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1.  Introduction
Atmospheric particles play a profound role in air quality, global climate, and human health (Pöschl, 2005). These 
effects are closely related to the physical and chemical properties of particles, with the phase state of particles 
being critical. Numerous studies have confirmed that the phase state of particles plays a crucial role in determin-
ing the mass transfer between gas and particles (Davies & Wilson, 2015; Shiraiwa et al., 2010, 2011), thereby 
influencing various chemical and physical processes in the atmosphere, including gas–particle partitioning 
(Pöschl, 2005), multiphase reactions (Kuwata & Martin, 2012; Shiraiwa et al., 2011), and the chemical lifetime 
of air pollutants like polycyclic aromatic hydrocarbons (Mu et al., 2018). Therefore, it is essential to understand 
the phase state of particles in the atmosphere to accurately assess the impacts of aerosol particles on air quality 
and climate.

Over the past few decades, several studies have focused on the phase state of secondary organic aerosol parti-
cles (SOA) (Reid et  al.,  2018). It is well established that, under specific environmental conditions, the glass 
transition temperature of SOA, which represents the phase state, increases with the molecular weight of its 

Abstract  Nitrate has become the primary inorganic compound in urban aerosol particles, but its effects 
on particle phase state, which is crucial in multiphase chemistry, remains largely unknown. Herein, particle 
rebound measurements were conducted to explore the relationship between the liquid–phase–transition 
threshold relative humidity (RHthreshold) and the inorganic compounds mass fraction in dry particles (Finorg). 
Results revealed negative correlations between RHthreshold and Finorg, with more nitrate leading to lower 
RHthreshold. Even with RH < 20%, particles with ∼50% nitrate mass fraction remained in non-solid state. Taking 
Beijing as an example, decreases were observed in RHthreshold from 64% in 2015 to below 53% nowadays during 
the moderate-pollution periods (PM2.5 = 35–75 μg/m 3) due to an enhanced nitrate fraction. This allowed urban 
aerosol particles to exist in liquid state at lower RH, and consequently, kinetic limitation by bulk diffusion 
in nitrate-dominated particles might be negligible, making them key seeds for secondary aerosol formation 
through multiphase reactions.

Plain Language Summary  The phase state of aerosol particles plays a crucial role in the 
mass-transfer processes between gas and particles, which is essential for determining particle mass 
concentration. Investigating the characteristics of the aerosol phase state is crucial for comprehending 
the mechanisms behind secondary particle formation and improving air quality. Currently, the chemical 
composition of urban aerosol particles has shown notable changes. The mass fraction of inorganic components 
has increased, with nitrate emerging as the dominant inorganic component. However, the impacts of these 
changes on the phase state of urban aerosol particles remain largely unknown. This study demonstrates that 
particles with a higher mass fraction of inorganic compounds, particularly nitrate, tend to exist in a liquid state. 
Consequently, an increased nitrate fraction allows urban aerosol particles to exist in a liquid state at lower 
relative humidity levels. These findings suggest that changes in the phase state of particles due to changes 
in chemical properties in urban aerosol particles should be considered to accurately gauge the mass-transfer 
processes and promote the air quality improvements in urban cities.
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compounds and varies based on the atomic oxygen-to-carbon ratio (Kaluarachchi et al., 2022; Koop et al., 2011; 
Kucinski et al., 2019; Lilek & Zuend, 2022; Reid et al., 2018; Rothfuss & Petters, 2017; Shiraiwa et al., 2017; 
Song et al., 2021). Additionally, the functional groups (Grayson et al., 2017; Reid et al., 2018) and the volatile 
organic compounds and oxidants used to generate SOA can influence their phase state (Bateman, Bertram, & 
Martin, 2015; Pajunoja et al., 2014; Saukko et al., 2012; Song et al., 2015, 2016). Aerosol liquid water content 
(ALWC), which varies with ambient relative humidity (RH) and temperature, also strongly affects the phase 
state of SOA (Bateman, Bertram, & Martin,  2015; Hosny et  al.,  2016; Renbaum-Wolff et  al.,  2013; Saukko 
et al., 2012). With increasing ALWC, the viscosity of SOA, which is an indicator of the phase state, decreases 
due to the plasticizing effect of water, (Koop et  al., 2011). Consequently, semi-empirical methods have been 
developed to predict the glass transition temperature of SOA (DeRieux et al., 2018; Li et al., 2020; Shiraiwa 
et al., 2017).

