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Abstract

Depth-based and radar-based remote sensing methods (e.g., lidar, synthetic aperture

radar) are promising approaches for remotely measuring snow water equivalent

(SWE) at high spatial resolution. These approaches require snow density estimates,

obtained from in-situ measurements or density models, to calculate SWE. However,

in-situ measurements are operationally limited, and few density models have seen

extensive evaluation. Here, we combine near-coincident, lidar-measured snow

depths with ground-penetrating radar (GPR) two-way travel times (twt) of snowpack

thickness to derive >20 km of relative permittivity estimates from nine dry and two

wet snow surveys at Grand Mesa, Cameron Pass, and Ranch Creek, Colorado. We

tested three equations for converting dry snow relative permittivity to snow density

and found the Kovacs et al. (1995) equation to yield the best comparison with in-situ

measurements (RMSE = 54 kg m�3). Variogram analyses revealed a 19 m median

correlation length for relative permittivity and snow density in dry snow, which

increased to >30 m in wet conditions. We compared derived densities with estimated

densities from several empirical models, the Snow Data Assimilation System (SNODAS),

and the physically based iSnobal model. Estimated and derived densities were com-

bined with snow depths and twt to evaluate density model performance within SWE

remote sensing methods. The Jonas et al. (2009) empirical model yielded the most accu-

rate SWE from lidar snow depths (RMSE = 51 mm), whereas SNODAS yielded the

most accurate SWE from GPR twt (RMSE = 41 mm). Densities from both models gen-

erated SWE estimates within ±10% of derived SWE when SWE averaged >400 mm,

however, model uncertainty increased to >20% when SWE averaged <300 mm. The

development and refinement of density models, particularly in lower SWE conditions, is

a high priority to fully realize the potential of SWE remote sensing methods.
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1 | INTRODUCTION

Seasonal snow covers up to 60% of the Northern Hemisphere land

area (Hammond et al., 2018; Kim, 2018) and serves as a vital water

resource for ecosystems spanning prairies, mountains, tundra, and

boreal forests (Sturm et al., 1995). Mountains tend to accumulate

deep snowpacks that provide water resources for one sixth of the

world's population (Barnett et al., 2005; Mankin et al., 2015). In

North America, mountains comprise 25% of the land area but store

60% of the total snow water equivalent (SWE; Wrzesien

et al., 2018). Warming in the mountainous western United States

(U.S.) has caused SWE losses of 15%–30% over the last 70 years

(Mote et al., 2018), while a further 25% loss in SWE is predicted by

2050 (Siirila-Woodburn et al., 2021). These changes, compounded

with human dependence upon snow water resources, make the pur-

suit of global SWE estimates a highly prioritized, trillion-dollar

endeavour (National Academies of Sciences, Engineering, and

Medicine, 2018; Sturm, 2015). Currently, no single method or

ensemble of methods has proven capable of measuring SWE to the

high standard of accuracy established for global monitoring (Dozier

et al., 2016). Recent campaigns, such as the U.S.-based National

Aeronautics and Space Agency (NASA) Snow Experiment (SnowEx;

Durand et al., 2018) and the Europe-based NoSREx and APRESS

(Tsang et al., 2022), evaluated a suite of remote sensing approaches

(e.g., lidar, radar) for SWE-mapping applications. At the watershed

scale, light detection and ranging (lidar) operations, such as the Air-

borne Snow Observatory (ASO), have demonstrated operational

feasibility (Deems et al., 2013; Painter et al., 2016), but can be cost

prohibitive. Satellite remote sensing methods for SWE-mapping

have been under development for decades (Dietz et al., 2012;

Nolin, 2010; Shi et al., 2016) and see continued interest, particularly

in data assimilation applications, wherein derived snow products are

integrated within physically based snow models (Largeron

et al., 2020). For simplification, we discuss two major approaches of

snow remote sensing: depth-based and radar-based methods. Both

approaches have high spatial resolution and accuracy and are thus

forerunners in the development of satellite-based SWE retrievals in

mountains (Dozier et al., 2016).

Measuring SWE from depth-based remote sensing approaches

relies on differencing repeat surface elevation measurements

(i.e., snow-free from snow-on elevation surfaces) to derive snow

depth (Currier et al., 2019; Deems et al., 2013). For this approach,

SWE is the product of the derived snow depth (ds) and snow den-

sity (ρs):

SWEdepth�based ¼ ds�ρs: ð1Þ

Depth-based methods are primarily limited to the optical to near

infrared portion of the electromagnetic spectrum, where atmospheric

transmission is high, and wavelengths are significantly smaller than

snow grains. Depth-based methods, including photogrammetry and

lidar, have demonstrated potential for satellite platforms (Enderlin

et al., 2022; Shean et al., 2016).

Radar-based methods further require an estimate of relative per-

mittivity (εs) to characterize the electromagnetic wave velocity of the

snowpack to derive snow depth, and thereby SWE, from the signal

path length (lp; e.g., two-way travel time; Marshall et al., 2005). Thus,

radar-based SWE is generally expressed as a function,

SWEradar�based ¼ f lp,εs ρs,θLWCð Þð Þ, ð2Þ

where the relative permittivity, a measure of the ability of a material

to store charge relative to free-space (Daniels, 2004), is controlled by

the snow density and volumetric liquid water content (LWC; θLWC). In

dry snow, dielectric permittivity is primarily determined by snow den-

sity. However, wet snow permittivity exhibits a large dependence on

LWC because the relative permittivity of water is �60 times that of

snow (Bonnell et al., 2021). LWC induces the imaginary component

of relative permittivity and acts as a frequency-dependent attenuator

of signal strength (Koch et al., 2014), an attribute which was leveraged

by Bradford et al. (2009) as the first study to derive spatially distrib-

uted LWC along a ground-penetrating radar (GPR) transect. At least

six equations have been published for the relative permittivity of wet

snow, whereas there are >19 published equations relating the relative

permittivity of dry snow to its density, effectively increasing the

uncertainty of radar-based SWE retrievals due to a large range in per-

mittivity for a given snow density (Di Paolo et al., 2020). Not all radar

SWE retrieval approaches utilize the signal path length through the

snow. Some approaches, such as the Ka-band interferometry for wet

snow conditions (Moller et al., 2017), may be better described as

depth-based approaches, whereas Synthetic Aperture Radar (SAR)

backscatter approaches rely on empirical models that are at least

partly dependent on the snowpack relative permittivity (Tsang

et al., 2022).

Density, a required input for both SWE approaches, can be either

modelled or measured in snow pits, along snow courses, or by auto-

mated weather stations with a depth sensor co-located above a snow

pillow. Density varies at the hillslope scale (Alford, 1967) due to differ-

ences in overburden pressure, radiation inputs, and wind and precipi-

tation patterns (Winkler et al., 2021). However, density tends to vary

less than snow depth, and because manual measurements are time-

consuming, studies generally assume limited spatial snow density vari-

ability (L�opez-Moreno et al., 2013; Shook & Gray, 1996; Sturm

et al., 2010). Thus, current density sampling approaches may acquire

measurements too sparsely to capture its inherent spatial variability

(Meehan, 2022), making snow density models an appealing alternative

for remote sensing approaches.

