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Abstract

Observational studies of the Earth’s radiation belts indicate that Alfvénic fluctuations in the frequency range of
2–25 mHz accelerate electrons to relativistic energies. For decades, statistical models of radiation belts have
quantified the impact of Alfvénic waves in terms of quasi-linear diffusion. However, quasi-linear models are
inadequate to quantify Alfvénic radial transport occurring on timescales comparable to the azimuthal drift period of
0.1–10MeV electrons. With recent advances in observational methodologies offering coverage of the Earth’s
radiation belts on fast timescales, a theoretical framework that distinguishes between fast and diffusive radial
transport can be tested for the first time in situ. In this report, we present a drift-kinetic description of radial
transport for planetary radiation belts. We characterize fast linear processes and determine the conditions under
which higher-order effects become dynamically significant. In the linear regime, wave–particle interactions are
categorized in terms of resonant and nonresonant responses. We demonstrate that the phenomenon of zebra stripes
is nonresonant and can originate from injection events in the inner radiation belts. We derive a radial diffusion
coefficient for a field model that satisfies Faraday’s law and that contains two terms: one scaling as L10 independent
of the azimuthal number m, and a second scaling as m2L6. In the higher-order regime, azimuthally symmetric
waves with properties consistent with in situ measurements can energize 10–100 keV electrons in less than a drift
period. This process provides new evidence that acceleration by Alfvénic waves in radiation belts cannot be fully
contained within diffusive models.

Unified Astronomy Thesaurus concepts: Van Allen radiation belts (1758); Plasma physics (2089); Plasma
astrophysics (1261); Alfvén waves (23); Solar-terrestrial interactions (1473)

1. Introduction

1.1. Motivation and Background

Radiation belts are torus-shaped plasma environments
confined by planetary magnetic fields. Due to porous
boundaries and energy-momentum deposition from the solar
wind, the Earth’s radiation belts are continuously driven away
from a state of local thermodynamical equilibrium (LTE). With
very low particle densities7 and mean free times between
collisions of the order of several months to a few years, the
Earth’s radiation belts are weakly collisional but respond
rapidly to departure from LTE by sustaining a wide range of
plasma instabilities that mimic collisions and thermalize the
plasma. The plasma instabilities result in a broad spectrum of
fluctuations that accelerate particles to relativistic energies on
timescales of a few hours to a few days. With electron’s
energies spanning almost seven orders of magnitude, and
reaching as high as several MeV, the Earth’s radiation belts are
the closest natural laboratory, in which charged particles are

accelerated close to the speed of light (Roederer & Zhang
2014).
From a fundamental physics perspective, it is an observa-

tional fact that planetary radiation belts and a plethora of
astrophysical plasma environments are efficient particle accel-
erators. The Earth’s radiation belts constitute the most
accessible environment to perform detailed in situ studies
relevant to a wide range of fundamental physics problems, such
as cosmic rays’ acceleration (Cronin 1999), upper and middle
atmosphere climatology (Turunen et al. 2009), and even the
microphysics of accretion disks (Quataert & Gruzinov 1999;
Sironi & Narayan 2015). With electron to magnetic pressure
ratio (βe= 2μ0nekBTe/B

2; 0.1–0.01) and relativistic electron
energies (γmec

2; 10MeV) in accretion disks comparable to
the Earth’s radiation belts (βe; 10−3

–10−1 and γmec
2;

1–10MeV), kinetic plasma physics near black holes (but far
from the event horizon), lies at our doorstep! From an applied
physics perspective, and due to their high energies and
confinement location around geostationary orbits, radiation
belts’ particles constitute a threat to satellites orbiting Earth,
and are therefore a research focus for communication and
military industries. Driven by fundamental scientific questions
and risk mitigation to communication infrastructures, radiation
belt research aims to quantify the acceleration and loss
confinement processes of energetic electrons (Cannon 2013;
Hands et al. 2018; Horne et al. 2018).
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7 The thermal component of the electrons has particle densities of the order of
n � 1 cm−3. The warmer electron populations of tens and hundreds of keV are
much more dilute with densities several orders of magnitude lower.
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More than 60 yr of research following the discovery of the
Earth’s radiation belts (Van Allen et al. 1958), plasma
physicists have identified two dominant mechanisms respon-
sible for the transport and acceleration of charged particles: (1)
spatially localized wave–particle interactions driven by small-
scale kinetic fluctuations (Thorne 2010), and (2) large-scale
electromagnetic fluctuations induced by global magnetospheric
currents and encompassed under the formalism of radial
diffusion (Lejosne & Kollmann 2020). Both mechanisms can
be understood in terms of the theory of adiabatic invariants in
nearly periodic Hamiltonian systems (Cary & Brizard 2009). In
the absence of collisions, the motion of magnetically trapped
electrons can be decomposed fully in terms of three separate
motions with very distinct timescales:

1. Larmor motion around the local magnetic field
(Ω; 1–10 kHz),

2. The bounce motion between magnetic mirror points
(ωb; 0.1–1 Hz),

3. The azimuthal drift around the Earth’s midplane
(Ωd; 0.1–1 mHz).

In order to break one of the three periodic motions, a wave with
a frequency higher or comparable to one of the periodic
motions has to interact with the particles. Since the Earth’s
radiation belts sustain broadband fluctuations with frequencies
ranging between 10−4 and 104 Hz (Murphy et al. 2020), all
three invariants can repeatedly be violated. Small-scale kinetic
fluctuations accelerate electrons if one of the first two adiabatic
invariants μ= Ek⊥/B and p ds  ò= , defined in terms of the
perpendicular kinetic energy Ek⊥= |p⊥|

2/m, the local magnetic
field amplitude B, and the relativistic momentum along the
local mean field p∥= p ·B/B=mγv∥, are violated. On the
other hand, the second dominant mechanism, radial diffusion,
originates in large-scale Alfvénic waves in the Pc4 (ω∼ 8–25
mHz) and Pc5 (ω∼ 2–7 mHz) range that violate the third

adiabatic invariant, i.e., the magnetic flux Φ= ∫B · dA (Kulsrud
2005; Roederer & Zhang 2014).
In a dipole magnetic field, the inverse of the magnetic flux

can be expressed more simply as the normalized radial distance
in the midplane L= r/RE, in which RE is the Earth’s radius.8

Consequently, a collection of particles drift resonant with
Alfvénic fluctuations in the Pc5 range experience scattering
along the radial distance. This scattering can be modeled
statistically in terms of a Fokker–Planck equation and it is
observational signature is a diffusive flattening of the
distribution function along the radial distance L

*

. With the first
and second adiabatic invariant conserved, particles carried
closer to Earth gain energy through a betatron process
(Kulsrud 2005) as they sample a larger magnetic field, whereas
particles diffusing to higher radial distances sample a weaker
magnetic field, lose energy, and experience a greater likelihood
of losses at the outer magnetopause boundary (Turner et al.
2012; Hudson et al. 2014; George et al. 2022).
Similarly, violation of the first and second adiabatic invariants

for a collection of particles is also modeled in terms of Fokker–
Planck equations (Lichtenberg & Lieberman 1983). Contrary to
radial diffusion, scattering associated with the first two invariants
results in a localized enhancement along the radial distance.
From an observational perspective it has therefore been possible
to infer which acceleration mechanism is dominant by computing
from satellite data the distribution function in terms of the three
adiabatic invariants, i.e., *f L, ,( )m (Green & Kivelson 2004).
As shown in Figure 1, if radial diffusion dominates, the
distribution function results in a flattening along the radial

Figure 1. Illustration of the conceptual frameworks for the acceleration of charged particles in planetary radiation belts. Following the injection of particles at t = 0
(darker-shaded region) and the generation of plasma instabilities, the phase-space density will be deformed. In the left panel, Alfvénic fluctuations drive radial
diffusion and a flattening of the phase-space density along the equatorial radial distance (Lejosne & Kollmann 2020). Particles scattered to lower radial distance
sample a larger magnetic field, and gain energy through a betatron process. In comparison, the signature of small-scale fluctuations consists of a localized enhancement
along the radial distance (Green & Kivelson 2004), as shown in the right panel. The radial shift of the peak in the right panel illustrates that violation of the first and/or
second adiabatic invariant results in a change in the third adiabatic invariant as well (Öztürk & Wolf 2007; O’Brien 2014; Desai et al. 2021). Both frameworks are
expressed in terms of Fokker–Planck equations. Transport by Pc4 and Pc5 Alfvénic waves is encoded in a radial diffusion coefficient DLL. Transport by small-scale
interactions is encoded in an energy diffusion coefficient DEE (Summers 2005; Shprits et al. 2006).

8 It should be kept in mind that when the background dipole magnetic field is
deformed on long timescales compared to the drift period, the third adiabatic
invariant Φ does not map into the normalized radial distance L since

1
B R

L

B

B L

2 E E
2

0( )( )
F = -

p d . The background magnetic field model used in this
communication is dipolar and the third adiabatic invariant can be interpreted as
an effective radial distance.
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distance, but if small-scale waves are the primary drivers,
localized enhancements along the radial distance should be
observed. Contemporary observational and modeling studies
of the radiation belts rely on this conceptual framework to
determine which of the two mechanisms dominate on timescales
of hours to several days (Chen et al. 2007; Reeves et al. 2013;
Jaynes et al. 2018).

1.2. Benefits of Quasi-linear Models of the Earth’s Radiation
Belts

The theoretical framework to quantify and interpret the
dynamical evolution of radiation belts on timescales of a few
hours to several days relies exclusively on quasi-linear theories
(Fälthammar 1965; Kennel & Engelmann 1966; Diamond et al.
2010; Brizard & Chan 2022). The overwhelming reliance on
quasi-linear models in radiation belt research is not fortuitous
as it offers two benefits alternative computational and
theoretical approaches lack:

1. Computationally inexpensive reduced models. The full
particle motion requires a seven-dimensional description
(three adiabatic invariants with three associated phases
plus time). Since energetic electrons span four orders of
magnitude in energy, and more than six orders of
magnitude in time and space, reduced statistical models
are necessary to account for geomagnetic storms
occurring on timescales of at least a few hours. Quasi-
linear models for small-scale wave–particle interactions
(Summers 2005; Shprits et al. 2006) and radial diffusion
(Lejosne & Kollmann 2020) take the form of Fokker–
Planck equations that are computationally inexpensive
and can be easily implemented in global magnetospheric
models.

2. Generalizability. With sparse measurements of electric
and magnetic fields responsible for the violation of the
three adiabatic invariants, quasi-linear models encode
wave–particle interactions in diffusion coefficients that
have simple algebraic forms. For instance, radial diffu-
sion coefficients are amenable to parameterization in
terms of ground magnetometers’ measurements (Brauti-
gam & Albert 2000; Sarma et al. 2020) that are correlated
with fluctuations that drive dynamic radiation belts.
Current quasi-linear models can therefore be generalized
to periods of unavailable in situ measurements.

Quasi-linear model comparisons with data yields, in several
events, accurate estimates of electron fluxes (Reeves et al.
2013; Thorne et al. 2013; Jaynes et al. 2015). However, the
dominance of quasi-linear models also stems from the fact that
building statistical models that are a departure from quasi-linear
assumptions is an outstanding theoretical challenge, since it
falls into the class of multiscale nonlinear problems (Dupree
1966; Orszag & Kraichnan 1967; Dupree 1972; Schekochihin
et al. 2008; Diamond et al. 2010; Davidson 2012).9 Moreover,
a multipoint satellite methodology that can quantify the
evolution of energetic particle fluxes on a timescale comparable
to a drift period has only recently been developed with the
availability of 140 keV–4MeV electron GPS fluxes calibrated

with the Van Allen Probes (Morley et al. 2016; Kalliokoski et al.
2023). GPS instruments combined with the Van Allen Probes
offer, for the first time, an unprecedentedly large number of
measurement points, thus providing a broader spatial coverage of
the radiation belts and a better temporal resolution in terms of
drift shells. Energetic electron fluxes inferred from GPS electron
counts and calibrated against MagEIS and REPT instruments on
board the Van Allen Probes (Morley et al. 2017) can be used to
quantify processes that are too fast to be quantified by radial
diffusion. Probing radiation belt processes on timescales of the
drift period is now observationally possible, and statistical
models that quantify the impact of Pc4 and Pc5 waves on fast
timescales comparable to the drift period are missing.
New tools for the radiation belts that can complement and

supersede quasi-linear models would have to provide the
benefits listed above in order to be incorporated into global
models. In this paper, we provide the theoretical framework to
address the limitation of radial diffusion models and extend
radial transport beyond a quasi-linear description. But before
doing so, we describe the limits of quasi-linear theory and how
it constrains the interpretation of radiation belt observational
studies.

1.3. On the Need for a New Theoretical Framework of Radial
Transport

Quasi-linear models in the radiation belts are mean-field
theories that assume that the average interaction of electrons
with small-amplitude waves will describe accurately the long
timescale evolution of the particles and that nonlinearities
arising due to mode-mode coupling or particle orbits can be
neglected. Quasi-linear models in the radiation belts therefore
contain the following inherent constraints:10

1. Scale separation between fast and diffusive timescales. In
quasi-linear models, the cumulative effect of many waves
on the distribution functions is slow and diffusive
(Vanden Eijnden 1997). This slow timescale for diffusion
is contrasted with the fast timescales associated with a
single encounter/transit time of a wave with the particles.
When the timescales for diffusion becomes comparable to
the transit time for the wave–particle interactions, the quasi-
linear hierarchy breaks down (Kennel & Engelmann 1966).

2. Absence of nonlinear processes. The fast response of the
distribution function is assumed to be unperturbed and
nonlinear processes such as particle trapping (Bernstein
et al. 1957; Artemyev et al. 2012; Osmane et al. 2016) or
mode-mode coupling (Schekochihin et al. 2016; Adkins
& Schekochihin 2018) are ignored.

