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Abstract: Let K be a biquadratic field. M.-N. Gras and F. Tanoé gave a necessary

and sufficient condition that K is monogenic by using a diophantine equation of

degree 4 (Lemma 3). In Theorem, we determine all the generators of power integral

bases of certain real monogenic biquadratic fields by using the above equation.
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1. Introduction. Let Z be the ring of the rational integers. Let K, ZK and DK be a

real biquadratic field Q
(√

dm,
√

dn
)

over the rationals Q, the ring of integers of K and

the discriminant of K, respectively. Let D(ξ) be the discriminant of an integer ξ in ZK .

The index I(ξ) of ξ ∈ ZK is defined by D(ξ) = I(ξ)2DK . K is said to be monogenic if ZK

has a generator of a power basis, i.e., there exists an integer θ of K such that ZK = Z[θ],

namely I(θ) = 1.

M.-N. Gras and F. Tanoé [GT] gave a necessary and sufficient condition that a bi-

quadratic field K has a generator of a power basis (Lemma 3 and Remark 5).

In this paper, we treat trivial real monogenic biquadratic fields, which are defined by

M.-N. Gras and F. Tanoé [GT] (see Remark 1).

In section 2, we prepare some lemmas. In Lemma 2 we calculate an integral basis by

using Hasse’s conductor-discriminant formula (Lemma 1).
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In the proof of Lemma 3 which is done in section 3, we induce three equations of

degree 4 by calculating index I(ξ) of ξ ∈ ZK .

In the proof of the theorem, we determine all the genarators of power bases of the trivial

real monogenic biquadratic fields by applying our key Lemma 5[NP] to above equations.

Lemma 5 gives squares in binary sequence which relates units of real quadratic fields.

2. Theorem and preliminaries. In this section, we show the theorem and pre-

pare some lemmas for the proof of the theorem. Let K be a real biquadratic field

Q
(√

dm,
√

dn
)

. We may assume that d, m, n are all positive square-free integers and

relatively prime to each other, dm ≡ dn (mod 4), m ≡ n ≡ 1 (mod 2) and m > n.

Then K is monogenic if and only if the equation

(u2 − v2)2(2δm) − (u2 + v2)2(2δn) = ±4 (\)

has solutions, where δ is equal to 0 or 1 with mn ≡ (−1)δ (mod 4) [Remark 5].

Theorem. Let K be a real biquadratic field Q
(√

dm,
√

dn
)

with dm ≡ dn ≡ 2 or 3

(mod 4). Then K is monogenic if and only if {u, v} in the equation above with u ≥ v ≥ 0,

(u, v) = 1 satisfies one of the following three conditions:

(1) The case d = 1, m − n = 4, m ≡ n ≡ −1 (mod 4). Then we have

(i) u = 1, v = 0, or

(ii) m = f 2 + 2, n = f 2 − 2, u = f, v = 1, where f > 1 is odd,

(2) The case d = 2, m − n = 2. Then we have

(i) u = 1, v = 0, or

(ii) m = 2f 2 + 1, n = 2f 2 − 1, u = 2f, v = 1,

(3) The case n = 1, m − 1 = 4d, d 6≡ 1 (mod 4). Then we have u = v = 1.

Then all the generators θ of power bases of ZK are given by

θ = uv
1 − δ + 2δ

√
mn

2
+ v2

√
dn + (u2 − v2)

√
dm +

√
dn

2
.
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Remark 1 ([GT]). By the conditions of Theorem, we see that d = 2δ or n = 1. M.-N.

Gras and F. Tanoé called these conditions the trivial cases, where δ is 0 or 1 with

mn ≡ (−1)δ (mod 4). They gave solutions {u, v} of Theorem, i.e., {u, v} = {1, 0}
in the cases (1) and (2), and {u, v} = {1, 1} in the case (3). Then we shall call such a

field with the above conditions a trivial real monogenic biquadratic field.

Remark 2 ([M2]). As for the non-trivial real monogenic biquadratic field, the author

proved that there exist infinitely many such fields for any pair {u, v} with (u, v) = 1

and, at the same time, gave the method of their constructions.

Remark 3 ([KP, P]). A. Pethő determined all CNS bases by using power bases obtained

from Theorem (Remark 5). Let K be an algebraic number field with the ring of integers

ZK . It is called CNS (canonical number system) ring if there exists α ∈ ZK such that for

any non-zero γ ∈ ZK there are integers c0, c1, · · · , c` ∈ {0, 1, · · · , |NK/Q(α)|−1} such that

γ =
∑`

i=0
ciα

i. It is well known that ZK is CNS if and only if the field K is monogenic.

