde argumenten op het gebied van het herkleuren
van lijnen. We gebruiken de Combinatorial Nullstellensatz om een aantal
configuraties uit te sluiten in een verondersteld tegenvoorbeeld van ons
resultaat. De herkleuringsargumenten worden dan in de overgebleven niet
uitgesloten configuraties gebruikt.

Ons volgende hoofdresultaat betreft een uitbreiding van lijnkleuringen
naar gesigneerde grafen, dat wil zeggen grafen waarin elke lijn een positieve
of negatieve signatuur heeft gekregen. Het onderzoek naar lijnkleuringen
van gesigneerde grafen is pas begonnen, met de introductie door Behr in
een artikel uit 2020. Deze vorm van lijnkleuring kan gezien worden als een
natuurlijke uitbreiding van lijnkleuring naar gesigneerde grafen. In zijn artikel
laat Behr zien dat het lijnchromatisch getal van een gesigneerde graaf gelijk is
aan de maximale graad of de maximale graad plus één. In een recenter artikel
formuleren de auteurs Zhang et al. het vermoeden dat het lijnchromatisch
getal van een gesigneerde planaire graaf met maximale graad minstens 6
gelijk is aan de maximale graad van de graaf. In Hoofdstuk 3 bestuderen we
de structuur van kritieke gesigneerde grafen. We breiden daarin een aantal
structurele resultaten over buurrelaties uit van lijnkleuring naar gesigneerde
lijnkleuring. In Hoofdstuk 4 passen we die structurele resultaten toe om
te bewijzen dat het vermoeden van Zhang et al. waar is voor gesigneerde
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planaire grafen met maximale graad minstens 8, en tevens voor gesigneerde
planaire grafen met maximale graad minstens 6 waarin elke 6-cykel hooguit
één koorde heeft.

Ons laatste hoofdresultaat betreft een andere generalisatie van lijnkleuring
die bekend staat onder de naam DP-lijnkleuring. Er zijn tot nu toe weinig
resultaten bekend op het gebied van DP-lijnkleuring en het bijbehorende
lijnchromatisch getal χ ′DP(G). In Hoofdstuk 5 bewijzen we drie stellingen.
Stel hiervoor dat G een planaire graaf is met maximale graad ∆. Allereerst
bewijzen we dat χ ′DP(G) = ∆ als G geen 4-cykels heeft en ∆ ≥ 7 is. Tevens
bewijzen we dat χ ′DP(G) = ∆ als G geen 3-cykels heeft en ∆ ≥ 8 is. In
ons laatste resultaat laten we zien dat χ ′DP(G) ≤ ∆ + 1 als ∆ ≥ 9. Het
basisidee achter alle bewijzen is een bestaande techniek die bekend staat als
de “discharging method”.

In de technische hoofdstukken van dit proefschrift hebben we het li-
jnchromatisch getal bepaald voor lijst lijnkleuring, gesigneerde lijnkleuring
en DP-lijnkleuring van klassen van planaire grafen die onderhevig zijn aan
bepaalde structurele voorwaarden. Niettegenstaande onze nieuwe bijdra-
gen tot dit gebied, blijven een aantal problemen en vermoedens onopgelost.
We presenteren ook een aantal problemen die we in de toekomst zullen be-
spreken aan het einde van elk hoofdstuk. We hopen dat deze problemen en
vermoedens de aandacht gaan trekken van andere onderzoekers.
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Appendix A

Proof of Lemma 2.6

This appendix contains the analysis for the remaining 13 cases in the proof of
Lemma 2.6 that we omitted. We recall the following set-up, where H is one
of the graphs F2–F14 of Figure 2.1. Suppose H = Fi and let the vertices be
labeled as in Figure 2.1. Let φ be an edge-L|E(H)-coloring of H. Denote by Sφ
the edge list assignment of H satisfying that, for every ei = uw ∈ E(H),

Sφ(ei) = L(ei) \ {φ(h) : h ∈ EH(u)∪ EH(w)}.

(1) H = F2. Assign x i to vvi for i ∈ [1,3], and x4, x5 to v1v2, v2v3. Using
Eq. (2.1), we obtain:

PF2
=(x1− x2)(x1− x3)(x2− x3) · (x1− x4) · (x2− x4)(x2− x5)

(x4− x5) · (x3− x5).