On the basis of the first constraint, the slow diffusion expressed
in terms of a Fokker–Planck equation cannot be used to
describe the acceleration of particles on fast timescales
comparable to a single interaction or transit time. Nonetheless,
current diffusion coefficients used for radial transport become
sufficiently large during high geomagnetic activity (Brautigam
& Albert 2000; Ozeke et al. 2014; Sandhu et al. 2021) to result
in violation of the scale separation constraint of quasi-linear
theory. For instance, Figure 4 of Ozeke et al. (2014) shows that

9 Studies of nonlinear multiscale problems in kinetic plasma physics have a
long history but only recently have we gained sufficient computational power
to address them in plasma fusion and astrophysical environments (Schekochi-
hin et al. 2016; Adkins & Schekochihin 2018; Kawazura et al. 2019; Meyrand
et al. 2019).

10 Current radial diffusion models also assume that the fluctuations are
statistically homogeneous in space. This assumption is known from
observations in the radiation belts to be incorrect (Murphy et al. 2020; Sandhu
et al. 2021), but can nonetheless be modified under a quasi-linear framework so
we have not included it as a limitation inherent to radial diffusion models.

3

The Astrophysical Journal Supplement Series, 269:44 (31pp), 2023 December Osmane et al.



the diffusion coefficient DLL can be of the order of 102–
103 days−1 for Kp> 5. Consequently, the diffusion time for a
particle to be carried across one drift shell ΔL* scales between
τD; 15 minutes and a few minutes. Similarly, the impact of
radial transport on losses cannot be quantified in terms of quasi-
linear models if particles are depleted on timescales comparable
to or less than an azimuthal drift period. Olifer et al. (2018) show
through observations that fast losses on timescales as short as
half an hour can take place during intense magnetic storms. Such
transport timescales are inconsistent with a quasi-linear theory
relying on a scale separation between fast and slow timescales,
with the fast timescales comparable to azimuthal drift orbits of
the order of tens of minutes to a few hours.

The second constraint can be justified on the basis that large-
amplitude fluctuations are statistically rare occurrences: an
electron will be scattered hundreds of times by small-amplitude
fluctuations before encountering a large-amplitude wave.
However, from a theoretical perspective, wave amplitudes do
not need to be very large for higher-order effects to become
comparable to linear terms and for a quasi-linear theory to
break down. This property of nonlinear systems is well known
among astrophysical and fluid turbulence research and under-
lies the assumption of critical balance, in which the transit time
becomes comparable to the nonlinear interaction time (Gold-
reich & Sridhar 1995).11

Observational evidence and theoretical studies of fast and
nonlinear processes at the heart of the Earth’s radiation belts
have become substantial in the last 15 yr but are typically
associated with electron-scale whistlers and chorus (Bortnik
et al. 2008; Cattell et al. 2008; Cully et al. 2008; Albert et al.
2012; Artemyev et al. 2012, 2015; Mozer et al. 2013;
Malaspina et al. 2014; Santolík et al. 2014; Agapitov et al.
2015; Osmane et al. 2016, 2017; Tao et al. 2020; Omura 2021)
and ion-scale EMIC waves (Hendry et al. 2019; Bortnik et al.
2022; Grach et al. 2022). With the exceptions of the numerical
studies of Li et al. (1993, 2018), Degeling et al. (2008), Hudson
et al. (2017), and extreme driving events such as the one
reported by Kanekal et al. (2016), fast and higher-order radial
transport are rarely considered and have yet to be accounted for
in global models. However, observational studies demonstrate
the existence of large-amplitude fluctuations that can sustain
radial transport. For instance, Hartinger et al. (2013) demon-
strated that transient foreshock perturbations during moderate
geomagnetic periods lead to the generation of ultralow
frequency (ULF) electric and magnetic fields as high as
10 mVm−1 and 10 nT, respectively. A statistical study by
Simms et al. (2018) and an information-theoretic analysis by
Osmane et al. (2022) characterized the statistical dependence of
energetic electron fluxes in the Earth’s radiation belts on ULF
wave power measured on the ground and at geostationary orbit.
Both studies demonstrated that ULF wave power is nonlinearly
coupled to energetic electron fluxes.12 And as higher-order

effects become significant, the scale separation constraint of
quasi-linear models also breaks down. In this paper, we present
a theoretical framework to distinguish quasi-linear diffusion
from fast linear and higher-order processes.

1.4. Next Generation of Radial Transport Models for Radiation
Belts

The physics of the Earth’s radiation belts is nonlinear, high
dimensional, and multiscale and it is not computationally
possible to resolve energetic particle motion ranging from
milliseconds to hours during geomagnetic storms that can last
from several hours to a few days. Consequently, reduced
statistical models relying on quasi-linear theories have been
developed to predict the dynamical evolution of energetic
electrons in terms of physical drivers (i.e., in the solar wind and
the magnetosphere). With growing satellite measurements and
coverage, we now know that large-amplitude Alfvénic
fluctuations and fast processes occurring on timescales beyond
the reach of quasi-linear radial diffusion are commonly
observed in the radiation belts (Li et al. 1993; Hudson et al.
1995; Turner et al. 2012; Hartinger et al. 2013; Kanekal et al.
2016; Olifer et al. 2018). The current modeling tools are
therefore unable to quantify the impact of fast and/or higher-
order radial transport on the energetic electrons, and thus
unable to distinguish it from small-scale wave–particle
interactions (Lejosne et al. 2022). Figure 2 illustrates the
spatial and temporal scales covered by radial diffusion in
comparison to characteristic waves and particle motions. In
order to characterize processes occurring on fast timescales, we
need to use a reduced statistical framework that accounts for
variations during the drift motion. Drift kinetic models have
been developed for decades, mostly for laboratory fusion
plasma (Goldston & Rutherford 1995; Parra & Catto 2008), but
is an ideal starting point to quantify the impact of Pc4 and Pc5
ULF waves on energetic electrons that belong to the long
wavelengths (kρe= 1) and short frequency limit (ω/Ωe= 1).

1.5. Summary of the Main Results

1. The choice of the magnetic field model to quantify radial
transport is essential for radial transport models and needs
to respect Maxwell’s equations. If Faraday’s equation is
violated, we show that Liouville’s theorem is also not
respected, and thus phase-space density is not conserved.
This result also has implications for test-particle experi-
ments in global magnetospheric simulations (Tu et al.
2012). If Faraday’s equation is not respected in the
simulation box, the construction of the distribution
function from the particle trajectories can violate
Liouville’s theorem.

2. The linear wave–particle response of the distribution
function to a single Alfvénic ULF mode consists of three
separate terms, two nonresonant processes and one
resonant one: (1) a nonresonant modulation of the
distribution function in terms of the ULF wave frequency
ω, (2) a nonresonant modulation of the distribution
function in terms of particle’s drift frequency Ωd, known
as drift echoes, and (3) a drift resonant response in the
instance where the frequency of the ULF wave
corresponds the drift frequency of the particle, i.e.,
ω;Ωd. All three responses are a function of the radial
gradient in the background distribution function, and the

11 In critical balance, the linear transit timescale (the time it takes for an Alfvén
wave packet to transit across another Alfvén wave packet) becomes
comparable to the nonlinear interaction time. In the radial transport problem,
the transit timescale (the time it takes for a magnetically trapped particle to
transit/sample an Alfvén wave) becomes comparable to the time it takes for
higher-order effects to be felt. This is quantified in Section 3.4.
12 Counterintuitively, energetic electrons with 100 keV were shown to possess
the largest statistical dependency with ULF waves that should only resonate
with relativistic electrons >1 MeV. In Section 3.4.2, we provide a nonresonant
mechanism, unaccounted by quasi-linear radial diffusion, that can explain the
results of Simms et al. (2018) and Osmane et al. (2022) as a result of ULF-
driven impulsive acceleration of 100–400 keV.
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modulation in terms of the ULF wave, sometimes
interpreted as evidence of drift resonance (Claudepierre
et al. 2013), can also be the product of a nonresonant
interaction.

3. The formation of Zebra stripes does not require drift
resonant interactions, and can be the signature of injected
particles in the inner belts in the absence of ULF waves
and radial gradients of the distribution function. We argue
that the injection events reported by Zhao & Li (2013)
provide all the necessary ingredients for the formation of
zebra stripes.

4. We derive from the drift kinetic equation a quasi-linear
radial diffusion coefficient that consists of two terms. The
first term is independent of the wave azimuthal number m
and scales as L10, and the second term is a function of the
azimuthal wavenumber and scales as L6. The diffusion
coefficients account for electric and magnetic field
fluctuations that respect Faraday’s equations, and thus,
the separation of the diffusion coefficient in terms of an
electric and magnetic DLL, as commonly used in the
literature (Fei et al. 2006; Ozeke et al. 2014; Sandhu et al.
2021), becomes redundant. Our derived diffusion coeffi-
cient can be computed on the basis of the magnetic field
wave power alone.

5. We provide criteria to determine the limit where higher-
order radial transport processes become significant on

timescales comparable to the drift period. We demon-
strate that when higher-order effects are accounted for,
symmetric and compressive ULF waves can accelerate
electrons with energies of the order of 10 to a few
hundred keV by convecting them inward. This process is
a higher-order generalization of the mechanism presented
by Parker (1960) and does not require drift resonance.

2. Methodology

2.1. Drift Kinetic

In a strongly magnetized plasma, charged particle motion
can be split into a fast gyration around the local magnetic field
and the motion of its guiding center. The Larmor motion is
analytically solvable when the electric and magnetic fields, E
and B, respectively, are assumed constant in time and uniform
in space. However, this solution can also be extended to more
general electromagnetic fields that are approximately constant
on timescales comparable to the Larmor period m q Bs s s

1W =-

and spatial scales of the order of the Larmor radius ρ= v/Ωs,
where v is the characteristic speed of particles sampling the
field, qs is the charge, and ms is the rest mass of a particle
species (s= p for protons and e for electrons).
We consider a system with characteristic scale size l and

frequency ω∼ v/l. The time and spatial scales of the system are

Figure 2. Spatial and temporal scales of electromagnetic fields and particle motion in the Earth’s radiation belts, and their relation to theoretical limits. The Larmor
motion, bounce mirroring motion, and azimuthal drift motions are represented as turquoise ellipses. ULF waves ranging from 2–100 mHz are shown in shaded
rectangles. The regime of validity of quasi-linear radial diffusion is shown in yellow and the regime covered by drift kinetic, which encompasses quasi-linear radial
diffusion is in gray. The left boundary of the quasi-linear regime is computed from the inverse of the radial diffusion coefficient obtained from Brautigam & Albert
(2000) for L = 8 and Kp = 6, which corresponds to strong geomagnetic conditions. A DLL at L = 8 and Kp = 6 indicates radial transport over one L-shell on a
timescale of 30 minutes. For a >4 MeV electron, a drift period is of the order of 3 minutes, and radial diffusion over one drift shell after 10 azimuthal drift periods is
very fast, but perhaps possible through quasi-linear diffusion. For lower-energy electrons, e.g., 400 keV, a complete azimuthal drift is of the order of 20 minutes, and
diffusion over one drift shell in less than two azimuthal drift is inconsistent with the quasi-linear assumption of small changes over fast timescales. It should therefore
be kept in mind that the range of validity of quasi-linear radial diffusion becomes smaller for less energetic particles.
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estimated from derivatives of the electromagnetic fields
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For a sufficiently strong background magnetic field, the small
parameter ε can be defined as

l

mv

qBl

m
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r w w
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W
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In this limit the particle does not sense significant variations in
the electromagnetic field during characteristic Larmor time and
spatial scales. By choosing appropriate coordinates, the fast
gyration around the guiding center can be ignored and a kinetic
theory for a collection of particles in a magnetized plasma can
be constructed.13 Put differently, starting from the Lorentz
equation or Hamilton’s equations to compute the particle
motion for slowly varying electromagnetic fields, one can build
a statistical description of particles confined by large-scale
inhomogeneous magnetic fields (Goldston & Rutherford 1995;
Parra & Catto 2008; Cary & Brizard 2009; Hazeltine &
Meiss 2013). In the Earth’s radiation belts, such a description is
therefore appropriate for energetic electrons with Larmor
periods 0.1 1e

1 –W ~- ms, and interacting with electromagnetic
fluctuations in the Pc4 (ω∼ 8–25 mHz) and Pc5
(ω∼ 2–7 mHz) ULF range.14

In this study, we use a kinetic theory of guiding centers
known as drift kinetics to quantify the radial transport of
energetic particles interacting with ULF fluctuations. Our
starting point is the conservative drift kinetic equation derived
recursively by Hazeltine (1973):15
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in terms of the gyro-averaged distribution function 〈f〉 defined
as

rf f v t d
1

2
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0

2

( ) ( )òp
m q qá ñ =

p

the guiding center position vector r, parallel velocity v∥, and
gyrophase θg, first adiabatic invariant μ,

m c

B

1

2

1
sin . 5e

2 2
2( ) ( ) ( )m

g
a=

-

Equation (5) for μ is written in terms of the parallel velocity v∥,
pitch angle v vtan 1

( )a = -
^ and relativistic Lorentz factor

v c1 2 2 1 2( )g = - - to account for the relativistic correction
that appears for particles with kinetic energies of

