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Abstract

Visual place recognition (VPR) is a fundamental task of
computer vision for visual localization. Existing methods are
trained using image pairs that either depict the same place
or not. Such a binary indication does not consider continu-
ous relations of similarity between images of the same place
taken from different positions, determined by the continuous
nature of camera pose. The binary similarity induces a noisy
supervision signal into the training of VPR methods, which
stall in local minima and require expensive hard mining al-
gorithms to guarantee convergence. Motivated by the fact
that two images of the same place only partially share visual
cues due to camera pose differences, we deploy an automatic
re-annotation strategy to re-label VPR datasets. We compute
graded similarity labels for image pairs based on available
localization metadata. Furthermore, we propose a new Gen-
eralized Contrastive Loss (GCL) that uses graded similarity
labels for training contrastive networks. We demonstrate
that the use of the new labels and GCL allow to dispense
from hard-pair mining, and to train image descriptors that
perform better in VPR by nearest neighbor search, obtaining
superior or comparable results than methods that require
expensive hard-pair mining and re-ranking techniques.

1. Introduction
Visual place recognition (VPR) is an important task of

computer vision, and a fundamental building block of nav-

igation systems for autonomous vehicles [24, 48]. It is

approached either with structure-based methods, namely

Structure-from-Motion [36] and SLAM [26], or with im-

age retrieval [2, 15, 20, 29, 30, 46]. The former focus on

precise relative camera pose estimation [34, 35]. The lat-

ter aim at learning image descriptors for effective retrieval

of similar images to a given query in a nearest search ap-

proach [28]. The goal of descriptor learning is to ensure im-

ages of the same place to be projected onto close-by points

in a latent space, and images of different places to be pro-

jected onto distant points [9,10,21]. Contrastive [19,30] and

triplet [2,22,23,27] loss were used for this goal and resulted

(a) reference image (b) GPS distance 6m
positive

(c) GPS distance 25.6m
negative

Figure 1. (a) A place in the city of Amman. (b) An image taken 6m

away is labeled as positive (same place), while (c) an image taken

25.6m away is labeled as negative (not the same place) despite

sharing a lot of visual cues.

in state-of-the-art performance on several VPR benchmarks.

VPR methods are normally trained using image pairs

labelled to indicate they either depict the same place or not,

in a binary fashion. In practice, images of a certain place can

be taken from different positions, i.e. with a different camera

pose, and thus share only a part of their visual cues (or

surface in 3D). In existing datasets, two images are usually

labeled to be of the same place (positive) if they are taken

within a predefined range (usually 25m) computed using e.g.

GPS metadata. This creates ambiguous cases. For instance,

Figure 1 shows a reference image (a) of a place and two

other pictures taken 6m (b) and 25.6m (c) away from its

position. The images are respectively labeled as positive

and negative match, although they share many visual cues

(e.g. the building on the right). Binary labels are thus noisy

and interfere with the training of VPR networks, that usually

stall in local minima. To address this, resource- and time-

costly hard pair mining strategies are used to compose the

training batches. For example, training NetVLAD [2] on

the Mapillary Street Level Sequences (MSLS) dataset [45]

can take more than 20 days on an Nvidia v100 gpu due

to the complexity of pair mining. We instead build on the

observation that two images depict the same place only to a

certain degree of shared cues, namely a degree of similarity,

and propose to embed this information in new continuous

labels for existing datasets that can be used to reduce the

effect of noise in the training of effective VPR methods.

In this paper we exploit camera pose metadata or 3D in-

formation associated to image pairs as a proxy to estimate an
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approximate degree of similarity (hereinafter, graded similar-

ity) between images of the same place, and use it to relabel

popular VPR datasets. Graded similarity labels can be used

to pick easy- and hard-pairs and compose training batches

without complex pair-mining, thus speeding-up the training

of VPR networks and enabling an efficient use of data. Fur-

thermore, we embed the graded similarity into a Generalized

Contrastive Loss (GCL) function that we use to train a VPR

pipeline. The intuition behind this choice is that the update

of network weights should not be equal for all training pairs,

but rather be influenced by their similarity. The representa-

tions of image pairs with larger graded similarity should be

pushed together in the latent space more strongly than those

of images with a lower graded similarity. The distance in

the latent space is thus expected to be a better measure of

ranking images according to their similarity, avoiding the

use of expensive re-ranking to improve retrieval results. We

validate the proposed approaches on several VPR benchmark

datasets. To the best of our knowledge, this work is the first

to use graded similarity for large-scale place recognition,

and paying attention to data-efficient training.

We summarize the contributions of this work as:

• new labels for VPR datasets indicating the graded sim-

ilarity of image pairs. We computed the labels with

automatic methods that use camera pose metadata in-

cluded with the images or 3D surface information;

• a generalized contrastive loss (GCL) that exploits

graded similarity of image pairs to learn effective de-

scriptors for VPR;

• an efficient VPR pipeline trained without hard-pair min-

ing, and that does not require re-ranking. Training our

pipeline with a VGG-16 backbone converges ∼ 100x
faster than NetVLAD with the same backbone, achiev-

ing higher VPR results on several benchmarks. The

efficiency of our scheme enables training larger back-

bones in a short time.