In contrast to SOA, there have been limited studies on the phase state of inorganic–organic mixed particles. Labo-
ratory experiments have shown that an increased mass fraction of inorganic particles significantly decreases the 
viscosity of inorganic–organic mixtures at a given RH (Bateman, Bertram, & Martin, 2015; Power et al., 2013; 
Song et al., 2021; Tong et al., 2022). Model simulations have revealed that the viscosity of sucrose–NaNO3 mixed 
particles with an organic-to-inorganic dry mass ratio (OIR) of 3:2 is one order of magnitude lower than that with 
an OIR of 4:1 at RH = 40% (Lilek & Zuend, 2022). Previous field observations have suggested that, under the 
influence of a high mass fraction of inorganic compounds, particles in the atmosphere of Beijing transition into 
a liquid state when RH exceeds 60% (Liu, Wu, et al., 2017). This value is much lower than that observed in rural 
areas (Pajunoja et al., 2016) and rainforests (Bateman, Gong, et al., 2015), where particles are predominantly 
organic. These findings indicate that the presence of inorganic compounds can influence the phase state of aero-
sol particles.

Urban aerosol particles consist of a large proportion of inorganic compounds, and they frequently internally mix 
with organic compounds in the atmosphere (Murphy et al., 2006). In Asian cities like Beijing and Seoul, the 
average mass fraction of inorganic compounds in PM1 during winter was about 61% and 73%, respectively (Kim 
et al., 2022). In Los Angeles, particles consisted of an average of 69% inorganic compounds in June, according 
to the annual report of the US Air Quality Research Center (https://aqrc.ucdavis.edu/). In Europe, the mass 
fraction of inorganic compounds in PM1 and fog water was ∼50% (Decesari et al., 2014) and 86% (Giulianelli 
et al., 2014), respectively, in Po Valley, Italy. Global control measures targeting SO2 emissions to mitigate acid 
rain have led to a decline in sulfate in fine particles (Hoesly et al., 2018). However, the reduction in NOx emis-
sions has been less significant. Consequently, nitrate has replaced sulfate as the dominant inorganic component 
in many cities (Lu et al., 2019). As mentioned earlier, the presence of inorganic compounds has a prominent 
influence on the aerosol phase state. However, the characteristics of the phase state of urban aerosol particles with 
abundant inorganic compounds, particularly nitrate-dominated particles, remain largely unknown.

Herein, the effects of inorganic compounds, particularly nitrate, on the phase state of urban aerosol particles were 
investigated. Rebound behavior measurements were conducted on both laboratory-generated mixtures and regen-
erated ambient particles from water-extracted filters collected in the field. Results demonstrated that an increased 
mass fraction of inorganic compounds allowed urban aerosol particles to exist in a liquid state at lower RH 
levels due to the increased moisture content. Furthermore, with ∼50% nitrate mass fraction, particles remained 
non-solid state even at RH levels as low as 20%. These findings suggest that compared to other aerosol particles, 
kinetic limitation by bulk diffusion in nitrate-dominated particles can be neglected at lower RH, indicating their 
potential role as key seeds for secondary aerosol formation through multiphase reactions.

2.  Materials and Methods
2.1.  Sample Preparation

Daily PM2.5 samples were collected at the Peking University Atmospheric Environmental Monitoring Station 
(PKUERS; 39°59′20″N, 116°18′26″E) in Beijing from October to December 2019. The water-soluble fraction of 
PM2.5 was extracted using pure water (Milli-Q Gradient; 25°C; 18.2 MΩ). Afterward, the solution was atomized 
into particles, referred to as regenerated ambient particles, using an aerosol atomizer (Model 3076, TSI Inc.).