Ec=mec
2(γ− 1) comparable to the electron rest mass

mec
2= 511 keV.16

The appearance of the magnetic field amplitude B in
Equation (3) originates from the Jacobian when one transforms
variables from (r, v) to (r, μ, v∥, θg). In the absence of
collisions, conservation of phase-space density for a collection
of guiding center particles requires that the following equation
be respected:

r
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B B
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¶
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¶
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Equation (6) is a statement of Liouville’s theorem, and is a
function of the electromagnetic field model and of the guiding
center’s particle trajectory. In open systems the impact of
electromagnetic fluctuations will naturally lead to transport to
the boundaries, and thus to irreversible losses. Terrestrial and
planetary radiation belts are not closed systems and the inner
and outer boundaries allow for particles’ injection and losses
(Millan & Thorne 2007; Aryan et al. 2020; Walton et al. 2022).
However, the wave–particle interactions with ULF waves, in
the absence of boundary effects, have to conserve phase-space
density. Equation (6) is, therefore, a different statement,
independent of the presence of porous boundaries, and
determines whether phase-space density, and thus the number
of particles, is conserved in a closed phase-space volume. The
choice of a fields’ model that violates phase-space density is
unphysical and necessarily results in erroneous quasi-linear
diffusion coefficients. For instance, if a field model that does
not conserve phase-space density is chosen, and boundary
effects are added, the resulting losses would either be amplified
or underestimated. Liouville’s theorem can therefore be used as a
constraint for the electromagnetic fields, as shown in Section 2.2.
The particle guiding center description in the (r, v∥, μ) phase

space, for a given problem, is a function of the strength of the
electric field when compared with the magnetic force. If the
characteristic speed of the particle is comparable to the E× B
drift, additional sources for perpendicular drifts can be ignored.
For instance, in the collisionless MHD approximation, the
perpendicular velocity of ion and electron fluids are to first
order comparable to the E× B drift and MHD fluid equations
can be derived from the kinetic equation with the perpendicular
velocity approximated by the E× B drift (Hazeltine 2018).
However if additional drifts are comparable in size to the E× B
drift, or if the characteristic speed of a particle population is
much greater than the E× B drift, perpendicular velocities of
ions and electrons are going to decouple, and additional drifts
have to be taken into account.
Hazeltine (1973) suggests two regimes to account for the

ordering of the E× B in a given problem: the high flow regime,
with strong perpendicular electric fields |E⊥|; vB, and the low
flow regime, with small electric fields, making the E× B drift
small compared to the characteristic speed of the particle. Thus,
in the high flow regime, the perpendicular electric field can be

13 http://www-thphys.physics.ox.ac.uk/people/FelixParra/
CollisionlessPlasmaPhysics/CollisionlessPlasmaPhysics.html
14 Terrestrial and planetary radiation belts also sustain high-frequency
electromagnetic fluctuations with characteristic frequencies ω comparable to
the Larmor frequency Ωs, e.g., the whistler-mode wave branch at Earth (ELF/
VLF) (see Ukhorskiy & Sitnov 2012 for more details). The drift kinetic
description relying on the small parameter ordering, Equation (2), can therefore
not be generalized to wave–particle interactions with such modes and one
needs to resort to a full Maxwell–Vlasov system (Kulsrud 2005).
15 A pedagogical step-by-step derivation of Hazeltine's (1973) results can be
found in the lecture notes at http://www-thphys.physics.ox.ac.uk/people/
FelixParra/CollisionlessPlasmaPhysics/CollisionlessPlasmaPhysics.html.

16 In the Earth’s radiation belts, particles are injected at energies of the order of
1–100 keV, but are accelerated to energies comparable to the rest mass and as
high as a few MeV (Turner et al. 2017). It is therefore crucial to keep track of
the relativistic effects. In our particular problem limited to equatorially trapped
particles, the relativistic effects appear in the first adiabatic invariant but an
extension to non-equatorially trapped particles will require a relativistic
representation of the drift kinetic equation in terms of the parallel momentum
p∥ = meγv∥.
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comparable to the magnetic force, and the E× B drift is the
dominant drift. In the low flow ordering, the perpendicular
electric field cannot balance the magnetic force, and since the
E×B drift is not dominant, additional magnetic drifts, such as
the curvature drift and the magnetic gradient drift −μ∇B have
to be included.

For an application to energetic electrons in the Earth’s
radiation belts possessing kinetic energy ranging between
hundreds of keV and a few MeV, and interacting with ULF
waves, the low flow regime is the correct limit since it accounts
for the dominance of the magnetic gradient drift over the E× B
drift. Dominated by the magnetic gradient drift, energetic
electrons in the Earth’s radiation belts perform one complete
azimuthal loop on timescales ranging from a few minutes, for
MeV electrons, to a few hours for 50 to a few hundred keV
electrons. In comparison, the additional drifts present in
Equation (7) are weaker on such timescales. However, we
keep track of additional drifts since they are cumulatively
responsible for the irreversible transport of particles across drift
shells on long timescales of several hours to a few days
(Lejosne & Kollmann 2020).

In the low flow regime, the position is to first order in the
small parameter ε evolving according to17
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in terms of the local magnetic field direction b= B/B. The five
terms are, respectively, the velocity parallel to the magnetic
field, the Baños parallel drift, the E× B drift, the curvature
drift, and the magnetic gradient drift. Coupled with particle’s
position, the evolution of the parallel velocity is given by
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in terms of the correction to the first adiabatic invariant

b bv q B . 9s˜ ( ) · ( )m m= -  ´

The evolution equation for the first adiabatic invariant is given
by

b b E bm v q B
v
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m
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Combining Equations (3), (7), (8), and (10) with a model of
electromagnetic fields consistent with Liouville’s theorem
(Equation (6)), one can quantify the evolution of the distribution
function for a collection of energetic particles in planetary
magnetosphere on timescales much shorter than quasi-linear
times and therefore comparable to the azimuthal drift periods of
magnetically confined particles. The drift kinetic approach

therefore provides the foundation for a variety of models (linear,
quasi-linear, nonlinear, with or without porous boundaries) to
account for ULF radial transport of particles.
A priori the set of drift kinetic equations is nonlinear when

coupled with Maxwell’s equation and therefore not easily
tractable analytically. However, the equations can be simplified
when energetic particles confined to the equator of the Earth’s
magnetosphere are studied. Equatorially trapped particles have
pitch angles v vtan 21 a p= -

^ and thus v∥= 0. More-
over, the absence of a ULF parallel electric field results in

0m = , v 0 = , and the evolution of the conservative kinetic
equation for the distribution function f (r, v∥= 0, μ= μc), for a
fixed magnetic moment μc, takes the simple form of

r
t

B f B f 0. 11( ) · ( ) ( )¶
¶

á ñ +  á ñ =

In the remaining part of this communication, we will use a kinetic
equation, Equation (11), to describe equatorially trapped particles
and leave the generalization to non-equatorial particles (α≠ π/2)
for future work.18 But before solving the kinetic equation we need
to complement it with a a model of electromagnetic fields.

2.2. Review of Electromagnetic Fields Used for Radial
Diffusion Models

In this section, we review the electromagnetic fields that
have been chosen to model ULF radial transport. We focus
solely on electromagnetic models that can be written
analytically and that have been used to model coefficients for
Fokker–Planck equations. Our aim in this section is also to
demonstrate that an arbitrary choice of electromagnetic fields
can violate the conservation of phase-space density given by
Equation (6).

2.2.1. Mead Field

The Mead field (Mead 1964) consists of the superposition of
two perturbations: an azimuthally symmetric fluctuation with
amplitude S(t) and an azimuthally asymmetric fluctuation
A t r cos( ) ( )j superposed to a background magnetic dipole field
of amplitude B R rE E

3 3. The Mead model has the benefit of
being mathematically simple yet containing all the necessary
ingredients, through the presence of an asymmetric perturba-
tion, for the violation of the third adiabatic invariant
experienced by a collection of magnetically trapped particles.
The Mead field was therefore a natural choice for early models
of radial diffusion (Fälthammar 1965; Schulz & Eviatar 1969;
Schulz & Lanzerotti 1974) and has been used as the field model
for empirical (Brautigam & Albert 2000; Cunningham 2016)
and theoretical studies (Lejosne 2019; Osmane & Lejosne 2021)
of quasi-linear radial diffusion in recent years.
In our analysis, we will argue that the choice of the Mead

field is preferable for analytical studies.19 As stated in

17 Terms of order ε2 ; (ρ/l)2 are neglected.

18 Since ULF waves propagate off the equatorial plane (Sarris et al. 2022),
additional drifts have to be accounted for non-equatorial particles.
19 One particular exception where a Mead field is clearly inappropriate consists
of events such as the one on 1991 March 24 (Li et al. 1993; Hudson et al. 1995)
in which an electromagnetic pulse is highly localized in magnetic local time
and radial distance. For weak geomagnetic activity (Kp < 4), the Mead field
with a single m = 1 mode is a good representation (Lejosne et al. 2013). For
strong geomagnetic activity and ULF modes that are not spatially localized, the
Mead field containing multiple Fourier modes should provide a reasonable fit
of the wave field.
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Section 2.1, we will focus here exclusively on equatorially
trapped particles, but note that a generalization to non-equatorial
particles can also be done. We also generalize the Mead field to
antisymmetric perturbations with azimuthal wavenumbers m≠ 1
This generalization of the Mead field will have little incidence
for the linear and quasi-linear radial transport equation since the
perturbed distribution function due to various m modes are
independent from one another another. In the higher-order
regime of radial transport in turn, as shown in Section 3.4, mode
coupling of various m modes can interact with one another.

Thus, the magnetic field for equatorial particles can be written
in cylindrical coordinates (r, j, z), with r the radial distance, j

the azimuthal angle, and z the cylindrical axis direction:

B
B R

r
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in terms of the magnetic field dipole moment BE and the
Earth’s radius RE. The original simplified Mead field can be
recovered by setting m= 1 and taking the real part in the
Fourier sum decomposition. This generalization of the Mead to
some arbitrary number of m modes is based on observational
measurements demonstrating that the Earth’s radiation belts
can sustain a broad spectrum in m of ULF waves (Sarris 2014;
Barani et al. 2019) and that the m= 1 model is inaccurate
during large driving conditions quantified by a geomagnetic Kp
index greater than 4 (Lejosne et al. 2013).

Using Faraday’s law, the inductive electric field can be
written as
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The above Mead field results in two drifts, the E× B drift,
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and the magnetic gradient drift20 written for the electron charge
e=−q as
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written in terms of the background magnetic dipole
magnitude B0= BER

3/r3 and the magnitude B B S t0 ( )= - -
A t rem m

im( )å j.
Conservation of phase-space density for a collection of

particles trapped in a magnetic dipolar field and interacting
with ULF fluctuations can be written as

in which the first term on the right-hand side of Equation (16) is
the projection of Faraday’s law along the background magnetic
field direction b. Since we are focusing solely on equatorially
trapped particles for the Mead field we can switch to cylindrical
coordinates (r, j, θ= z). Thus, phase-space density is always
conserved for particles confined in a magnetic dipole if
Faraday’s law projected onto the mean field is respected. A
corollary is that the choice of time-varying electric fields that
do not satisfy Faraday’s law does not satisfy Maxwell’s
equation and also has the additional undesirable consequence
that it does not conserve phase-space density. Since the electric
field in the Mead model satisfies Faraday’s equation, the Mead
field conserves phase-space density. The choice of the Mead
field is therefore appropriate for developing a kinetic theory of
radial diffusion.

2.2.2. Asymmetric Background Field

Elkington et al. (2003) argued that enhanced radial diffusion
could take place by accounting for an asymmetric background
magnetic field attributed to periods of high solar wind pressure
and solar wind speeds. In their model, Elkington et al. (2003)
chose a background dipole magnetic field with a superposed
perturbation ΔB:

B r
B R

r
B r, cos . 17EK E

3

3
( ) ( ) ( ) ( )j j= + D

Here the azimuthal angle is chosen to be zero at noon and we
denote the model as BEK to distinguish it from the Mead field.
In addition to the background field, ULF wave perturbations in
the electric and magnetic field are chosen to be the sum of
azimuthal Fourier components:

E E r t e, , 18
m

m
im( ) ( )åd d= j

B B r t e, . 19
m

m
im( ) ( )åd d= j

ð16Þ

20 On the other hand, non-equatorial trapped particles (α ≠ π/2) will
experience the Baños and curvature drift.
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The above perturbations have no particular polarization, with
unspecified toroidal (δEr,m) and poloidal (δEj,m) electric fields
components, and the relation between the magnetic and electric
components are ignored. In order for these fields to conserve
phase-space density, two constraints have to independently
hold: the first one applies to the stationary background
magnetic field given by Equation (17),

B z 0, 20EK· ( ˆ) ( )  ´ =

and is respected for a perturbation ΔB(r) with an existing first
derivative along the radial direction. The second one is
Faraday’s law for the time-varying electric and magnetic
perturbations, Equations (18) and (19), which results in the
following three constraints for the electric and magnetic field
amplitudes:
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For the sake of simplicity, we assume that the magnetic field
perturbations have no poloidal (Bj= 0) or toroidal (Br= 0)
component, and thus only require the constraint (Equation (23))
to be enforced. In terms of a Fourier decomposition in time
(δBm,z∼ e− iω t), Equation (23) can thus be written as

r r
r E im E i B

1
. 24m m r m z, , ,( ) ( )d d wd

¶
¶

- =j

This last equation constrains the choice of poloidal or toroidal
electric fields. For a purely toroidal electric field (δEm,r≠ 0,
δEm,j= 0), the complex coefficients have the following
constraint: δEm,r=− ωδBm,z/m. For a purely poloidal electric
field (δEm,j≠ 0, δEm,r= 0) that has no radial dependence the
following equality must be held: δEm,j/r= ωδBm,z/m. We,
therefore, conclude that the asymmetric model used to compute
the radial diffusion coefficients in Fei et al. (2006) does not
conserve phase-space density and that the diffusion coefficients
derived on the basis of this field model yield unphysical results.
The violation of Faraday’s law in the model Fei et al. (2006)
has already been noted by Lejosne (2019) and shown to
enhance the diffusion coefficient by a factor of 2. By treating
this problem kinetically, we have also shown that it violates
Liouville’s theorem.

Equation (24) also provides a constraint on the electrostatic
model (∇× δE= 0) of Fälthammar (1965). For the case of a
purely poloidal component, Faraday’s equation requires

r E r 0
r m
1

,( )d¶ ¶ =j , and thus, δEm,j∼ 1/r. The assumption
of a poloidal field independent of the radial distance used in
Fälthammar (1965) therefore also violates Liouville’s theorem
and yields an unphysical radial transport coefficient.