Selecting an appropriate density model can be difficult. There are

three broad categories: empirical models (Avanzi & De

Michele, 2015), physically based models (e.g., Havens et al., 2020;

Lehning, Bartelt, Brown, & Fierz, 2002; Lehning, Bartelt, Brown,

Fierz, & Satyawali, 2002; Marks et al., 1999), and data assimilation

systems (Largeron et al., 2020), and within each category, numerous

models exist. Additionally, validation efforts outside of the original

publications are limited. Empirical models are developed using a statis-

tical relation between snow density, a time parameter (e.g., month),
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and, in more complicated equations, snow depth and geographic met-

rics. Physically based models can be powerful predictive tools but

tend to be computationally expensive, require extensive meteorologi-

cal forcing datasets, and often use simplified densification formulas

(Hedrick et al., 2018). Empirical models can be simpler to implement

and produce statistically robust estimates at the interannual scale,

however few accurately capture short-term variability in snow density

(McCreight & Small, 2014). Empirical models requiring snow depth as

an input cannot be directly inserted into radar SWE retrieval equa-

tions because radar methods cannot estimate depth independently

from density. Some of these models have been intercompared to

assess sensitivity and bias (e.g., Avanzi & De Michele, 2015;

McCreight & Small, 2014; Raleigh & Small, 2017), but comparisons

have been limited by the scope of available in-situ snow density mea-

surements. Density estimates from data assimilation methods are a

third option, though measurements are coarse in resolution (>1 km;

Largeron et al., 2020). Recently published density models include a

semi-empirical model that balances computational efficiency by imple-

menting a simplified physically based snow compaction equation

within an empirical framework (Winkler et al., 2021), and empirical

models that estimate snow density from a suite of lidar-derived

parameters (Bisset et al., 2022; Meehan, 2022). Both model types are

optimized for depth-based remote sensing methods: the semi-

empirical model ingests repeat-measured snow depths acquired with

low temporal baselines (≤7 days) and may be implemented for any

given year/location, whereas lidar-derived models are designed and

implemented for a single lidar survey (Meehan, 2022).

GPR measures the two-way travel time (twt) of the radar wave

through the snowpack, which can be combined with lidar-measured

snow depths to estimate radar velocity and relative permittivity. Sev-

eral studies have established this method and converted relative per-

mittivity to LWC by constraining snow density using snow pit

measurements (Bonnell et al., 2021; Heilig et al., 2015; Webb

et al., 2018; Webb, Wigmore, et al., 2020). More recent studies have

used this technique to derive snow density by coupling uncrewed

aerial vehicle (UAV) Structure from Motion (SfM) measurements of

snow depth with GPR-measured twt and identified spatial variabilities

that were larger than variabilities mapped by previous in-situ studies

(McGrath et al., 2022; Yildiz et al., 2021). We expanded on previous

work by leveraging a time series of GPR and lidar datasets from Grand

Mesa and Cameron Pass, Colorado, and a one-off survey conducted

at Ranch Creek, Colorado. We combined lidar-measured snow depths

with GPR-measured twt of the snowpack thickness to derive spatially

distributed relative permittivity in both dry and wet conditions. For

dry-snow surveys only, relative permittivity is converted to density

using three different equations to illustrate the variability in published

equations. We then compared the derived densities with in-situ mea-

surements and selected the most representative equation. Given the

upcoming launches of L-band (1–2 GHz) SAR satellites (e.g., ALOS-4,

NISAR, ROSE-L, and TanDEM-L) and their potential for global SWE-

monitoring (Deeb et al., 2011; Guneriussen et al., 2001; Marshall

et al., 2021; Tarricone et al., 2023), we estimated the spatial variability

of derived relative permittivity and snow density at the approximate

scale of SAR satellite platforms by conducting a variogram analysis.

Derived densities were then used to evaluate modelled densities from

four empirical models, the Snow Data Assimilation System (SNODAS;

Barrett, 2003), and iSnobal (Lehning, Bartelt, Brown, & Fierz, 2002;

Lehning, Bartelt, Brown, Fierz, & Satyawali, 2002), with particular

attention given to model performance within depth-based and radar-

based SWE remote sensing methods.

2 | FIELD SITES

We used 1.0 and 1.6 GHz centre-frequency (L-band) GPR twt mea-

surements of the snowpack thickness, lidar-measured snow depths,

and snow pit-measured densities collected during the NASA SnowEx

2017 Grand Mesa Campaign, the NASA SnowEx 2020–21 Time

Series Campaigns at Cameron Pass, and a single survey led by the

U.S. Geological Survey (USGS) at Ranch Creek in 2021 (Figure 1). An

overview of the dates and technical aspects of the instrumentation

used at each field site is shown in Table 1.

SnowEx 2017 was conducted from 6 to 25 February of water

year (WY) 2017 at Grand Mesa (Figure 1f,g). The campaign consisted

of three (8, 16, and 25 February) airborne lidar surveys, collected and

processed by ASO (Painter, 2018). Surface-coupled, common-offset

GPR (Webb et al., 2019) was collected daily on a sled pulled behind

either a skier/snowshoer or snowmobile along transects and small

grids. Two adjacent SNOTEL stations, Park Reservoir and Mesa Lakes

SNOTELs, recorded negligible net changes in snow depth (+0.00–

0.03 m) for 8–16 February and modest net increases (+0.03–0.08 m)

for 16–25 February (Figure S1a,d). For the 8 and 16 February flights,

we selected only GPR collected ±2 days around the ASO flight date to

limit the uncertainty of snow deposition that occurred on 11–12

February, resulting in 4.8 km of GPR data for the 8 February flight

and 8.8 km for the 16 February flight. GPR efforts during the third

week of the campaign were focused on small-scale (<500 m) variabil-

ity. Because limited snow accumulation (<5 mm SWE) occurred after

20 February, the 2.6 km of GPR collected from 21 to 25 February

were included.

The Cameron Pass and Ranch Creek field sites (Figure 1b–e;

<0.5 km2) are much smaller than Grand Mesa (46 km2). However,

Cameron Pass was one of several sites observed during the NASA

SnowEx 2020–21 Time Series Campaigns (Marshall et al., 2019) and

thus offers a longer time series that spans two accumulation seasons

and one ablation season. Ranch Creek was also surveyed during the

ablation season and adds information to the distribution of relative

permittivity in wet snowpacks. At Cameron Pass, terrestrial lidar scans

(TLS) were collected on 18 December, 26 February, and 12 March

during WY 2020 and on 10, 24 February, 22 March, and 27 May dur-

ing WY 2021 (Williams, 2021). This site included repeat 0.5 km GPR

transects in 2020 and repeat 0.9 km transects in 2021 (Bonnell

et al., 2022; McGrath et al., 2021). The nearby Joe Wright SNOTEL

station (Figure S1b,e) recorded snow depth changes of +0.97 m

(+280 mm SWE) and �0.17 m (+40 mm SWE) between the three

WY 2020 surveys, and +0.10 m (+59 mm SWE), +0.41 m (+119 mm

BONNELL ET AL. 3 of 17
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SWE), and �0.84 m (�104 mm SWE) between the four surveys con-

ducted in WY 2021. Ranch Creek was surveyed on 7 April 2021 using

a lidar system borne by a UAV (Bauer et al., 2023), while 2.9 km of

GPR data were collected in a spiral survey design (Bonnell &

McGrath, 2023). The Ranch Creek survey was conducted 10 days

after peak SWE was observed by the nearby USGS weather station

(29 March; Figure S1c,f), which had lost 0.31 m snow depth (135 mm

SWE) over that same time period.

F IGURE 1 (a) Location of field sites within Colorado and 1 January to 1 July snow persistence (Moore et al., 2015). (b) Digital elevation model
(DEM) and (c) National Agricultural Imagery Program (NAIP imagery of Cameron Pass, with snow pit locations. (d) DEM (Bauer et al., 2023) and
(e) NAIP imagery of Ranch Creek, with weather station and snow pit locations. (f) DEM (Painter & Bormann, 2020) and NAIP imagery of Grand
Mesa, with locations of SNOTEL stations and snow pits. Figure scales and colour ramps differ by field site. The vertical datums are the WGS84
Ellipsoid for Grand Mesa and the NAVD88 Geoid 18 for Cameron Pass and Ranch Creek. NAIP imagery acquired from USGS Earth Explorer
(https://earthexplorer.usgs.gov/, accessed 10 October 2022).