2. Related works
Place recognition as image retrieval. Visual place recog-

nition is widely addressed as a metric learning problem, in

which the descriptors of images of a place are learned to

be close together in a latent space [10]. Existing methods

optimize ranking loss functions, such as contrastive, triplet

or average precision [13, 30, 31]. An extensive benchmark

of different approaches is in [6]. NetVLAD [2] is a mile-

stone of VPR and builds on a triplet network with an end-

to-end trainable VLAD layer. It requires a computationally-

and memory-expensive hard-pair mining to compose proper

batches and guarantee convergence. SARE [22] uses a

NetVLAD backbone trained with a probabilistic attractive

and repulsive mechanism, also making use of hard-pair

mining. Hard-pair mining addresses issues of the training

stalling in local minima due to noisy binary labels, and is

used to compose the training batches so that hard pairs are

selected for the training [2]. We instead use image metadata

(e.g. camera pose as GPS and compass) to a-priori estimate

the graded similarity of image pairs, and subsequently use it

to balance hard- and easy-pairs in the training batches. This

allows to train VPR models using the graded similarity of

images and avoiding hard-pair mining.

Training with noisy binary labels produces image descrip-

tors with drawbacks in nearest neighbor search retrieval, and

re-ranking algorithms are necessary to post-process the re-

trieved results and increase VPR performance [7, 32]. Patch-

NetVLAD [15] builds on a NetVLAD backbone and per-

forms multi-scale aggregation of NetVLAD descriptors to

re-rank retrieval results. A transformer architecture named

TransVPR was trained using a triplet loss function and hard-

pair mining in [43]. The retrieval step is combined with a

costly re-ranking strategy to improve the retrieval results. We

instead focus on using more informative and robust image

pair labels to avoid noisy training and obtain more effec-

tive image descriptors for nearest neighbor search, with no

necessity of performing re-ranking.

Image graded similarity. Soft assignment to positive

and negative classes of image pairs was investigated in [41],

where weighting of the assignment was based on the Eu-

clidean distance between the GPS coordinates associated to

the images. As the GPS distance induced label noise in the

training process, hard-negative pair mining was still neces-

sary to train VPR networks. In [12], image region similarity

was coupled with the GPS weak labels in a self-supervised

framework to mine hard positive samples. In [5], the authors

formulated the VPR metric learning as a classification prob-

lem, splitting image training into classes based on similar

GPS locations to facilitate large-scale city-wide recognition.

Camera pose was used in [4] to estimate the camera frustum

overlap and regress descriptors for camera (re-)localization

in small-scale (indoor) environments. In [17], a weighting

scheme for the contrastive loss function is proposed as a

function of the distance in the latent space, which requires

an extra step of normalization of the distances to avoid a

divergent training. In this work, we relabel VPR datasets us-

ing camera pose and field of view overlap, or ratio of shared

3D surface as proxies to estimate the graded similarity of

training image pairs. We compute the new labels once, and

use them to select the training batches and directly in the

optimization of the networks to obtain effective descriptors

for VPR in a data-efficient manner.

Relation and difference with prior works. We under-

take a different direction than previous works, and propose a

simplified way to learn image descriptors for retrieval-based

VPR. We use contrastive architectures without hard-pair min-

ing and exploit the graded similarity of image pairs to learn
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robust descriptors. Instead of developing algorithmic solu-

tions (e.g. hard-pair mining or re-ranking) to achieve better

VPR results by increasing the complexity of the methods,

we focus on data-efficiency and improve similarity labels

to better exploit the training data. This allows to purposely

keep the complexity of the architecture simpler (a convolu-

tional backbone and a straightforward pooling strategy) than

other methods. We apply prior knowledge and use metadata

about the position and orientation of the cameras to estimate

a more robust ground truth image similarity that enables to

drop expensive hard-mining procedures and train (bigger)

networks efficiently. We show that this approach leads to re-

duced training time and very robust descriptors that perform

well in nearest neighbour search with no need of re-ranking.

3. Generalized Contrastive Learning
Preliminaries. Contrastive approaches for metric learning in

visual place recognition consider training a (convolutional)

neural network f̂(x) so that the distance of the vector repre-

sentation of similar (or dissimilar) images in a latent space

is minimized (or maximized). In this work, we consider

siamese networks optimized using a Contrastive Loss func-

tion [14].

Let xi and xj be two input images, with f̂(xi) and f̂(xj)
their descriptors. The distance of the descriptors in the la-

tent space is the L2-distance d(xi, xj) =
∥∥∥f̂(xi)− f̂(xj)∥∥∥

2
.

The Contrastive Loss LCL used to train the networks is de-

fined as:

LCL(xi, xj) =

{
1
2d(xi, xj)

2, if y = 1
1
2 max(τ − d(xi, xj), 0)2, if y = 0

(1)

where τ is the margin, an hyper-parameter that defines a

boundary between similar and dissimilar pairs. The ground

truth label y is binary: 1 indicates a pair of similar images,

and 0 a not-similar pair of images. In practice, however,

a binary ground truth for similarity may cause the trained

models to provide unreliable predictions.

Generalized Contrastive Loss. We reformulate the Con-

trastive Loss, using a generalized definition of pair similarity

as a continuous value ψi,j ∈ [0, 1]. We define the General-

ized Contrastive Loss function LGCL as:

LGCL(xi, xj) = ψi,j · 1
2
d(xi, xj)

2+

(1− ψi,j) · 1
2
max(τ − d(xi, xj), 0)2

(2)

In contrast to Eq. 1, here the similarity ψi,j is a con-

tinuous value ranging from 0 (completely dissimilar) to 1

(identical). By minimising the Generalized Contrastive Loss,

the distance of image pairs in the latent space is optimized

proportionally to the corresponding degree of similarity.

