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Abstract— Agricultural field polygons within smallholder
farming systems are essential to facilitate the collection of
geo-spatial data useful for farmers, managers, and policymak-
ers. However, the limited availability of training labels poses
a challenge in developing supervised methods to accurately
delineate field boundaries using Earth observation (EO) data.
This letter introduces an open dataset for training and bench-
marking machine learning methods to delineate agricultural field
boundaries in polygon format. The large-scale dataset consists
of 439 001 field polygons divided into 62 tiles of approximately
5 × 5 km distributed across Vietnam and Cambodia, covering a
range of fields and diverse landscape types. The field polygons
have been meticulously digitized from satellite images, following
a rigorous multistep quality control process and topological
consistency checks. Multitemporal composites of Sentinel-2 (S2)
images are provided to ensure cloud-free data. We conducted an
experimental analysis testing a state-of-the-art deep learning (DL)
workflow based on fully convolutional networks (FCNs), contour
closing, and polygonization. We anticipate that this large-scale
dataset will enable researchers to further enhance the delineation
of agricultural fields in smallholder farms and to support the
achievement of the Sustainable Development Goals (SDGs).
The dataset can be downloaded from https://doi.org/10.17026/
dans-xy6-ngg6.

Index Terms— Cambodia, crop field boundaries, deep learning
(DL), Sentinel-2 (S2) data, smallholder farms, Vietnam.

I. INTRODUCTION

CROP field polygons enable digital agriculture services
and can record specific information such as crop type,

soil characteristics, yield, and farming practices in a spatial
database [1]. However, field boundaries are not yet available
in many countries, especially in Asian and African regions
where smallholder farms with fields smaller than two hectares
comprise 70% of the cropland [2]. This information gap
hampers the achievement of Target 2.3 of the United Nations
Sustainable Development Goals (SDGs), which emphasize the
need to improve the agricultural productivity of small-scale
food producers to achieve food security, improved nutrition,
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and sustainable agriculture. Moreover, crop field boundaries
often correspond to visible cadastral parcels, which are essen-
tial parts of the country’s land administration systems. Land
tenure security offers many benefits to farmers, such as access
to credit and investments, government and insurance services,
and reduced conflicts. The importance of secure tenure rights
to land, with legally recognized documentation, is recognized
by Target 1.4 of the SDG agenda as an essential factor in
ending poverty.

Recent developments in deep learning (DL) and Earth
observation (EO) show that field boundaries can be effectively
delineated using very high resolution (VHR) images [1], [3].
However, the main bottleneck that limits the generalization
ability and general performance of such methods in small-
holder farms is the lack of a large amount of reference
data [4]. While several benchmark datasets focus on crop-type
mapping in Europe [5], [6], [7] and a few in Africa [8], [9],
little has been done so far for crop boundary delineation.
d’Andrimont et al. [10] introduced a dataset of images and
field boundary labels collected from seven European countries
representing 14.8 M parcels and covering 372 K km2. It is
far more challenging to access crop field boundary data in
smallholder farms that are common in many low- and middle-
income countries. Wang et al. [4] publicly released a dataset
containing 10 000 Indian field boundary labels. However, only
a fraction of the fields in each image are labeled.

In this letter, we introduce AI4SmallFarms, a benchmark
dataset for the automated extraction of field polygons in
small-scale farms located in two South Asian countries:
Vietnam and Cambodia. These countries are characterized by
fragmented agricultural areas with small fields of less than one
hectare. Although VHR images can provide accurate results,
their high acquisition cost hinders the use of commercial
images for extracting and updating crop boundaries. Moreover,
their restricted policies prevent the creation of open datasets.
Therefore, we explore here the potentials of Sentinel-2 (S2)
data for field boundary delineation [11], which are available
openly and freely to all the users. Nevertheless, the coarser
resolution of 10 m poses significant challenges in accurately
delineating the small-size fields present in smallholder farms.

To the best of our knowledge, AI4SmallFarms is the first
large-scale open dataset available to the public for smallholder
farming in Southeast Asia. The dataset aims to support the
development of operational mapping and monitoring systems
of crop boundaries in Asia. It also aims to facilitate the
development of machine learning methods and support the
achievement of SDG 2 “Zero Hunger” and ongoing initiatives
of the Food and Agriculture Organization (FAO) fostering
the implementation of effective food security measures. This
activity has been carried out in collaboration with the Image
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Fig. 1. Spatial distribution of the training, validation, and test tiles shown
in blue, yellow, and green, respectively. For one tile, the S2 image and the
corresponding reference boundaries are displayed.