TABLE 1 Technical details of the instrumentation and datasets for each of the field sites in Colorado.

Study site Grand Mesa Cameron Pass Ranch Creek

Date range WY 2017: 8–25 February WY 2020: 18 December–12 March

WY 2021: 10 February–27 May

WY 2021: 7 April

Lidar platform Airborne

Riegl Q1560

Terrestrial

Riegl VZ-2000/6000

UAV

Yellowscan VX20

UAV

Yellowscan VX20

GPR system MALA ProEx 1.6 GHz Sensors & Software

PulseEkko 1.0 GHz

Sensors & Software

PulseEkko 1.0 GHz

Study site area 500 km2 0.10 km2 0.10 km2

Data boundaries Latitude: 38.941, 39.152

Longitude: �108.259, �107.820

Latitude: 40.512, 40.527

Longitude: �105.896, �105.884

Latitude: 39.912, 39.916

Longitude: �105.763, –105.757

Coordinate systems Horizontal: WGS84/UTM Zone

13N

Vertical: WGS84 Ellipsoid

Horizontal: NAD83 (2011)/UTM Zone

13N

Vertical: NAVD88/GEOID18

Horizontal: NAD83 (2011)/UTM Zone

13N

Vertical: NAVD88/GEOID18

Vegetation

summary

Open: Grasses and Shrubs

Forest: Lodgepole, Spruce, Fir,

Aspen

Open: Mixed Willows and Grasses Open: Mixed Willows

Forest: Lodgepole and Aspen

Note: Water Year is abbreviated to WY. Grand Mesa vegetation summary sourced from Webb, Raleigh, et al. (2020). Cameron Pass and Ranch Creek

vegetation notes were taken in the field and verified with Huckaby and Moir (1998) and Fassnacht et al. (2018).

4 of 17 BONNELL ET AL.
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3 | METHODS

3.1 | Calculating relative permittivity and snow
density

Lidar-measured snow depths were collected from one of three

platforms: airborne (Grand Mesa), terrestrial (Cameron Pass), and

UAV-borne (Ranch Creek). GPR radargrams were collected as

common-offset surveys via a sled coupled to the snow surface and

utilized L-band centre-frequency. Processing of lidar point clouds col-

lected by terrestrial and UAV platforms generally followed the work-

flow outlined by Currier et al. (2019), whereas radargram processing

and picking of snowpack twt thickness followed McGrath et al.

(2019). Appendix A.1 provides further details of the data processing.

A common practice of GPR in snow applications is to convert the

twt of the snowpack thickness to snow depth (ds; e.g., Lundberg

et al., 2006; Marshall et al., 2005), using an estimate of the snowpack

radar velocity (vs; Daniels, 2004):

ds ¼ twt
2

�vs: ð3Þ

Radar velocity is estimated from the relative permittivity of the

snowpack,

vs ¼ c
ffiffiffiffi
εs

p , ð4Þ

where, c is the velocity of electromagnetic radiation in a vacuum.

Here, we constrain the snow depth using lidar and directly estimate

relative permittivity:

εs ¼ c� twt
2ds

� �2

: ð5Þ

In dry snow, snow density can be estimated directly from a rela-

tive permittivity equation. Because the choice of an equation is not

straightforward (Di Paolo et al., 2020), we calculated snow density

from three permittivity equations. Of the published equations and for

a given relative permittivity, the Kovacs et al. (1995) equation

(Equation 6) estimates the median density, the Kuroiwa (1954) equa-

tion (Equation 7) estimates the minimum density, and the Webb et al.

(2021) equation (Equation 8) estimates the maximum density

(Di Paolo et al., 2020). The three equations are:

εs ¼ 1þ0:845
ρs

1000

� �2
, ð6Þ

εs ¼1þ2:3
ρs

1000
, ð7Þ

εs ¼1þ1:4�10–3ρsþ2�10–7ρs
2: ð8Þ

The equations are written such that units for density (ρs; kg m�3) are

consistent.

Measurements of twt were binned within lidar grid cells

(3m�3m) by calculating the median twt value per cell. Grid cells that

did not meet a minimum threshold of 15 twt measurements within the

cell were removed from the analysis. Relative permittivity was calcu-

lated from coincident snow depth and twt cells (Equation 5). Previous

studies have established a large randomly distributed error in the relative

permittivity estimates that results from uncertainties in snow depths and

twt, but with sufficient sampling and filtering, a robust estimate can be

established (Bonnell et al., 2021; McGrath et al., 2022; Meehan, 2022).

Erroneous relative permittivity values (e.g., εs<1) were reduced by

removing all values outside of the inter-quartile range. Uncertainties were

further reduced by smoothing the remaining relative permittivity esti-

mates with a 21m�21m moving window median filter. A filter of this

size was chosen to retain spatial variability along the transect-oriented

surveys. We categorized surveys as dry or wet based on the presence of

any LWC noted in snow pits and corroborated by pit temperatures

(Appendix A.2; Figure S2). Relative permittivity estimates obtained in dry-

snow conditions (all surveys, except the 7 April and 27 May 2021 sur-

veys) were then converted to density using the Kovacs et al. (1995), Kur-

oiwa (1954), and Webb et al. (2021) equations and compared to in-situ

density measurements to calculate the RMSE and Pearson correlation

coefficient to determine the most representative equation.

3.2 | Uncertainty analysis

We estimated the uncertainty in relative permittivities through Monte

Carlo simulations for each survey date. The mean snow depth and twt

were calculated from the 3 m rasters. Grand Mesa lidar snow depth

uncertainty was estimated from the extensive comparisons between the

Grand Mesa airborne lidar and snow depth probes established by Currier

et al. (2019). For Cameron Pass, the lidar snow depth uncertainty was

estimated using the standard deviation of elevational differences

between the bare-earth and snow-on DEMs along the CO-14 highway

surface. The Ranch Creek lidar snow depth uncertainty was estimated

from comparison with surveyed ground control points (Bauer

et al., 2023). Uncertainties in twt were estimated from the mean within-

pixel twt standard deviation for each survey date. Then, Monte Carlo

simulations with 100 000 realizations from Equations (4) and (5) were

performed using a random normal distribution, where the uncertainty

estimates were considered representative of the standard deviation

around the mean snow depth and twt. This established estimates for the

mean and standard deviations of derived relative permittivity and snow

density for each survey date, which is estimated as the uncertainty range

in our derived relative permittivity and snow density datasets. All Monte

Carlo simulation parameters and estimates are listed in Table S1.

3.3 | Variogram analysis

We conducted a variogram analysis using a lag spacing of 10 m, which

approximates the spatial resolution of SAR satellites. Variance at the

lag spacing, γ(h), for experimental variograms is given as,

BONNELL ET AL. 5 of 17

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14996 by B

O
ISE

 ST
A

T
E

 U
N

IV
E

R
SIT

Y
 A

L
B

E
R

T
SO

N
S L

IB
R

A
R

Y
, W

iley O
nline L

ibrary on [02/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



γ hð Þ¼ 1
2N hð Þ

� �
�
XN hð Þ

i¼1

xi – xiþhð Þ2, ð9Þ

where, N(h) is the number of point-pairs at the given lag spacing and x

is the variable of interest (Anderson et al., 2014; Schwanghart, 2022a;

Webster & Oliver, 2001). Omni-directional experimental variograms

were computed from the datasets for snow depth, twt, relative per-

mittivity, snow density, and SWE (achieved by multiplying the derived

snow density by its corresponding snow depth). Experimental vario-

grams were computed using the same grid cells across all variables for

the given survey date. Based on the shape of calculated experimental

variograms, we identified the exponential model as the most repre-

sentative variogram model for each of the variables. The exponential

variogram model with a nugget effect is given as

γ hð Þ¼ s0þ s� 1�e�
h
a

� �
, ð10Þ

where, a is the correlation distance, s0 is the nugget effect, and s is the

exponential model contribution to the sill (Isaaks & Srivastava, 1989).