Gradient of the GCL. In the training phase, the loss func-

tion is minimized by gradient descent optimization and the

weights of the network are updated by backpropagation. In

the case of the Constrastive Loss function, the gradient is:

∇LCL(xi, xj) =

{
d(xi, xj), if y = 1

min(d(xi, xj)− τ, 0), if y = 0
(3)

The gradient is computed for all positive pairs, and corre-

sponds to a direct minimization of their descriptor distance

in the latent space. For negative pairs, the update of the

network weights takes place only in the case the distance of

the descriptors is within the margin τ . If the latent vectors

are already at a distance higher than τ , no update is done.

The Generalized Contrastive Loss, instead, explicitly ac-

counts for graded similarity ψi,j of input pairs (xi,xj) to

weight the learning steps, and this reflects into the gradient:

∇LGCL(xi,xj)=

{
d(xi,xj)+τ(ψi,j−1), if d(xi,xj)<τ

d(xi, xj) · ψi,j , if d(xi,xj)≥τ
(4)

The gradient of LGCL is modulated by the degree of similar-

ity of the input image pairs, ψi,j . This results in an implicit

regularization of learned latent space. In the supplementary

material, we provide and compare plots of the latent space

learned with the LCL and LGCL functions. At the extremes

of the similarity range, for ψi,j = 0 (completely dissimilar

input images) and ψi,j = 1 (same exact input images), the

gradient is the same as in Eq. 3.

4. Experimental evaluation
4.1. Data

Mapillary Street Level Sequences. The Mapillary Street

Level Sequences (MSLS) dataset is designed for life-long

large-scale visual place recognition. It contains about 1.6M

images taken in 30 cities across the world [45]. Images are

divided into a training (22 cities, 1.4M images), validation

(2 cities, 30K images) and test (6 cities, 66k images) set.

The dataset presents strong challenges related to images

taken at different times of the day, in different seasons and

with strong variations of camera viewpoint. The images

are provided with GPS data in UTM format and compass

angle. According to the original paper [45], two images

are considered similar if they are taken by cameras located

within 25m of distance, and with less than 40◦ of viewpoint

variation. We created (and will release) new ground truth

labels for the training set of MSLS, with specification of

the graded similarity of image pairs (see next Section for

details). We use the MSLS dataset to train our large-scale

VPR models, which we test on the validation set, and also

the private test set using the available evaluation server.
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OOD test data for generalization. We use out-of-

distribution (OOD) test sets, to evaluate the generalization

abilities of our models and compare them with existing meth-

ods. We thus use the test and validation sets of several

other benchmark datasets, namely the Pittsburgh30k [2],

Tokyo24/7 [42], RobotCar Seasons v2 [25,33] and Extended

CMU Seasons [3,33] datasets. In the supplementary material,

we also report results on Pittsburgh250k and TokyoTM [42].

TB-Places and 7Scenes. We carried out experiments also

using the TB-Places [19] and 7Scenes [38] datasets, which

were recorded in small-scale environments. We train models

on them and report the results in the supplementary material.

TB-Places was recorded in an outdoor garden over two years

and contains challenges related to drastic viewpoint varia-

tions, as well as illumination changes, and scenes mostly

filled with repetitive texture of green color. Each image has

6DOF pose metadata. The 7Scenes dataset is recorded in

seven indoor environments. It contains 6DOF pose metadata

for each image and a 3D pointcloud of each scene.

The different format and type of metadata, namely 6DOF

camera pose and 3D pointclouds of the scenes, are of interest

to investigate different ways to estimate the ground truth

graded similarity of image pairs. In the following, we present

techniques to automatically re-label VPR datasets, when

6DOF pose or 3D pointclouds metadata are available.

4.2. Graded similarity labels

Images of the same place can be taken from different

positions, i.e. with different camera pose, and share only

part of the visual cues. On the basis of the amount of shared

characteristics among images, we indeed tend to perceive

images more or less similar [11]. Actual labeling of VPR

datasets do not consider this and instead mark two images

either similar (depicting the same place) or not (depicting

different places). This does not take into account contin-

uous relations between images, which are induced by the

continuous nature of camera pose.

We combine the concept of perceived visual similarity

with the continuous nature of camera pose, and design a

method to automatically relabel VPR dataset by annotating

the graded similarity of image pairs1. We approximate the

similarity between two images via a proxy, namely measur-

ing the overlap of the field of view of the cameras or 3D

information associated to the images.

Graded similarity for MSLS and TB-Places: field of view
overlap. For MSLS and TB-Places dataset, images are

provided with camera pose metadata in the form of a vector

t and orientation α. The MSLS has UTM data and compass

angle information associated to the images, while in TB-

Places the images are provided with precise camera pose

recorded with a laser tracker and IMU.

1We release the labels at https : / / github . com /
marialeyvallina/generalized_contrastive_loss.

θ

t

r

N

α

(a) (b) (c)

Figure 2. (a) FoV with angle θ and radius r. The point t is the

camera location in the environment, and α is the camera orientation

in the form of a compass angle with respect to the north N . (b) An

example of FoV overal for two cameras in the same position and

with orientations 40◦ apart. (c) An example of FoV overlap for two

cameras located 25m apart but with the same orientation.