We note that both the Fei et al. (2006) electromagnetic
model and Fälthammar (1965) electrostatic models can none-
theless be corrected by accounting for Faraday’s law. This
correction can be done by enforcing Equation (24) when
computing the diffusion coefficient with or without the
asymmetry introduced by Elkington et al. (2003). On the basis

of this section and the previous one, we choose to use the Mead
model since it conserves phase-space density for equatorially
trapped particles and already contains all the key ingredients to
model radial transport in the Earth’s radiation belts.21

3. Linear, Quasi-linear, and Higher-order Limits of Radial
Transport

3.1. Multiscale Dynamics and Separation between Slow and
Fast Variables

In this section, we develop a mean-field theory from the drift
kinetic equation, Equation (3), for charges confined in a
magnetic dipole and interacting with ULF fluctuations given by
the Mead field (Section 2.2.1). We will solely focus on particles
confined in the equatorial plane (α= π/2) and leave the more
involved case of particles bouncing off at mirror points at
higher and lower latitudes to future studies. In order to build a
mean-field theory we separate slow changes in the third
adiabatic invariant L

*

and background quantities and fast
changes in the associated invariant phase and fluctuation
timescales parts of the distribution function22

f r t f r t f r t, , , , , , , 25a
0( ) ( ) ( ) ( )j e j e d j= +

in which r is the radial distance at the equator, j is the
azimuthal angle j ä [0, 2π], and the small parameter ε

characterizes the scale separation between large-scale and
small-scale parts of the distribution. We note that it is possible
to build a background distribution function with azimuthal
dependence. For instance, in the presence of an azimuthal-
dependent source or loss term that evolves slowly in time
compared to the azimuthal drift period of the particles. Such an
azimuthal dependence can then be accounted for in terms of
ε aj, for a> 0, and resulting in ∂f0/∂j= ε af0. But for
simplicity, and comparison with the previous radial transport
model, we will assume that the background distribution
function has no dependence on the azimuthal angle, i.e.,

f f r t, . 260 0 ( ) ( )e=

Formally, this equilibrium distribution can be defined as the
average of the exact distribution function over the range of
azimuthal angle and over timescales that are intermediate
between the fast and the slow ones:
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21 A reader might then wonder why not simply use the field in Fei et al. (2006)
after enforcing the constraint given by Equation (24). The short answer is that
the main benefit of using the asymmetric field results in a modification of the
diffusion coefficient of the order of ΔB2/B2 = 1. This modification is
therefore negligible.
22 A scale separation between fast and slow motion is the basis of quasi-linear
theories in astrophysical plasmas (Kulsrud 2005; Diamond et al. 2010;
Schekochihin 2017). This approach is identical to the one performed in Kennel
& Engelmann (1966) for a quasi-linear theory of magnetized charged particles
interacting with plasma waves of frequencies comparable to the Larmor
frequency. The resulting diffusion models written in the form of Fokker–
Planck equations would not be possible without such a scale separation and
constrains the timescales upon which the quasi-linear theory can be used.
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for ω−1=Δt= teq, where
A

dA

dt S
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frequency of ULF fluctuations, and t
f

f
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¶
, the timescale

for an equilibrium in the distribution to form. This definition of
f0 constrains the time and spatial scales upon which the
background distribution function can be computed. It is shown
in Section 3.2 that particles with azimuthal drift frequencies Ωd,
as defined by Equation (29), comparable to ULF wave
frequency with azimuthal mode number m experience reso-
nance. Thus, since resonance requires ω;mΩd, Equation (27)
also constrains the evolution of the background distribution
function f0 on timescales much larger than 1/mΩd. For the
mode m= 1, the implication of the quasi-linear theory is that
the diffusion cannot take place on timescales comparable to the
azimuthal drift periods.

For equatorial particles with a conserved first adiabatic
invariant μ interacting with a Mead field, the kinetic
Equation (11) takes the form of
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with the function g r t S t B e rA t B, , 1 m
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We now define the drift frequency for equatorially trapped
particles as

q r3 29d
2 ( )m gW =

in terms of the first adiabatic invariant μ, and decompose the
perturbed fluctuations along the azimuthal angle in Fourier
space23
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Replacing the decomposition, Equation (30), in Equation (28)
for m= 0 (the azimuthal average), and averaging over time
according to Equation (27) results, as shown in Appendix A, in
the quasi-linear equation
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The right-hand side of Equation (31) describes the slow evolution
of the background distribution due to the effect of fluctuations. As
is often the case in space and astrophysical plasmas we need a
closed equation for the evolution of the background. The
correlation *f Am mdá ñ24 can be computed if we can write an
equation for the perturbation δfm, replace it in Equation (31), and
take the average defined by Equation (27). The details of this
calculation can be found in Appendix B, and results in the

following higher-order equation for the perturbation:
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The three terms that control the evolution of the perturbed
distribution in Equation (32) represent free ballistic motion, or
streaming, linear wave–particle interaction, and higher-order
wave–particle interaction. The term, given by Equation (B2),
is negligible in the limit m fd m  dW , otherwise it has to be
accounted for and will result in mode–mode coupling even if the
ULF wave amplitudes are considered small, i.e., δB; rAm= B0
and S(t)= B0. In the next sections, we solve these equations in
the linear and quasi-linear regimes and describe the conditions in
which higher-order processes become significant.

3.2. Linear Theory and Radial Transport on Fast Timescales

In linear theory, we consider small perturbations of the
equilibrium that evolve on fast timescales comparable to the
drift period. All higher-order terms can then be ignored and the
background distribution is assumed as constant in time, i.e.,
f0(t)= const. The linear equation is therefore given by
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Equation (33) is linear and can be solved by Duhamel’s
principle for the initial condition δfm(r, t= 0) as
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The first term on the right-hand side of Equation (34) is a ballistic
mode that we will see is responsible for the formation of transient
structures in the phase space (r, j). The second term on the right-
hand side is the linear wave–particle response of the distribution
function to the ULF wave. This problem is almost identical to the
self-consistent electrostatic problem solved by Landau (1946), in
which perturbations of the background distribution result in
growing or decaying fluctuations. However, the radial transport
problem in the linear regime, contained in Equation (34), is simpler
than the one solved by Landau (1946), since the resonant energetic
electrons with densities of the order of 0.1% or less are passive
tracers and self-consistent effects can be to a very good degree of
accuracy ignored.25 One therefore has the freedom to model the
ULF fluctuations in a manner consistent with in situ observations,

23 The generalization of the Mead field in Section 2.2.1 has already been
expressed in terms of Fourier modes for the antisymmetric perturbations.
24 Since the magnetic field amplitude is real, we can write the Fourier
coefficient *A Am m=- .

25 A basic dimensional analysis shows that ULF waves can be a significant
source for energetic electrons’ acceleration, but that energetic electrons
densities are too low to act as an energy sink for ULF waves. With magnetic
ULF amplitudes δB � 0.01 nT, and in some instances reaching as high as a few
nanoteslas (Hartinger et al. 2013), and energetic electrons of 100–1000 keV
with densities ne � 10−3 cm−3, the ratio of kinetic energy density to ULF
magnetic field energy density scales as 2μ0nemec

2(γ − 1)/δB2 � 10−6.
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as long as Faraday’s law is respected. For a ULF fluctuation given
as a single Fourier mode (Am(t)∼ e− iω t) or some stochastic noise,
one can solve the linear system analytically. To the best of our
knowledge, the analytical solution of Equation (33), i.e.,
Equation (34), has not appeared in peer-reviewed studies of
terrestrial radial transport before so we proceed hereafter with a
detailed analysis.

3.2.1. Ballistic Solution and the Formation of Zebra Stripes

Inserting the ballistic solution in the perturbed distribution,
i.e., the term f r e, 0m

im td( )d - W in Equation (34), in Equation (30),
the total distribution in the linear limit is given by

f r t f r f r e e, , , 0 . 35
m

m
im t im

0
d( ) ( ) ( ) ( )åj d= + j- W

We can consider the ballistic solution separately of the linear
wave–particle response since the former is independent on the
radial gradient of f0 and the latter is not. The ballistic response
is therefore the only possible observable response when radial
gradients in the distribution function are very small.

If we consider a single Fourier mode m= 1, we note that an
initial perturbation δf (r, t= 0, j) will develop fine structures in
the (r, j) space as t→∞. The formation of fine structures in
space occurs because an initial perturbation δfm(r, 0) will
experience a differential shearing along the radial position r. We
can use the solution, Equation (35), to quantify the parametric
dependence of the structures arising from ballistic motion in a
magnetic dipolar field B= BE/L

3. For an initial phase j0, the
perturbed distribution, δf is constant along the curve
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in which we replaced the Lorentz factor γ by the kinetic energy
Ec=mec

2(γ− 1). For a fixed time t≠ 0, Equation (36)
indicates that energetic particles will have phase-space
structures with a kinetic energy that is inversely proportional
to the radial distance, i.e., Ec∼ 1/L.

The time evolution of the perturbed distribution function is
shown in Figure 3 for time snapshots of 10 minutes, and 1, 2,
and 8 hr. Energetic particles ranging between 50 and 400 keV
experience a full azimuthal drift on the order of a few hours.
Figure 3 shows that phase-space structures can form on
timescales of the order of a single drift period, which is on
timescales that are far too rapid to be accounted for by radial
diffusive effects. After several drift periods, phase-space
structures in (Ec, L) become thinner even though their numbers
grow. This behavior of the ballistic solution is consistent with
the phenomenon of zebra stripes commonly observed in the
inner part of the Earth’s radiation belts (Imhof & Smith 1965;
Datlowe et al. 1985) and in the magnetospheres of Saturn and
Jupiter (Hao et al. 2020; Sun et al. 2021, 2022). Zebra stripes
are transient structured peaks and valleys observed on
spectrograms of inner radiation belts’ electrons with energies
ranging between tens to hundreds of keV. The zebra stripes that
are measured in situ are also characterized by energy peaks and

dips that vary as the inverse of the radial distance, i.e., Ec∼ 1/L.
They are also associated with substorms onsets and correlated
with various geomagnetic indices, such as Kp and Dst, but are
also observed during quiet geomagnetic conditions (Sauvaud
et al. 2013; Lejosne & Roederer 2016; Lejosne & Mozer
2020a, 2020b). Mechanisms explaining the formation of zebra
stripes must therefore reproduce the Ec∼ 1/L dependence and
explain the processes responsible for their transient nature and
appearance under a wide range of geomagnetic conditions.
Mechanisms suggested for the formation of zebra stripes can

be categorized into two types. In the first type, particles sample
an electric field that varies on timescales consistent with their
drift motion (see, e.g., Ukhorskiy et al. 2014, and references
therein for the most recent advances on the subject). Conse-
quently, a collection of trapped particles can experience drift
resonance with the field, and result in zebra stripe structures as
resonant particles that are scattered to different drift shells. In the
second type, illustrated by the studies of Liu et al. (2016) and
Lejosne et al. (2022), zebra stripes also sample an electric field
but are nonresonant. The formation of zebra stripes for this
mechanism is akin to a phase-mixing process. Magnetically
trapped particle’s drifts are faster for more energetic particles.
When fluxes are projected in energy and radial distance, the
shearing of the distribution leads to an Ec∼ 1/L dependence.
However, our analysis of the ballistic motion also demon-

strates that phase-space structures consistent with in situ
observations of zebra stripes can form in the absence of both
drift resonance and electric field perturbations. The formation
occurs on timescales comparable to the drift period of energetic
particles and is equivalent to the phase-mixing scenario
presented by Ukhorskiy et al. (2014) in that it does not require
drift resonance. However, the ballistic solution we derived
assumes a perturbation of the distribution function δfm(t= 0, r)
at some arbitrary time. This perturbation of the distribution
function can either be due to particles being lost δfm(t= 0,
r)< 0, e.g., to the boundaries, or particles being injected
δfm(t= 0, r)> 0. While more quiescent than the outer belts, the
inner belts experience injection events of energetic electrons
even during moderate geomagnetic storms (Zhao & Li 2013).26

In order to inject electrons in the inner belts a radial transport
mechanism, such as a convective electric field, is required. But
once injected in the inner belts, the ballistic term shows that
zebra stripes can form in the absence of any ULF perturbations.
In Figure 4, we show the formation of the zebra stripes
following localized loss of energetic electrons centered at L= 2
and spread with a standard deviation along radial distances of
ΔL= 0.75. Localized injection and losses also result in stripes
on timescales comparable to the drift period but shearing of the
distribution function results in structures spreading across
radial distances beyond the injection or loss location.
The transient nature of zebra stripes can also be evidenced

when projecting the ballistic solution in the equatorial plane.
Figure 5 shows the temporal evolution of 100 keV electrons’
injection (at jä [0, π]) and losses (at j ä [π, 2π]). The drift
period of 100 keV electrons between L= 1 and L= 3 ranges
between 2.6 and 8 hr. After a single drift period the distribution
function preserves their initial shape and has yet to phase mix.
In comparison, Figure 6 shows the temporal evolution of

26 Albedo neutron decay is also a constant source of the injection of energetic
particles into the inner belts (Li et al. 2017) but the density might be too low for
observational measurements of the formation of zebra stripes in energetic
electrons or protons.
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400 keV electrons’ injection (at jä [0, π]) and losses (at
j ä [π, 2π]). The drift period of 400 keV electrons between
L= 1 and L= 3 ranges between 45 minutes and 2.3 hr. For
more energetic particles, since the drift period is shorter,
shearing of the initial distribution phase mixes the distribution
on faster timescales. After 4 hr, the zebra stripes of 400 keV
have very fine-scale structures in the equatorial plane.

