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A Prototype of Certain Abelian Fields whose Rings
of Integers Have a Power Basis

By
Syed Inayat Ali SHAH" and Toru NAKAHARA™

Abstract: By our criginal proof, we show the prototype of our recent works [1%], [7]
related to a problem of Hasse on the field K whose ring of integers has a power basis
or does not. In this note we characterize the field K as a subfield in a cyclotomic
field k,, of conducter m such that [k, : K| = 2 in the cases of m = £p"™ with a prime
p, where { =4 orp>£=3.
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§1. Introduction

In [11] and {5}, W. Narkiewicz and T. Kubota proposed to determine whether the ring
of integers in a field is monogenic or not as an unsolved problem. This problem of Hasse
is treated by many authors[1], [2], (3], [4], [7-10], [12], [13], [14].

Let F be an algebraic number field over the rationals Q. We denote the ring of integers
in F by Zp. If we have Zp = Z[a] for an element a of Zp, then it is said that Zr has a
power basis or F' has an integral power basis. The ring Zy is called monogenic if Zr has
a power basis, otherwise ZF is said to be non-monogenic.

Set ky, = Q(Gn), where (, is a primitive m-th root of unity. Let G be the galois group

Cal(k,,/Q) of ky, over Q. If k;}, is the maximal real subfield of k,,, then the ring Z,+ of
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integers has always a power basis[13].

In this article we treat certain imaginary abelian subfields K with [k, : K] = 2.

In the next section we consider the case that the conductor mn = 4p™(n' > 1) with a
prime p and will show that the ring Zx of any subfield X in kn, such that [k, : K] =2

has a power basis and it is generated by the Gaufl peried ng = Z ¢? ., where i is the
pcH
subgroup of G corresponding to the field K. On the other hand, in the third section we

prove that in the case of m = 3p™(n > 1) with a prime p > 3 and the subfield X which
is distinct from k3 and kf, the ring Zx of integers in K does not have a power basis.
We shall prove each theorem using Hasse’s conductor-discriminant formula.

Finally we shall determine for the subfields of a cyclotomic frield kg3 of the conductor
| = 3|| — 31| whether each of them has an integral power basis or does not except for two

cases among twenty subfields.

§2. Monogenic Case

We start with the following theorems in which the rings of integers have a power basis.

THEOREM 1. Suppose m = 2" > 8 and let K be the imaginary subfield of k,, distinct
from kpmys such that [k, - K] = 2. Then the ring Zg of infegers in K coincides with Z[n),
where n is the Gaufl period (., — (' and the absolute value of the field discriminent of K

is equal to 211

Proof. Let G = Gal{k,/Q) =< 7 > X < ¢ > where 7% = e = 0%, s = ¢p(m)/2 = 2*2
and (7, = Gm, (2 = ¢, where & means the complex conjugate of a number o and ¢{-)
denotes the Euler function. Then kmse, Q((m + (') and K are subfields fixed by the
subgroups < ¢*/? >, < v > and H =< ¢%?7 > respectively. Now the character group
of Gis < A > x < 9 >, where characters X and 4 correspond to 7 and o, respectively.
We may define A(7) = —1, AMeg) = 1 and 9(7r) = 1, ¥(0) = (,, respectively. Then the
subgroup H =< ¢%/%1 > is the kernel of a character Ay and K is generated by the gauss
period 7= A = (m — G

pEH
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We calculate directly the discriminant dg(n) of the Gaufl period = Z ¢#, which is

peEH
given by

dx(n) = ( 1T (n’i"k—n’j”t)) ,

i< k<t

where Tio*H, 790t H € G/H =< 7H,cH >, n > 3, by way of the different 9 (5} of

=] -

pEC/H\{H}

Then we obtain

=1 =2(6m — ;1) = 2L%
Assume 2*||57 — 1 and 2%||57 + 1, where a®|jb for a,b € Z means that b= 0 {mod a®), but
b# 0 (mod a®*!). Then

=1 =(Gn— ) — (G —¢7)
= ((m — C;l) — (G = )
= (p — C~r1n+ah T §'1+bk _ €1+ah+bk
= Cm(l - C;:l)(l + Cgf)
=Gl = C)(L~ (27 *5)
o 22"22"
where ap = 5 — 1 = 2% + apy ()20 4o b = -5 — 1= 2% 4 bye(5)257 + -, and
ai(7)+b;(5) =1 for ¢ > 1. Here note that ~1=1+42+---+2"*! (mod 2*) and one and
only one of 57 — 1 or 5/ + 1 is exactly divisible by 2 for 1 < 7 < 5/2 — 1. Now, set
Sy ={51<7<s/2,2"59 -1}, S} = {j;1 < j < s/2,2"5 +1}
for1<h<n-2.
Let fA denote the cardinality of a set A. Then it holds that §57 + #1577 = s/2 — 1,
and Sy =0, S = {j;1 < j < 5/2,7 : odd}, namely §S; + 455 = 2»3"1 = 2"2-% For

h > 3, we have S5 = {k2" 21 < k < 207302 [ : 0dd}, S, = @, namely §5; + 157
— 21’1—3—(:'1—-2)—1 — 2n—2—h