(a) (b) (c) FoV overlap 75.5%

(d) (e) (f) FoV overlap 75%

(g) (h) (i) FoV overlap 50%

Figure 3. Examples of graded similarity estimated for MSLS

(first row) and TB-Places (second row) with the FoV overlap, and

7Scenes (third row) with 3D overlap (magenta color points).

For an image, we build the field of view (FoV) of the

camera as the sector of the circle centered at t with radius

r, delimited by the angle range [α− θ
2 , α+ θ

2 ] (see Fig. 2a),

where θ is the nominal size of the FoV of the camera con-

cerned. The FoV overlap is the intersection-over-union (IoU)

of the FoV of the cameras. In the first and second row of Fig-

ure 3, we show examples of the graded similarity estimated

for pairs in the MSLS and TB-Places datasets. This ap-

proach differs from the camera frusta overlap [4] that needs

3D overlap measures for precise camera pose estimation.

Graded similarity for 7Scenes: 3D overlap. The 7Scenes

dataset has a 3D pointcloud for each scene, and 6DOF cam-

era pose associated to the images. In this case, we can

estimate the similarity overlap differently from the cases

above. We project a pair of images onto the 3D pointcloud,

so that we select the points associated to the two images and

measure their intersection-over-union (IoU) as a measure

of the image pair similarity. A similar strategy based on
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maximum inliers was used for hard-pair mining in [30]. In

the third row of Figure 3, we show an example of graded

similarity estimation for two images in the 7Scenes dataset.

4.3. Place recognition pipeline

Embeddings. We use a fully convolutional backbone

(ResNet [16], VGG16 [39] and ResNeXt [47]) with a

GeM pooling layer [30], which receives as input an image

x ∈ Rwn×hn×3, and outputs a representation f̂(x) ∈ Rdm ,

where dm is the number of kernels of the last convolutional

layer. We train f̂(x) using a contrastive learning framework.

Training batch composition. Batch composition is an im-

portant part of model training. For contrastive architectures,

the selection of meaningful image tuples is crucial for the

correct optimization of the model. If the selected tuples are

too challenging, the training might become unstable [37].

If they are too easy, the learning might stall. This, cou-

pled with binary pairwise labels, makes necessary to use

complex descriptor-based mining strategies to ensure model

convergence. The hard-negative mining strategy needed to

train contrastive networks [2, 15, 22] periodically computes

the descriptor of all training images and their pairwise dis-

tance to select certain pairs (tuples) of images to be used

for the subsequent training steps. This is a memory- and

computation-expensive procedure.

We do not perform hard-pair mining. We instead compose

the training batches taking into account the graded similarity

labels that we computed. We balance the pairs in the training

batches on the basis of their annotated degree of similarity.

For each batch, we make sure to select 50% of positive pairs

(similarity higher than 50%), 25% of soft negative samples

(similarity higher than 0% and lower than 50%) and 25% of

hard negatives (0% similarity) – see Section 5 for results.

Image retrieval. Let us consider a set X of reference im-

ages with a known camera location, and a set Y of query

images taken from unknown positions. In order to localize

the camera that took the query images, similar images to the

query are to be retrieved from the reference set. We compute

the descriptors of the reference images f̂(x) ∀x ∈ X , and of

the query images f̂(y) ∀y ∈ Y . For a given query descrip-

tor f̂(y), image retrieval is performed by nearest neighbor

search within the reference descriptors f̂(x) ∀x ∈ X , re-

trieving k images ranked by the closest descriptor distance.

4.4. Performance measures

We apply widely used place recognition evaluation pro-

tocols and consider a query as correctly identified if any

of the top-k retrieved images are annotated as a positive

match [2,34,45]. We computed the following metrics. For

the MSLS, Pittsburgh30k, Tokyo24/7 (Pittsburgh250k, Toky-

oTM, TrimBot2020 and 7Scences in the supplementary ma-

terial) we compute the Top-k recall (R@k). It measures the

percentage of queries for which at least a correct map image

MSLS-Val MSLS-Test
Method Loss Batch R@1 R@5 R@10 R@1 R@5 R@10
VGG-GeM CL binary 47.0 60.3 65.5 27.9 40.5 46.5

VGG-GeM GCL binary 57.4 73.4 76.9 35.9 49.3 57.8

VGG-GeM CL graded 45.8 60.1 65.1 28.0 40.8 47.0

VGG-GeM GCL graded 65.9 77.8 81.4 41.7 55.7 60.6

Table 1. Effect of graded similarity labels on batch composition

and model training.

is present among their k nearest neighbors retrieved. For the

RobotCar Seasons v2 and the Extended CMU datasets, we

compute the percentage of correctly localized queries. It
measures the amount of images that are correctly retrieved

for a given translation and rotation threshold.

5. Results and discussion
Graded similarity for batch composition and model train-
ing. We carry out a baseline experiment to evaluate the im-

pact of the new graded similarity labels on the effectiveness

of the learned descriptors. We analyze their contribution to

the composition of the batches, and directly to the training of

the network by using them in combination with the proposed

GCL. We first consider the traditional binary labels only, and

compose batches by balancing positive and negative pairs.

Subsequently, we compose the batches by considering the

new graded similarity labels, and select 50% of positive pairs

(similarity higher than 50%), 25% of soft negative samples

(similarity higher than 0% and lower than 50%) and 25% of

hard negatives (0% similarity).