Injection or losses of particles can therefore result in the
formation of zebra stripes without the need for drift resonance or
the presence of an electric field. The injection and losses are
encoded in the ballistic solution but since shearing of the
distribution function occurs on timescales of a few drift periods,
the most energetic electrons develop quickly fine-scale structures
in the distribution function that might not be resolved by
spacecraft instruments. Nonetheless, the ballistic solution does
not preclude the possibility of the formation of zebra stripes as a
response to a ULF electric field for resonant or nonresonant
particles. In the next section, we compute the linear solution to
include the impact of ULF waves on the distribution function and
differentiate between resonant and nonresonant responses.

3.2.2. Solution to the Linear Wave–Particle Interaction

In the previous section, we described the time evolution of the
ballistic term in the distribution function and argued that it
should dominate the particle’s response when radial gradients in

the distribution function are small. However, in the absence of
phase-space injection and/or loss terms, and thus in instances
where the ballistic term is zero, i.e., δf (t= 0, r)= 0, and
∂f0/∂r≠ 0, the linear wave–particle response should dominate.
In this section, we describe the linear wave–particle solution

found in Equation (34). For the sake of simplicity, we assume a
single Fourier mode for the ULF wave:

A t a e 37m m
i t tm m( ) ( )= w g- +

with initial amplitude am, frequency ω, and growth/damping rate
γm. We can generalize this solution to a spectrum of Fourier
modes, but since the solution is linear, each are independent of
one another. The linear solution is valid in the limit where the
growth rate is sufficiently small, for the fluctuations to remain
sufficiently small in amplitude and higher-order effects negligible
(Davidson 2012).27 We insert Equation (37) into Equation (34)

Figure 3. Ballistic motion for particles trapped in a dipolar field results in the formation of zebra stripes. The top-left, top-right, bottom-left, and bottom-right panels
show solutions at j0 = 0 for t = 30 minutes, and 1, 2, and 8 hr, respectively. The initial distribution is uniform in L and kinetic energy Ec.

27 See Section 3.4 in which we quantify the conditions for the linear regime to
break down. It will not come as a surprise to readers’ familiar with solar wind
turbulent problems that nonlinear effects can become dynamically significant
for small-amplitude electromagnetic fluctuations. In the magnetohydrodynamic
limit, this condition is associated with a state of critical balance (Goldreich &
Sridhar 1995) at fluid scales, but has also been generalized to kinetic problems
in space plasmas (Schekochihin et al. 2016; Meyrand et al. 2019). For the
problem of radial transport the nonlinear regime is reached even in the limit
where ULF wave amplitudes and the perturbed distribution function are small,
i.e., δB/B0 = 1, and δf/f0 = 1, respectively.
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to find the following linear wave–particle response f r t,m
L ( )d :

Equation (38) contains a resonant part indicating that particles
with a drift frequency Ωd can be scattered across drift shell
efficiently with ULF waves of frequencies ωm. We can
decompose Equation (38) in terms of a linear wave–particle
resonant part that can grow in time, and two oscillating parts as
follows:

The first term on the right-hand side of Equation (39) is a
nonresonant term oscillating mode that can grow or damp with
the ULF wave at a rate γm and modulates the distribution
function at a frequency ωm. The second term on the right-hand
side of Equation (39) is a nonresonant ballistic term that indicates
that a ULF fluctuation of arbitrary frequency ωm can sustain

Figure 4. The formation of zebra stripes after the injection of particles centered at L = 2 with a spread in radial distance of ΔL = 0.75.
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fluctuation in the distribution function at frequencies Ωd without
drift resonances involved. In the past 60 yr, time series of particle
fluxes observed to have temporal frequencies comparable to the
drift period have been termed drift echoes (Lanzerotti et al.
1967). For instance, Figure 6 of Kokubun et al. (1977) shows the
simultaneous association of the transverse ULF wave mode with
oscillations in energetic ion fluxes and energetic electron fluxes
of 79, 158, and 266 keV. The low energy fluxes are modulated
by the ULF wave, and the phases of modulations are energy
dependent. The oscillations reported by many authors (Kokubun
et al. 1977; Zong et al. 2007, 2009) occur on timescales
comparable to the drift periods of energetic populations and are

therefore produced too quickly to be sustained by a quasi-linear
radial diffusive process. This second term, responsible for drift
echoes, is another source responsible for the formation of zebra
stripes (Section 3.2.1) for nonresonant particles and corresponds
to the mechanism explained in Lejosne et al. (2022). The
difference between this second term and the zebra stripe source
derived in Section 3.2.1 is that the latter requires the phase-space
loss (δf (t= 0)< 0) or injection of particles (δf (t= 0)> 0) and
no electric fields,28 whereas the former requires the perturbation
of the distribution function from a ULF fluctuation with
amplitude am and a gradient in the distribution function, i.e.,
∂f0/∂r≠ 0.

The third term on the right-hand side of Equation (39)
represents the linear wave–particle resonance between ULF
fluctuations of frequencies ωm and particles with drift frequency

Ωd. It can be shown that this last term can grow in time for the
limit mΩd∼ ωm and for what we here call intermediate times:

m
t

1 1
. 40

d m
  ( )

gW

The intermediate time range defined by Equation (40) means
that the ULF wave has had time to oscillate, but the
perturbation has not yet been damped away significantly, or
grown appreciably, for linear effects to break down (Scheko-
chihin 2017). In this limit, the resonant term in Equation (39)
dominates over the other two, and the perturbation in the linear
response of the distribution function takes the following form:

Equation (41) is valid at intermediate times given by
Equation (40) and assumes that mΩd−ωm? γm. In the limit
where mΩd−ωm= 1/t, the exponential term in Equation (41)
can be expanded as a Taylor series, and the dominant term for
the perturbed distribution function gives

f m te , 42m
L

d
i tm ( )d W w-

and thus demonstrates that fluctuations grow linearly in time
due to resonant interactions. Equation (41) is an instance of a
Case–van Kampen mode, initially derived for a Vlasov–
Poisson plasma (Van Kampen 1955; Case 1959), but rederived
here in the context of radial transport. In the limit where
t→∞ but γmt= 1 is necessary to respect Equation (40), the
right-hand side of Equation (41) tends to a delta function.29

Figure 5. The formation of zebra stripes for 100 keV equatorially trapped electrons in terms of (L−j). The initial distribution corresponds to a Gaussian-distributed
beam centered at L = 2 for j ä [0, π] and a Gaussian-distributed drop centered at L = 2 for j ä [π, 2π]. After 4 hr, the zebra stripes remain visible.
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28 It should be noted that in the terrestrial radiation belts injection and losses
are separated between adiabatic and nonadiabatic ones. Reversible losses are
associated with adiabatic perturbations, whereas irreversible losses are
associated with nonadiabatic effects, for instance, the scattering of particles
inside the atmosphere (Millan & Thorne 2007). The ballistic amplitude
δf (t = 0) can account for both reversible and irreversible losses.

29 These non-eigenmodes are not only of theoretical interest. Non-eigenmodes
have to be tracked in order to quantify entropy production in kinetic systems.
See, for instance, Section 5.6 of Schekochihin (2017) for an introduction in
terms of a Vlasov–Poisson system and Zhdankin (2022) for a framework that
can be applied to kinetic problems in planetary radiation belts.
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The resonant linear response presented in this section occurs
on timescales comparable to or larger than the drift period but
smaller than 1/γm, while phase mixing and zebra stripes are
taking place on timescales comparable to drift periods. For
finite damping ULF rate γm< 0, the resonant part decays e 0tg

on timescales of |γm|t? 1, and the ballistic response propor-
tional to e i td- W in Equation (39) dominates. This criterion can
be used to distinguish nonresonant to resonant drift particle
interactions from spacecraft data since both require a radial
gradient in the MLT averaged distribution function f0. The
requirement for a nonzero radial gradient in f0 of a given
energetic population is an experimental constraint on the
observation of phase-space structures, as reported by Hartinger

et al. (2020) and Sarris et al. (2021), and is discussed further in
Section 4.2.
An additional criterion to distinguish resonant from

nonresonant particle’s response can also be achieved observa-
tionally for instruments recording energy-dependent fluxes.
Drift resonance is energy dependent, and the signature of
resonance for resonant energies should be markedly different
than for nonresonant particles, even though Equation (41)
shows that both experience oscillations with frequencies
comparable to the ULF wave frequency ωm. Figure 7 shows
the perturbed distribution function of 1.1 meV electrons at
L= 8 in comparison to the particle’s response for energies at
700 and 900 keV. Thus, a shift in energy can take particles out

Figure 6. The formation of zebra stripes for 400 keV equatorially trapped electrons in terms of (L−j). The initial distribution corresponds to a Gaussian-distributed
beam centered at L = 2 for j ä [0, π] and a Gaussian-distributed drop centered at L = 2 for j ä [π, 2π]. After 4 hr, the zebra stripes have phase mixed.

Figure 7. Example of resonant and nonresonant response in the electron distribution function. The ULF wave has a frequency of ω = 7 mHz and a mode number of
m = 1. The particles are located at L = 8 with pitch angle α = 45°. Particles with kinetic energies of the order of ;1.2 meV(2π/Ωd ; 15 minutes) are resonant, but
particles with energies less than 1 meV (2π/Ωd � 17 minutes) are not. The resonant particles experience fluctuations almost one order of magnitude greater than
nonresonant particles with comparable kinetic energy.
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of resonances and result in perturbed distribution functions that
are more than 5 times smaller in amplitude.

Drift resonance is therefore an efficient mechanism for ULF
waves to exchange energy with energetic electrons. In Figure 8,
we plotted the drift period as a function of kinetic energy and
parametrized it in terms of the radial distance L. The top panel
is made for 45° pitch angles and the bottom panel for 90° pitch
angles. The shaded and dashed rectangles bound the resonant
frequency ωm/m for Pc5 ULFs with azimuthal mode numbers
m= 1, 2, and 3. From Figure 8, we note that energetic electrons
with kinetic energies larger than 200 keV and up to a few MeV

have access to drift orbit resonance across broad drift shells.
Figure 9 is the same as Figure 9 but the bounded rectangles are
drawn for Pc4 waves with azimuthal wavenumbers m= 4, 7, and
10. In the case of Pc4 waves, they can sustain drift resonance for
energetic electrons with kinetic energy less than 400 keV, but
require larger azimuthal wavenumbers (Barani et al. 2019). Even
though drift resonance is strongly energy dependent, Figures 8
and 9 show that they can be accessible to a broad range of energy
and pitch angles across the radiation belts.
We therefore conclude this section by pointing out that the

linear perturbation of the distribution function due to ULF

Figure 8. Azimuthal drift period (2π/Ωd) dependence in terms of the kinetic energy Ec = [50–2000] keV and normalized radial distance L = r/RE = [4, 6, 8]. The top
panel is for α = 45 and the bottom one is for α = 90. The gray-shaded area is when the drift frequency matches the Pc5 ULF fluctuations with ω = [2, 7] mHz and
resonant interactions are possible. The areas bounded in dashed and dotted lines show the resonant boundary for m = 2 and 3 modes, respectively.
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electromagnetic fluctuations, particle injections (δf (r, t= 0)> 0)
or losses (δf (r, t= 0)< 0), all result in phase-space drift
structures on non-diffusive timescales comparable to the drift
periods. Some of the phase-space structures for the lower
energetic electrons (Ec<mec

2), assuming particle injection or
gradient in the background distribution, can appear as zebra
stripes in the inner radiation belts. Even though Equation (39)
shows that the resonant part of δf also experiences phase mixing,
drift echoes and zebra stripes nonetheless form for nonresonant

drift frequencies at mΩd≠ ωm, and thus, stringent resonant
conditions of mΩd; ωm do not constitute sine qua non
constraints for the formation of drift echoes and zebra stripes.

3.3. Quasi-linear Theory of Radial Diffusion

In the previous section, we described the fast linear response
of the perturbed distribution function to an electromagnetic
ULF wave. We assumed that the background distribution f0

Figure 9. Azimuthal drift period (2π/Ωd) dependence in terms of the kinetic energy Ec = [50–400] keV and normalized radial distance L = r/RE = [4, 6, 8]. The top
panel is for α = 45 and the bottom one is for α = 90. The gray-shaded area indicates when the drift frequency matches the m = 4 Pc4 ULF fluctuations with ω = [7, 25]
mHz and resonant interactions are possible. The areas bounded in dashed and dotted lines show the resonant boundary for the m = 7 and m = 10 Pc4 modes, respectively.
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was time independent, which is equivalent to saying that it did
not experience significant variations on fast timescales. In this
section, we compute the evolution of the background distribution
function according to quasi-linear assumptions (Kennel &
Engelmann 1966; Diamond et al. 2010; Schekochihin 2017;
Allanson et al. 2022). In quasi-linear theories, one assumes that
perturbations start modifying the equilibrium before they reach
large amplitudes. In other words, the higher-order term  in
Equation (32) can be ignored when the characteristic time for
higher-order effects is longer than the time for the equilibrium to
be reached. We also neglect the linear term A r

B

f

t
m

0

0¶
¶

on the right-
hand side of Equation (32) since it provides a correction of order

B B 12
0
2 ∣ ∣d in the quasi-linear limit, as shown in Appendix C.