Lemma 1 (Hasse’s Conductor-Discriminant Formula[W]). Let K be the number field

associated to the group X of Dirichelet characters. Then the discriminant of K is given

by

D(K) = (−1)r2

∏

χ∈X

fχ.

Here fχ and 2r2 denote the conductor of χ and the number of the complex conjugations

of K/Q, respectively.

Lemma 2 ([GT, M1, M2]). Let K be a biquadratic field Q
(√

dm,
√

dn
)

. Then an

integral basis of ZK and the discriminant DK of K are given by the followings;

(1) in the case dm ≡ dn ≡ 1 (mod 4);

ZK = Z

[

1,
1 +

√
mn

2
,
1 +

√
dn

2
,
1 + e

√
mn +

√
dm +

√
dn

4

]

,

DK = d2m2n2, where e = ±1 such that d ≡ m ≡ n ≡ e (mod 4),
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(2) in the case dm ≡ dn ≡ 3 (mod 4) or (3.1) dm ≡ dn ≡ 2, mn ≡ 1 (mod 4);

ZK = Z

[

1,
1 +

√
mn

2
,
√

dn,

√
dm +

√
dn

2

]

, DK = 24d2m2n2,

(3.2) in the case dm ≡ dn ≡ 2, mn ≡ 3 (mod 4);

ZK = Z

[

1,
√

mn,
√

dn,

√
dm +

√
dn

2

]

, DK = 26d2m2n2.

Proof. Since in the case of a quadratic field k, the field discriminant and the conductor

of k coinsides with to each other, by Lemma 1 we have DK = Dk1
Dk2

Dk3
, where k1 =

Q(
√

mn), k2 = Q(
√

dn), k3 = Q(
√

dm). First we consider the case (1). Since Dk1
=

mn, Dk2
= dn, Dk3

= dm, we have DK = mn · dn · dm = d2m2n2. Let G be the

Galois group of K, which is defined by
〈

σ, τ ;
√

dn
σ

= −
√

dn,
√

dm
τ

= −
√

dm
〉

. For

αi ∈ ZK , i = 1, 2, 3, 4, we define ∆[α1, α2, α3, α4] by the determinant
∣

∣

∣

∣

∣

∣

∣

∣

α1 α2 α3 α4

ασ
1 ασ

2 ασ
3 ασ

4

ατ
1 ατ

2 ατ
3 ατ

4

αστ
1 αστ

2 αστ
3 αστ

4

∣

∣

∣

∣

∣

∣

∣

∣

.

If ∆2[α1, α2, α3, α4] = ±DK , then we have ZK = Z[α1, α2, α3, α4].

Now since 1+
√

dm
2

× 1+
√

dn
2

= d−e
4

√
mn + 1+e

√
mn+

√
dm+

√
dn

4
, we have 1+e

√
mn+

√
dm+

√
dn

4
∈

ZK . Then we have

∆2

[

1, 1+
√

mn
2

, 1+
√

dn
2

, 1+e
√

mn+
√

dm+
√

dn
4

]

= 2−8∆2[1,
√

mn,
√

dm,
√

dn]

= 2−8

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
√

mn
√

dm
√

dn

1
√

mn
σ √

dm
σ √

dn
σ

1
√

mn
τ √

dm
τ √

dn
τ

1
√

mn
στ √

dm
στ √

dn
στ

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= 2−8

∣

∣

∣

∣

∣

∣

∣

∣

1
√

mn
√

dm
√

dn

1 −√
mn

√
dm −

√
dn

1 −√
mn −

√
dm

√
dn

1
√

mn −
√

dm −
√

dn

∣

∣

∣

∣

∣

∣

∣

∣

2

= 2−8(mn)(dn)(dn)

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

∣

∣

∣

∣

∣

∣

∣

∣

2

= d2m2n2.

Therfore we have
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ZK = Z

[

1,
1 +

√
mn

2
,
1 +

√
dn

2
,
1 + e

√
mn +

√
dm +

√
dn

4

]

.

Similarly, we can obtain the discriminants and integral bases in the cases (2), (3,1)

and (3,2).