In Table 1, we report the results using a VGG16 backbone

on the MSLS dataset. These results demonstrate that the

proposed graded similarity labels are especially useful for

training descriptors that perform better in nearest neighbor

search retrieval, and also contribute to form better balanced

batches to exploit the data in a more efficient way. In the

following, all experiments use the batch composition based

on graded similarity.

Comparison with existing works. We compared our results

with several place recognition works. We considered meth-

ods that use global descriptors like NetVLAD [2] (with 16

and 64 clusters in the VLAD layer) and methods based on

two-stages retrieval and re-ranking pipelines, such as Patch-

NetVLAD [15], DELG [7] and SuperGlue [32]. We com-

pared also against TransVPR [43], a transformer with and

without a re-ranking stage. Table 2 reports the results of our

method in comparison to others. All the methods included

in the table are based on backbones trained on the MSLS

datasets. The results of Patch-NetVLAD and TransVPR are

taken from the respective papers, which also contain those

of DELG and SuperGlue. When trained with VGG16 as

backbone, our model (VGG16-GeM-GCL) obtains an ab-

solute improvement of R@5 equal to 11.7% compared to
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MSLS-Val MSLS-Test Pitts30k Tokyo24/7 RobotCar Seasons v2 Extended CMU Seasons
Method PCAw Dim R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 .25m/2◦ .5m/5◦ 5m/10◦ .25m/2◦ .5m/5◦ 5m/10◦

NetVLAD 64 N 32768 44.6 61.1 66.4 28.8 44.0 50.7 40.4 64.5 74.2 11.4 24.1 31.4 2.0 9.2 45.5 1.3 4.5 31.9

NetVLAD 64 Y 4096 70.1 80.8 84.9 45.1 58.8 63.7 68.6 84.7 88.9 34.0 47.6 57.1 4.2 18.0 68.1 3.9 12.1 58.4

NetVLAD 16 N 8192 49.5 65.0 71.8 29.3 43.5 50.4 48.7 70.6 78.9 13.0 33.0 43.8 1.8 9.2 48.4 1.7 5.5 39.1

NetVLAD 16 Y 4096 70.5 81.1 84.3 39.4 53.0 57.5 70.3 84.1 89.1 37.8 53.3 61.0 4.8 17.9 65.3 4.4 13.7 61.4

TransVPR [43] - - 70.8 85.1 86.9 48 67.1 73.6 73.8 88.1 91.9 - - - 2.9 11.4 58.6 - - -

SP-SuperGlue� [32] - - 78.1 81.9 84.3 50.6 56.9 58.3 87.2 94.8 96.4 88.2 90.2 90.2 9.5 35.4 85.4 9.5 30.7 96.7
DELG� [7] - - 83.2 90.0 91.1 52.2 61.9 65.4 89.9 95.4 96.7 95.9 96.8 97.1 2.2 8.4 76.8 5.7 21.1 93.6

Patch NetVLAD� [15] Y 4096 79.5 86.2 87.7 48.1 57.6 60.5 88.7 94.5 95.9 86.0 88.6 90.5 9.6 35.3 90.9 11.8 36.2 96.2

TransVPR� [43] - - 86.8 91.2 92.4 63.9 74 77.5 89 94.9 96.2 - - - 9.8 34.7 80 - - -

NetVLAD-GCL N 32768 62.7 75.0 79.1 41.0 55.3 61.7 52.5 74.1 81.7 20.3 45.4 49.5 3.3 14.1 58.2 3.0 9.7 52.3

NetVLAD-GCL Y 4096 63.2 74.9 78.1 41.5 56.2 61.3 53.5 75.2 82.9 28.3 41.9 54.9 3.4 14.2 58.8 3.1 9.7 52.4

VGG-GeM-GCL N 512 65.9 77.8 81.4 41.7 55.7 60.6 61.6 80.0 86.0 34.0 51.1 61.3 3.7 15.8 59.7 3.6 11.2 55.8

VGG-GeM-GCL Y 512 72.0 83.1 85.8 47.0 60.8 65.5 73.3 85.9 89.9 47.6 61.0 69.2 5.4 21.9 69.2 5.7 17.1 66.3

ResNet50-GeM-GCL N 2048 66.2 78.9 81.9 43.3 59.1 65.0 72.3 87.2 91.3 44.1 61.0 66.7 2.9 14.0 58.8 3.8 11.8 61.6

ResNet50-GeM-GCL Y 1024 74.6 84.7 88.1 52.9 65.7 71.9 79.9 90.0 92.8 58.7 71.1 76.8 4.7 20.2 70.0 5.4 16.5 69.9

ResNet152-GeM-GCL N 2048 70.3 82.0 84.9 45.7 62.3 67.9 72.6 87.9 91.6 34.0 51.8 60.6 2.9 13.1 63.5 3.6 11.3 63.1

ResNet152-GeM-GCL Y 2048 79.5 88.1 90.1 57.9 70.7 75.7 80.7 91.5 93.9 69.5 81.0 85.1 6.0 21.6 72.5 5.3 16.1 66.4

ResNeXt-GeM-GCL N 2048 75.5 86.1 88.5 56.0 70.8 75.1 64.0 81.2 86.6 37.8 53.6 62.9 2.7 13.4 65.2 3.5 10.5 58.8

ResNeXt-GeM-GCL Y 1024 80.9 90.7 92.6 62.3 76.2 81.1 79.2 90.4 93.2 58.1 74.3 78.1 4.7 21.0 74.7 6.1 18.2 74.9

Table 2. Comparison to state-of-the-art methods on benchmark datasets. All methods are trained on the MSLS training set. Our top results

are underlined, while overall best results are in bold. Methods using re-ranking are in the middle part of the table and marked with �.