Thus, for our purpose, we assume that the evolution of the
perturbation is determined by Equation (33). Similarly to the
previous section, this linear equation can be solved by
Duhamel’s principle, for the initial condition δfm(r, t= 0)= 0:
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The linear solution given by Equation (43) can then be
combined with the following quasi-linear equation to described
the time evolution of f0:
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We note that the first two terms on the right-hand side of
Equation (44) will result in a diffusion term, and the last two
expressions in advection terms. Replacing the linear solution of δfm
into Equation (44) to compute the correlation terms *A t f tm m( ) ( )dá ñ
and *A t f tm m

 ( ) ( )dá ñ, results in the following two integrals:

To compute the autocorrelations analytically we need to
make some assumptions about the nature of the ULF amplitude
Am(t). To account for finite and zero correlation times we
choose to model the fluctuations as different realizations of an
Ornstein–Uhlenbeck process (Papoulis 1991) given by the
following time evolution equation:30
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where τc is a correlation time, D2 is a measure of the rms
value of Am and χ(t) is a unit Gaussian white noise,

t t t t( ) ( ) ( )c c dá ¢ ñ = - ¢ . The solution for Am, assuming
Am(t= 0)= 0, is given by
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Using Equation (48), we can compute the following quantities
for a finite correlation time τc≠ 0:
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The above correlators are only a function of the time difference
t t- ¢, and not the particular times t and t¢, indicating that the
Ornstein–Uhlenbeck process is stationary, or time homogeneous.
Returning to the integrals, Equations (45) and (46), it should

be stressed that the gradient in the background distribution
functions in the integrals is a function of time, i.e., f0= f0(r, t).
The last step before solving the integral is to assume that a
short decorrelation time τc exists, such that the correlators
C t t C 0i i( ) ( )- ¢ if t t ct- ¢ > . We can thus replace
f r t f r t, ,( ) ( )t¢ = - with f (r, t) on the basis that
C t ti ( )t = - ¢ changes appreciably before any significant
variation in the background distribution (Vanden Eijnden 1997).
This quasi-linear assumption indicates that the ULF wave
amplitude cannot alter the background distribution function on
timescales comparable to the ULF wave and drift period. The
diffusion coefficient that follows in the next lines can therefore not
lead to changes in timescales comparable to the azimuthal drift
period and justifies the ensemble average defined by Equation (27).

For the sake of simplicity, we now assume zero correlation
time,31 which means e t tt t

c
c ( )∣ ∣ t d - ¢t- - ¢ with D=

|Am|
2/τc. Using the above expressions, we compute the

following correlators:
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30 Energetic electrons in the Earth’s radiation belts are passive tracers and the
self-consistent response onto the field can therefore be ignored. This freedom
allows one to model the ULF wave amplitudes in a manner empirically
consistent with in situ measurements.

31 By keeping τc finite but small (Ωdτc = 1), the diffusion coefficient in the
quasi-linear limit is rescaled by a factor 1

1 d c
2 2t+W

, thereby introducing an energy
dependence to the radial transport, as shown in Osmane & Lejosne (2021).
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The quasi-linear diffusion equation therefore takes the general
form of

We normalize time and the radial distance in the quasi-linear
equation, Equation (54), as τ= t/τc and L= r/RE, and write
|δBm|

2= r2|Am|
2 to find

in which the diffusion coefficient DLL normalized by τc is given
by
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Equation (55) conserves particles confined within a bounded
volume since the total rate of change of particles is given by
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. Moreover, since

this diffusion coefficient has been derived for an electro-
magnetic field model that respects Faraday’s law it can be
expressed in terms of the wave power in the magnetic field
alone and does not require the separation in terms of an electric
DLL

E and magnetic DLL
B diffusion coefficients commonly used in

radial transport studies (Ozeke et al. 2014; Sandhu et al. 2021).
The diffusion coefficient is dependent on the first adiabatic

invariant μ contained in the azimuthal drift frequency Ωd. We
note that for a large m? 1 azimuthal wavenumber, the
diffusion coefficient is energy dependent and has a radial
distance dependence that goes as L6, even though the short-
correlation time assumption would constrain Ωdτc= 1. For
m; 1 and Ωdτc= 1, the diffusion coefficient is independent of
energy and has an L10 scaling of
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This distinction between DLL for high and low azimuthal
wavenumbers is important for modeling of the Earth’s radiation
belts because solar wind perturbations can result in both broad and
narrow ULF azimuthal wavenumber spectrums (Murphy et al.
2020). For instance, interplanetary shocks can cause a broad

spectrum in azimuthal wavenumbers with m m: 20{ }Î <+

(Sarris 2014; Barani et al. 2019). In such an instance, the model
predicts an energy-dependent DLL that scales as L6. On the other
hand, a narrow ULF wave spectrum along the azimuthal
wavenumber m= 1 should result in a diffusion that is independent

of energy and with a radial scaling dependence more sensitive to
the radial distance. In other words, the parametric dependence of
DLL is a function of how broad the ULF wave spectrum is in m. If

the magnetospheric plasma is dominated by an m= 1 mode, with
several orders of magnitude less power in m> 1 modes, a quasi-
linear modeling of the diffusion coefficient with an L10

dependence should be chosen. If the choice of a quasi-linear
model with an L6 dependence and an energy dependence in DLL

provides better accuracy, it would nonetheless be inconsistent with
the above radial diffusion coefficients derived for a Mead field.

3.4. Beyond a Quasi-linear Theory of Radial Transport:
Higher-order Regime

In the preceding sections, we described the linear response of
the perturbed distribution function δf and wrote a Fokker–
Planck equation for the quasi-linear evolution of the ensemble-
averaged distribution function f0(L, t). Even in the quasi-linear
limit, the perturbed distribution function is assumed to be
linear, while the evolution of the background distribution is
nonlinear in the sense that it depends on the correlator
〈δBmδfm〉. However, the perturbed response given by
Equation (32) contains a nonlinear term and this section aims
to determine when linear assumptions of radial transport break
down and higher-order processes become dynamically
important.
We distinguish two types of higher-order regimes. In the first

type, nonlinear phase-space structures associated with ULF
waves are produced but isolated in the sense that they cannot
interact with one another. Such structures have been covered in
the case of ULF radial transport by Li et al. (2018) and Wang
et al. (2018), and their observational signatures consist of the
appearance of fluxes trapped in the potential well of electric
fields. This regime of isolated trapped structures is equivalent
to the formation of Bernstein–Green–Kruskal (BGK) mode for
a Vlasov–Poisson system (Bernstein et al. 1957) and requires a
sufficiently large-amplitude fluctuation to confine particles in
their respective phase space.
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In the second type, higher-order processes arise because
multiple ULF modes are present and resulting fluctuations in the
distribution function interact with one another. This second type
of higher-order effect, unlike the first one, can be facilitated by
the presence of large-amplitude fluctuations but does not require
them. This regime is equivalent to the one presented by Dupree
(1972) for a Vlasov–Poisson system and is associated with the
formation of phase-space granulations. These phase-space
granulations can consist of linear fluctuations arising due to
ballistic trajectories, such as drift echoes, or trapped fluctuations
equivalent to BGK modes. Theoretical and observational studies
have indicated that such a regime of non-isolated structures
might be common in weakly collisional plasmas (Schekochihin
et al. 2008, 2016; Servidio et al. 2017; Kunz et al. 2018;
Meyrand et al. 2019), prevent Landau damping from dissipating
fluctuations (Wu et al. 2019), and can result in a phase-space
turbulent cascade akin to what is observed in fluid and MHD
turbulent systems (Goldreich & Sridhar 1995).

While we acknowledge that ULF wave amplitude in the Earth’s
radiation belts can be sufficiently large to sustain trapped structures
derived by Li et al. (2018) and Wang et al. (2018), the trapping
along magnetic local time does not result in irreversible energy
gain by the trapped populations. We focus hereafter on the second
higher-order regime, which relies on the presence of more than
one ULF Pc4 and Pc5 mode. We show hereafter that the second
higher-order regime can result in the transport of particles along
magnetic drift shells, and thus irreversible energizing of popula-
tions that would otherwise be unable to experience drift resonance.
We also demonstrate that the inclusion of higher-order effects
associated with the symmetric ULF fluctuation, which in the linear
and quasi-linear regime had no impact, can suddenly become
drivers of acceleration and losses.

3.4.1. Criteria to Determine when Higher-order Radial Transport
Becomes Significant

The higher-order terms contained in  is given by
Equation (B2) and can be understood as coupling terms, in

which a mode with azimuthal wavenumber p m m= - ¢
couples with a mode q m= ¢ to pump or sink energy from a
mode number m. For instance, a collection of particles
interacting with azimuthal wavenumbers m= 3 and encoded in
δfm=3 and azimuthal wavenumber m 1¢ = encoded in fm 1d ¢= can
couple to another through a ULF mode with p= 2 with Ap=2.
This higher-order wave–particle coupling can lead to the

acceleration of nonresonant energetic particles with slow
azimuthal drift periods compared to Pc4 and Pc5 ULF
frequencies, i.e., mΩd= ω.
However, satisfying the condition p+ q=m is not enough

to make higher-order effects relevant dynamically for radial
transport. The higher-order coupling terms become significant
when they become comparable to the linear transit term of a
particle experiencing an azimuthal drift, which is given by the
second expression on the left-hand side of Equation (39). For
instance, if we account for the higher-order term associated
with the symmetric ULF amplitude, S(t), with mode number
p= 0, with the particle response to a mode q=m,
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in which the frequency ωm is associated with time variations of
the perturbed distribution function δfm and the frequency ω with
the symmetric ULF wave amplitude S(t). We note that the
linear ballistic response of the perturbed distribution function
given by Equation (39) resulted in time variations with
frequencies of ωm=mΩd; thus, higher-order effects can be
felt whenever the symmetric ULF amplitude becomes compar-
able to the local magnetic field. However, criteria I1 can also be
satisfied in the limit where the symmetric ULF fluctuations are
small in amplitude, i.e., S(t)/B0= 1, if ωm?mΩd. For criteria
I2, higher-order effects become significant for large gradients in
the perturbed distribution ( f Llog 1m ( )d¶ ¶ ) even in the
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3.4.2. Impact of Symmetric Perturbations on Fast Timescales

In the previous section, we defined four criteria to argue that
higher-order effects can become significant even for small-
amplitude ULF fluctuations. In this section, we focus on
processes arising from the symmetric ULF perturbation S(t).
The higher-order equation, Equation (32), for the perturbed
distribution function δfm can be solved analytically on fast
timescales comparable to the drift period of particles. The
linear solution to Equation (32) is independent of the
symmetric perturbation S(t). However the higher-order term
 contains a coupling term between the symmetric perturbation
and δfm. This higher-order response of the particles with a
mode m is due to the coupling between the m= 0 ULF mode
contained in the symmetric perturbation and itself. If we
assume that the higher-order coupling due to S(t) is greater than
the one due to the antisymmetric ULF waves S? rAm,
Equation (32) becomes

In order to isolate the impact of the symmetric perturbation
arising due to higher-order coupling we split the perturbed
distribution in terms of a linear part fm

Ld given by Equation (39)
and a higher-order part fm

NLd that can be extracted from the
following equation:
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In Equation (63), we assume that the higher-order perturbation
remains smaller than the linear response, f fm

NL
m
L∣ ∣ ∣ ∣d d< , and

thus we can solve the higher-order equation perturbatively to
drop the coupling terms proportional to f S tm

NL ( )d .

Equation (63) is linear in fm
Nld and can now be solved if we

prescribe a solution for the linear response fm
Ld .

For the sake of simplicity, and in order to highlight that ULF
radial transport can have an impact on nonresonant particles on
fast timescales comparable to or less than the drift period, we
assume that the linear perturbation fm

Ld is given by an injection
or a loss of 100 keV electrons consistent with the linear
solution, and set Am= 0.32 Particles with 100 keV confined in
the equatorial plane at normalized radial distances L� 8 have
azimuthal drift periods of the order of 90–120 minutes. Thus,
frequencies of the order of ω; 1 mHz would require azimuthal
wavenumbers of m� 10 (Barani et al. 2019).

We assume an injection of 50 keV given by a Gaussian
centered at a radial distance Lc and with a radial spread ΔL
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The symmetric perturbation is modeled as a compression of the
magnetic field with a decay time c

St ,

S t b e . 65t c
S( ) ( )d= t-

The perturbed solution for the distribution function f fm
L

m
NLd d+

following the Gaussian shaped injection and decaying
symmetric ULF mode is given by

The higher-order response given by Equation (66) for the
m= 1 mode is shown in Figure 10 for a symmetric ULF wave
amplitude of δb= 0.12B0. The top–left panel corresponds to
the linear response. After the injection of the particles at Lc= 5,
the distribution function oscillates in time and gets sheared
along L. However, when we introduce a symmetric perturba-
tion with a decay time that is smaller than the drift period (with

c
s

dt < W ), the distribution function splits at the injection point.
This nonadiabatic behavior is shown in the top-right and
bottom-left panels of Figure 10. In comparison, an adiabatic
decay of the ULF mode with c

S
dt W has no impact on the

distribution function, as shown in the bottom-right panel of
Figure 10.
The physical process responsible for this mechanism is

illustrated in Figure 11. A symmetric ULF compression with
amplitude S(t) results in an E× B differential gradient that is
larger in amplitude at higher than lower drift shells. Drift shells
with negative (positive) gradients result in particles being
driven inward (outward). If the ULF compression is an
adiabatic particle phase mix along L, but the compression is
nonadiabatic and the E× B drift decays or grows too fast
(compared to the azimuthal drift period) for phase-mixing to
occur, the net radial drift is inward. This net motion of particles
inward is shown in Figures 12, 13, and 14 for a ULF symmetric
amplitude corresponding to 25% and 62% of the background
field at L= 5. The inward-moving particles increase in energy
in order to conserve the first adiabatic invariant whereas the
outward-moving particles lose energy. This process can result
in the fast and irreversible acceleration of particles as well as
losses associated with shadowing even though there is no drift
resonance with the ULF modes. These results demonstrate that
the inclusion of higher-order effects can lead to non-diffusive
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32 The linear response is taken as the ballistic one f f t r e0,m m
im td( )d d= = - W .

The inclusion of the linear wave–particle response for Am ≠ 0 leads to the same
physical process and is left for future more detailed studies of higher-order
radial transport.
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and irreversible radial transport on fast timescales. Such a
process cannot be modeled with quasi-linear radial diffusion.