Remark 4 ([GT]). Lemma 2 (2), (3.1) and (3,2) are presented by the following form;

ZK = Z

[

1,
1 − δ + 2δ

√
mn

2
,
√

dn,

√
dm +

√
dn

2

]

, DK = 42+δd2m2n2,

where δ is 0 or 1 with mn ≡ (−1)δ (mod 4).

We will prove Lemma 3 after Proposition 1 in section 3.

Lemma 3 ([GT]). Let K be a biquadratic field Q
(√

dm,
√

dn
)

, then K is monogenic

if and only if one of the following conditions is satisfied ;

(1) In the case (3.1) dm ≡ dn ≡ 2, mn ≡ 1 (mod 4) or dm ≡ dn ≡ 3 (mod 4), and

m− n = 4d, the equation (u2 − v2)2m− (u2 + v2)2n = ±4 has a solution {u, v} in Z,

or

(2) in the case (3.2) dm ≡ dn ≡ 2, mn ≡ 3 (mod 4), and m − n = d, the equation

(u2 − v2)2m − (u2 + v2)2n = ±2 has a solution {u, v} in Z.

Remark 5 ([GT]). Two equations of Lemma 3 are presented by the following form;

(u2 − v2)2(2δm) − (u2 + v2)2(2δn) = ±4

where δ is equal to 0 or 1 with mn ≡ (−1)δ (mod 4).

If K is monogenic, then we have ZK = Z[θ] with

θ = uv
1 − δ + 2δ

√
mn

2
+ v2

√
dn + (u2 − v2)

√
dm +

√
dn

2
.
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Remark 6. From the equation (2) of Lemma 2, θ is determined up to parallel transfor-

mations by a rational integer, the signature of u, v, u2 − v2, u2 + v2, and permutation

u and v. Especially, it is admissible to permute u2 and −u2, and v2 and −v2 simulta-

neously, because the following identity holds;

±u2 =
±(u2 + v2) ± (u2 − v2)

2
, ±v2 =

±(u2 + v2) ∓ (u2 − v2)

2
.

Let G =< σ > × < τ > be the Galois group of K/Q, where
√

dm
σ

=
√

dm,
√

dn
σ

=

−
√

dn and
√

dm
τ

= −
√

dm,
√

dn
τ

=
√

dn. By Lemma 2, θ is also determined up to

automorphisms of K. Because the following identity holds;

θσ = uv
1 − δ − 2δ

√
mn

2
− v2

√
dn + (u2 − v2)

√
dm −

√
dn

2

= uv(1 − δ) − uv
1 − δ + 2δ

√
mn

2
− u2

√
dn − (v2 − u2)

√
dm +

√
dn

2
.

We can obtain the similar results for the cases θτ and θστ .

Lemma 4 ([NS, M2]). Let K = Q
(√

dm,
√

dn
)

and let k be a quadratic subfield of

K. Then K does not have any power basis if one of the following conditions is satisfied;

(1) 2 decomposes completely in k, say (2) = p1p2, and p1 remains prime or

decomposes completely in K/k,

(2) 3 decomposes completely in K/Q.

Remark 7. If K = Q(
√

DM,
√

DN) satisfies the condition DM ≡ DN ≡ 1 (mod 4),

then by using Lemma 4, we can show that K is non-monogenic [M2].

In the cases DM ≡ DN ≡ 2 or 3 (mod 4), 2 ramifies in k = Q(
√

DM), say

(2) = p2. In these cases, there exists infinitely many real monogenic biquadratic fields

satisfying each of following condition in K/k;

(i) p remains prime, (ii) p decomposes completely or (iii) p ramifies [M2].

3. The proofs of Lemma 3 and Theorem. First we prepare one lemma and two

propositins for the proof of Lemma 3 and Theorem.



Yasuo Motoda 15

Proposition 1. Let a > 1 and b > 1 be relatively prime and square-free rational

integers. Assume that the equation ax2−by2 = k has a solution {x0, y0}, with the positive

minimal unit
1

k
(x0

√
ak + y0

√
bk), where k = 1, 2 or 4. Moreover we assume that the

fundamental unit ε of the quadratic field Q(
√

ab) is presented by the form v + u
√

ab with

rational integers u, v if k = 1 and asuume that x0 ≡ y0 ≡ 1 (mod 2) if k = 4. Then ε is

equal to
1

k

(

ax2

0 + by2

0 + 2x0y0

√
ab

)

with positive norm.