NetVLAD-64. This shows that the proposed graded simi-

larity labels and the GCL function contribute to learn more

powerful descriptors for place recognition, while keeping

the complexity of the training process lower as hard-pair

mining is not used. The result improvement holds also when

the descriptors are post-processed with PCA whitening.

The data- and memory-efficiency of our pipeline allows

us to easily train more powerful backbones, such as ResNeXt,

that is instead tricky to do for other methods due to memory

and compute requirements. Our ResNeXt+GCL outperforms

the best method on the MSLS test set, namely TransVPR

without re-ranking by 8.9% and with re-ranking by 2.6%

(absolute improvement of R@5). It compares favorably with

re-ranking based methods such as Patch-NetVLAD, DELG

and SuperGLUE improving the R@5 by 18.6%, 14.3% and

18.3%, respectively. We point out that we do not re-rank the

retrieved images, and purposely keep the complexity of the

steps at the strict necessary to perfom the VPR retrieval task.

We attribute our high results mainly to the effectiveness of

the descriptors learned with the GCL function using the new

graded similarity labels.

Generalization to other datasets. In Table 2 and Table 3,

we also report the results of generalization to Pittsburgh30k,

Tokyo 24/7, RobotCar Seasons v2 and Extended CMU Sea-

sons (plus Pittsburgh250k and TokyoTM in the supplemen-

tary materials). The models trained with the GCL function

generalize well to unseen datasets, in many cases better than

existing methods that retrieve the k-nearest neighbours based
on descriptor distance only. Our models also generalize well

to urban localization datasets like RobotCar Seasons V2 and

Extended CMU Seasons, achieving up to 21.9% and 19% of

correctly localized queries within 0.5m and 5◦, respectively.
The results of GCL-based networks are higher than those

obtained by NetVLAD, and especially higher than those of

TransVPR (with no re-ranking) that uses a transformer as

backbone. Note that we do not perform 6DOF pose estima-

tion, but estimate the pose of a query image by inheriting

that of the best retrieved match, and thus not compare with

methods that perform refined pose estimation. This is inline

with the experiments in [15].

Our models are outperformed only by methods that in-

clude a re-ranking strategies to refine the list of retrieved

images, on the Pittsburgh30k, RobotCar Seasons v2 and

Extended CMU Seasons datasets. However, these methods

perform extra heavy computations (e.g. up to 6s per query in

PatchNetVLAD [15]) to re-rank the list of retrieved images,

not focusing on the representation capabilities of the learned

descriptors themselves. Thus, we find a direct comparison

with these methods not fair. On the contrary, these results

demonstrate the fact the VPR descriptors learned used the

proposed labels and GCL have better representation capabil-

ities than those produced by other methods, achieving higher

results in out-of-distribution experiments as well.

Ablation study: backbone and contrastive loss. We car-

ried out ablation experiments using four backbones, namely

VGG16 [39], ResNet50, ResNet152 [16], and ResNeXt101-

32x8d (hereinafter ResNeXt) [47], and the GeM [30] global

pooling layer, and an additional NetVLAD-GCL model. Ex-

tra ablation experiments with an average global pooling layer

are included in the supplementary material. For each back-

bone, we train with the binary Contrastive Loss (CL) and our

Generalized Contrastive Loss (GCL). We report the results

in Table 3. The models trained with the GCL consistently

outperform their counterpart trained with the CL, showing

better generalization to other datasets. Moreover, we demon-

strate that a VGG16-GeM architecture outperforms a more
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MSLS-Val MSLS-Test Pitts30k Tokyo24/7 RobotCar Seasons v2 Extended CMU Seasons
Method Loss PCAw Dim R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 0.25m/2◦ 0.5m/5◦ 5.0m/10◦ 0.25m/2◦ 0.5m/5◦ 5.0m/10◦