Variogram model parameters were estimated by least-squares fitting

(Schwanghart, 2022b). For the Grand Mesa datasets, sufficient GPR

observations were collected in forests to enable variogram analyses of

snowpacks in both forests and open environments. Following McGrath

et al. (2019), we chose a 2 m vegetation height metric and used the

ASO vegetation heights dataset collected in Fall 2016 (Painter &

Bormann, 2020) to generate a binary forest/open mask. Variograms

were not calculated for snow density or SWE when LWC was present

in the snowpack (i.e., 7 April and 27 May 2021).

3.4 | Modeling snow density

We tested density estimates from four empirical models, SNODAS,

and iSnobal against our derived density dataset. Evaluated empirical

models include Mizukami and Perica (2008; M&P08), Jonas

et al. (2009; J09), Sturm et al. (2010; St10), and Sexstone and Fas-

snacht (2014; S&F14). Of these, St10 and J09 have global applications

and were previously implemented in a lidar SWE-retrieval study

(Raleigh & Small, 2017). We included S&F14, developed for the water-

shed adjacent to Cameron Pass, to evaluate whether a locally derived

model offers any advantage over global models. M&P08 is a simpler

model, designed to ingest only the day-of-year (DOY) and a snow cli-

mate parameter, but Pistocchi (2016) suggests such models can be

statistically robust, and it is one of the few empirical models which

can be ingested into a radar-based remote sensing method. SNODAS

was chosen to represent data assimilation methods, given its use as a

benchmark for evaluating larger scaled models (Broxton et al., 2016)

and history of validation efforts (Clow et al., 2012; Hedrick

et al., 2015; Lv et al., 2019). The iSnobal model (Havens et al., 2020;

Marks et al., 1999) was chosen because of its incorporation into lidar

SWE products geared toward operational water supply applications

(Painter et al., 2016). iSnobal was run over Cameron Pass for both

unscaled (iSnun) and rescaled (iSnre; e.g., Hale et al., 2023; Kiewiet

et al., 2022; Voegeli et al., 2016) precipitation scenarios because the

chosen atmospheric model used for meteorological forcing within

iSnobal, the High Resolution Rapid Refresh (HRRR) model, has been

shown to underreport SWE by up to 25% (Meyer et al., 2023). Only

surveys with dry snow conditions were modelled. An overview of the

model parameters is given in Table S2 and further details regarding

model runs are provided in Appendix A.3.

All modelled densities were compared with derived densities and

the average of the in-situ measurements. Modelled densities were

incorporated with lidar snow depths and GPR twt to calculate depth-

based SWE and radar-based SWE. In-situ measurements were aver-

aged for each date and used to calculate depth-based SWE from the

lidar snow depths and radar-based SWE from twt to evaluate the effi-

cacy of snow models compared to the ‘gold standard’. The RMSE was

then calculated for modelled versus derived densities, modelled and

in-situ versus derived depth-based SWE, and modelled and in-situ

versus derived radar-based SWE.

4 | RESULTS

4.1 | Overview of the derived relative permittivity
and snow density datasets

We evaluated the lidar-GPR derived snow densities from the three

relative permittivity equations using 40 snow pits from Grand Mesa

(median = 322 kg m�3, range = 93 kg m�3) and six snow pits from

Cameron Pass (median = 255 kg m�3, range = 92 kg m�3). Ranch

Creek was excluded from this analysis because of wet snow condi-

tions. Grand Mesa snow pits had an average of 19 derived snow den-

sities within 30 m of each pit, whereas Cameron Pass averaged 11.

When compared to snow pit measurements, the Kovacs et al. (1995),

Kuroiwa (1954), and Webb et al. (2021) derived densities yielded

overall RMSEs of 54 kg m�3 (r = 0.09), 97 kg m�3 (r = 0.07), and

83 kg m�3 (r = 0.08), respectively (Figure 2; Table S3). Both the

Kovacs et al. (1995) and Kuroiwa (1954) equations yielded densities

with an overall negative bias, whereas the Webb et al. (2021) equation

yielded densities with a positive bias (Table S3). However, the mean

residual for the Kuroiwa (1954) derived densities was three times the

mean residual of the Kovacs et al. (1995) derived densities. At Cam-

eron Pass, the Kuroiwa (1954) RMSE was 25% lower than Kovacs

et al. (1995; Table S3), but frequently yielded physically unrealistic

snow densities (e.g., <50 kg m�3 on 10 February 2021). Therefore, we

selected the Kovacs et al. (1995) equation to use at both Grand Mesa

and Cameron Pass because of its overall lower RMSE and more physi-

cally realistic snow densities.

We established survey-dependent uncertainty ranges for the

derived relative permittivity and snow density datasets (Table S1) and

found that the uncertainties in derived relative permittivity are more

sensitive to snow depth than twt. At lower mean snow depths (<1 m),

the effect of the snow depth uncertainty is increased, and large

6 of 17 BONNELL ET AL.
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relative permittivity uncertainties result, leading to unrealistic esti-

mates (e.g., εs < 1 and εs > 88). The average uncertainty for densities

derived from TLS (196 kg m�3) is approximately twice the average for

those derived from airborne lidar (88 kg m�3). This is primarily due to

the lower average snow depths observed at Cameron Pass and the

larger snow depth uncertainty range for the TLS platform. Differences

between GPR systems did not have a substantial effect on estimated

twt uncertainty, likely because of the similar vertical resolutions (cal-

culated as one fourth of the wavelength; Daniels, 2004) of the

1.6 GHz (�0.04 m) and 1.0 GHz (�0.06 m) systems.

A subset of lidar snow depths, twt, derived relative permittivities,

and derived snow densities are shown for Grand Mesa, Cameron Pass,

and Ranch Creek in Figure 3. Although the full spatial extent of lidar

and twt datasets are displayed, only snow depths that were used to

derive relative permittivity values are discussed. All snow depth, twt,

derived relative permittivity, and derived density datasets are plotted

in Figures S3–S6. Results for Cameron Pass 2020 and 2021 are dis-

cussed as a time series. Although the Grand Mesa lidar was collected

in sequential dates, Grand Mesa results are not treated as a time

series because each week had a different region of interest for GPR

1 1.25 1.5 1.75 2
Relative Permittivity
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3
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Webb et al. (2021)
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F IGURE 2 (a) Relative permittivity
equations from Kuroiwa (1954), Kovacs
et al. (1995), and Webb et al. (2021).
(b) Median derived snow density
(considering all values within 30 m of the
snow pit) versus measured snow density.
Snow densities were derived using the
three relations (Equations 6–8) presented
in panel (a).

F IGURE 3 Examples from each field site and study year of the datasets used in this study. Rows are organized by field site, with (a–d) the
16 February 2017 Grand Mesa survey (GM 2017), (e–h) the 12 March 2020 Cameron Pass survey (CP 2020), (i–l) the 22 March 2021 Cameron
Pass survey (CP 2021), and (m–o) the 7 April 2021 Ranch Creek survey (RC 2021). Columns are organized from left to right as snow depth, twt,
relative permittivity, and snow density.
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surveys. An overview of the mean and standard deviations for each of

the datasets can be found in Table S4.