Proof. By the identities (ax)2 − aby2 = ak, we obtan ε0 =
ax0 + y0

√
ab

ax0 − y0

√
ab

= 1

k
(ax2

0 +

by2
0 + 2x0y0

√
ab) and ε−1

0 =
ax0 − y0

√
ab

ax0 + y0

√
ab

= 1

k
(ax2

0 + by2
0 − 2x0y0

√
ab). So ε0 is a unit

with positive norm. Let ε be the fundamental unit > 1 of Q
(√

ab
)

. ε is presented

by the form 1

e
(v +u

√
ab), where u, v are rational integers and e = 1 if k = 1 or 2, e = 2

if k = 4. Now we show that N(ε) = 1, where the symbol N(·) denotes the norm of an

integer of Q
(√

ab
)

. If ε0 = 1

k
(x0

√
a+y0

√
b)2 is equal to an even power ε2r of ε, with a

positive rational integer r, then 1√
k
(x0

√
a + y0

√
b) = εr. This does not occur, for the left

hand side is an irrational integer of degree 4, while the right hand side is one of degree 2.

So ε0 is equal to an odd power of ε. Threfore we obtain N(ε) = 1 because N(ε0) = 1.

Hence we have ε−1 = 1

e
(v−u

√
ab) > 0. Then

√
ε0ε

−1 = 1√
k
(x0

√
a+y0

√
b)· 1

e
(v−u

√
ab) is a

unit 1

ek

(

(x0v − y0bu)
√

ak + (y0v − x0au)
√

bk
)

of the biquadratic field Q
(√

ak,
√

bk
)

.

Then since
√

ε0ε
−1 has degree 4, we have 1

ek
(x0v − y0bu) 6= 0, 1

ek
(y0v − x0au) 6= 0,

which are coefficients of the
√

ak-part and
√

bk-part, respectively. By the minimality

of
√

ε0 and
√

ε0ε
−1 <

√
ε0, we obtain (i) x0v − y0bu > 0 and y0v − x0au < 0 or (ii)

x0v − y0bu < 0 and y0v − x0au > 0. Now

ε0 ≤ ε0ε
−1 =

1

k
(ax2

0 + by2

0 + 2x0y0

√
ab) · 1

e
(v − u

√
ab)

=
1

ek

(

(ax2

0 + by2

0)v − 2abx0y0u − {(ax2

0 + by2

0)u − 2x0y0v}
√

ab
)

.

We evaluate the coefficient of the
√

ab-part. In the case (i), we have

0 ≤ 1

ek
((ax2

0 + by2
0)u − 2x0y0v) < 1

ek
((ax2

0 + by2
0)u − 2y0 · y0bu) = 1

ek
(ax2

0 − by2
0)u = 1

e
u.

Thus we obtain ε0ε
−1 = 1 namely ε0 = ε. In the case (ii), we have 0 ≤ (ax2

0 +by2
0)u−
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2x0y0v < (ax2
0 + by2

0)u − 2x0 · x0au = −(ax2
0 − by2

0)u = −ku, which is a contradiction.

Therefore ε0 is the fundamental unit.

Remark 8. On the equation above in the case k = 1, if the fundamental unit ε

of Q
(√

ab
)

does not belong to Z[
√

ab], then
1

k

(

ax2

0 + by2

0 + 2x0y0

√
ab

)

is equal to ε3

[Remark 9]. For each k = 1, 2 and 4, Proposition 1 relates to equations of Lemma 3 or

Remark 5. We must use this proposition for the proof of Theorem.

Remark 9. Let ε = 1

2
(v + u

√
D) be the fundamental unit of the quadratic field

Q(
√

D), where u ≡ v ≡ 1 (mod 2) and D is a square-free positive integer. Then we have

D ≡ 5 (mod 8). Put εn = 1

2
(vn + un

√
D). Then vn ≡ un ≡ 0 (mod 2) i.e., εn belongs

to Z[
√

D] if and only if n ≡ 0 (mod 3). These results are well known. If ax2
0 − by2

0 = 1

with x0, y0 are minimal positive integers, a > 1, b > 1 and the fundamental uint ε does

not belong to Z[
√

D] Then we have ax2
0 + by2

0 + 2x0y0

√
ab = ε3. For example, the fields

Q(
√

21) has the fundamental unit ε = 1

2
(5 +

√
21) which does not belong to Z[

√
21] and

ε3 = 55 + 12
√

21 = (3
√

3 + 2
√

7)2, 32 · 3 − 22 · 7 = 1, i.e., a = 3, b = 7, x0 = 3, y0 = 2.

