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Simple Summary: It is now thought that bacteria in the gut and tumour of patients with pancreatic
cancer play an important role in the growth of the cancer and its sensitivity to chemotherapy. It has
been shown that pancreatic exocrine insufficiency (PEI), common in pancreatic cancer patients, is
linked to poorer outcomes. Conversely, it has also been demonstrated that treatment with pancreatic
enzyme replacement therapy (PERT) can improve survival in pancreatic cancer patients. The reasons
for this are not fully understood, but it is possible that PEI alters the gut and tumour microbiome of
pancreatic cancer patients towards a less favourable composition, whereas PERT can reverse these
changes and make the gut and tumour microbiome more favourable. If true, this could represent an
opportunity for the development of new diagnostic tests and therapies for pancreatic cancer, which
remains one of the deadliest cancers.

Abstract: Pancreatic exocrine insufficiency (PEI) is common amongst pancreatic cancer patients and
is associated with poorer treatment outcomes. Pancreatic enzyme replacement therapy (PERT) is
known to improve outcomes in pancreatic cancer, but the mechanisms are not fully understood.
The aim of this narrative literature review is to summarise the current evidence linking PEI with
microbiome dysbiosis, assess how microbiome composition may be impacted by PERT treatment,
and look towards possible future diagnostic and therapeutic targets in this area. Early evidence in the
literature reveals that there are complex mechanisms by which pancreatic secretions modulate the
gut microbiome, so when these are disturbed, as in PEI, gut microbiome dysbiosis occurs. PERT has
been shown to return the gut microbiome towards normal, so called rebiosis, in animal studies. Gut
microbiome dysbiosis has multiple downstream effects in pancreatic cancer such as modulation of
the immune response and the response to chemotherapeutic agents. It therefore represents a possible
future target for future therapies. In conclusion, it is likely that the gut microbiome of pancreatic
cancer patients with PEI exhibits dysbiosis and that this may potentially be reversible with PERT.
However, further human studies are required to determine if this is indeed the case.

Keywords: pancreatic cancer; microbiome; pancreatic exocrine insufficiency; pancreatic enzyme
replacement therapy
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1. Introduction
1.1. The Human Microbiota

The human microbiota is a term used to describe the approximately 100 trillion
microorganisms present in each individual [1–3]. With the emergence of more sophisti-
cated bacterial genome sequencing [4–7], there is increasing interest in the interactions
between the human microbiota and the human host. Such sequencing techniques include
organism-level profiling with 16s rRNA gene sequencing or the more sophisticated gene-
level profiling possible with metagenomic and metatranscriptomic sequencing [4–7]. These
sequencing techniques have allowed a greater understanding not only of the composition
of these microbial communities, but also an insight into their function [4–7], and the role
they may play in the wider metabolic and immune function of the host [8].

1.2. The Gut Microbiome

A microbiome is defined as a population of microorganisms in conjunction with their
genes in a specific body system; as such the microbial community in the bowel is referred
to as the gut microbiome [1–3]. It has been demonstrated that the gut microbiome plays a
key role in modulating host metabolic and immune function [9]. Within the gut, it has been
demonstrated that the gut microbiome plays an important role in the development and
progression of inflammatory bowel disease [10–12] and colorectal cancer [13,14]. Recent
evidence highlights a functional role of the gut microbiome not only in cancer develop-
ment and progression but also in defining the efficacy and toxicity of chemotherapeutic
agents [15]. Beyond the gut however, it is thought that the gut microbiome is also linked to
the progression of certain conditions such as chronic liver disease [16,17] and pancreatic
ductal adenocarcinoma (PDAC) [18,19]. In terms of mechanisms, it is thought that bacteria
and their metabolites exert their effects through translocation via the portal circulation,
mesenteric lymph nodes or directly through the biliary and pancreatic duct systems [20–22].
All this combined means that the gut microbiome is increasingly viewed as a potential
route for future diagnostic tests and a therapeutic target for many different conditions,
including PDAC.