Analysis and Data Fusion (IADF) Technical Committee of the
IEEE Geoscience and Remote Sensing Society (GRSS).

II. STUDY AREAS AND BENCHMARK DATASET

Although agriculture is a key sector in Vietnam and Cam-
bodia, involving a large portion of their population, these
countries lack comprehensive, high-quality, and up-to-date
field boundary data. Having rice paddy occupying nearly 80%
of the harvested area in Cambodia, and Vietnam being one of
the largest rice exporters at the global level, both the countries
are mainly focused on rice production. Their agricultural
system is predominantly characterized by small-scale farming,
with subsistence farming systems located in rural areas.

A. Dataset Organization

The proposed AI4SmallFarms dataset is made up of 62 tiles
having a size of approximately 5 × 5 km, where professional
photograph interpreters manually digitized all the visible agri-
cultural fields. Fig. 1 shows the spatial distribution of the
reference tiles across most of the agricultural regions present
in Vietnam and Cambodia. The tiles are split into spatially
disjoint subsets for training, validating, and testing machine
learning algorithms. Fig. 1 also shows an example of an S2
image tile and the corresponding digitized crop boundaries.

Table I shows the number of tiles, the number of field
polygons, and the average crop size present in the training,
validation, and test sets. The reference boundary are manually
digitized resulting in 318 088 and 120 913 field polygons in
Cambodia and Vietnam, respectively. Differently from [4],
all the visible crop boundaries within each tile are manually
digitized, resulting in a total number of 439 001 polygons.

TABLE I
NUMBER OF TILES, FIELD POLYGONS, AND AVERAGE CROP SIZE

IN EACH SPLIT OF THE PROPOSED BENCHMARK DATASET

The field boundaries are published in a vector format as
polygons and polylines. Using the geo-referenced vector data,
any EO satellite data can be associated with the crop field
boundaries. Details of the delineation procedure are provided
in Section II-B. The benchmark dataset also includes prepro-
cessed S2 imagery (details in Section II-C).

To facilitate the training process on S2 data, a freely
available agricultural field boundary dataset [Basisregistratie
Gewaspercelen (BRP)] and S2 data from The Netherlands
are used to pretrain the DL-based workflow. This dataset
consists of 87 tiles of 10 × 10 km2 and 192 321 field polygons
and is released together with AI4SmallFarms to enable the
reproducibility of the experiments.

To assess the impact of the spatial resolution in delineating
crop boundaries in the considered complex agricultural area,
experiments are also carried out considering freely download-
able VHR Google Map (GM) RGB images with a spatial
resolution of about 0.5 m (not included in the benchmark
dataset because of redistribution policy restrictions). The satel-
lite imagery along with the reference polygons are used to
create image/label pairs. This is done for all the plots in
Vietnam and Cambodia and for both S2 data and VHR GM
data.1 For the purpose of training and accuracy assessment,
the rasterized reference boundaries of the VHR GM data are
buffered with a distance of 1 m, while S2 reference data are
not buffered.

B. Digitization Method
The digitization of reference polygons has been carried

out by visual interpretation of S2 and VHR GM images
acquired in August 2021.2 Each tile is fully digitized, including
all the visible agricultural boundaries. The process followed
a rigorous multistep approach involving two quality control
gates and topological consistency checks. First, agricultural
field boundaries are visually detected and digitized in polygon
format by the production team. Second, all the polygons are
checked by an independent quality control team to verify shape
correctness, missing polygons, and software-driven checks to
identify topological errors (e.g., to avoid overlap between
polygons or unnecessary gaps between adjacent fields). All
the minor errors have been corrected by the quality control
team. In case of major errors, data have been reverted to the
production team for rework. Third, 10% of the vectors have
been further checked by a second quality control team to verify
the projection system, data completeness, nomenclatures of
files, and output format.

1Processed in FME Workbench 2023.0.
2The digitization process has been carried out with the support of RMSI

https://www.rmsi.com/ in collaboration with IADF and with the financial
support of GRSS.
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Fig. 2. Overview of the adopted DL-based workflow for field boundary delineation in polygon format.