Also, the field Q(
√

69) has the fundamental unit ε = 1

2
(25 + 3

√
69) with positive norm.

Therefore the equation 3x2 − 23y2 = 4 has a solution x0 = 3, y0 = 1.

On the other hand, the field Q(
√

85) has the fundamental unit ε = 1

2
(81 +

√
85) with

negative norm. Therefore the equation 5x2 − 17y2 = ±4 does not have any solution.

Proof of Lemma 3. Assume K is monogenic and let ξ be a generator of a power basis of

ZK . We calculate the index of ξ. Put ξ = a0 + a1

1 − δ + 2δ
√

mn

2
+ a2

√
dn + a3

√
dm +

√
dn

2
,

where ai, i = 0, 1, 2, 3 are rational integers. Then we have

D(ξ) = {(ξ − ξτ )(ξ − ξτ)σ · (ξ − ξσ)(ξ − ξσ)τ · (ξ − ξστ )(ξ − ξστ )τ}2. Now put x = a1, y =

2a2 + a3, z = a3. Then we have y ≡ z (mod 2) and (ξ − ξτ )(ξ − ξτ )σ = (2δx
√

mn +

z
√

dm)(−2δx
√

mn + z
√

dm) = z2dm − 4δx2mn = 2δmz2d−4δx2n
2δ , (ξ − ξσ)(ξ − ξσ)τ =

(2δx
√

mn+y
√

dn)(−2δx
√

mn+y
√

dn) = y2dn−4δx2mn = 2δny2d−4δx2m
2δ and (ξ−ξστ )(ξ−
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ξστ )τ = (y
√

dn+z
√

dm)(y
√

dn−z
√

dm) = y2dn−z2dm = 22−δdy2n−z2m
22−δ , where z2d−4δx2n

2δ ,

y2d−4δx2m
2δ and y2n−z2m

22−δ are rational integers. Therefore D(ξ)

= 24+2δd2m2n2· ( z2d−4δx2n
2δ )2· ( y2d−4δx2m

2δ )2· ( y2n−z2m
22−δ )2. Since DK = 24+2δd2m2n2, we have

I(ξ) = | z2d−4δx2n
2δ · y2d−4δx2m

2δ · y2n−z2m
22−δ | = 1 namely z2d − 4δx2n = ±2δ, y2d − 4δx2m =

±2δ, y2n − z2m = ±22−δ. Now we have the identity:

(ξ − ξτ )(ξ − ξτ)σ − (ξ − ξσ)(ξ − ξσ)τ + (ξ − ξτσ)(ξ − ξτσ)τ = 0

namely 2δm ∓ 2δn ± 22−δd = 0. Since m > n, we obtain (i) 2δm − 2δn = 22−δd or (ii)

2δm+2δn = 22−δd. For solutions of Pythagorian equation X2+Y 2 = Z2 i.e., (X, Y, Z) = 1,

it has a property Z ≡ 1 (mod 2). Therefore from the case (i) we can obtain (y2 − z2)d =

4δx2(m − n), and m − n = 41−δd, i.e., y2 − z2 = 4x2, hence y2 = z2 + 4x2. In the Gauss

field Q(i), since (z +2xi, z−2xi) = 1, we can put (u+vi)2 = z +2xi for a suitable Gauss

integer u + vi. Then we have u2 − v2 = z, uv = x, hence y = u2 + v2. Moreover we can

deduce that the case (ii) does not occur. In fact, if m+n = 41−δd, then mn+n2 ≡ 41−δdn

(mod 4),namely mn ≡ −1 + 41−δdn (mod 4). If δ = 0, then mn ≡ −1 ≡ (−1)δ (mod 4),

hence δ = 1, whichi is a contradiction. If δ = 1, then mn ≡ −1 + dn (mod 4), and

mn ≡ (−1)δ ≡ −1 (mod 4) hence dn ≡ 0 (mod 4), whichi is a contradiction, because dn

is square-free. Therefore we obtained Remark 5 and hence Lemma 3.

Proposition 2. Let D be not a square integer and let ε = 1

2
(v+

√
D) be the fundamental

unit of Q(
√

D) with a positive norm. Put εn = 1

2
(vn + un

√
D). Then the sequences

{vn} and{un} have the same binary recurrent sequence Xn+2 = vXn+1 − Xn with initial

conditions v0 = 2, v1 = v, u0 = 0, u1 = 1. Further we have un+1 = 1

2
(vun + vn).