Inorganic–organic mixtures with different OIRs (the mass ratios of organic to inorganic compounds, detailed 
values were shown in Table S1 in Supporting Information S1) were prepared using tartaric acid (TA; Adamas, 

https://aqrc.ucdavis.edu/
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China), which is a common water-soluble low-molecular organic acid (Sato et  al.,  2021), NH4NO3 (Meryer, 
China), and (NH4)2SO4 (Meilunbio, China), which are two of the most abundant inorganic species in the atmos-
phere (Li et al., 2021). The mixed solution was then nebulized into particles.

Additionally, long-term daily PM2.5 samples were collected in Beijing from January to March each year between 
2015 and 2020 using a Partisol-plus2025 continuous sampler (R&P, USA) and Teflon filters (16.7  L/min; 
47 mm; Whatman, USA) and Quartz filters (16.7 L/min; 47 mm; Whatman, USA). The Teflon filter samples 
were extracted with pure water and nebulized into particles as well.

The rebound fraction of all the particle samples was determined using a three-arm impactor (introduced 
in Section  2.2). The chemical composition of regenerated ambient particles was measured by an aero-
dyne time-of-flight aerosol mass spectrometer. The long-term daily PM2.5 samples were analyzed using an 
ion-chromatograph (IC; DIONEX ICS2000/ICS2500) to determine inorganic anions, and a portion of 1.45 cm 2 
was punched from each quartz filter and used to determine organic carbon (OC) with a Sunset OC/EC (elemental 
carbon) analyzer using the NIOSH method. Organic compounds were estimated by multiplying OC by 1.6 (Xing 
et al., 2013). Figure S1 in Supporting Information S1 shows the flowchart illustrating aerosol generation and 
measurements and Table S2 in Supporting Information S1 summarizes the complete data set used in this study.

2.2.  Particle Rebound Measurement

The three-arm impactor used here was described in detail in our previous studies (Bateman et al., 2013; Liu, Wu, 
et al., 2017). In summary, the instrument consisted of three impactors with different impact plates, and the parti-
cle rebound fraction (ƒ), which reflected the phase state of particles, was calculated using Equation 1:

𝑓𝑓 =
𝑁𝑁2 −𝑁𝑁3

𝑁𝑁1 −𝑁𝑁3

,� (1)

where N1, N2, and N3 are the total particle population, the population of rebounded particles, and the background 
particle population, respectively. Particles were considered liquid or solid when the rebound fraction was below 
0.1 or above 0.8, respectively (Liu et al., 2021; Pajunoja et al., 2016). Otherwise, they were considered semi-
solid. During the measurement, a silica gel diffusion drier was installed at the front of the devices to ensure the 
sampling air was dried to an RH below 30%. Measurements were conducted at room temperature (∼25°C), and 
200-nm particles were selected for rebound fraction measurement. The three-arm impactor was operated in “scan 
mode,” where the RH in the system increased from 5% to 85% in increments of RH = 5%. The “scan mode” 
generated curves of particle rebound fraction versus RH (Figure S2 in Supporting Information S1). The liquid 
phase–transition threshold RH (RHthreshold), at which particles transition from solid/semisolid to a liquid state, 
corresponding to ƒ = 0.1, was determined from the sigmoid-fitting function of the curve. The three-arm impactor 
was calibrated using standard (NH4)2SO4 particles before and after the experiments. Further details can be found 
in Supporting Information S1.