By straightforward calculations, |Sφ(vv1)| ≥ 3 > 2, |Sφ(vv2)| ≥ 3 > 2,
|Sφ(vv3)| ≥ 2 > 1, |Sφ(v1v2)| ≥ 3 > 2, |Sφ(v2v3)| ≥ 2 > 1. We used Mathe-
matica to deduce that Coefficient[PF2

, x2
1 x2

2 x3 x2
4 x5] =−2.
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(2) H = F3. Assign x i to vvi for i ∈ [1,3], and x4, x5 to v1v2, v2v3. Using
Eq. (2.1), we obtain:

PF3
=(x1− x2)(x1− x3)(x2− x3) · (x1− x4) · (x2− x4)(x2− x5)

(x4− x5) · (x3− x5).

By straightforward calculations, |Sφ(vv1)| ≥ 2 > 1, |Sφ(vv2)| ≥ 4 > 3,
|Sφ(vv3)| ≥ 2 > 1, |Sφ(v1v2)| ≥ 3 > 2, |Sφ(v2v3)| ≥ 3 > 1. By Mathematica,
Coefficient[PF3

, x1 x3
2 x3 x2

4 x5] = 1.

(3) H = F4. Assign x i to vvi for i ∈ [1,3], x4, x5 to v1v2, v2v3 and x6 to
v1u. Using Eq. (2.1), we obtain:

PF4
=(x1− x2)(x1− x3)(x2− x3) · (x1− x4)(x1− x6)(x4− x6) · (x2− x4)

(x2− x5)(x4− x5) · (x3− x5).

By straightforward calculations, |Sφ(vv1)| ≥ 2 > 1, |Sφ(vv2)| ≥ 4 > 3,
|Sφ(vv3)| ≥ 2> 1, |Sφ(v1v2)| ≥ 3> 2, |Sφ(v2v3)| ≥ 3> 2, |Sφ(v1u)| ≥ 2> 1.
By Mathematica, Coefficient[PF4

, x1 x3
2 x3 x2

4 x2
5 x6] =−1.

(4) H = F5. Assign x i to vvi for i ∈ [1,4], x5, x6 to v1v2, v2v3. Using
Eq. (2.1), we obtain:

PF5
=(x1− x2)(x1− x3)(x1− x4)(x2− x3)(x2− x4)(x3− x4) · (x1− x5)·

(x2− x5)(x2− x6)(x5− x6) · (x3− x6).

Obviously, |Sφ(vv1)| ≥ 4 > 3, |Sφ(vv2)| ≥ 3 > 2, |Sφ(vv3)| ≥ 4 > 3,
|Sφ(vv4)| ≥ 2 > 1, |Sφ(v1v2)| ≥ 2 > 1, |Sφ(v2v3)| ≥ 2 > 1. By Mathematica,
Coefficient[PF5

, x3
1 x2

2 x3
3 x4 x5 x6] = 2.

(5) H = F6. Assign x i to vvi for i ∈ [1,4], x5, x6, x7 to v1v2, v2v3, v3v4.
Using Eq. (2.1), we obtain:

PF6
=(x1− x2)(x1− x3)(x1− x4)(x2− x3)(x2− x4)(x3− x4) · (x1− x5)·

(x2− x5)(x2− x6)(x5− x6) · (x3− x6)(x3− x7)(x6− x7) · (x4− x7).
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By straightforward calculations, |Sφ(vv1)| ≥ 4 > 3, |Sφ(vv2)| ≥ 3 > 2,
|Sφ(vv3)| ≥ 5> 4, |Sφ(vv4)| ≥ 2> 1, |Sφ(v1v2)| ≥ 2> 1, |Sφ(v2v3)| ≥ 3> 2,
|Sφ(v3v4)| ≥ 2 > 1. By Mathematica, Coefficient[PF6

, x3
1 x2

2 x4
3 x4 x5 x2

6 x7] =
−3.

(6) H = F7. Assign x i to vvi for i ∈ [1,4], x5, x6, x7 to v1v2, v2v3, uv1.
Using Eq. (2.1), we obtain:

PF7
=(x1− x2)(x1− x3)(x1− x4)(x2− x3)(x2− x4)(x3− x4) · (x1− x5)

(x1− x7)(x5− x7) · (x2− x5)(x2− x6)(x5− x6) · (x3− x6).