The lowest mean snow depth/twt at Grand Mesa was observed

on forested transects on 8 February (1.19 m, 9.90 ns; Table S4),

whereas the largest mean depth/twt was observed on open transects

on 25 February (1.65 m, 13.55 ns). Forests exhibited lower mean

snow depths and twt (�0.16 m, �1.37 ns) compared with open envi-

ronments, resulting in a negligible, but consistently lower average

snow density (mean difference = �5 kg m�3) in forested environ-

ments. Although this contrast is within the uncertainty range of our

method, two-sample t-tests suggest a statistically significant

difference between the mean snow densities in forests and open envi-

ronments during 16 and 25 February (p < 0.005). Further, snow pit-

measured bulk densities (n = 193; Elder et al., 2018) corroborate the

contrast but reveal a somewhat lower average snow density for for-

ests (mean difference = �11 kg m�3). Forested and open relative per-

mittivity and density standard deviations showed negligible

differences for each survey date (±0.006, ±3 kg m�3).

Mean snow depths at Cameron Pass for WY 2020 increased from

0.66 to 1.34 m, while mean twt increased from 5.42 to 11.39 ns

(Table S4). The mean snow depth did not change between 26 February

and 12 March, however, the mean derived relative permittivity

increased from 1.539 to 1.632, corresponding to an increase in den-

sity from 284 to 328 kg m�3. As snow depths and SWE increased,

standard deviations for derived relative permittivity and snow density

decreased, relative to the 18 December 2019 survey, by 37% for the

26 February 2020 survey and by 56% for the 12 March 2020 survey.

During WY 2021, mean snow depths showed a more varied trend.

From 10 to 24 February, the mean snow depth and twt exhibited neg-

ligible change (�0.06 m, +0.08 ns), but derived density increased by

+89 kg m�3. During this interval, snow pit depth declined by �0.14 m

and bulk snow density increased by +40 kg m�3 and, on 24 February,

snow pit observations noted a surface wind crust (�1 cm in height).

These observations indicate that wind was a driving factor in the

observed densification. Mean snow depths and twt increased

between 24 February and 22 March (+0.34 m, +2.67 ns), but snow

density decreased (�40 kg m�3). This study year included a wet

snow survey (27 May), where the mean snow depth declined by 53%

relative to the 22 March survey. The mean and standard deviation of

the 27 May relative permittivity (mean = 2.163, standard

deviation = 0.444) were 1.3 and 2.5 times higher than the highest rel-

ative permittivity mean and standard deviation of the dry snow sur-

veys (24 February 2021 mean = 1.695; 10 February 2021, standard

deviation = 0.180).

The Ranch Creek survey explored the viability of UAV-borne lidar

for snow depth retrieval in a shallower snowpack with both open and

mixed conifer/deciduous forest cover. Derived relative permittivity

uncertainty (0.418; Table S1) was within the range of relative permit-

tivity uncertainties estimated for Cameron Pass surveys, despite hav-

ing the lowest mean snow depth (0.62 m; Table S4). The mean

relative permittivity value is only 0.043 less than the mean for the

27 May 2021 Cameron Pass survey, indicating similar mean LWC

values for the two surveys, however, the standard deviation is much

lower, indicating that LWC was more uniform in its distribution for

the 7 April survey.

4.2 | Spatial variability of derived snow density
and relative permittivity

Exponential variogram models (Figure 4) and corresponding experi-

mental variograms (Figures S7–S10), indicate that nugget effects, or

variability at scales smaller than the first lag distance, are absent from

the snow depth, twt, and relative permittivity variogram models. A

minor nugget effect (<1% of the overall variability) was estimated for

the density variogram models, and a larger nugget effect (ranging from

2 to 7% of the total variability) was estimated for the SWE variogram

models. Absent or very low nuggets indicate relatively low spatial vari-

ability (<10%) at the <10 m scale for these variables. Sills and correla-

tion lengths are given for each of the variogram models in Table S5.

Variogram analysis reveals longer correlation lengths for snow

depth and twt at Grand Mesa in the forests than in the open, with for-

ests having a median difference of +6 m for snow depth and +11 m

for twt (Figure 4a–e; Table S5). However, relative permittivity, snow

density, and SWE have longer correlation lengths in the open than in

the forests, with open environments having a median difference of

+7 m for relative permittivity and snow density and +3 m for SWE.

At Cameron Pass, no parameters revealed an obvious relation with

time for WY 2020, but relative permittivity and snow density correla-

tion lengths for WY 2021 decreased from 24 m on 10 February to

10 m on 22 March. Subsequently, the correlation length for relative

permittivity increased substantially to 55 m during the wet snow sur-

vey on 27 May. A longer correlation length was also observed for rela-

tive permittivity on 7 April at Ranch Creek (34 m). These are two of

the longest relative permittivity correlation lengths found in the study,

indicating that wet snow may have longer correlation lengths for rela-

tive permittivity than dry snow.

4.3 | Evaluation of density models

Spatially distributed snow densities at Grand Mesa and Cameron Pass

enable an evaluation of snow density models across a range of dates and

snow conditions (Figure 5a–c). Here, we use the derived densities as a

benchmark for comparison with modelled densities. A comparison

between modelled densities and in-situ densities is available in Section-

A.4. Of the empirical models, J09 yielded the lowest RMSE at both Grand

Mesa (RMSE = 16 kg m�3) and Cameron Pass (RMSE = 43 kg m�3),

whereas M&P08 yielded large RMSEs at Cameron Pass

(RMSE = 87 kg m�3) and Grand Mesa (RMSE = 71 kg m�3), and system-

atically underestimated snow density (mean difference = �75 kg m�3).

St10 consistently overestimated snow density (mean difference =

+37 kg m�3). S&F14 performed comparably to J09 at Cameron Pass. We

found that the variability from empirically estimated snow densities was

more limited compared to derived (Figure 5a), and that empirical model

accuracy decreased in lower snow depth conditions. SNODAS densities

8 of 17 BONNELL ET AL.
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organized from left to right as snow depth, twt, relative permittivity, snow density, and SWE.
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F IGURE 5 (a–c) Comparison between mean snow densities, (d–f) mean depth-based SWE, and (g–i) mean radar-based SWE estimated from
the derived, in-situ, and modelled densities. Depth-based SWE was calculated using lidar snow depths, whereas radar-based SWE was calculated
using twt. Columns are organized by field site, from left to right: Grand Mesa surveys from WY 2017, Cameron Pass surveys from WY 2020, and
Cameron Pass surveys from WY 2021. Error bars show ±1 standard deviation. Depth-based empirical density models cannot be incorporated into
radar-based SWE calculations and are thus absent in (g–i).

BONNELL ET AL. 9 of 17

 10991085, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14996 by B

O
ISE

 ST
A

T
E

 U
N

IV
E

R
SIT

Y
 A

L
B

E
R

T
SO

N
S L

IB
R

A
R

Y
, W

iley O
nline L

ibrary on [02/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



at Grand Mesa yielded an RMSE (20 kg m�3) that was comparable to J09,

whereas SNODAS densities yielded the lowest RMSE (32 kg m�3) at

Cameron Pass. Unscaled iSnobal densities for Cameron Pass in WY 2020

yielded the highest RMSE (119 kg m�3), whereas rescaled iSnobal densi-

ties improved the RMSE by 20 kg m�3. iSnobal density accuracy

improved for the March surveys, where RMSEs were 20%–60% lower

than the overall RMSE. For both unscaled and rescaled iSnobal densities,

estimates exhibited a substantial negative bias (mean residuals:

iSnun = �85 kg m�3, iSnre = �67 kg m�3).