2.3.  Aerosol Liquid Water Content Calculation

The normalized ALWC (hereafter abbreviated as ALWC) was calculated using Equation 2 as follows:

ALWC =
𝑚𝑚𝑤𝑤𝑤inorg + 𝑚𝑚𝑤𝑤𝑤org

𝑚𝑚𝑝𝑝

,� (2)

where mw,inorg and mw,org are the mass concentration of liquid water taken up by inorganic compounds and organic 
compounds, respectively. The total liquid water content is then normalized by the mass concentration of dry 
particles (mp) to enable comparison between different pollution levels. The liquid water taken up by inorganic 
compounds (NH4 +, NO3⁻, Cl⁻, and SO4 2⁻) was calculated using the ISORROPIA-II model, and the liquid water 
contributed by organic compounds was calculated using Eq. [3] (Nguyen et al., 2015):

𝑚𝑚𝑤𝑤𝑤org =
𝑚𝑚org

𝜌𝜌org

× 𝜅𝜅org ×
RH

1 − RH
,� (3)

where morg is the mass (μg/m 3) of organic materials, and κorg is the average effective hygroscopicity parame-
ter of organic material. For this study, κorg and ρorg were assumed to be 0.1 (Kuang et al., 2020) and 1 g/cm 3 
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(Carrico et  al.,  2010), respectively. One should note that the calculation of aerosol liquid water followed the 
Zdanovsky-Stokes-Robinson (ZSR) mixing rule (Robinson et al., 1970), which does not consider the effect of 
particle morphology.

For regenerated ambient particles and long-term PM2.5 samples collected between 2015 and 2020, the ALWC was 
calculated based on the measured mass concentration of each chemical component, using the same RH values 
as during the rebound measurements. The liquid phase–transition threshold ALWC (ALWCthreshold), at which 
particles exist in a liquid state (indicated by ƒ = 0.1), was derived from the sigmoid fitting function of the curve 
of rebound fraction versus ALWC (Figure S3 in Supporting Information S1). However, for laboratory-generated 
mixtures, a fixed total particle mass concentration was set to obtain the mass concentration of each inorganic/
organic compound based on the OIRs during the ALWC calculation, and the RH was set from 10% to 90% in 
increments of RH = 10%. Since ALWC represents the mass concentration ratio of aerosol liquid water to dry 
particles, the ALWC of laboratory-generated mixtures should not be affected by their total mass concentrations.

3.  Results and Discussion
3.1.  Dependency of Particle Phase State on Inorganic Fractions

Figure 1a shows the rebound fraction of regenerated ambient particles as a function of RH. Each curve represents 
a daily PM2.5 sample and is color-coded based on the dry mass fraction of NH4 +, NO3⁻, SO4 2⁻, and Cl⁻ in dry 
PM1 (Finorg). The RH values at which the particle rebound fraction decreased from 0.8 to below 0.1, indicating 
a phase transition from solid to liquid state, ranged from ∼5% to 85%. As Finorg increased from 0.42 to 0.81, the 
curve of rebound fraction gradually shifted to the left, indicating that the rebound fraction was lower with higher 
Finorg at the same RH, and the increment of Finorg made urban aerosol less viscous. Moreover, according to the 

Figure 1.  (a) Rebound fraction (ƒ) of regenerated ambient particles (the color of the curves represents the mass fraction of inorganic compounds; Finorg) as a function of 
relative humidity (RH). (b) Liquid–phase–transition threshold RH (RHthreshold) of regenerated ambient particles as a function of Finorg. The color of the circles represents 
the mass fraction of NO3⁻ (𝐴𝐴 𝐴𝐴NO3

 −). (c) Rebound fraction of (NH4)2SO4–tartaric acid (TA), NH4NO3–TA mixtures, and pure TA, (NH4)2SO4, and NH4NO3 particles as a 
function of RH. (d) Rebound fraction of (NH4)2SO4–NH4NO3–TA mixtures as a function of RH.
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curve on the leftmost side of Figure 1a, which presents particles with Finorg higher than 0.8 and a dry mass frac-
tion of NO3⁻ in total dry mass of particles (𝐴𝐴 𝐴𝐴NO3

 −) as high as 0.53, the rebound fraction was 0.54 even when the 
RH was below 5%. This implies that a large proportion of nitrate causes particles to remain non-solid under dry 
conditions.