1.3. Pancreatic Ductal Adenocarcinoma

Whilst progress has been made in the treatment of other major malignancy types,
PDAC remains one of the leading causes of cancer death worldwide, with 5-year survival
rates persistently below 10% [23–25]. One reason for this poor survival is the tendency for
PDAC to present late, meaning that many patients already have involvement of nearby
major vascular structures which can preclude curative resection [26]. Similarly, many PDAC
patients have distant metastatic disease at presentation, with the majority being hepatic due
to the portal drainage of the pancreas [27–29], and current international practice guidelines
advise against resection of PDAC in the setting of liver metastases [30–34]. Should the
tumour be resectable and the patient receive systemic therapy, 5-year survival can reach up
to 30% [35].

Even when surgical resection is achieved, there is a high likelihood that the patient will
experience disease recurrence [36]; 75% of patients who undergo surgical resection and adjuvant
therapy for primary PDAC will experience recurrence within 2 years [23,37,38]. As a result,
there is an urgent need for new diagnostic and therapeutic targets in this challenging disease.
The gut microbiome may represent one of the more promising prospects for future therapies.

1.4. Changes in the Gut Microbiome in PDAC Patients

It is increasingly appreciated that the gut microbiome is linked to the evolution of
PDAC, with a recent study identifying changes in the gut microbiome that are present early
in the disease process [19]. Further evidence that the gut microbiome may play an active
role in the progression of PDAC comes from differences reported in the composition of the
gut microbiome between short-term survival (STS) and long-term survival (LTS) PDAC
patients, with greater diversity being associated with a more favourable prognosis [39].
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1.5. Pancreatic Exocrine Insufficiency in Pancreatic Cancer

Pancreatic exocrine insufficiency (PEI) is defined as insufficient secretion of pancreatic
enzymes and bicarbonate to maintain a normal digestion [40]. PEI has been shown to
be both prevalent and progressive amongst patients with pancreatic cancer. A recent
prospective cohort study used the 13C mixed triglyceride breath test to investigate the
prevalence of PEI amongst 254 patients awaiting pancreatoduodenectomy for an oncologic
indication [41]. This study reported an incidence of 32.8% in those awaiting resection [41]. In
addition, a systematic review in 2016 identified four studies evaluating PEI preoperatively,
all using faecal elastase (FE-1), and found a median prevalence of 44% (range 42–47%) [42].
This results from lower enzyme secretion due to tumour burden as well as reduced enzyme
delivery and activation as a consequence of pancreatic duct obstruction, which prevents the
passage of enzymes and their accompanying bicarbonate-rich fluid into the duodenum [43].
Following pancreatoduodenectomy, there is also significant disruption to the physiological
mechanisms by which pancreatic secretion is controlled, with some data indicating that
the method of reconstruction may influence the degree of postoperative endocrine and
exocrine pancreatic function [44,45].

Untreated PEI has a significant impact on quality of life and leads to a range of
mentally and physically distressing symptoms including frequency, urgency, bloating,
diarrhoea, fatty stool flatulence, loss of appetite and vomiting [46,47]. A major consequence
is maldigestion resulting in malabsorption, malnutrition, and the ensuing nutritional
deficiencies (including albumin, pre-albumin, transferrin, lipoproteins, fat soluble vitamins,
calcium, magnesium, zinc, thiamine, and folic acid [48,49]). Clinically, PEI is associated
with an increased risk of osteoporosis, sarcopenia, and cardiovascular events [50–52]. In
pancreatic cancer, sarcopenia has been associated with increased perioperative mortality
and reduced overall survival. There are multiple neural and hormonal factors that influence
sarcopenia in PC and many of these also have interactions with the gut microbiome [53,54].
PEI has also been shown to increase length of stay, post-operative complications and costs
following pancreatic resection [55,56]. It is also likely that PEI associated with PDAC leads
to important changes in the gut microbiome which, if more clearly understood, could lead
to the identification of new diagnostic and therapeutic targets.