4. Discussion

4.1. When Can We Use Quasi-linear Radial Diffusion?

A drift kinetic description of ULF wave interaction with
energetic particles is a convenient methodology to define the
regime of validity of quasi-linear radial diffusion problems. In
comparison, the derivation in terms of the particle’s trajectories
(Fälthammar 1965; Elkington et al. 1999; Lejosne 2019) is
mathematically more transparent than the one provided in
Section 3.3 but since it does not require computation of the
perturbed orbits, it does not distinguish explicitly between the
fast perturbed part and the slow background part of the
distribution function.

The procedure to derive the radial diffusion coefficient is
identical to the one pursued for other quasi-linear theories in
laboratory and astrophysical plasmas (Kennel & Engel-
mann 1966; Diamond et al. 2010; Schekochihin 2017).
Quasi-linear theories require temporal and spatial scale
separation of the distribution function in terms of a slow
ensemble-averaged background component and a fast

perturbed component. The fast component can evolve on
timescales comparable to the periods of electromagnetic
fluctuations responsible for the wave–particle interactions.
For instance, for seed electrons of 10–100 keV interacting with
high-frequency whistler waves, the quasi-linear theory of
Kennel & Engelmann (1966) is explicitly clear that the
perturbed component evolves on timescales of the order of
the whistler period, and thus the Larmor period as well, since
ω;Ωs. The diffusive evolution of the distribution function
requires a large number of interactions with whistler waves and
is therefore computed on timescales that have been averaged
over a large number of whistler wave periods. The perturbed
part is computed linearly, and thus quasi-linear theory assumes
that higher-order effects such as trapping and mode-mode
coupling associated with large amplitudes can be neglected.
For a quasi-linear theory of radial transport to be consistent,

one needs to preserve the scale separation defined by
Equations (25) and (27). The background distribution function
is not only independent of magnetic local time, and thus j, it
cannot change significantly on timescales comparable to the
drift period Ωd. A radial diffusion coefficient that becomes
comparable to the drift period (DLL;Ωd) indicates that a
collection of particles can be carried across one drift shell

Figure 10. Impact on the perturbed distribution function of 100 keV injected electrons at L = 5 by symmetric perturbation on timescales less than one drift period for
symmetric perturbation of amplitude δb = 0.12B0 at L = 5. The color scale denotes the perturbed distribution amplitude.
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L 12 ( áD ñ ) during a single drift period. This argument
stems from the fact that dimensionally the radial diffusion
coefficient scales as DLL; 〈ΔL2〉/t, and that the inverse of the
diffusion coefficients gives a characteristic time for transport

across one drift shell. Taking into account that the derivation of
the quasi-linear diffusion coefficients requires a short decorr-
elation time of the ULF wave amplitude, and the observational
fact that ULF waves are long lived and coherent (Hartinger

Figure 12. Same as Figure 10 but with symmetric perturbation of amplitude δb = 0.25B0 at L = 5.

Figure 11. Explanation of the higher-order mechanism presented in Section 3.4.2. A symmetric ULF compression with amplitude S(t) results in an E × B differential
gradient that is larger in amplitude at higher than that of lower drift shells. Drift shells with negative (positive) gradients result in particles being driven inward
(outward). If the ULF compression is an adiabatic particle phase mix along L, but if the compression is nonadiabatic and the E × B drift decays too quickly for phase
mixing to occur, the net drift is inward.
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Figure 13. Same as Figure 10 but with symmetric perturbation of amplitude δb = 0.62B0 at L = 5.

Figure 14. Cut of the linear and nonlinear perturbed distribution function at j = 0 in Figure 13. The nonadiabatic symmetric perturbation splits the distribution
functions by pushing particles inward and outward.
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et al. 2013), it is inconceivable that a diffusive scattering along
drift shells can occur over a single drift period.33

The determination of accurate radial diffusion coefficients is
not merely of academic interest and has important conse-
quences on space weather models and on studies of radiation
belts focused on distinguishing between local and global
acceleration processes (Green & Kivelson 2004). Current
global magnetospheric models accounting for radial diffusion
rely on DLL coefficients that become comparable, and for large
geomagnetic activity larger than the drift periods of energetic
electrons trapped in the Earth’s radiation belts (Brautigam &
Albert 2000; Ozeke et al. 2014). For instance, the radial
diffusion coefficient of Ozeke et al. (2014) can become as large
as 102 in units of day−1 for Kp> 5, which corresponds to the
drift period of electrons with energies of 1 MeV. Additionally,
derived radial diffusion coefficients assume that the ULF wave
correlation 〈δB(t)δB(t+ τ)〉 is time and space homogeneous
along the particle’s orbits. However, ULF waves are sustained
by a wide range of processes that are not colocated, ranging
from Kelvin–Helmholtz instabilities (Mills & Wright 1999),
pressure pulses in the solar wind (Takahashi & Ukhors-
kiy 2007), foreshock transients (Hartinger et al. 2013),
magnetospheric substorms (Volwerk 2016), and unstable
plasma distributions (Southwood et al. 1969). As a conse-
quence, ULF waves are not homogeneously distributed in the
magnetosphere (Murphy et al. 2020), and unless the ULF
waves decay very fast compared to the drift period, quasi-linear
radial diffusion coefficients accounting for nonhomogeneous
statistics have to be derived.34

The abovementioned limitations of quasi-linear radial
diffusion do not imply that ULF waves cannot sustain transport
on timescales comparable to the drift period. Rather, what is
argued is that current quasi-linear radial diffusion models have
clear limitations, and should not be used beyond their range of
validity. Radial transport coefficients encoding the impact of
ULF waves on fast timescales require models that are not
quasi-linear. A drift kinetic approach to radial transport is also
not confined to theoretical or modeling studies. With GPS flux
measurements calibrated by Van Allen Probes’ instruments, it
is now possible to quantify observationally radial transport on
timescales of the order of a single drift period for electrons with
energies less than 1MeV (Morley et al. 2016, 2017; Kallio-
koski et al. 2023) and quantify the wide range of radiation belts
responses to solar wind drivers (Mann et al. 2002, 2004; Rae
et al. 2005; Hudson et al. 2008; Bentley et al. 2018; Simms
et al. 2018; Osmane et al. 2022).

4.2. Fast Radial Transport

4.2.1. Distinguishing between Drift Resonant and Nonresonant
Interactions

The scale separation described in Section 3.1 forms the basis
to derive a quasi-linear theory of radial transport, but is also
appropriate to quantify the linear and higher-order response of
the distribution function that occurs on fast timescales

comparable to a few drift periods. Section 3.2 described three
different types of linear responses associated with a ULF wave
of frequency ωm, growth or damping rate γm, and azimuthal
wavenumber m. Three of these responses are nonresonant and
one corresponds to drift resonance of particles drifting the
Earth’s magnetic field with frequency Ωd; ωm/m. The first
type of nonresonant response is a modulation of the distribution
function with the frequency of the ULF wave ωm, and the
second type of nonresonant response is an oscillation of the
distribution function at the drift frequency Ωd. While both
resonant and nonresonant responses to a ULF wave are a
function of the local gradient in the background distribution
function, the resonant particles are energy dependent and the
perturbed distribution is amplified by up to one order of
magnitude and is therefore distinguishable from nonresonant
responses.
Models of ULF drift resonance predict that satellites should

observe the largest modulations in particle flux at energies
corresponding to the resonant energy, with smaller modulation
at lower/higher energy (Southwood & Kivelson 1981).
Equation (41) confirms this signature for resonance but also
demonstrates that nonresonant, as well as resonant particles,
can oscillate at the ULF wave frequency. In situ observation of
distribution functions or fluxes oscillating at a ULF ωm should
therefore not be assumed as a signature of drift resonance
unless the response is localized in energy spectrograms. For
drift resonance, the timescales associated with the resonant
interaction and the width are a function of the growth rate, and
we here stress that seeing comparable modulation across
multiple energy levels for a monochromatic ULF wave
spectrum is an indication that the interaction is nonresonant.
In the study of Claudepierre et al. (2013), fluxes of energetic

electrons between 20 and 500 keV are identified as unambig-
uous signatures of localized drift resonant interaction with a
ULF wave. However, no analysis is provided to quantify the
radial gradient of the distribution function for each respective
energy flux. As shown in this paper, the modulation of particle
fluxes in terms of the ULF wave does not require drift
resonance and can be observed for nonresonant particles as
well. The difference in amplitude between fluxes can be
explained in terms of radial gradient differences between
energetic fluxes. The localized modulation in time can be
explained by a ULF wave that is being damped at a rate γm, and
the spatially localized modulation seen on one Van Allen Probe
but missed by the second probe can be an indication that the
radial gradient of the distribution function is highly spatially
localized. Large and localized radial gradients of the distribu-
tion function have been reported for case studies. For instance,
Hartinger et al. (2020) point out that at L= 4.5 and L= 6.6, the
reported radial PSD gradients are 30–300 times larger at values
corresponding to energies of 200 keV compared to 1MeV.
Consequently, residual flux oscillations in this particular case
would be 30–300 larger for electrons with energies of 200 keV
rather than 1MeV. Thus, characterizing flux oscillations
without accounting for radial gradients, known to vary by
several orders of magnitude, can lead to erroneous interpreta-
tion of wave–particle processes.
As shown in Figures 8 and 9, ULF waves in the Pc4 and Pc5

range can be resonant with electrons of energies ranging
between 100 keV and a few MeV, yet signatures of drift
resonances for the most energetic MeV populations are rare.
Hartinger et al. (2020) address this inconsistency between

33 This heuristic argument is to some degree arbitrary, but for lack of a better
alternative, provides a reasonable and reliable constraint on radial diffusion
coefficients.
34 Osmane & Lejosne (2021) show that spatially homogeneous ULF waves
with finite correlation time comparable to the drift period result in sub-diffusive
radial transport and the slowing down of radial diffusion. The inclusion of
nonhomogeneous effects in radial diffusion are, to the best of our knowledge,
currently missing.

25

The Astrophysical Journal Supplement Series, 269:44 (31pp), 2023 December Osmane et al.



observations and theoretical assumptions. On the basis of the
theoretical study of Southwood & Kivelson (1981), in order for
drift resonances to be observed, one requires finite radial
gradients in the background distribution function. Drift resonant
interactions could still occur but would be masked by small
radial gradients in the background distribution function. While
we are in agreement with the conclusions of Hartinger et al.
(2020), that drift resonance requires observable gradients to be
detected, our analysis of the resonant response provides one
additional constraint. Drift resonant signatures result in an
amplification of the particle’s response, as shown in
Equation (41), which is localized in time and can be comparable
to a single drift period. Moreover, if the ULF wave damps
quickly, that is, on timescales comparable to a few drift periods,
the resonant exchange could be too weak to be observed or
distinguishable from the nonresonant one. Keeping in mind the
conclusions of Hartinger et al. (2020) regarding the importance
of radial gradients, our analysis provides an additional explana-
tion as to why observations of drift resonant signatures have been
rare when detected by a few spacecraft. Drift resonance is a
transient process and detection by one spacecraft can be entirely
missed by another spacecraft sampling the same orbit but on
timescales larger than a few drift periods.

4.2.2. Mechanisms of the Formation of Zebra Stripes

Even though phase-space structures in the radiation belts are
not necessarily indicative of violation of the third adiabatic
invariant, and thus acceleration, their observed signatures can
be used to test the validity of radial transport models or be used
as diagnostic for electric fields or particle injections. In
Section 3.2, we showed that phase mixing of trapped electrons
can result in the formation of structures known as zebra stripes.
Zebra stripes are transient-structured peaks and valleys
observed on spectrograms of inner radiation belts’ electrons
with energies ranging between tens to hundreds of keV. The
zebra stripes that are measured in situ are also characterized by
energy peaks and dips that vary as the inverse of the radial
distance, i.e., Ec∼ 1/L (Sauvaud et al. 2013; Lejosne &
Roederer 2016; Lejosne & Mozer 2020a, 2020b). Since the
zebra stripes can be produced on timescales of the order of a
few drift periods, a radial diffusion mechanism should be
immediately rejected. Our analysis also shows that zebra stripes
can form without drift resonance with ULF waves, and as a
result of a phase-mixing process described for nonresonant
particles. The phase-mixing process described in this paper is
triggered by particle injection or losses from the radiation belts,
and the requirement for an electric field that sustains drift
resonance, as shown in Ukhorskiy et al. (2014), is therefore
unnecessary. The requirement for drift resonant interactions to
produce zebra stripes is also more constraining than non-
resonant phase-mixing mechanisms, since resonance requires
ULF fluctuations with a narrow set of parameters and finite
radial gradient in f0.

35

How can we distinguish between the mechanisms of the
formation of zebra stripes? We note that the first phase-
mixing mechanisms, described in Section 3.2.1, require
injection or losses of particles but no electric field. The
second type, appearing as the ballistic term in Equation (39),
requires ULF fluctuations and a finite radial gradient in the
distribution function. The third type, described by Ukhorskiy
et al. (2014), but appearing as the drift resonant term in
Equation (39), requires ULF fluctuations that can resonate
within a wide range of energies, and also a finite radial
gradient in the distribution function. For all three types, the
formation and shearing occur on the same timescales. In order
to distinguish both phase-mixing mechanisms, one needs to
measure radial gradients in the phase-space density and
determine if the amplitude of the ULF fluctuations can
provide the amplitude of the stripes' structures observed. If
such a test proves inconclusive, the phase-mixing process
requiring injection of particles, such as the one observed in
the measurements of Zhao & Li (2013), might be favored. If
future observational studies demonstrate that injection or loss
of particles in the inner belts correlates with phase-mixed
structures, one could use zebra stripes as proxies for injection
and losses. Similarly, if the phase-mixing process is primarily
driven by ULF fluctuations, the appearance of zebra stripes
could be used as proxies to extract properties of electric fields
in the inner belts.