Figure 1b shows the dependency of the RHthreshold (corresponding to ƒ = 0.1) of regenerated ambient particles on 
Finorg. The RHthreshold decreased from ∼55% to 30% as Finorg increased from ∼0.4 to 0.7. The coefficient of determi-
nation (R 2) between RHthreshold and Finorg was 0.88, indicating a strong linear relationship. The RHthreshold, derived 
from our viscosity measurement (poke-and-flow method) of particles in Beijing and Seoul (Song et al., 2022), is 
depicted in Figure S4 in Supporting Information S1. Despite demonstrating different RHthreshold values (discussed 
in Supporting Information S1), it shared a consistent decreasing trend with an increase in Finorg, thereby exhibiting 
a clear linear correlation. This linear variation can be explained by the fact that aerosol liquid water primarily 
determines particle phase state, and the moisture absorbed by inorganic compounds greatly contributes to the 
water content in particulate matters, as discussed in Section 3.2. Furthermore, when Finorg was the same, particles 
with higher 𝐴𝐴 𝐴𝐴NO3

 − exhibited even lower RHthreshold values. For example, when Finorg was 0.72, the RHthreshold was 
∼18% for particles in Beijing with 𝐴𝐴 𝐴𝐴NO3

 − = 0.44, whereas RHthreshold was 27% for particles with 𝐴𝐴 𝐴𝐴NO3
 − = 0.18. 

This finding aligns with the results obtained from our field observation conducted in 2018 in Taizhou, China (Liu 
et al., 2021). As presented in Figure S5 in Supporting Information S1, the RHthreshold of atmospheric aerosol parti-
cles decreased from approximately 79% to 47% as 𝐴𝐴 𝐴𝐴NO3

 − increased from 0.05–0.1 to 0.35–0.4. Additionally, Sun 
et al. (2018) found that an increase in NH4NO3 content led to the occurrence of aqueous aerosol particles at lower 
RH. Therefore, nitrate has a greater impact on the particle phase state compared to other inorganic components.

Figure 1c shows the rebound fraction of (NH4)2SO4–TA, NH4NO3–TA mixtures, and pure TA, (NH4)2SO4, and 
NH4NO3 particles as a function of RH. For (NH4)2SO4 and NH4NO3 particles, (NH4)2SO4 particles transitioned 
into a liquid state (ƒ < 0.1) only when the RH exceeded 78% due to deliquescence, while NH4NO3 remained in a 
liquid state even at RH below 20%. These results are consistent with the findings of Li et al. (2016). For TA, as 
the RH spanned from ∼15% to 85%, the rebound fraction decreased from ∼0.89 to 0.01. However, the rebound 
fraction for inorganic–organic mixtures was lower than that for TA at the same RH. For example, at an RH of 
∼50%, the rebound fraction for TA and (NH4)2SO4–TA with OIRs of 1:2, 1:1, and 2:1 were ∼0.51, 0.35, 0.11, 
and 0.08, respectively. The gradual decrease in rebound fraction with increasing OIRs is consistent with the 
results of other studies (Jeong et al., 2022; Lilek & Zuend, 2022; Marsh et al., 2018; Power et al., 2013; Song 
et al., 2021; Sun et al., 2018). Based on the rebound fraction, particles with no inorganic compounds and with 
inorganic compounds having OIRs of 1:2, 1:1, and 2:1 transformed into a liquid phase at RH values of ∼65%, 
60%, 51%, and 47%, respectively. The results in Figure 1c also suggest that when Finorg is the same, the rebound 
fraction of NH4NO3–TA particles is lower than that of (NH4)2SO4–TA particles at the same RH. With an OIR 
of 1:1, the rebound fraction of (NH4)2SO4–TA particles was ∼0.41 higher than that of NH4NO3–TA particles at 
an RH of ∼40%, and the rebound fraction corresponded to a liquid state for RH > ∼51% ((NH4)2SO4–TA) and 
RH > ∼42% (NH4NO3–TA). Furthermore, for nitrate-rich NH4NO3–TA particles (OIR = 2:1), their rebound 
fraction remained below 0.8 even at RH values below 20%, implying that they were in a non-solid state rather 
than a solid state at low RH.