1.6. Pancreatic Enzyme Replacement Therapy

Pancreatic enzyme replacement therapy (PERT) refers to the oral administration of
capsules containing commercially produced digestive enzymes, namely lipase, protease
and lipase. Treatment of PEI with PERT has been shown to improve quality of life [57,58]
and also significantly increases survival in resectable and unresectable pancreatic cancer
patients [59,60]. This has led the United Kingdom’s National Institute of Health and Care
Excellence (NICE) to recommend PERT for pancreatic cancer patients [61,62] without the
need for a positive diagnostic test. This was supported by UK specialty consensus guide-
lines release in 2021 [62]. The underlying basis for the beneficial effects of PERT are not
fully understood, but contributing factors appear to be related to the ability to alleviate
malabsorption [63,64], which allows patients to tolerate physiologically demanding treat-
ments such as major pancreatic resection and/or chemotherapy. On a micronutrient level,
the absorption of fat-soluble vitamins appears crucial. For example, Vitamin D modulates
the function of stromal cells (e.g., fibroblasts) in patients with PDAC [65] and deficiency
is associated with poorer survival in advanced pancreatic cancer [66]. Recently, interest
has been increasing in the intestinal microbiome as a modulator of many diseases (e.g.,
inflammatory bowel disease) although how PEI may affect this is still being understood.

1.7. Pancreatic Exocrine Insufficiency and the Intestinal Microbiome

PEI is thought to lead to changes in the composition of the gut microbiome, leading
to a state of dysbiosis characterised by an imbalance in microbiome diversity [67–70].
Understanding how the microbiome and PEI are interconnected could aid the search for
novel diagnostic and therapeutic targets and help improve outcomes in PDAC. Indeed,
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recent evidence indicates a role for the gut microbiome in the aetiology and progression of
PDAC [19] and has also linked changes in the gut microbiome to outcome and treatment
response [20,39,71–73]. The aim of this review is to summarise the current evidence linking
PEI with microbiome dysbiosis, assess how microbiome composition may be influenced by
PERT treatment, and look towards possible future diagnostic and therapeutic targets in
this area.

2. The Interaction between Pancreatic Exocrine Function and Gut Microbiome
2.1. Effects of Pancreatic Exocrine Insufficiency on the Gut Microbiome

PEI is prevalent in patients with PC and there is emerging evidence that pancreatic
exocrine function is closely linked to the composition of the gut microbiome [67–69].
Differences in the gut microbiome have been reported in patients with PEI, the main
changes observed being a reduction in alpha-diversity, small intestine bacterial overgrowth
and loss of ‘beneficial’ bacteria [67–69]. A large population-based study by Frost et al.
gives significant insight into the importance of pancreatic exocrine function in regulating
the gut microbiome [67]. This study compared the composition of the gut microbiome,
via 16S rRNA gene sequencing of stool samples, to pancreatic function, using pancreatic
elastase levels in over 1700 patients [67]. Their results showed that changes in the gut
microbiome composition were much more closely linked to pancreatic exocrine function,
rather than other commonly measured host factors such as age, dietary factors, diabetes or
smoking [67]. This led the authors to conclude that pancreatic exocrine function appeared to
be the most important host factor involved in shaping the human intestinal microbiome [67].
It is therefore likely that patients with pancreatic cancer, many of whom have PEI [42], will
also have a deranged gut microbiome (Figure 1A) [19].

2.2. Pancreatic Regulation of Gut Microbiome

With increasing interest in the role that pancreatic exocrine function plays in the
regulation of the gut microbiome, attention has turned towards the exact mechanisms by
which pancreatic exocrine products influence gut bacteria. There are three main cell types
in the adult pancreas: acinar cells that produce digestive enzymes; duct epithelial cells
that produce a bicarbonate rich fluid which functions to carry digestive enzymes into the
digestive tract and also to establish an optimal pH for enzyme function, and the cells of
the Islets of Langerhans, which have an endocrine function, producing hormones such as
glucagon and insulin [74,75]. In one large study, the role of the two main exocrine cell types
(acinar and ductal) were investigated separately [67]. Acinar cell function was quantified
with an immunochemical faecal elastase assay [76,77], and ductal cell function was assessed
using secretin-stimulated magnetic resonance cholangiopancreatography (sMRCP) [67,78].
The results from this study demonstrated that acinar cell function was more closely related
to gut microbiome composition than ductal cell function [67].