By straightforward calculations, |Sφ(vv1)| ≥ 3 > 2, |Sφ(vv2)| ≥ 5 > 4,
|Sφ(vv3)| ≥ 2> 1, |Sφ(vv4)| ≥ 3> 2, |Sφ(v1v2)| ≥ 3> 2, |Sφ(v2v3)| ≥ 2> 1,
|Sφ(uv1)| ≥ 2> 1. By Mathematica, Coefficient[PF7

, x2
1 x4

2 x3 x2
4 x2

5 x6 x7] =−1.

(7) H = F8. Assign x i to vvi for i ∈ [1, 5], x6, x7, x8, x9 to v1v2, v2v3, v3v4,
uv3. Using Eq. (2.1), we obtain:

PF8
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6) · (x2− x6)(x2− x7)(x6− x7)·

(x3− x7)(x3− x8)(x3− x9)(x7− x8)(x7− x9)(x8− x9) · (x4− x8).

By straightforward calculations, |Sφ(vv1)| ≥ 3 > 2, |Sφ(vv2)| ≥ 6 > 5,
|Sφ(vv3)| ≥ 5 > 3, |Sφ(vv4)| ≥ 4 > 3, |Sφ(vv5)| ≥ 2 > 1, |Sφ(v1v2)| ≥ 2 > 1,
|Sφ(v2v3)| ≥ 4 > 3, |Sφ(v3v4)| ≥ 2 > 1, |Sφ(uv3)| ≥ 3 > 2. By Mathematica,
Coefficient[PF8

, x2
1 x5

2 x3
3 x3

4 x5 x6 x3
7 x8 x2

9] = 1.

(8) H = F9. Assign x i to vvi for i ∈ [1, 5], x6, x7, x8, x9 to v1v2, v2v3, v3v4,
v4v5. Using Eq. (2.1), we obtain:

PF9
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6) · (x2− x6)(x2− x7)(x6− x7)·

(x3− x7)(x3− x8)(x7− x8) · (x4− x8)(x4− x9)(x8− x9) · (x5− x9).
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By straightforward calculations, |Sφ(vv1)| ≥ 5 > 4, |Sφ(vv2)| ≥ 4 > 2,
|Sφ(vv3)| ≥ 5 > 4, |Sφ(vv4)| ≥ 4 > 3, |Sφ(vv5)| ≥ 5 > 4, |Sφ(v1v2)| ≥ 2 > 1,
|Sφ(v2v3)| ≥ 2> 1, |Sφ(v3v4)| ≥ 2> 1, |Sφ(v4v5)| ≥ 2> 1. By Mathematica,
Coefficient[PF9

, x4
1 x2

2 x4
3 x3

4 x4
5 x6 x7 x8 x9] =−2.

(9) H = F10. Assign x i to vvi for i ∈ [1,5], x6, x7, x8, x9 to v1v2, v2v3,
v3v4, v4v5. Using Eq. (2.1), we obtain:

PF10
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6) · (x2− x6)(x2− x7)(x6− x7)·

(x3− x7)(x3− x8)(x7− x8) · (x4− x8)(x4− x9)(x8− x9) · (x5− x9).

By straightforward calculations, |Sφ(vv1)| ≥ 5 > 4, |Sφ(vv2)| ≥ 4 > 2,
|Sφ(vv3)| ≥ 5 > 3, |Sφ(vv4)| ≥ 5 > 4, |Sφ(vv5)| ≥ 4 > 3, |Sφ(v1v2)| ≥ 2 > 1,
|Sφ(v2v3)| ≥ 2> 1, |Sφ(v3v4)| ≥ 3> 2, |Sφ(v4v5)| ≥ 2> 1. By Mathematica,
Coefficient[PF10

, x4
1 x2

2 x3
3 x4

4 x3
5 x6 x7 x2

8 x9] = 2.

(10) H = F11. Assign x i to vvi for i ∈ [1,5], x6, x7, x8, x9 to v1v2, v2v3,
v3v4, v4v5. Using Eq. (2.1), we obtain:

PF11
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6) · (x2− x6)(x2− x7)(x6− x7)·

(x3− x7)(x3− x8)(x7− x8) · (x4− x8)(x4− x9)(x8− x9) · (x5− x9).