Figure 1d shows the particle rebound fraction (ƒ) versus RH for ternary mixed particles. Similar to the results of 
binary mixtures, the rebound fraction of inorganic–organic mixtures was lower than that of TA at the same RH, 
and the rebound fraction of NH4NO3-dominated particles was lower than that of (NH4)2SO4-dominated particles. 
The RHthreshold was ∼65% for TA particles, ∼44% for an OIR of 3:1:1 ((NH4)2SO4: NH4NO3: TA), and ∼25% 
for an OIR of 1:3:1. When the OIR was 1:3:1, the ternary mixed particles were in a non-solid state even under 
extremely dry conditions, such as an RH below 20%. The results obtained from laboratory-generated mixtures 
were consistent with those from regenerated ambient particles, indicating that inorganic compounds can decrease 
the particle rebound fraction, with nitrate having a greater effect on particle phase state than sulfate.

3.2.  Role of Aerosol Liquid Water on Particle Phase State

The effect of inorganic compounds on the phase state of inorganic–organic mixed aerosol particles was likely 
due to the increase in liquid water content with an increasing mass fraction of inorganic compounds at a given 
RH. This is because water, acting as a plasticizer, plays a crucial role in determining particle phase state (Koop 
et al., 2011). Figure 2a shows the rebound fraction and the frequency of rebound fraction below 0.1 for regenerated 
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ambient particles as a function of ALWC. The frequency indicates the proportion of particles with a rebound frac-
tion below 0.1 among all particles at a specific ALWC (specific values are provided in Table S3 in Supporting 
Information S1). When ALWC was below 0.1, the particle rebound fraction decreased rapidly with increasing 
ALWC. In the ALWC range of 0.1–0.3, the decreasing trend in particle rebound fraction with increasing ALWC 
became slower, but there was an obvious increase in the frequency of particles with a rebound fraction below 0.1. 
When ALWC was above 0.3, the frequency equaled 1, suggesting that all particles existed in a liquid state under 
these conditions. Therefore, the moisture content in urban aerosol particles governs their transition from a solid/
semisolid to a liquid phase. Generally, the hygroscopicity parameter (κ) for SOAs is ∼0.1 on average (Kuang 
et al., 2020), while it is above 0.5 for common inorganic compounds in ambient particles (Carrico et al., 2010). 
Inorganic compounds tend to absorb more water than organic compounds under the same environmental condi-
tions. Thus, the presence of inorganic compounds allows particles to absorb enough water at lower RH, leading 
to their transformation into a liquid state. As a result, inorganic compounds play a crucial role in the liquid 
phase  transition of particles.

The influence of NH4NO3 is more pronounced than that of (NH4)2SO4 likely due to two factors. First, NH4NO3 
has a higher κ value (derived from cloud condensation nuclei) of 0.67 compared to (NH4)2SO4 with a value of 
0.61 (Petters & Kreidenweis, 2007). Second, NH4NO3 particles are in a “liquid state,” which allows them to 
exist in a liquid state at lower ALWC. Figure 1c and Li et al.  (2016) demonstrated that the rebound fraction 
of (NH4)2SO4 fell below 0.1 only when RH reached 78%. However, the rebound fraction of NH4NO3 particles 
remained lower than 0.1, indicating that NH4NO3 particles are always in a liquid state. This discrepancy can be 
explained by the fact that efflorescence does not occur in NH4NO3 particles (Lightstone et al., 2000), making 
them more likely to exist in a liquid state than other inorganic particles (Sun et al., 2018). Figure 2b shows the 
rebound fraction of TA, NH4NO3–TA, and (NH4)2SO4–TA particles as a function of ALWC. For TA, (NH4)2SO4–
TA, and NH4NO3–TA mixtures with an OIR of 1:2, particles transformed into a liquid state when ALWC ranged 
from 0.22 to 0.28. However, NH4NO3–TA mixed particles with OIR of 1:1 and 2:1 had transformed into a liquid 
state when ALWC were ∼0.14 and 0.04, respectively. This demonstrates that the abundant presence of nitrate can 
result in a lower RHthreshold.