In the case of 7 — 77" =7+ 7° we have the same evaluation as in 7 — n”’. Then by
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2
Vx(n)=2-£2 (32(3/2—1)32237% 23/2%}25'1) ,
we obtain

lde(m)| = Ng(0x(n))

~ 92" 2{1+(2"—2_2)+(n—4)-2-s/2}

— Zs(n—l) -1

7

where Ny means the absolute norm of a number from F. This value coincides with the
field discriminant d{(K) for K = Q({m — ¢;!), which completes the proof. In fact by

Hasse’s conductor-discriminant formula, it follows that

@ = T fx=tofer fysmFibio- - Fiygin

XE<A>

where 9® denotes the identity character and f, is the conductor of x in < A > . Then

fui = —? and fiy = ?, where ¢; = ged(7,s) and 0 < j < % — 1. Since the number of 17
] 7
and M with ¢; = 25, 0 <k < n— 3 is equal to 2¢ (%/tj) = ¢ (2""¥*), we obtain

Jj= j=
where
n—3
E =) (n—k)¢(s/25

k=0

n—3 n—3
=nYy 28— kg ()

k=0 k=0

=n(2* % —1)— ((s/2—2"") +2(2"* - 2" %) + .-+ (n - 3)(2' = 1))
=n(2" 2 -1)-2(5/2—1)+n—3

=sn—1)—1
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THEOREM 2. Suppose that m = 4p™, where p 5 an odd prime and let K be the imaginary
subfield of ky, distinct from Kpya with (ke : K| =2 . Then the ring Zx of integers in K
coincides with Z[nl, where n is the Gaufl period {m — (' and the absolute value of the
field discriminant of K is equal to 2°P")pne®™)-7 iy

Proof. Since the conductor m of a cyclotomic field &, is 4p™, we have three subfields
kms4, ki, and K of degree ¢(p™) whose galois groups < 7 >, < ¢°7 > and H =< ¢° > with
s = ¢{m/4)/2 respectively, where 7 and ¢ are generators of Gal(k,/Q) and Gal(k,./Q),
namely ¢f = (a, C;M = Cmss and (§ = (4, Crja = Gmyas where 7 is a primitive root
modulo p*. It is well known that the rings Z3 , and Z,+ are generated by (myq and

Gm + (5}, respectively [16]. Denote (4 by ¢ and (myq by (. For (o =1(, let n = Z ¢ =

pEH

€+ = G — ¢! be the GauB period. Then by setting K = Q(n), whose galois group
Gal(K/Q) is isomorphic to {H,¢H, -+ ,0°"*H,7H,o7H,--- ,0° 'TH} and its character
group is {I,4,--- , %" L A A, -+, Ap*"t}, where I is the identity character,p(c) =
(nt{r) =1 and Al(o)=1A(7)= -1

We evaluate the different of the number 7 = Z =+ ¢
pEH

wm =[] @-»).
PHEG/H\{H}
Weseethatfor 1<j<s—1,(j,p—1)=1

7 — T!a'f = (C_*_g—l) . (C'rj +C—'rj)
= (C (1 — c"’j‘l) - C"-rj (1 _ er—l))
=y (1 _ er—l)z
=i

because of {(r’ — I,p) = 1. Assume that j = k¢(p*),(k,p) = 1 for n > u > 1. Then
i = r#¢F*) = 1 + ktp* (mod p**1), where we can choose a primitive root r modulo p
such that 7%® = 1 + tp and (¢,p) = 1. Then (1 — (7 %)% = P2 Now the number ¢, of
exponents j (1 < j < s 1) such that 7 = 0 (mod ¢{p*)) (1 € u < n) is (p** — 1)/2.