By straightforward calculations, |Sφ(vv1)| ≥ 5 > 4, |Sφ(vv2)| ≥ 5 > 2,
|Sφ(vv3)| ≥ 4 > 3, |Sφ(vv4)| ≥ 5 > 4, |Sφ(vv5)| ≥ 4 > 3, |Sφ(v1v2)| ≥ 3 > 2,
|Sφ(v2v3)| ≥ 2> 1, |Sφ(v3v4)| ≥ 2> 1, |Sφ(v4v5)| ≥ 2> 1. By Mathematica,
Coefficient[PF11

, x4
1 x2

2 x3
3 x4

4 x3
5 x2

6 x7 x8 x9] = 1.

(11) H = F12. Assign x i to vvi for i ∈ [1,5], x6, x7, x8, x9 to v1v2, v2v3,
v3v4, v4v5. Using Eq. (2.1), we obtain:

PF12
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6) · (x2− x6)(x2− x7)(x6− x7)·

(x3− x7)(x3− x8)(x7− x8) · (x4− x8)(x4− x9)(x8− x9) · (x5− x9).
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By straightforward calculations, |Sφ(vv1)| ≥ 4 > 1, |Sφ(vv2)| ≥ 6 > 5,
|Sφ(vv3)| ≥ 4 > 3, |Sφ(vv4)| ≥ 5 > 3, |Sφ(vv5)| ≥ 4 > 3, |Sφ(v1v2)| ≥ 3 > 2,
|Sφ(v2v3)| ≥ 3> 2, |Sφ(v3v4)| ≥ 2> 1, |Sφ(v4v5)| ≥ 2> 1. By Mathematica,
Coefficient[PF12

, x1 x5
2 x3

3 x3
4 x3

5 x2
6 x2

7 x8 x9] =−2.

(12) H = F13. Assign x i to vvi for i ∈ [1,5], x6, x7, x8, x9, x10 to v1v2,
v2v3, v3v4, v4v5, v1v5. Using Eq. (2.1), we obtain:

PF13
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6)(x1− x10)(x6− x10) · (x2− x6)

(x2− x7)(x6− x7) · (x3− x7)(x3− x8)(x7− x8) · (x4− x8)(x4− x9)

(x8− x9) · (x5− x9)(x5− x10)(x9− x10).

By straightforward calculations, |Sφ(vv1)| ≥ 6 > 5, |Sφ(vv2)| ≥ 5 > 4,
|Sφ(vv3)| ≥ 4 > 3, |Sφ(vv4)| ≥ 5 > 4, |Sφ(vv5)| ≥ 4 > 2, |Sφ(v1v2)| ≥ 4 > 2,
|Sφ(v2v3)| ≥ 2 > 1, |Sφ(v3v4)| ≥ 2 > 1, |Sφ(v4v5)| ≥ 2 > 1, |Sφ(v1v5)| ≥ 3 >
2. By Mathematica, Coefficient[PF13

, x5
1 x4

2 x3
3 x4

4 x2
5 x2

6 x7 x8 x9 x2
10] = 2.

(13) H = F14. Assign x i to vvi for i ∈ [1,5], x6, x7, x8, x9, x10 to v1v2,
v2v3, v3v4, v4v5, v1v5. Using Eq. (2.1), we obtain:

PF14
=(x1− x2)(x1− x3)(x1− x4)(x1− x5)(x2− x3)(x2− x4)(x2− x5)

(x3− x4)(x3− x5)(x4− x5) · (x1− x6)(x1− x10)(x6− x10) · (x2− x6)

(x2− x7)(x6− x7) · (x3− x7)(x3− x8)(x7− x8) · (x4− x8)(x4− x9)

(x8− x9) · (x5− x9)(x5− x10)(x9− x10).

By straightforward calculations, |Sφ(vv1)| ≥ 6 > 5, |Sφ(vv2)| ≥ 4 > 3,
|Sφ(vv3)| ≥ 5 > 4, |Sφ(vv4)| ≥ 5 > 2, |Sφ(vv5)| ≥ 4 > 3, |Sφ(v1v2)| ≥ 3 > 2,
|Sφ(v2v3)| ≥ 2 > 1, |Sφ(v3v4)| ≥ 3 > 2, |Sφ(v4v5)| ≥ 2 > 1, |Sφ(v1v5)| ≥ 3 >
2. By Mathematica, Coefficient[PF14

, x5
1 x3

2 x4
3 x2

4 x3
5 x2

6 x7 x2
8 x9 x2

10] = 5.
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