3.3.  Atmospheric Implications and Conclusion

The above discussion confirms that inorganic components, particularly nitrates, can decrease the RHthreshold, and 
facilitate the existence of particles in the liquid state. To further analyze the influences of inorganic compounds 
on the phase state of urban aerosol particles, we focus on Beijing, the capital city of China, and utilize long-term 
observation of PM2.5 chemical compositions. Due to stringent emission controls, the particle chemical compo-
sition in Beijing has undergone significant changes in recent years (Huang et  al.,  2021; Lei et  al.,  2021; Li 
et al., 2021; Xiao et al., 2021). The upline of Figure 3 shows the mass fraction of NO3⁻, SO4 2⁻, NH4 +, Cl⁻, and 
organic compounds in PM2.5 from 2015 to 2020 under different air pollution levels. The air pollution levels are 
classified as follows: clean (average daily PM2.5 < 35 μg/m 3), moderate polluted (average daily PM2.5 between 
35 and 75 μg/m 3), and heavy polluted (average daily PM2.5 ≥ 75 μg/m 3). The total mass fraction of NH4 +, NO3⁻, 
SO4 2⁻, and Cl⁻ in PM2.5 (Finorg) has increased since 2018. During clean and heavy-polluted days, Finorg increased 

Figure 2.  (a) Rebound fraction (ƒ) and frequency for ƒ below 0.1 of regenerated ambient particles as a function of aerosol 
liquid water content (ALWC). The black line represents the sigmoid-fitting results of the frequency. (b) Rebound fraction of 
laboratory-generated (NH4)2SO4–NH4NO3–TA ternary mixed particles as a function of ALWC.
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from 38% and 49% in 2015 to 50% and 77% in 2020, respectively. The most substantial increase in Finorg occurred 
during moderate-polluted days, rising from 36% in 2015 to 72% in 2020. Additionally, NO3⁻ has become the 
dominant inorganic compound since 2018, replacing SO4 2⁻. The average 𝐴𝐴 𝐴𝐴NO3

 − was 12% in 2015, increasing to 
33% from 2018 to 2020.

The significant enhancement of Finorg inevitably resulted in higher ALWC at a specific RH. Figures 3d–3f shows 
the calculated ALWC of PM2.5 from 2015 to 2020 as a function of RH under different air pollution levels. When 
RH is fixed, notable increases in ALWC after 2018 can be observed. The increment of ALWC (ΔALWC) at a 
specific RH from 2015 to 2020 was most prominent during moderate-polluted days. For example, at an RH of 
50%, the ΔALWC during clean, moderate-polluted, and heavy-polluted days were ∼0.02, 0.08, and 0.02, respec-
tively. This can be attributed to the highest increase in Finorg during the moderate-polluted days, as discussed 
above.

Based on the results from Figure 2a, ALWC = 0.3 was adopted as the ALWCthreshold, representing the point at 
which all particles can exist in the liquid state. The corresponding RH value of the specific aerosol particles is 
regarded as their RHthreshold. Consequently, the RHthreshold can be derived by polynomial function fitting of the 
curve in Figures 3d–3f (Figure S6 in Supporting Information S1), which shows the variation of ALWC as a 
function of RH. The results indicate that the RHthreshold tends to decrease from 2018, and the maximum reduction 
in the RHthreshold (ΔRH) for particles from clean to heavy-polluted days was ∼2%, 11%, and 2%, respectively. 
Consistent with ΔALWC, the highest ΔRH, ranging from ∼64% to 53%, was observed during the moderate-polluted 
days. Besides, since 𝐴𝐴 𝐴𝐴NO3