Then we have
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s—-1 .
[ —n7") = p2%,
j=1

where
2B =2{p"((s — 1) — ) + p(ts ~ t2) b -+ 4 D" Ptz — tnor) + P o1 — ta) }

=np" = (n+1)p" " -1

=ng(p") —p" T - L.
Next by
=1 =d+CT) - HCHCT

=2u(H 1+ (%)

2

{4

with (2,p) = 1, we see that
INk(n —n7)| = 9¢(m)/2 — 9é(p")
Moreover we see that for 1 <j<s-—1,
Y (S e B (G e
=1+ ¢7 )+ A+

=L+ ¢ A+
1

IR

with p® J(r? £ 1), since we havefor 1 Su<n

Op(-1) = (-1°* J[ G +¢m =1

(z,p)=1

Thereby we obtain
dac(r) 2 Nic(sc()) = (NB2F) - 264/ = g1,

Next the absolute value of the field discriminant d{K) of the field K is equal to
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Sn—k Sn—1
IIA=(H@J(HﬁQ-
xE<MI> 4=0 =0 -

Set s; = ¢(p?)/2. Then we have

sp—1 Sp—1 Sp—1 sn—1 sn—1
T = T a|| ]| T &l T »
i=1 i=0 _3=0 =0 =0

(5P =1 Gip™)=p (7,p")=p"—2 Gp™y=pn—1

— (pn)(sﬂ—l]—(snﬁl -1) . (pn—l)(sn_lﬁl)f(s,,_zfl) . (p2)(52—1)—(s1—1} . psl-—l

— pn(s,,—l)—(snﬁ1—1)—{3,;72—1)— s {81—1)
— ,Sn =T —fn—1—8p-2— """ —s:+(n—1]-
Thus
(K| = 29 p2nd(e)/2-60" )2 - —(a)/2-1)
= 2¢(P“)pn¢(p"}—19 “3{p-1) — - —(p-1)-2
— 22sp2ns—m/(4p)—l'
Therefore we obtain {d{K)| == {dx(n)]. This completes a proof of Theorem 2. (]

§3. Non-Monogenic Case

We claim that the ring Z,. of integers in an imaginary field &, with [k i k]l =21s
non-monogenic for the conductor m = 3p®, p is a prime > 3. Contrary to the theorems in

the previous section, the Gaufl period does not necessarily generate a power basis.

THEOREM 3. Suppose m = 3p™, where p is a prime > 3, and K be the imaginary subfield
of km distinct from kyps with [kn, @ K] = 2. Then the ring Zy of infegers in K does
not have a power basis and the absolute value of the field discriminant of K is equal o

Ne(L-PF) = 3¢(pn)/2p“¢@“)~p““-1_
Proof Let w = (3, { = (m/3- Then {, = w - . For a cyclotomic field b= OC). et

G=Gallk,/Q)=<T>x<0c>
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be the galois group with 72 = e = o™ 2 and w™ =@, W’ =w, ("=, ¢ =¢". Then
(C=w-( (& =w-(. Fors=g¢(m/3)/2let H=< o > be the subgroup of G corre-
sponding to K and n = Z ? = w(¢ + ¢!) be the GauB period. Then K = Q(n). Let A

and # be characters deﬁ;::g by A1) = =1, A(e) = 1, ¥(r) = 1,9(0) = (,. Since the group
Gal(K/Q) is isomorphic to {H,¢H,--- 0" H,7H,70,--- ,70°"'H}, by the conductor-
discriminant formula we obtain the same absolute value |d(K)| = 3%p®™™GP-1 of the
field discriminant.

On the other hand, since the set {w”i"yj } is an integral basis of K =

0<i<l; 0L <s—1
Q(w) [6], any integer € € Zx can be written

s—1 s-1

. .
E ajw’YJ + § a’s+jw TJ:
=0 =0

where v = ¢ + ™. Then for the different of £

wl(e) = J] €-¢)
pHEG/H\{H}
=(E-&) - (E—ETHNE-EWE—ET) (£ - €T,
we see that
s-—1 s—1
S| S
j=0 j=0

=a(l —-w)

= ol

g—gt = wiaj (7j - ’Yjak) +WT§as+j (’)" - ’Yjak)
3=0 3=0

and by the same evaluation of P-exponent of (£ — §"k) in the proof of Theorem 2,

5-=1 . .
[T —¢") =pp>*
k=1
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for v = ¢ + ¢, some ,6,8 € Zg, prime ideals £ = (1 —w) and P = (1 —¢), where
2E = ne(p®) — p*~! — 1. Then we have

|dx(€)] = Nx(0x(£))

5—1 a—1
Ny (H(f —5“")) Ni(€ — £7)Nke (H(e —5’“"))}
k=1

k=1

Nic(aB)d(K) N (f[(s - e:”"))
k=1

Here we can confirm the above computation for the field discriminant d(A’). Namely, for

some ideals a, b we have

5—1

00w =E— & ZaQW), g, &) =][¢-¢") =v(QMH).