Proof. ε is a solution of the equation x2−vx+1 = 0. Then we have εn+2−vεn+1+εn = 0.

So the sequences {vn} and{un} have the same binary recurrent sequence Xn+2 = vXn+1−
Xn. Since εn+1 = εn · ε, we have 1

2
(vn+1 + un+1

√
D) = 1

2
(vn + un

√
D) · 1

2
(v +

√
D) and

hence un+1 = 1

2
(vun + vn).
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Lemma 5 ([NP]). Let a > 2 be a rational integer, D = a2−4 ≥ 5 with D is not square

and S is the set of the square rational integers. Put α = 1

2
(a+

√
D), αn = 1

2
(vn+un

√
D).

Then un ∈ cS for n > 3 and c ∈ {1, 2, 3, 6} if and only if (n, a, c) = (4, 338, 1)

or (6, 3, 1). Here α is a unit of Q(
√

D) and has the positive norm with respect to

Q
(√

D
)

/Q.

Proof of Theorem. Let K be trivial and monogenic. we note that d = 2δ, where δ

is 0 or 1 with mn ≡ (−1)δ (mod 4) or n = 1. Put x = uv, y = u2 + v2, z = u2 − v2 in

Lemma 3. First, assume d = 2δ and put u = 1, v = 0, then we have y = z = 1 and

the equations of Lemma 3 are satisfied. Moreover if d = 1, then m ≡ n ≡ 3 (mod 4) by

Lemma 3 (1). Next, assume n = 1 and put u = v = 1, then we have y = 2, z = 0 and

by Remark 5, −4 · 2δn = −4. This holds when δ = 0. Then we have m− 1 = 4d, d 6≡ 1

(mod 4) by Lemma 3. We have obtained (1)(i), (2)(i) and (3) of Theorem.

So we assume u > v ≥ 1. We show that any other trivial and monogenic biquadratic

field does not exist and at the same time, we search all the other power bases. First,

we consider the case (1) d = 1, δ = 0. Since m = n + 4, we have mn ≡ 1 (mod 4).

The case m = 5, n = 1 does not occur because K should be a biquadratic field. Since

m · 12 − n · 12 = 4, by Proposition 1 the fundamental unit ε of Q (
√

mn) is equal to

1

4
(m · 12 + n · 12 + 2

√
mn) namely 1

2
(m − 2 +

√
mn) with positive norm. Any prime

factor of n ramifies in Q (
√

mn) . If there exist integers α and β of Q (
√

mn) such

that N(α) = n and N(β) = −n, then (α)2 = (β)2 namely (α) = (β) as ideals.

So
α

β
is a unit of Q (

√
mn) with the negative norm. This is a contradiction. Since

N(1

2
(n +

√
mn)) = −n, we obtain 1

4
{(yn)2 − z2mn} = n · (±1) = −n. Then there exists

a unit εk = 1

2
(vk + uk

√
mn) such that 1

2
(yn + z

√
mn) = 1

2
(n +

√
mn) · 1

2
(vk + uk

√
mn)

and hence
{

y = 1

2
(vk + ukm)

z = 1

2
(vk + ukn).

Therefore by Proposition 2, we have

(2uv)2 = y2 − z2 = uk{2vk + 2uk(m − 2)} = 4ukuk+1.
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We may assume k ≥ 0 because u−k = −uk. Since (uk, uk+1) = 1, uk and uk+1 are

square numbers. But by Lemma 5, if k > 3, then at most one of uk or uk+1 is a square

number. This is a contradiction. Two sequences {vk} and {uk} are given by

{vk} = {2, m − 2, (m − 2)2 − 2, (m − 2)3 − 3(m − 2), · · ·},

{uk} = {0, 1, (m − 2), (m − 2)2 − 1, · · ·}.

Then u3 = (m − 2)2 − 1 is not square. We can obtain k = 1 or k = 0 because

4ukuk+1 is square. If k = 1, then m− 2 = f2 i.e. m = f2 + 2 and n = f 2 − 2, where

f > 1 is odd and u2 + v2 = y = m− 1, u2 − v2 = z = m− 3, u = f , v = 1. This is the

case (1) (ii). If k = 0, then y = 1, z = 1, u = 1, v = 0. This case is excluded because

we assume v ≥ 1.