We then used the derived, modelled, and the mean of in-situ den-

sities to calculate depth-based SWE from the lidar-measured snow

depths (Figure 5d–f) and radar-based SWE from the GPR-measured

twt (Figure 5g–i). We considered the SWE calculated from derived

densities as the benchmark for this analysis. J09 yielded the best per-

formance for depth-based SWE estimates, estimating SWE within

10% for seven of nine surveys, whereas unscaled iSnobal yielded the

largest errors, estimating depth-based and radar-based SWE within

20% for only two surveys. M&P08 and rescaled iSnobal performed

comparably: M&P08 yielded two depth-based SWE surveys within

20% and five radar-based surveys within 20%, whereas rescaled iSno-

bal estimated depth-based and radar-based SWE within 20% for four

surveys. M&P08 did not produce SWE estimates within 10% for any

survey, but rescaled iSnobal improved density estimates by an aver-

age of 7% and estimated depth-based and radar-based SWE within

10% for two surveys. St10 estimated depth-based SWE within 10%

for three of nine surveys, but yielded estimates within 20% for an

additional five surveys. S&F14 performed comparably to J09 at Cam-

eron Pass and estimated depth-based SWE within 10% for four sur-

veys. SNODAS yielded the best overall performance for radar-based

SWE, estimating SWE within 10% for eight of nine surveys, although

its performance for depth-based SWE was reduced to four surveys

within 10%. We found that the average in-situ density measurement

yielded SWE within 10% for four of nine depth-based surveys and

five of nine radar-based surveys.

5 | DISCUSSION

5.1 | Considerations for lidar-GPR surveys deriving
relative permittivity and snow density

The combination of GPR and lidar for the derivation of snow densities

or LWC is a promising method that could be employed to supplement

in-situ methods for both operational surveys and large-scale snow

campaigns (e.g., NASA SnowEx). From our study, we can compare the

combination of different lidar platforms with different GPR survey

designs (e.g., TLS with a transect GPR survey) to suggest ‘best prac-
tices’ for future studies. Combined lidar-GPR surveys for deriving rel-

ative permittivity need to consider the large uncertainty ranges that

result from low snow depths (<1 m) and high snow depth uncertainty

(>0.10 m; McGrath et al., 2022). We found that a spatial filter reduced

the uncertainty range and yielded physically realistic densities, partic-

ularly when surveys were performed as grids or spirals. Spiral and grid

surveys have the added potential of spatial modeling to estimate rela-

tively complete maps of relative permittivity and snow density in the

surveyed region (e.g., Meehan, 2022). Airborne lidar platforms yielded

lower snow depth uncertainties (±0.05 to ±0.08 m; Table S1) than the

TLS (±0.07 to ±0.22 m), but the TLS snow depth uncertainty could be

reduced substantially by surveying from a stable surface, rather than

from a potentially shifting platform on the snow surface. Regardless

of platform, we recommend that surveyors take careful notes regard-

ing the GPR sled compression and the timing of the lidar collection

relative to GPR surveys.

5.2 | Comparison with previous studies

The local-scale spatial variability of snow density is time consuming to

measure using traditional in-situ sampling methods (L�opez-Moreno

et al., 2020). Therefore, snow density measurements tend to be

sparser than other snow metrics, such as depth (Sturm et al., 2010),

and thus density's spatial variability has seen few in-situ studies. We

found that the average range in derived densities at Grand Mesa

(135 kg m�3) and Cameron Pass (179 kg m�3; Figure 3, Figures S3–S5)

compare favourably to the ranges in snow densities measured by in-

situ studies conducted in the Spanish Pyrenees, where snow depths

had a similar range to those measured in our study, but warmer tem-

peratures led to rainfall during the winter of one study year

(Fassnacht et al., 2010; L�opez-Moreno et al., 2013). Density ranges up

to 300 kg m�3 were observed from four snow density measurement

campaigns conducted during accumulation (February 2010 and 2011)

and around peak SWE (April 2010 and 2011) across three different

locations ranging in elevation from 1517 to 3015 m (L�opez-Moreno

et al., 2013). Along a 5.4 km section of the Rio Esera in the Spanish

Pyrenees, densities ranged from 350 to 450 kg m�3 in January 2009

(Fassnacht et al., 2010). The ranges reported by L�opez-Moreno et al.

(2013) fully encompass the maximum range observed in our derived

density datasets, whereas Fassnacht et al. (2010) observed ranges

more comparable to those we derived at Grand Mesa. It can be noted

that, depending on the dominant processes, snowpack density can

vary spatially at the 0.10 m scale (Fassnacht, 2021).

Several GPR-based methodologies have been developed to better

understand the spatial distribution of snow densities and have

increased the number of density estimates by two to three orders of

magnitude compared to in-situ studies. However, GPR-based method-

ologies have generated snow density ranges that are physically unre-

alistic, especially when compared to in-situ measurements. Velocity

migration analysis has derived densities with a large range (100–

500 kg m�3) along relatively short (�100 m) transects in Wyoming's

Medicine Bow Mountains (St. Clair & Holbrook, 2017), whereas

multi-antenna pair GPR systems have derived densities as low as

150 kg m�3 during the melt season near Davos, Switzerland

(Griessinger et al., 2018). Still, the multi-antenna pair methodology is

promising; densities tended to range <80 kg m�3 for single �100 m

transects for Griessinger et al. (2018), whereas another multi-antenna

pair GPR system was used to derive a narrow range (370–420 kg m�3)
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along a 78 km transect across the Greenland Ice Sheet (Meehan

et al., 2021). Our approach differs in that it integrates independently

measured snow depths with twt to derive permittivity and density,

similar to Yildiz et al. (2021), who derived densities by combining UAV

SfM snow depths with GPR in the Ilgaz Mountains, Turkey, and

McGrath et al. (2022), who conducted a time series of UAV SfM snow

depth/GPR surveys along a 150 m transect at a field site adjacent to

Cameron Pass during the 2021 study year. However, our use of a spa-

tial filter reduced the derived snow density standard deviation (21–

88 kg m�3; Table S4) by a factor of two, relative to Yildiz et al. (2021)

and McGrath et al. (2022). Although the overall RMSE for our study is

still high, the RMSE at Grand Mesa (45 kg m�3) is lower than either of

the UAV SfM/GPR studies (68–74 kg m�3) and derived density ranges

are physically realistic. Thus, as this method is further developed and

tested, it may be used to provide unprecedented detail on the spatio-

temporal distribution of snow densities.

5.3 | Spatial variability of snowpack parameters

Previous studies have shown that increases in average LWC are asso-

ciated with larger LWC spatial variability and that radar-based

methods for measuring SWE will have increased uncertainty when

LWC is present in the snowpack (Bonnell et al., 2021; Webb

et al., 2022). Although we do not estimate LWC, we identify a large

shift between dry and wet relative permittivity sills (Table S5), indicat-

ing that relative permittivity variance is higher for wet snow surveys.

However, we found increased correlation lengths during wet snow

surveys, which seems counterintuitive, given the complicated spatial

and temporal variability of LWC. The increased correlation length indi-

cates that modeling bulk volumetric LWC may be possible for field

sites that have little topographic complexity, such as Cameron Pass,

and could reduce the uncertainty of SWE retrievals from radar-based

methods.