Acinar cells produce many different products, so determining which of these play a
role in the composition of the gut microbiome has also been investigated. It has been shown
that pancreatic secretions possess both bacteriostatic activity against common bacterial
pathogens and fungistatic activity against Candida albicans [79]. However, this function
of canine pancreatic secretions persisted when digestive enzymes were inhibited, which
likely indicates that digestive enzymes are not the main factors that regulate the intestinal
flora [67,79]. Apart from digestive enzymes, it has been shown that the pancreas produces
antimicrobial peptides [67,80–82]. One such example of important antimicrobial peptides
produced by the pancreas are cathelicidins, these are small proteolytically activated pep-
tides shown to be active against bacteria, fungi and some viruses [83]. Murine studies have
indicated that cathelicidin-related antimicrobial peptide (CRAMP) plays an important role
in the regulation of the intestinal microbiome; when genetic modifications were made to
reduce levels of CRAMP production in the murine pancreas, fatal bacterial overgrowth in
the intestine occurred [81]. In human studies however, cathelicidin antimicrobial peptide
(CAMP) levels in faeces have not been shown to be different in patients with PEI compared
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to healthy controls [67], this does not necessarily mean that this peptide is unimportant and
may be due to sampling difficulties [67]. These products and their roles are summarised in
Table 1.
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Table 1. Summary of exocrine pancreatic products and their effect on the gut microbiome.

Exocrine Pancreatic
Product Example Source Pancreatic

Cell Type Function Effect on Gut
Microbiome

Bicarbonate rich fluid - Duct epithelial cell

Carry pancreatic
enzymes into small

intestine. Optimise pH
for enzyme action.

sMRCP indicates
negligible role

Digestive enzymes Lipase, protease,
amylase Acinar cell Digest food

products

Oversupply of food
products leads to

significant changes
especially complex

carbohydrates.
Inhibition in canine

models did not affect
composition of

microbiome.

Antimicrobial peptides CAMP and CRAMP Acinar cell Bacteriostatic
properties

Murine studies indicate
a regulatory role for the

gut microbiome.
Human studies remain

inconclusive due to
sampling issues

sMRCP = secretin-stimulated magnetic resonance cholangiopancreatography CAMP = cathelicidin antimicrobial
peptide; CRAMP = cathelicidin-related antimicrobial peptide.

Another mechanism by which it is thought PEI may lead to significant changes in the gut
microbiome is by the oversupply of food products to the intestine, leading to the overgrowth
of dominant bacteria [70]. In particular, it has been suggested that the increased availability of
complex carbohydrates, seen in patients with PEI due to reduced digestive activity, may act as a
substrate for certain communities within the gut microbiome [67]. Given that acinar cell activity
has been closely linked to gut microbiome composition in humans [67], and the main function
of these cells is to produce digestive enzymes, this seems like another plausible mechanism by
which PEI may influence gut microbiome composition.

2.3. Gut Microbiome Changes from Pancreatic Exocrine Insufficiency in Different Disease States

Whilst there is credible evidence from both animal and human studies to suggest that
PEI leads to significant changes in the gut microbiome, it is important to understand the
impact that different disease processes leading to PEI in humans may have on the gut
microbiome, such as chronic pancreatitis (CP) and pancreatic cancer (PC). For example,
chronic pancreatitis (CP) is one of the main causes of PEI in humans and is known to be
linked to changes in the gut microbiome [68–70,84], but it is often caused by excessive
smoking or alcohol consumption, which in themselves may lead to changes in the gut
microbiome. Indeed, a recent study in which the gut microbiome of chronic pancreatitis
patients was investigated with 16S rRNA gene sequencing and compared to a matched
population of healthy controls described some important findings [68]. The study by
Frost et al. reported that not only did CP lead to significant changes in the gut microbiome,
namely reduced microbial diversity and increased abundance of pathogenic bacteria, but
more importantly these changes were independent of exocrine function (measured with
stool elastase) [68]. This suggests that gut microbiome changes in pancreatic disease are
not solely related to reduced pancreatic exocrine function.