C. S2 Satellite Data

AI4SmallFarms is designed to advance the capability of
using S2 data for crop boundary delineation in smallholder
farms. To ensure the reproducibility of our experimental
analysis and foster further developments, the dataset includes
the preprocessed S2 images used to perform the experiments
reported in this letter. Because of the heavy cloud coverage
typically present in the considered study areas, the atmospher-
ically corrected S2 L2A images are preprocessed to generate
monthly composites almost free of clouds using the stan-
dard statistics-based approach described in [6]. This approach
aggregates all the S2 images acquired within a month into a
composite by calculating the median pixel value, excluding the
pixels that are affected by clouds or shadows. In the considered
experimental analysis, we focused on the least cloudy months
of the dry season, i.e., mainly January and February (and also
November, December, and May in some cases), by selecting
only the S2 images having cloud cover < 40%. For each
tile, the monthly composites obtained were visually inspected
to select the least cloudy one. Only the blue (B2–490 nm),
green (B3–560 nm), red (B4–665 nm), and near -infrared
(B8-842 nm) bands are considered, since these are the most
relevant spectral bands for crop boundary delineation and the
ones acquired at the highest spatial resolution, i.e., 10 m.

III. EXPERIMENTAL ANALYSIS

We conducted an experimental analysis using both the S2
and GM images with a state-of-the-art DL-based workflow
inspired from [1] and depicted in Fig. 2 consisting of three
main consecutive steps: 1) semantic segmentation using an
fully convolutional network (FCN); 2) contour closing; and
3) polygonization.

The first step generates pixelwise predictions of bound-
ary probability scores. For this purpose, we adopted a
UNet-like architecture [12].3 Since input image/label tiles
have varying sizes, the data were split into patches of
fixed dimensions. We used patches of 256 × 256 pixels
for S2, and 512 × 512 for the GM images. We compared
three models: 1) trained from scratch with S2 data; 2) pre-
trained in The Netherlands with S2 data and fine-tuned on

3https://deepsense.ai/deep-learning-for-satellite-imagery-via-image-
segmentation

AI4SmallFarms; and 3) trained from scratch with GM data.
The hyperparameters of the three networks were tuned using
the validation set. All the models were trained with the Adam
optimizer (initial learning rate = 0.001, decay step = 10 000,
and decay rate = 0.9), a focal cross-entropy loss function,
and an early stopping procedure (max 1000 epochs). Table II
reports the values of the other hyperparameters.

The output of the FCN does not guarantee obtaining closed
contours and often results in fragmented lines that cannot be
directly converted into polygons. For this reason, we adopted
a contour closing procedure that allows us to derive a
closed segment for each field.4 The procedure consists of
the following steps: 1) extended-minima transform; 2) impose
minima; 3) connected component labeling; and 4) watershed
transform. In the polygonization step, the closed contours
were converted into vector format (polylines), simplified with
the Douglas-Peucker algorithm, and finally, converted into
polygons.5

To assess the accuracy of the predicted boundaries, both the
raster-based and vector-based metrics are used. The confusion
matrix is used to calculate raster metrics, i.e., precision, recall,
and F1-score of the class boundary. These metrics are calcu-
lated per tile using the binary output of the contour closing step
and the corresponding reference boundaries. However, raster
metrics do not fully capture the agreement between polygons.
Therefore, we propose to adopt the PoLiS metric [13], which
analyzes the difference in position and shape between the pre-
dicted and reference polygons. Since the computation of PoLiS
takes matched pairs of the prediction–reference polygons as
input, its value is independent of the spatial resolution and
the thickness of the raster boundaries, which critically affects
the raster-based metrics. For this reason, we consider PoLiS
a more suitable metric for field boundary delineation tasks,
especially when comparing results obtained from images of
different resolutions.

IV. EXPERIMENTAL RESULTS

A. Quantitative Results

Table III shows the quantitative results of our experiments
using S2 (with and without pretraining) and GM images as
input to our workflow. For the S2 experiments, we observe

4https://imagej.net/plugins/morphological-segmentation
5Processed in ArcGIS Pro 3.1.1.
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Fig. 3. Qualitative results of tiles Cambodia 12 (top) and Vietnam 27 (bottom).

TABLE II
SELECTED HYPERPARAMETERS OF THE THREE MODELS

TABLE III
QUANTITATIVE AVERAGE RESULTS ACROSS ALL TEST TILES

that the model pretrained on the Dutch dataset and fine-tuned
in Cambodia and Vietnam resulted in an average F1-score
of 0.39 and an average PoLiS distance of 26.7 m, and it is
only slightly superior to the model trained from scratch, which
results in an average F1-score of 0.38 and an average PoLiS
distance of 27.0 m. This result shows that our benchmark
dataset is large enough to obtain accurate results without the
need for pretraining.