Median correlation lengths were nearly identical for twt (27 m)

and snow depth (30 m) and were lower than probed snow depth cor-

relation lengths measured by Anderson et al. (2014) in southwest

Idaho (median correlation length = 46 m). At Grand Mesa, median

correlation lengths for snow depth and twt were longer in the forests

than in the open, corroborating the findings of McGrath et al. (2019),

who also found longer correlation lengths for probed depths and

GPR-derived snow depths in the forest, but our mean correlation

lengths in the open were nearly four times longer. Snow density and

relative permittivity variograms yielded a median correlation length of

19 m, which is about twice that observed by Yildiz et al. (2021) but is

much smaller than what L�opez-Moreno et al. (2013) observed

(<150 m). Experimental variograms of derived densities in Grand Mesa

forests exhibited cyclicity at the sill level (Figure S7), possibly due to

the snow accumulation dynamics in the forest islands of Grand Mesa

(Webb, Raleigh, et al., 2020). Sills for derived relative permittivity and

density at Cameron Pass (Figure 4, Figures S8 and S9) tended to be

high in December and February and decrease with accumulation,

where higher sills may result from snowpack variability induced by

topography and vegetation before the features are blanketed

by snow.

5.4 | Model performance and selection

Of the empirical models, J09 estimated densities and depth-based

SWE with the lowest overall RMSE. St10 showed a consistent, positive

bias (Figure 5), which was also noted by McCreight and Small (2014),

largely due to the DOY parameter, which is less sensitive to short-

term fluctuations in snow density than the month parameter used by

J09. We found that the DOY-based M&P08 systematically underesti-

mated snow density and SWE at our sites, which could be improved

for sites where calibration is an option (Pistocchi, 2016). J09 estimated

depth-based SWE within 10% for seven of the nine surveys and may

represent a viable option for depth-based SWE remote sensing

methods. Of the more complex models, SNODAS had a small negative

bias across all surveys at Grand Mesa (overall mean

residual = �14 kg m�3) but exhibited no consistent bias for the Cam-

eron Pass surveys, whereas unscaled and rescaled iSnobal densities

were negatively biased for all Cameron Pass surveys (Figure 5). How-

ever, rescaling precipitation yielded improved iSnobal density esti-

mates that exhibited lower RMSE (<50 kg m�3) for WY 2020 surveys

with deeper snowpacks (>1.30 m). Of all models, SNODAS yielded the

most consistently accurate radar-based SWE (eight of nine surveys

within 10%) and the second most consistently accurate depth-based

SWE (nine of nine surveys within 15%), thus SNODAS may offer a

suitable solution for snow density estimates in North America for

both depth-based and radar-based methods.

Each evaluated model has known limitations. Empirical models

are limited to a narrow, unrealistic range of density estimates

(Raleigh & Small, 2017) and have been shown to decrease in accuracy

with increased elevation (Avanzi & De Michele, 2015). Evaluations of

SNODAS indicate that modelled SWE and snow depth have lower

errors in subalpine regions (Clow et al., 2012; Dozier et al., 2016), but

SNODAS tends to underestimate accumulation in deeper snowpacks

(Hedrick et al., 2015) and may be unsuitable in alpine regions, where

snow deposition and redistribution processes are more complex

(Dozier et al., 2016). Accurate forcing data are necessary for robust

iSnobal model output, but the HRRR precipitation forcing data used in

our study was consistently lower than Joe Wright SNOTEL SWE for

WY 2020 and 2021 (Figure S11). For WY 2021, HRRR precipitation

underestimated SWE by >50%, which is a larger error than what

Meyer et al. (2023) reported, and caused the substantially negative

bias observed for estimated densities. Rescaling HRRR precipitation

based on the 19 March 2021 Cameron Pass airborne lidar survey

yielded more realistic spatial patterns for snow deposition but failed

to generate accurate precipitation values at our field site, hence our

introduced rescaling factor. Despite the higher RMSE values and

biases, iSnobal remains a promising model for estimating snow densi-

ties, particularly where weather station coverage is sufficient or where

HRRR precipitation is either accurate or can be corrected. As a final

note, we found that lower SWE conditions (<300 mm) resulted in
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larger percent errors from models, increasing the J09 and SNODAS

SWE errors to 18% and 13%, respectively. St10 and S&F14 yielded

SWE errors as high as 23%, whereas rescaled iSnobal SWE errors

exceeded 30%. Thus, further evaluation of modelled densities in lower

snow conditions is warranted.

6 | CONCLUSION

By combining GPR-measured twt with lidar-measured snow depths,

we derived relative permittivity and snow density estimates along

GPR transects at three sites during 11 surveys. For dry-snow surveys,

this method yielded a mean RMSE of 54 kg m�3 (RMSE

minimum = 45 kg m�3, maximum = 92 kg m�3) compared with

nearby in-situ density measurements. At Grand Mesa, we observed

that median correlation lengths for relative permittivity and density

were 6 m longer in the open than in the forests, whereas at Cameron

Pass, correlation lengths decreased by 10 m over the span of

1.5 months. We observed that relative permittivity has a higher vari-

ance in wet snow than in dry snow, but correlation lengths were lon-

ger for the wet snow surveys. We compared derived densities with

densities estimated from four empirical models, SNODAS, and iSnobal

and found that J09 was the most accurate density model for

depth-based SWE retrievals (±10% for seven of nine surveys),

whereas SNODAS densities yielded the most accurate SWE retrievals

for radar-based methods (±10% for eight of nine surveys). However,

for lower SWE environments (<300 mm) uncertainty increased to

>20% for all models, which points to a potential issue in density

modeling. Regardless, selecting an appropriate density model is diffi-

cult, and new models continue to be developed (e.g., Bisset

et al., 2022; Meehan, 2022; Winkler et al., 2021). Empirical models

evaluated in this study are directly applicable for depth-based SWE

remote sensing methods and the Sentinel-1 co/cross-polarization

backscatter method (Lievens et al., 2019, 2022), but site-specific cali-

bration in both open and forested environments may improve results.

Physically based models may be particularly powerful for InSAR

methods of SWE retrieval, which can be applied over expansive

regions (e.g., Oveisgharan et al., 2023) and require a surface density

estimate to derive a change in SWE (Marshall et al., 2021), but these

models are inherently limited by the chosen forcing data. With the

increased availability of depth-based and radar-based remote sens-

ing datasets, accurate density estimates are required to advance

SWE remote sensing techniques. The accuracy and spatial coverage

capabilities of the lidar-GPR snow density method makes it a prom-

ising avenue for model evaluation, training, and development.
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APPENDIX A: Detailed Methods

A.1 | Lidar and Ground‐Penetrating Radar Data Processing

During surveys, lidar‐measured snow depths were collected from one

of three platforms (airborne, terrestrial, and uncrewed aerial vehicle).

The Airborne Snow Observatory (ASO) processed snow‐free and

snow‐on lidar elevation point clouds, producing 3 m snow depth rasters

(Painter et al., 2016). U.S. Geological Survey (USGS) processed snow‐

free and snow‐on uncrewed aerial vehicle (UAV) lidar point clouds and

produced bare earth and snow depth rasters at 0.10 m spatial resolu-

tion (Bauer et al., 2023). USGS rasters were subsequently rescaled to 3

m spatial resolution. Terrestrial lidar scan (TLS) point clouds were

accessed from UNAVCO, Inc. (Williams, 2021), filtered, aligned, and

projected (Table 1) to align with the snow‐free digital terrain model

(DTM) collected by the USGS. For each lidar dataset, the snow surface

was identified and point returns from vegetation were removed in Arc-

GIS Pro v3.1.2 (ESRI, 2023). The lidar datasets were converted to raster

format with 3 m resolution using the average point elevation per cell.