At present, there is limited data on the changes in the gut microbiome related to PEI in
PC patients. It is plausible that, as observed in CP patients [68], there are multiple factors
influencing the gut microbiome composition in PC patients, beyond just PEI. For example,
many PC patients experience cancer cachexia, characterised by systemic inflammation
and nutritional depletion [53]. Links between the state of cancer cachexia and the gut
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microbiome have been drawn [85,86] and this means that changes in the gut microbiome in
PC patients are likely to differ to those in CP patients, even though both experience PEI. As
such, further study is required to understand the changes in the gut microbiome changes
in different pancreatic disease processes such as CP and PC. Improved understanding of
the changes to the gut microbiome in both CP and PC patients will inform future studies
investigating therapeutics that aim to return the gut microbiome towards a healthier
phenotype in these patients.

2.4. Effects of Pancreatic Enzyme Replacement on the Gut Microbiome

From the evidence outlined above, it appears that PEI is associated with gut micro-
biome dysbiosis, which in turn is thought to be associated with multiple adverse down-
stream effects. Therefore, it is desirable to identify strategies by which harmful effects of PEI
on the gut microbiome may be mitigated and the microbiome returned towards a healthier
state. One logical method in PC patients would be through pancreatic enzyme replacement
therapy (PERT), which is frequently under prescribed, despite being recommended for all
with pancreatic cancer by national practice guidelines [61,62]. In animal models, PERT has
been shown to reverse changes to the microbiome caused by PEI [87,88]. Specifically, an
increase in beneficial bacterial species, such as Akkermansia muciniphila and Lactobacillus
reuteri [87,88], and a reduction in species associated with dysbiosis such as Prevotella and
those of the phylum Proteobacteria [87]. This reestablishment of a healthy complex micro-
biome after dysbiosis has occurred (sometimes referred to as ‘rebiosis’ [69]) (Figure 1B),
reduces intestinal inflammation, improves PEI-associated symptoms and mediates nu-
tritional decline [69,88]. Therefore, it may be a further mechanism by which PERT acts
to improve quality of life [57,58] and survival amongst pancreatic cancer patients [59,60]
(Figure 2). That said, some animal evidence has suggested that the gut microbiome of
animals treated with PERT still exhibits important differences to healthy controls [89]. As
a result, further study is required to evaluate to what degree PERT can return the gut
microbiome of PC patients with PEI towards a healthier composition and whether this
translates into improved outcomes.
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3. Effects of the Intestinal Microbiome in Pancreatic Cancer Patients
3.1. Intestinal Microbiome and Clinical Outcomes in Pancreatic Cancer

Associations between microbiome composition and clinical outcome for patients with
PDAC are now being observed. Differences in intestinal microbiome composition between
patients with short-term survival (STS) and long-term survival (LTS) have been demon-
strated with 16S rRNA gene sequencing [21,39]. An increasing abundance of Acinetobacter
was identified in the highly aggressive ‘basal-like’ subtype of pancreatic ductal adenocarci-
noma (PDAC) using metagenomic sequencing of resected tumours [90]. However, in the
absence of mechanistic insights, these findings remain associative rather than causative.

3.2. Extraintestinal Effects of the Gut Microbiome in Pancreatic Disease

The effects of intestinal microbiome dysbiosis have been shown to extend beyond
the intestinal tract in patients with pancreatic disease. In acute and chronic pancreatitis, a
frequent clinical issue is the colonisation of pancreatic necrosis and fluid collections with
pathogenic bacteria. Evidence suggests that numbers of beneficial bacterial species such as
Faecalibacterium [91,92] and Fusicatenibacter [93] are reduced in patients with CP [68]. These
bacterial species are thought to play an anti-inflammatory role in the colon and preserve
the intestinal barrier through the production of short-chain fatty acids and lactate [91,92],
reducing the chance of extraintestinal translocation of pathogenic bacteria [93,94]. As a
result, gut microbiome changes can be directly related to the severity of the disease [68,95].