NetVLAD

CL N 32768 38.5 56.6 64.1 24.8 39.1 46.1 24.7 48.3 61.1 7.0 18.1 24.8 0.9 5.2 31.5 1.0 1.4 11.1

GCL N 32768 62.7 75.0 79.1 41.0 55.3 61.7 52.5 74.1 81.7 20.3 45.4 49.5 3.3 14.1 58.2 3.0 9.7 52.3

CL Y 4096 39.6 60.3 65.3 26.4 40.5 48.2 27.5 51.6 64.1 6.7 16.2 25.7 0.0 0.0 0.0 1.0 3.3 25.4

GCL Y 4096 63.2 74.9 78.1 41.5 56.2 61.3 53.5 75.2 82.9 28.3 41.9 54.9 3.4 14.2 58.8 3.1 9.7 52.4

VGG-GeM

CL N 512 47.0 60.3 65.5 27.9 40.5 46.5 51.2 71.9 79.7 24.1 39.4 47.0 3.1 13.2 55.0 2.8 8.6 44.5

GCL N 512 65.9 77.8 81.4 41.7 55.7 60.6 61.6 80.0 86.0 34.0 51.1 61.3 3.7 15.8 59.7 3.6 11.2 55.8

CL Y 512 61.4 75.1 78.5 36.3 49.0 54.1 64.7 81.5 86.8 36.2 54.0 57.8 4.2 18.7 62.5 4.4 13.4 56.5

GCL Y 512 72.0 83.1 85.8 47.0 60.8 65.5 73.3 85.9 89.9 47.6 61.0 69.2 5.4 21.9 69.2 5.7 17.1 66.3

ResNet50-GeM

CL N 2048 51.4 66.5 70.8 29.7 44.0 50.7 61.5 80.0 86.9 30.8 46.0 56.5 3.2 15.4 61.5 3.2 9.6 49.5

GCL N 2048 66.2 78.9 81.9 43.3 59.1 65.0 72.3 87.2 91.3 44.1 61.0 66.7 2.9 14.0 58.8 3.8 11.8 61.6

CL Y 1024 63.2 76.6 80.7 37.9 53.0 58.5 66.2 82.2 87.3 36.2 51.8 61.0 5.0 21.1 66.5 4.7 13.4 51.6

GCL Y 1024 74.6 84.7 88.1 52.9 65.7 71.9 79.9 90.0 92.8 58.7 71.1 76.8 4.7 20.2 70.0 5.4 16.5 69.9

ResNet152-GeM

CL N 2048 58.0 72.7 76.1 34.1 50.8 56.8 66.5 83.8 89.5 34.6 57.1 63.5 3.3 15.2 64.0 3.2 9.7 52.2

GCL N 2048 70.3 82.0 84.9 45.7 62.3 67.9 72.6 87.9 91.6 34.0 51.8 60.6 2.9 13.1 63.5 3.6 11.3 63.1

CL Y 2048 66.9 80.9 83.8 44.8 59.2 64.8 71.2 85.8 89.8 54.3 68.9 75.6 6.1 23.5 68.9 4.8 14.2 55.0

GCL Y 2048 79.5 88.1 90.1 57.9 70.7 75.7 80.7 91.5 93.9 69.5 81.0 85.1 6.0 21.6 72.5 5.3 16.1 66.4

ResNeXt-GeM

CL N 2048 62.6 76.4 79.9 40.8 56.5 62.1 56.0 77.5 85.0 37.8 54.9 62.5 1.9 10.4 54.8 2.9 9.0 52.6

GCL N 2048 75.5 86.1 88.5 56.0 70.8 75.1 64.0 81.2 86.6 37.8 53.6 62.9 2.7 13.4 65.2 3.5 10.5 58.8

CL Y 1024 74.3 87.0 89.6 49.9 63.8 69.4 70.9 85.7 90.2 50.8 67.6 74.3 3.8 17.2 68.2 4.9 14.4 61.7

GCL Y 1024 80.9 90.7 92.6 62.3 76.2 81.1 79.2 90.4 93.2 58.1 74.3 78.1 4.7 21.0 74.7 6.1 18.2 74.9

Table 3. Ablation study on backbone, Contrastive (CL) vs Generalized Contrastive (GCL) loss, and PCA. All models are trained on MSLS.

VGG16-GeM-GCL ResNet50-GeM-GCL ResNet152-GeM-GCL ResNeXt-GeM-GCL

VGG16-GeM-GCL-PCAw ResNet50-GeM-GCL-PCAw ResNet152-GeM-GCL-PCAw ResNeXt-GeM-GCL-PCAw
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Figure 4. Ablation results on the MSLS validation, MSLS test, Pittsburgh30k and Tokyo 24/7 datasets, with different PCA dimensions.

complex NetVLAD when trained with our GCL function.

We also perform whitening and PCA on the descriptors,

which further boost the performance.

Ablation study: PCA and whitening. We also study

the effect of whitening and PCA dimensionality reduction

from 32 to 2048 dimensions. Figure 4 shows the results

on the MSLS, Pittsburgh30k and Tokyo 24/7 datasets. In

general, the larger the size of the descriptors, the better the

results. However, our models maintain comparably high

results when the descriptors are whitened and reduced to

256 dimensions, still outperforming the full-size descriptors

without whitening. We observed up to a 28.2% improvement

in the case of Tokyo 24/7 and 12.8% on the MSLS validation

set. When comparing our VGG16-GeM-GCLmodel reduced

to 256 dimensions with NetVLAD (16× less descriptor size),

we still achieve higher results (R@5 of 82.7% vs 80.8% on

MSLS validation, 60.4% vs 58.9% on MSLS test, 87.2% vs

84.7% on Pittsburg30k and 62.2% vs 47.6% on Tokyo 24/7).

It is to highlight that the contributions of the PCA/whitening

and the GCL are complementary, meaning that they can be

used together to optimize retrieval performance.