k=1
Moreover we obtain that
Ne(3(Q{(w))o(Q(7))) = Nxd(K) = d(K)
for linearly disjoint felds Q(w) and Q(v) over Q.
Then Zx = Z[¢] holds if and only if |dx(£)| = |d(K)| and hence it is equivalent to
Ni(eB)Nic((§ — €7)--+ (€ —€777)) = £1.
However we will find that |Ng (€ — £7)| > 1 for any primitive integer £ in K. In fact, we
s—1 s—1
write £ = wR 4+ w8, where R = Zaﬂj and § = Zasﬂ-fﬁ. In the case of R — 57 #

=0 =0

0, R —S #0and R—5° # £(R° - S),wepit A= R—57, B=S5—R°. By
€& — €™ =wA+w"B we consider the relative norm from K to Q7). It follows that

NgQuy € =€) = (wA+W"B) (WA +wB)
=A*— AB+ B*> A? - |AB| + B? > |AB|,

where the final equality holds only if |4| = | B|. Then by assumption, we have

Vi (€ =€) = [N,y (42 — 4B + B
> [Ngm(aB)| 2 1.
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Next in the case of R—S57 = 0, assume that { —£™° = 5 — R? is a unit. Then its conjugate

59 — R is also a unit. However by
. 5—1 ;
a ] a?
R—R =Zaj(”fj—(’y ))
=0

and ¥ - = (C+ ¢ —(¢" +¢") = 0 (mod P), R — R” is not a unit, which is a
contradiction. In the case of B — 8§ =0, we can deduce the same contradiction. Next in
the case of R— 57 = R" — 5, we hawve £ — £ = w(R — 57)(1 —w) =0 (mod £). Hence
Nk (- €] > 1.

Finally in the case of B — 59 = —(R? — 5), since

« = E-¢
= wR-9)+uw"(§—R")
= w(S—R%)+w'(R-5),
we have
20 = (wH+w)(B+S5—(R+5))
= 0 (mod P).

Then in this case also we have |Ng (£ — £} > 1. Thus for any integer £ € Zy, it can

not generate a power basis. {]

84, Examples

We consider all the subfields of the cyclotomic field kg3 of conductor | — 3|| — 31

According to the same notations as in the previous section, let
G =Ga1(k93/Q) = T>X<TF>,

where 72 = e = 0%, s = ¢(31)/2 and " =@, W’ =w, (T =, {7 = (" for a primitive

cubic root w of unity, a primitive 31st root ¢ of unity and a primitive root  modulo 31.
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Let Hy . =< o’ >, HY .

G and K, K3, Kj, Ke be the subfields of kos corresponding to H,_ .,

=< 7107 >, Hygyy =<7, ¢’ >, H; =<1 > be the subgroup of
H;_;/j: Hds/ja Hl

for 7|30, respectively. Let

"?étj: Z Com W = Z (8

pEHY, - PEH 375

of the period length 2s/j and 4s/j, respectively. Then we have twenty subfields of ko3
and their generators are as follows;

Ki=Q, K5 =Q(V=3) =k, K5 =Q(V93), Ko = Q (v=3),

Ks=Q(m), Ky =Q () = Q(V-3,V=31), Ks =Q (ns),

Ki =Q(m5) = Q(V=3m), K& =Q(nf) = Q (Ve,m),

Ks=Q(ns) = Q (V-31,1m3),

Kio=Q () = @ (V=3,m) , Kb =Q () = @ (Va3 m5),

Ko = Q (mo) = Q (vV=-31,15) ,

Ko =Q (nn) = Q@ (V=3,v=3Lm), Kis = Q (ms) = Q (ns,ms) = k3.
Ky =Q (np) = Q@ (V-3,v-3L15),
Kz = Q (m0) = @ (VB.m0,15) , Ky = Q (o) = @ (VOB ms.5) = ki,

Ky =Q (m0} = Q (vV=31,m3,m5) = ka1,

Koo = Q (Go3) = koa.

As is well known, the cyclotomic fields ko3, k31, k3, and their maximal real subfields
ki, ki, Q, and quadratic subfields K, K> have an integral power basis.

Since 2% = 1 (mod 31), the prime number 2 is completely decomposed in the subfield
K. Then using Proposition [13], the cubic subfield K3, the biquadratic one K, three
sextic ones Ky, K, Ks and K, have no integral power basis. Next, because two
subfields Ky, Ky are the composite fields of an imaginary quadratic field# Q(Z) and a
real abelian field, they have no integral power basis by Theorem 1 {7]. The ring of the
maximal imaginary subfield K of k3; is non-monogenic by Theorem 3. Finally, since the
extension degree of Kj is a prime 5 > 3, K; has no integral power basis by [3].

On the other hand, we can not determine whether each of the rings of integers in two

subfields K7 and K3 has a power basis or does not.
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