The snow‐on rasters were aligned with the snow‐free raster using the

mean elevation difference between the snow‐on and snow‐free rasters

from a 0.7 km section of snow‐free highway (CO‐14) that parallels the

study area. The snow‐free raster was then differenced from the snow‐

on scans to produce snow depth rasters. We assumed the road that

bounds the meadow (Highway CO‐14) had the same elevation for all

scans and we estimated snow depth uncertainty as the standard devia-

tion of the differences in elevation between the snow‐on and snow‐

free rasters along the road. Finally, because lidar scans were performed

after ground‐penetrating radar (GPR) surveys, each snow depth raster

received a + 0.02–0.05 m adjustment based on field notes of average

snow surface compression from the GPR sled.

GPR radargrams were collected as common‐offset surveys via a

sled coupled to the snow surface. Grand Mesa GPR surveys used a

1.6 GHz center‐frequency Mala ProEx GPR, whereas surveys at the

other two sites used a 1.0 GHz center‐frequency Sensors & Software

PulseEkko GPR. Both GPR units operated in free run and collected

traces at 5–10 Hz. Radargram processing followed a general work-

flow: (1) geolocate traces (spatial accuracy = ± 0.25 m), (2) time‐zero

correction, (3) remove DC‐shift (dewow), (4) equidistant trace interpo-

lation to 0.10 m, (5) 2‐dimensional filtering to remove instrument

noise, and (6) picking the ground reflection two‐way travel time.
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Additional processing notes are provided in the User Documentation

for each published GPR dataset (Webb et al., 2019; McGrath et al.,

2021; Bonnell et al., 2022).

A.2 | Identifying Dry and Wet Snow Conditions

Surveys were identified as dry snow based on notes and temperatures

taken in snow pits (Figure S2). A number of snow pit surveys at Grand

Mesa (Elder et al., 2018) noted the presence of LWC using the hand

squeeze test (Techel & Pielmeier, 2011), but the snow temperature mea-

surements seemingly contradict these observations. Although near‐sur-

face (< 30 cm depth) snow layers had a median temperature of – 1°C on

10 February, the deeper layers had a median temperature of – 2°C and,

given the accuracy of the thermometers (± 0.5°C), indicates that any LWC

that was present was minor and likely limited to the uppermost layer/s.

Thus, its volumetric content was not substantial enough to warrant the 8

February 2017 survey being classified as wet snow. We classified the 7

April 2021 survey at Ranch Creek and the 27 May 2021 survey at Cam-

eron Pass as wet snow surveys. Snow temperatures collected in five snow

pits at Ranch Creek indicated isothermal conditions with a bulk snowpack

temperature of – 0.5 °C and surface melt was noted during GPR collec-

tion. Snow temperatures were not collected for the 27 May 2021 Cam-

eron Pass survey, but we classified it as a wet snow survey based on the

presence of standing water up to 0.12 m in the snow pit.

A.3 | Snow Density Model Parameters

Empirical models range from simpler equations (e.g., Mizukami & Perica,

2008) that require a time parameter and a snow climate parameter, to

more complicated equations (Sexstone & Fassnacht, 2014) that require

snow depth, geographic (e.g., elevation or UTM coordinates), and time

parameters. The required model inputs are listed in Table S2. Empirical

models can be calibrated to specific study domains using nearby weather

stations which measure snow water equivalent (SWE) and snow depth

(McCreight & Small, 2014; Pistocchi, 2016). We chose to forego calibra-

tion for two reasons: (1) many of the regions that would benefit from

SWE remote sensing are poorly instrumented and, therefore, not capa-

ble of model calibration, and (2) the main source of our calibration would

be SNOTEL stations near the study areas, which are located in small for-

est openings, where snow density tends to be underestimated when

compared to the unforested areas where most of our transects were

located (Bonner et al., 2022). Empirical models were run for our surveys

using inputs from the lidar snow depth rasters, but only using grid cells

where relative permittivity and density values were derived.

The Snow Data Assimilation System (SNODAS) provides daily

SWE and snow depth estimates, which can be divided to calculate

snow density. The data are accessible at the National Snow and Ice

Data Center (NSIDC; National Operational Hydrologic Remote Sens-

ing Center, 2004). SNODAS datasets that aligned with our survey

dates were accessed and reprojected into the coordinate systems for

each field site (Table 1). SNODAS has a much larger pixel size (~1000

m) than the derived snow density rasters (3 m), so the median of all

derived densities within each SNODAS pixel was calculated to evalu-

ate the SNODAS density estimates.

The iSnobal model (Marks et al., 1999) is incorporated as the heart

of the Automated Water Supply Model (AWSM; Havens et al., 2020).

AWSM handles all the data formatting, configuration, downscaling, and

interpolation of input meteorological data from numerical weather pre-

diction models via the Spatial Modeling for Resources Framework

(SMRF). AWSM requires topographic and vegetation information as well

as meteorological data at hourly time steps. A 50 m digital elevation

model (DEM) and topographic data were generated for the Cameron

Pass study area from the USGS National Elevation Dataset (https://

www.usgs.gov/tools/national-map-viewer; accessed 1 April, 2023) and

the 2014 USGS LandFire dataset (https://landfire.gov/, accessed on 1

April 2023). Hourly meteorological inputs (2 m air temperature and rela-

tive humidity, 10 m U‐ and V‐components of wind, total precipitation,

downward shortwave radiation flux, and total cloud cover) were derived

from the High‐Resolution Rapid Refresh (HRRR) atmospheric model

hosted by Amazon Web Services (AWS; https://registry.opendata.aws/

noaa-hrrr-pds/) and spatially distributed using the AWSM framework.

Initially, iSnobal was simulated using precipitation scaling for 1 October

through the final survey week of the water years, and subsequently run

a second time using a lidar snow depth raster collected by Quantum

Spatial Inc. over Cameron Pass on 19 March 2021 (Adebisi et al., 2022)

to rescale the precipitation inputs. Precipitation was further scaled based

on a comparison between the Joe Wright SNOTEL measured SWE and

SMRF‐distributed HRRR precipitation. The Susong et al. (1999) snow

precipitation density was chosen for the model runs. Median derived

densities were calculated for the 50 m iSnobal grid for comparison.

A.4 | Evaluation of Modeled Densities using In‐Situ Densities

We assessed the accuracy of modeled densities using a time‐series of

snow densities observed at the Joe Wright SNOTEL station and snow

pit‐measured densities from Grand Mesa and Cameron Pass. The

time‐series analysis compares empirically modeled density and esti-

mated SWE with SNOTEL density and SWE measured during WY

2020 (Figure S12). We found that the Jonas et al. (2009; J09) and Sex-

stone & Fassnact (2014; S&F14) models yielded the most accurate

densities and SWE at the SNOTEL station, whereas the Sturm et al.

(2010; St10) model consistently overestimated density and SWE and

the Mizukami & Perica (2008; M&P08) model consistently underesti-

mated density and SWE. SWE estimated from M&P08 was the least

affected by short‐term fluctuations in snow depth, which was prob-

lematic for the three depth‐based empirical models (e.g., McCreight &

Small, 2014). We then calculated RMSEs for each model using snow

pit‐measured densities from Grand Mesa (n = 164) and Cameron Pass

(n = 12) that correspond with the lidar acquisitions (Table S6). At

Grand Mesa, St10 yielded the most accurate densities (RMSE = 14 kg

m–3), whereas J09 yielded the most accurate densities (RMSE = 30 kg

m–3) at Cameron Pass. SNODAS performed comparably at both field

sites (Grand Mesa RMSE = 52 kg m–3; Cameron Pass RMSE = 44 kg

m–3). With the exception of the performance of St10 at Grand Mesa,

these results corroborate the evaluation of modeled densities which

uses the lidar‐GPR derived densities as the benchmark (Figure 5).

Any use of trade, firm, or product names is for descriptive pur-

poses only and does not imply endorsement by the U.S. Government.
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