Comparison with other loss functions. We compared

with other loss functions used for VPR, by following up

on the experiments in [41]. The loss functions included

in the comparison in [41] are the triplet loss [2] (also with

Huber distance [40]), quadruplet loss [8], lazy triplet and

lazy quadruplet loss [1], plus functions that embed mech-

anisms to circumvent the use of binary labels, namely a

multi-similarity loss [44], log-ratio [18] and soft contrastive

loss [41]. The results reported in Table 4 show that the

GCL achieves higher localization accuracy especially when

stricter thresholds for distance and angle are set. These re-

sults indicate that the GCL descriptors are better effective in

neighbor search and retrieval, and their ranking based on dis-

tance from the query descriptor is a more reliable measure of

visual place similarity. All methods in the upper part of the
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All Urban Suburban Park
Loss function 0.25m/2◦ 0.5m/5◦ 5m/10◦ 0.25m/2◦ 0.5m/5◦ 5m/10◦ 0.25m/2◦ 0.5m/5◦ 5m/10◦ 0.25m/2◦ 0.5m/5◦ 5m/10◦

Triplet (original NetVLAD) [2] 6.0 15.5 59.9 9.4 22.6 71.2 3.9 11.8 60.1 3.2 9.2 45.2

Quadruplet [8] 6.9 17.5 62.3 10.7 25.2 73.3 4.4 13.0 61.4 3.9 10.8 47.9

Lazy triplet [1] 6.4 16.5 58.6 9.9 23.5 69.8 4.1 11.9 58.2 3.5 10.1 42.0

Lazy quadruplet [1] 7.3 18.5 61.7 11.4 26.9 72.7 4.9 13.9 64.1 3.7 10.7 44.1

Triplet + Huber distance [40] 6.0 15.3 55.9 9.5 22.9 69.0 4.4 12.4 57.3 3.0 8.4 39.6

Log-ratio [18] 6.7 17.4 58.8 10.5 24.9 71.4 4.6 13.4 57.4 3.5 10.2 42.8

Multi-similarity [44] 7.4 18.8 66.3 12.0 28.8 81.6 5.1 14.6 63.9 3.8 10.9 52.7

Soft contrastive [41] 8.0 20.5 70.4 12.7 30.7 84.6 5.1 14.9 67.9 4.5 12.6 56.8

GCL (Ours) 9.2 22.8 65.8 14.7 34.2 82.6 5.7 16.1 64.6 5.1 14.0 49.1

GCL (Ours w/ ResNeXt) 9.9 24.3 75.5 15.4 36.0 89.6 6.7 18.4 76.8 5.6 14.9 60.3

Table 4. Comparison of localization results (on CMU Seasons) of VGG16 backbones trained with several metric loss functions. Methods in

the upper part deploy a NetVLAD pooling layer.

table deploy a VGG16 backbone with a NetVLAD pooling

layer and make use of hard-negative pair mining. We also

use a VGG16 backbone and do not perform hard-negative

pair mining, substantially reducing the training time and

memory requirements. This allows us to also train back-

bones with larger capacity, e.g. ResNeXt, on a single V100

GPU in less than a day, of which we report the results in

italics for completeness.

Processing time. The GCL function and the graded simi-

larity labels contribute to training effective models in a data-

and computation-efficient way, largely improving on the re-

sources and time required to train NetVLAD (see Table 5).

Our VGG16-GeM-GCL model obtains higher results than

NetVLAD while requiring 6× less memory and about 100×
less time to converge. We point out that NetVLAD is the

backbone of several other methods for VPR such as Patch-

NetVLAD, DELG and SuperGlue in Table 2, thus making

the comparison in Table 5 relevant from a larger perspec-

tive. The graded similarity and GCL function contribute

to an efficient use of training data. A single epoch, i.e. a

model sees a certain training pair only once, is sufficient

for the training of GCL-based models to converge. The low

memory and time requirements also enable the training of

models with larger backbones, that obtain very high results

while still keeping the resource usage low. We point out the

data-efficient training that we deployed can stimulate further

and faster progress in VPR, as it enables to train larger back-

bones, and perform extensive hyperparameter optimization

or more detailed ablation studies.

6. Conclusions

We extended the learning of image descriptors for visual

place recognition by using measures of camera pose similar-

ity and 3D surface overlap as proxies for graded image pair

similarity to re-annotate existing VPR datasets (i.e. MSLS,

7Scenes and TB-Places). We demonstrated that the new

labels can be used to effectively compose training batches

without the need of hard-pair mining, decisively speeding-up

Model memory epochs t/epoch t/converge

NetVLAD-16-TL 9.67GB 30 (22) 24h 22d

NetVLAD-64-TL - 10 (7) 36h 10.5d

VGG16-GeM-GCL 1.49GB 1 5h 5h

ResNet50-GeM-GCL 1.65 GB 1 6h 6h

ResNet152-GeM-GCL 3.78 GB 1 14h 14h

ResNetXt-GeM-GCL 4.77 GB 1 (1/2) 28h 14h

Table 5. Training time and GPU memory utilization for a batch

size of 4 images. In the epochs column, the number in parenthesis

is the number of epochs until convergence.

training time while reducing memory requirements. Fur-

thermore, we reformulated the Contrastive Loss function,

proposing a Generalized Contrastive Loss (GCL). The GCL

exploits the graded similarity of image pairs, and contributes

to learning way better performing image descriptors for VPR

than those of other losses that are not designed to use graded

image similarity labels (i.e. triplet, quadruplet and their

variants) and that require hard-pair mining during training.

Models trained with the GCL and new graded similarity

labels obtain comparable or higher results that several ex-

isting VPR methods, including those that apply re-ranking

of the retrieved images, while keeping a more efficient use

of the data, training time and memory. We achieved good

generalization to unseen environments, showing robustness

to domain shifts on the Pittsburgh30k, Tokyo 24/7, RobotCar

Seasons v2 and Extended CMU Seasons datasets. The com-

bination of graded similarity annotations and a loss function

that can embed them in the training paves a way to learn

more effective descriptors for VPR in a data- and resource-

efficient manner.
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