Importantly, for pancreatic cancer patients, it is now appreciated that pancreatic
tumours themselves harbour a population of bacteria, referred to as the tumour micro-
biome [21,73,96,97], which has been shown to influence the prognosis of PDAC [21,39,98].
Relevant to this article, it has been shown that the gut microbiome influences the compo-
sition of this tumour microbiome in pancreatic cancer [39]. The exact mechanism for this
remains debated, but possible routes include retrograde translocation from the gut, via
the duodenum and bile/pancreatic ducts, spread from the portal circulation or mesenteric
lymph nodes (Figure 2) [20–22]. The importance of the tumour microbiome is attracting in-
creasing interest [96,99] and has been shown to differentiate between different phenotypes
of pancreatic cancer, as well as influencing clinical outcome [39,90]. For example, some
human pancreatic tumours are colonised by Gammaproteobacteria, a subset of which possess
an isoform of cytidine deaminase, which is capable of metabolising gemcitabine into an
inactive form [21] and, in so doing, increases the tumour’s chemoresistance and therefore
reduces treatment efficacy [100,101]. Evidence of clinical benefit in modulating the tumour
microbiome has also been demonstrated in a recent large cohort study which showed
that peri-chemotherapy antibiotics in metastatic PDAC patients improved cancer-specific
survival [102]. Interestingly, a survival benefit was seen only in patients receiving gemc-
itabine, not fluorouracil, adding to the growing body of evidence that bacteria-mediated
gemcitabine resistance is prevalent in PDAC patients [20] and could represent a target for
future therapies.

3.3. Tumour Microbiome and Immune Infiltration

A further route by which it is thought that the tumour microbiome influences the
prognosis of PDAC includes local immunosuppression and subsequent accelerated onco-
genesis [103–106]. A relationship between the tumour microbiome and tumour immune
infiltration has been demonstrated [103] with an increase in infiltration of CD8+ T cells
reported following ablation of the tumour microbiome with antibiotics [103]. Further-
more, transfer of selected bacteria from PDAC tissue accelerated tumorigenesis [103]. This
highlights a possible mechanism by which a more favourable gut microbiome, which is
observed through appropriate treatment of PEI with PERT, may influence cancer-related
outcomes in PDAC patients. Future studies should therefore seek to compare the gut
and tumour microbiome composition to immune infiltration of tumours, for example via
immunohistochemistry, to further investigate this relationship.
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4. Diagnostic and Therapeutic Applications for Greater Understanding of the Gut
Microbiome in Pancreatic Cancer Patients
4.1. Use of Intestinal Microbiome Testing for Diagnosis of Pancreatic Exocrine Insufficiency

If changes in the microbiome are observed in PEI, then it may also be possible to diagnose
this using intestinal microbiome sequencing from stool samples. The incidence of PEI pre-
operatively is challenging to assess, and no ideal diagnostic test currently exists. The secretin
test and coefficient of fat absorption (CFA) are accurate but expensive and unpleasant, whilst
faecal elastase (FE-1), although suitable for routine use, has poor sensitivity in mild PEI [107].
Traditionally, a combination of patient reported symptoms, such as steatorrhoea, and faecal
elastase (FE-1) have been used to diagnose PEI. However, the diagnostic accuracy of FE-1
has been questioned, especially amongst those who have undergone surgical resection where
the increased ratio of faecal fat to FE-1 reduces the sensitivity of the test [107,108]. The 13C
mixed triglyceride breath test is emerging as a promising diagnostic tool [109], but expense
and time limit its use to specialist or research centres only [109,110]. Therefore, if changes in
the microbiome in patients with PEI are further understood, these could be measured and
quantified to be used as a new diagnostic test.