4.3. Higher-order Parker Mechanism

The first radial transport model resulting in irreversible
acceleration of particles was presented by Parker (1960) and
did not require drift resonant interactions. In the Parker (1960)
scenario, magnetically confined particles experience nonadia-
batic transport as a result of asymmetric magnetic field
perturbations. Since particles at different MLT sectors of the
same drift shells sensed a different perturbation, they
collectively experienced a net radial transport. The mechanism
presented in Section 3.4.2 is a higher-order generalization of
the Parker (1960) mechanism in that it does not require drift
resonance with ULF waves. This higher-order mechanism is
also the product of nonadiabatic perturbations but does not
require asymmetric magnetic fluctuations. Rather the only two
ingredients required for this higher-order process to result in
irreversible radial transport is

1. Large amplitude symmetric perturbation δB/B0; 10%
decaying or growing nonadiabatically, and

2. Opposite radial gradients in the distribution function, or
put differently, a localized minimum or maximum of the
distribution function along the radial distance.

While particles on the same drift shells sense the same
electromagnetic field and radial drift speeds, particles on
different drift shells drift at different speeds, and the
combined inward and outward transport in the presence of
opposite gradients results in irreversible acceleration as
more particles are pushed inward than outward. If the waves
decorrelate very slowly (adiabatically) compared to the drift
period, particles will phase mix radially and instead of a net
injection inward, a plateau along the radial distance
will form.
Are symmetric ULF fluctuations observed in the Earth’s

radiation belts? In a recent observational study, Takahashi et al.
(2022) provide the first description of symmetric compressional

35 On the basis of Occam’s razor argument (Popper 2005) we would favor a
phase-mixing mechanism of nonresonant particles to explain the formation of
zebra stripes. For instance, the observation of zebra stripes in both electron and
proton fluxes in Saturn’s magnetosphere (Sun et al. 2022) is more easily
explained through nonresonant processes. A drift resonant explanation for the
stripes across ions and electrons of varying drift frequencies necessitates the
additional presence of ULF waves broad enough in frequencies to resonate
with each population. The nonresonant explanation, on the other hand, simply
requires a single ULF mode that can perturb both ions and electrons
adiabatically.
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ULF fluctuations with magnetic field amplitudes comparable
to the background magnetic field. The symmetric ULF
waves are excited outside of the plasma sphere, and
localized in MLT and radial distance. The large amplitude
(δB/B0� 0.1) and compressional nature of the fluctuation
described by Takahashi et al. (2022) are consistent with the
one used for the acceleration process presented in
Section 3.4. Moreover, the waves are observed in associa-
tion with the injection of particles, and thus symmetric
fluctuations are associated with local radial enhancements of
particles. Even though it is too speculative at this point to
determine whether this mechanism is commonly occurring
in the radiation belts, we want to stress that the two required
ingredients for the occurrence of this higher-order mech-
anism have been observed in the radiation belts. Unlike
radial diffusion, which operates on long timescales and
requires a large number of drift resonant interactions, fast
and higher-order acceleration mechanisms can be both
seldom and more efficient.

5. Conclusion

In this paper, we have presented a drift kinetic description
of ULF radial transport for the Earth’s radiation belts. The use
of a drift kinetic formalism is particularly convenient to
distinguish quasi-linear diffusion occurring on slow time-
scales, with fast wave–particle interactions associated with
linear or higher-order processes. Current global models of the
Earth’s magnetosphere account for ULF radial transport
solely in terms of quasi-linear diffusion models. Our analysis
demonstrates that linear and higher-order processes occurring
on timescales of the order of the drift period and with a spatial
dependence on magnetic local time cannot be modeled in
terms of quasi-linear diffusion. Observationally, fast and
localized radial transport have been known for decades, but
have been limited to extreme driving events or serendipitous
satellite measurements (Li et al. 1993; Hudson et al.
1995, 2017; Kanekal et al. 2016). In recent years, calibration
of GPS electron flux measurements with Van Allen Probes’
instruments has offered for the first time unprecedented
spatial and temporal coverage of the Earth’s radiation belts on
timescales comparable to the azimuthal drift period (Morley
et al. 2016, 2017; Kalliokoski et al. 2023). Thus, a modeling
framework that distinguishes between fast and slow radial
transport is not only of theoretical interest, but can also be
tested for the first time with in situ measurements for a wide
range of geomagnetic driving conditions.36

In recent years, dominant acceleration processes in the
Earth’s radiation belts have been categorized as belonging to
local wave–particle interactions or global ULF radial diffusion.
The observational signature of local wave–particle processes in
the phase-space density consists of localized enhancements,

whereas ULF radial diffusion results in the flattening of the
phase-space density along the radial distance (Green &
Kivelson 2004; Reeves et al. 2013). When including higher-
order terms in the radial transport equation, we found that seed
electrons with 50–100 keV injected in the outer belts can
experience additional betatron acceleration in the presence of
symmetric ULF wave amplitudes with amplitudes comparable
to the one reported by Takahashi et al. (2022). This impulsive
and convective higher-order process requires no drift resonance
yet results in a localized enhancement of the phase-space
density on timescales that are much shorter than the drift
period. This theoretical result is therefore of particular interest
to observational studies of radiation belts since ULF waves are
also able to produce localized signatures attributed to small-
scale wave–particle interactions. With growing satellite cover-
age and the capacity to measure electron fluxes on timescales
comparable to the drift period the binary quasi-linear frame-
work developed in recent years needs to be revisited.
The main focus of this paper has been on the radial transport

of energetic electrons in the Earth’s radiation belts. However, a
drift kinetic description based on the work of Hazeltine (1973)
can also be used to describe energetic ring current protons
(>100 keV) with Larmor frequencies of Ωp∼ 1–10 Hz
responding to ULF fluctuations of ω∼ 1 mHz (Murphy et al.
2014) and energetic electrons in a wide range of planetary
environments, such as those of Jupiter or Saturn (Lejosne &
Kollmann 2020).37 Another limitation of our paper is that it
focused solely on equatorially trapped particles, and it ignored
boundary effects that are known as a sink for energetic electron
fluxes (Millan & Thorne 2007) or ring current ions (Li et al.
1993). A growing number of in situ experiments are showing
that energetic electrons can be depleted on timescales
comparable to a few drift periods (Turner et al. 2012; Jaynes
et al. 2018; Olifer et al. 2018). While such sudden losses can, in
theory, be explained by local wave–particle interactions (Zhang
et al. 2022), in some events the small-scale waves appear
insufficient to account for the losses (Albert 2014). Since ULF
waves can effectively transport energetic electrons on fast
timescales, it is worth investigating the net impact that they
have on irreversible particle losses. The higher-order Parker
scenario described in Section 3.4.2, and in association with a
sudden and symmetric reduction of the magnetic field, will
result in inward convective acceleration and outward con-
vective losses to the outer magnetopause boundary. Finally,
another notable limitation lies in the choice of a Mead
electromagnetic field model. For extreme events with very
large amplitude and localized electromagnetic pulses, such as
that of the 1991 March 24 event (Li et al. 1993; Hudson et al.
1995), the radial transport equation needs to be revisited as a
Fourier decomposition is not the optimal representation of the
ULF field. In future studies, we will quantify radial transport
for event-specific studies during both moderate and extreme
geomagnetic driving conditions and we will quantify the role of
ULF waves acceleration and losses occurring on timescales
comparable to the drift period and therefore too fast to be

36 After submission, we were informed of the publications by Lejosne &
Albert (2023) and Lejosne et al. (2023) of a new formalism that aims to
distinguish between fast and slow radial transport processes. While the aim of
their work overlaps with ours, we use different methodologies. Our framework
relies on drift kinetics and we separate the fast and slow evolution of the
distribution function in terms of coupled but separate equations. In our work,
the perturbed part of the distribution function containing the fast motion is
spectrally decomposed in terms of Fourier modes, and requires no assumptions
of stochasticity for the ULF waves. The appearance of stochastic trajectories
and diffusion in phase space can originate from deterministic chaos (Diamond
et al. 2010) and radial diffusion should be recovered even in the limit where the
ULF wave amplitudes are deterministic.

37 Radial transport modeling of ring current is more complicated for two
reasons: (1) ions of energy less than 10 keV can sustain fluctuations that violate
the drift kinetic scale separation with k⊥ρ ; 1 (Crabtree & Chen 2004), and (2)
the energy density of the ions is comparable to the energy density of ULF
waves. The first problem can be solved by adding collision terms that mimic
the effect of pitch angle and energy diffusion, and the second problem requires
coupling with Maxwell’s equations. Thus, for ring current ions, the higher-
order terms described in this work are effectively nonlinear.

27

The Astrophysical Journal Supplement Series, 269:44 (31pp), 2023 December Osmane et al.



explained by radial diffusion. With a radial transport framework that incorporates linear, quasi-linear, and higher-order transport, we
can now for the first time work to supplement global radiation belt models with transport coefficients that account for the full range of
ULF wave–particle interactions.
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Appendix A
Derivation of the Quasi-linear Equation

In this appendix, we provide a detailed derivation of the quasi-linear equation, Equation (31). For equatorial particles with a
conserved first adiabatic invariant μ interacting with a Mead field, the kinetic equation takes the form
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The first term in the first brackets in Equation (A1) contains the linear term, and the following two brackets with the double sums
contain the higher-order terms. We solve this equation with the aid of the Fourier convolution theorem:
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In order to obtain the quasi-linear equation, we first set p= 0, which corresponds to the spatial average of the kinetic equation,
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The right-hand side of Equation (A6) describes the slow evolution of the background distribution due to the effect of fluctuations.

Appendix B
Derivation of the Higher-Order Perturbed Equation (Equation (32))

In order to obtain an equation for the perturbed part of the distribution function for Fourier modes m≠ 0, we subtract
Equation (A5) from Equation (A4), which results in Equation (32)
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The linear wave–particle interaction only depends on the antisymmetric magnetic field fluctuation Am. However, the higher-order
perturbations are also a function of the symmetric magnetic field fluctuations, i.e., S(t). The traditional quasi-linear assumption
consists of ignoring the higher-order terms in the field amplitudes by setting 0 = , and thus computes the fast linear response due to
antisymmetric ULF waves. It is however possible, as shown in Section 3.4.2, to derive the fast higher-order response on timescales
less than a drift period, and a higher-order quasi-linear theory for long timescales, by accounting for the terms associated with the
symmetric ULF perturbations.

Appendix C
Justification for Neglecting the Temporal Variation of the Background Distribution in the Linear Response (Equation (32))

We note that the linear equation in Equation (B1) contains a term proportional to A r
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autocorrelation this term will introduce an additional term in the diffusion equation that results in the following correction:
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and thus, in the limit of small ULF wave amplitude given by the Mead field B r A Bm m
2 2 2

0
2∣ ∣ ∣ ∣d = and the correction reduces the

diffusion by a factor much less than 1.
One can also give a dimensional argument to neglect the first term on the right-hand side of Equation (B1) to compute the linear

response under quasi-linear assumptions. The diffusion coefficient DLL has units of 1 over time, and is bounded by the drift period Ωd

of a particle. With DLL=Ωd, and thus, DLL= 1, the diffusion equation requires that D
f

t LL
f

L
0

2
0
2¶

¶
¶
¶

. If the time and spatial variations

of the background distribution are slow and determined by nondimensional small parameters εt= 1 and εL= 1, respectively, then
f0= f0(εtt, εLL) inserted into the diffusion equation gives the following scaling: Dt LL L

2e e . Therefore, the time variation of the
background is smaller than the radial gradient of the background distribution in the linear response by a factor of

D 1
f t

f L LL L
0

0
 e¶ ¶

¶ ¶
. We note that even if the diffusion coefficient is artificially increased to values comparable to the drift
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period, thereby implying that transport across one drift shell is
possible for one single drift period, the short autocorrelation
time limit Ωdτc< 1 would nonetheless hold the above
dimensional analysis and justify the neglect of the partial time
variation of f0 in the linearized equation, Equation (B1).

Appendix D
List of Symbols

am Wave mode amplitude
Am ULF asymmetric fluctuation amplitude
B Magnetic field
B0 Earth’s magnetic field dipole magnitude
BE Earth’s magnetic field dipole moment
BEK Asymmetric magnetic field model of Elkington et al. (1999)
c Speed of light
Ci Correlator
D The rms of antisymmetric field perturbation amplitude Am

DLL Quasi-linear radial diffusion coefficient
δB Magnetic field perturbation
δE Electric field perturbation
E Electric field
Ec Relativistic kinetic energy
f Distribution function
〈f〉 Gyro-averaged distribution function
fm

Ld Linear perturbation of the distribution function

fm
NLd Nonlinear perturbation of the distribution function

f0 Background distribution function
 Second adiabatic invariant
I1 and

I2

Higher-order criteria associated with the symmetric ULF
perturbations

I3 and
I4

Higher-order criteria associated with the antisymmetric ULF
perturbations

l Characteristic scale size of electromagnetic fluctuations in the ULF
range

L Normalized radial distance from the Earth’s midplane
L

*

Magnetic drift shell and third adiabatic invariant
ms Rest mass of particle species “s”
m Azimuthal wavenumber
 Higher-order term in the kinetic equation
p∥ Relativistic momentum along the local magnetic field direction
p⊥ Relativistic momentum perpendicular to the local magnetic field

direction
qs Charge of particle specie s
r Position
RE Earth’s radius
S(t) Azimuthally symmetric fluctuation amplitude
s Label for particle species s = i for ions and s = e for electrons
t Time
teq Timescale to reach a stationary state
v Characteristic speed
α Pitch angle
ò Nondimensional small parameter
γ Lorentz factor
γm Wave mode growth rate
μ First adiabatic invariant
m̃ First adiabatic invariant correction

j Azimuthal angle
ρ Larmor radius
τC Correlation/decay time for the antisymmetric ULF perturbation

C
st Correlation/decay time for the symmetric ULF perturbation

τD Drift period
θ Polar angle
θg Gyrophase
χ Gaussian white noise
Φ Third adiabatic invariant and magnetic flux
ω Wave frequency

(Continued)

ωm ULF wave mode frequency associated with the azimuthal wave-
number m

Ωd Azimuthal drift frequency
Ωs Larmor frequency for specie s
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