 − has notably increased and NO3⁻ replaced SO4 2⁻ as the primary inorganic component, 
ΔRH might exceed 11%. These findings demonstrate that urban aerosol particles in Beijing during winter can 
transform into a liquid state under drier conditions during air pollution episodes. It is important to note that these 
results were obtained under the assumption of room temperature, and the effect of temperature on particle phase 
state was not considered. Additionally, it should be acknowledged that nitrate salts in ambient particles can exist 
not only as NH4NO3 but also as NaNO3, Ca(NO3)2, etc. However, studies have shown that water-soluble metal 
ions are minor components in fine particles (Huang et al., 2016; Li et al., 2013; Liu, Xie, et al., 2017; Zhang 
et al., 2011). Therefore, nitrates are assumed to primarily exist as NH4NO3 in this study. Moreover, given that 
the RHthreshold derived here was based on the water-soluble components of the filter samples, non-water soluble 
components such as certain organic compounds, black carbon, and mineral compounds were not incorporated. 
Therefore, the RHthreshold might be underestimated for atmospheric aerosol particles.

Figure 3.  Mass fraction of chemical components in PM2.5 (upside panel) and the aerosol liquid water content (ALWC) as a function of relative humidity (RH) 
(downline) during clean ((a) and (d)), light polluted ((b) and (e)), and polluted ((c) and (f)) days from 2015 to 2020 in the Winter in Beijing.
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According to the Stokes–Einstein equation, the kinetic limitations of molecule diffusion in the particle phase 
were expected to diminish at lower RH levels due to the adoption of a liquid state by aerosol particles under 
drier conditions over the years. To quantitatively analyze this phenomenon, the bulk diffusion coefficient of 
dioctyl-phthalate (DOP; Dƒ, DOP) was used as an example. Assuming a viscosity of 10 −2, 10 5, and 10 12 Pa s for 
the liquid, semisolid, and solid state, respectively. In 2015, at an RH of 55%, particles were in the solid state, and 
the Dƒ, DOP was ∼10 −28 cm 2/s based on the Stokes–Einstein equation (see Supporting Information S1). However, 
in 2020, particles were in the liquid state at the same RH and Dƒ, DOP correspondingly increased to ∼10 −14 cm 2/s. 
Furthermore, with the increase in 𝐴𝐴 𝐴𝐴NO3

 −, particles can now even exist in a non-solid state at RH < 20%, resulting 
in a Dƒ, DOP above ∼10 −21 cm 2/s under such dry conditions. Although the results of the Stokes–Einstein equation 
calculated at high viscosity may not be accurate, it can be concluded that the change in the chemical composition 
of urban aerosol particles has significantly enhanced the diffusion coefficients of molecules by several orders 
of magnitude under drier conditions. Consequently, during the moderate-polluted period, when particles are 
predominantly nitrate-dominated, the switch to a liquid state occurs even at lower RH levels, facilitating the mass 
transfer of reactive molecules and promoting the growth and aging of secondary aerosol particles. Additionally, 
the positive feedback loop between aerosol liquid water and inorganic compounds, which is well documented in 
previous studies (Chen et al., 2022; Liu, Wu, et al., 2017; Wang et al., 2020; Wu et al., 2018), is more likely to be 
initiated under these conditions.

For the first time, we have emphasized that the increase in Finorg, especially 𝐴𝐴 𝐴𝐴NO3
 −, in recent years has acceler-

ated bulk–phase diffusion and multiphase chemistry under drier conditions from the perspective of the particle 
phase state. Our findings highlight the importance of considering the decrease in RHthreshold resulting from the 
enhancement of inorganic compounds to better understand the haze formation mechanisms. Apart from Beijing, 
noticeable increases in Finorg or 𝐴𝐴 𝐴𝐴NO3

 − have occurred in many urban cities globally in recent decades. The chem-
ical composition of urban aerosol particles was compiled from various countries (Figure S7 in Supporting Infor-
mation S1), and it was observed that inorganic compounds can account for 20%–90% of fine particles, while 
nitrate can account for 2%–66%. In cities where a high proportion of inorganic compounds, particularly particu-
late nitrate, is present, aerosol particles can exist in the liquid state under drier conditions, such as RH of ∼50%. 
Therefore, changes in the particle phase state characteristics driven by their chemical properties should also be 
considered to accurately assess the mass-transfer processes between the gas and particle phases in these cities.

Data Availability Statement
The data sets associated with this manuscript are available at Liu et al. (2023).
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