4.2. Titration of Pancreatic Enzyme Replacement Therapy

Given the difficulties in diagnosing PEI in routine clinical practice, monitoring the
response to PERT is arguably even more challenging. Whilst UK NICE recommend consid-
eration of PERT treatment for all patients following pancreatic resection [61,62] without
the need for a positive diagnostic test, it can be challenging to ensure that each patient is
taking the correct dose. If changes in the intestinal microbiome with PERT treatment in PEI
patients are quantifiable, then it may be possible to monitor long-term trends with PERT
treatment and make dose changes accordingly using stool sample sequencing.

4.3. Positive Effects of Pancreatic Enzyme Replacement Therapies on the Intestinal Microbiome

As described above, early evidence suggests that by modulating the gut microbiome
it may be possible to alter the composition of the tumour microbiome. This has been
demonstrated in animal studies using faecal microbiota transplantation (FMT) [39,73].
Using the knowledge that differences in intestinal microbiome composition between short-
term survival (STS) and long-term survival (LTS) patients have been demonstrated with 16S
rRNA gene sequencing [21,39]; researchers sought to modulate the intestinal microbiome
with FMT. Interestingly, it has been shown that via FMT from STS and LTS patients into
mice, it is possible to modulate the tumour microbiome and thus affect tumour growth [39].
This could also link to some possible benefits of PERT as, if treatment is able to return the
intestinal microbiome of pancreatic cancer patients towards a healthy composition, this
may positively influence the tumour microbiome. Given that Acinetobacter abundance has
been associated with aggressive ‘basal-like’ tumours [90], it is noteworthy that this can
be reduced in the gut microbiome of a porcine PEI model reduced after administration
of PERT [87]. The potential ability of PERT to modulate the intestinal microbiome, and
consequently the tumour microbiome, may be an important determinant of clinical outcome
and is worthy of more thorough investigation.

5. Conclusions and Future Directions

It is likely that the gut microbiome of pancreatic cancer patients with PEI exhibits
profound dysbiosis and that this may potentially be reversible with PERT. However, further
research is needed to conclude if this is indeed the case. Future research should seek to
elucidate the specific changes that occur in PC patients with PEI as these are likely to be
different to gut microbiome changes in patients with other, benign causes of PEI such as
cystic fibrosis or CP. It would also be important to investigate whether the gut microbiome
of PC patients who have PEI treated with PERT experience a return of gut microbiome
towards that of healthy controls. It is also important to acknowledge that supplements, such
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as probiotics as well as faecal microbiota transplantation, can influence the composition of
the gut microbiome and therefore may also be beneficial in PC [111].

In addition, the downstream effects of gut microbiome dysbiosis in PC patients with
PEI need to be further explored and understood. For example, future studies should seek to
compare the gut microbiome with the tumour microbiome in PC patients with and without
PEI. Similarly, the interaction between the gut microbiome and the immune system in this
cohort should be further investigated. This could be achieved by measuring the peripheral
immune state in PC patients with and without PEI, or before and after PERT treatment. Equally,
the immune infiltration of resected tumours could be compared to the gut microbiome of PC
patients and their degree of exocrine function and/or PERT treatment.

It is also important to investigate the extent to which the gut microbiome influences
chemosensitivity in PC patients, and whether this is influenced by the degree of PEI or PERT.
This may be achieved by monitoring treatment response to neoadjuvant chemotherapy via
Ca19-9 levels, radiological response or tumour regression grading of resected specimens,
and correlating this to exocrine function and PERT treatment.

In summary, it has been recognised that untreated PEI is harmful in PC patients and
that PERT treatment leads to improved outcomes. It has been proposed that this is likely
due to improved nutritional status, thus allowing more patients to undergo physiologically
demanding treatments, but it is possible that treatment of PEI with PERT in PC patients
leads to a more favourable gut microbiome. This in turn may modulate the tumour
microbiome, thereby directly influencing tumour growth and the quality of the tumour-
specific immune response. The effect of PEI and PERT on the gut microbiome of pancreatic
cancer patients is a vital area for future study and may open the door to much needed new
diagnostic and therapeutic options for this challenging condition.
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