The average F1-score of the GM experiment is 0.49. The
high spatial resolution of the GM results in an average PoLiS
value of 20.3 m, which is significantly better than the average
PoLiS value of 26.7 m obtained using S2 data.

B. Qualitative Results
We selected two tiles (tile 12 and 27) to illustrate and

assess the quality of the predicted polygons. Fig. 3 shows
the reference data, the FCN output (boundary score), and
the final vector predictions for both the tiles. As expected,
vector predictions from the GM experiment are more regular
compared with the predictions from the S2 experiment. Next
to that, the boundary scores from the S2 experiment are
sometimes too coarse, resulting in missing boundaries. These
differences are mainly due to the higher spatial resolution

of the GM data. Both the differences can also be observed
in the calculated PoLiS metric. The average PoLiS distance
for tile 12 is 11.1 and 17.1 m for the GM and S2 predictions,
respectively. For tile 27, the average PoLiS metric is 19.4 and
35.0 m for the GM and S2 predictions, respectively. Fig. 4
shows a closeup of the results on tile 12. The GM predictions
almost fully cover the reference data and are relatively regular,
whereas the S2 predictions have a lot of missing boundaries
and are not as regular as the GM predictions.

V. CHALLENGES

This section summarizes the main challenges posed by the
proposed dataset.

A. Crop Field Size
Due to the small average crop sizes (far below one hectare),

it is difficult to accurately delineate crop boundaries in
smallholder farms using S2 images. However, these free and
open-access data enable the regular update of crop boundary
databases. For this reason, we see the need for developing
super-resolution semantic boundary detection strategies to fur-
ther increase the spatial resolution of results, e.g., by exploiting
the spatial-contextual information in label space [11] or
adopting generative models.

B. Satellite Data Preparation
Because of the tropical climate, these areas are typically

affected by heavy cloud cover. This may hamper the possibility
of using specific temporal acquisitions that can emphasize the
phenological state of the crops. The least cloudy period is
the dry season, when crops may exhibit low contrast to the
background, leading to poor crop delineation results. Possible
future work may investigate the use of synthetic aperture radar
(SAR) data.

C. Imbalanced Classification Problem
The presented crop boundary delineation task poses an

extremely imbalanced classification problem due to the preva-
lence of nonboundary pixels. For this reason, we adopted
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Fig. 4. Closeup of tile Cambodia 12 showing the limitation of S2 with respect
to GM in capturing small-sized fields. Reference boundaries are in red and
predictions in yellow. (a) Boundary score GM. (b) Prediction/reference GM.
(c) Boundary score S2. (d) Prediction/reference S2.

the focal cross-entropy loss in our experiments. Nevertheless,
developing a loss function tailored to the specific properties
of the crop boundary delineation task is expected to improve
the result and mitigate the extreme class imbalance.

D. Crop Variability

AI4SmallFarms consists of tiles showing substantial vari-
ability among fields, different landscape conditions, soil char-
acteristics, crop management practices, and crop arrangements.
This dataset provides an opportunity to assess the general-
ization capabilities of crop boundary delineation approaches.
Indeed, it is hard for a single model to achieve accurate
delineation results across all the considered tiles. This dataset
aims to support the development of robust models that show
improved generalization ability when encountering unseen
landscapes. Future studies may explore advanced DL solutions
based on semisupervised learning or self-training. Moreover,
we expect that recent semantic segmentation models based,
for example, on vision transformers (e.g., Swin Transformer)
may further improve the feature extraction performance.

VI. CONCLUSION

This letter presented AI4SmallFarms, a large-scale dataset
for field boundary delineation in fragmented agricultural areas
characterized by small fields. The dataset comprises 439 001
field polygons divided into 62 nonoverlapping tiles of approx-
imately 5 × 5 km distributed across Vietnam and Cambodia.
The field polygons were meticulously digitized using S2 and

GM images, following a rigorous multistep quality control
procedure and topological consistency checks. For each tile,
all the visible crops were manually digitized. To ensure the
reproducibility of the experimental results, the dataset is pro-
vided into three spatially disjoint sets, i.e., training, validation,
and test tiles. The experimental results obtained with a state-
of-the-art DL-based workflow highlight the main challenges
of the proposed dataset and its properties. AI4SmallFarms is
publicly available to support the community in advancing the
development of supervised machine learning methods for crop
boundary delineation in agricultural areas with smallholder
farms using S2 data.
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