Next, we consider the case (2) d = 2, δ = 1. Since m − n = 2, by Proposition

1 the fundamental unit ε of Q (
√

mn) is equal to 1

2
(m + n + 2

√
mn) namely m −

1 +
√

mn with positive norm. By the assumption, we obtain N(n +
√

mn) = −2n.

So on the signature of the right hand side, by the same reason as in the case (1), we

obtain (yn)2 − z2mn = −2n. Then there exists a unit εk =
vk + uk

√
4mn

2
such that

yn + z
√

mn = (n +
√

mn)
vk + uk

√
4mn

2
and hence











y =
vk

2
+ ukm

z =
vk

2
+ ukn,

Therfore by Proposition 2, we have

(2uv)2 = y2 − z2 = 4uk(
vk

2
+ uk(m − 1)) = 4ukuk+1.

By the same way as in the case (1), we may assume k ≥ 0. Since (uk, uk+1) = 1,

uk and uk+1 are square numbers. But by the same reason as in the case (1), k > 3 is

impossible.

Two sequences {vk} and {uk} are given by

{vk} = {2, 2(m − 1), 4(m − 1)2 − 2, 8(m − 1)3 − 5(m − 1), · · ·},

{uk} = {0, 1, 2(m − 1), 4(m − 1)2 − 1, · · ·}.
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Since u3 = 4(m − 1)2 − 1 is not square, we obtain k = 1 or k = 0 because 4ukuk+1

is square. If k = 1, then 2(m − 1) = (2f)2, i.e. m = 2f 2 + 1, n = 2f 2 − 1 and

u2 + v2 = y = 2m− 1, u2 − v2 = z = 2m− 3, u = 2f , v = 1. This is the case (2) (ii). If

k = 0, then u = 1, v = 0. This case is excluded because we assume v ≥ 1.

Finally, we consider the case (3) n = 1. We may show the following two cases;

(∗)1 if n = 1, δ = 0, then u = v = 1.

(∗)2 if n = 1, δ = 1, then m = 3, d = 2. This case is contained in (2) (ii).

Now we consider the case (∗)1 n = 1, δ = 0. Then m − 4d = 1. By Proposition

1 the fundamental unit of Q
(√

dm
)

is equal to m + 4d + 4
√

dm namely 2m − 1 +
√

16dm with positive norm. From y2 − z2m = ±4 and m − 1 = 4d, we obtain

x2m − y2d = ±1 and hence (yd)2 − dmx2 = ∓d. Since N(2d +
√

dm) = −d, we

obtain (yd)2 − dmx2 = −d. Then there exists a unit εk =
vk + uk

√
64dm

2
such that

yd + x
√

dm = (2d +
√

dm)
vk ± uk

√
64dm

2
and hence







y = vk + 4muk,

x =
vk

2
+ 8duk.

So by proposition 2 we have

z2 = y2 − 4x2 = 16uk{
vk

2
+ (m + 4d)uk} = 16ukuk+1.

Since (uk, uk+1) = 1, uk and uk+1 are square numbers. However by Lemma 5, k > 3

is imposible. Two sequences {vk} and {uk} are given by

{vk} = {2, 2(2m − 1), 4(2m − 1)2 − 2, 8(2m − 1)3 − 6(2m − 1), · · ·},
{uk} = {0, 1, 2(2m − 1), 4(2m − 1)2 − 1, · · ·}.

u2 = 2(2m − 1) and u3 = 4(2m − 1)2 − 1 are not square numbers. So we have k = 0

and hence z = 0, u = v = 1. Therefore in the case n = 1, δ = 0, we obtain u = v = 1.

Now we consider the case (∗)2 n = 1, δ = 1. In this case, we have m ≡ 3 (mod 4).

By Remark 3 (2), y2−z2m = ∓2 and hence m(2x)2−dy2 = ∓2. Especially, we see that

2|d. Then 2mx2 − d

2
y2 = ∓1. We may assume

d

2
6= 1, because in the case

d

2
= 1, we

have already considered in the case (2) and have obtained u = 2, v = 1, m = 3, d = 2.
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Then since the above equation satisfies the conditoin of Proposition 1, we can obtain the

fundamental unit ε = 2mx2
0 +

d

2
y2

0 + 2x0y0

√
dm of the quadratic field Q

(√
dm

)

with

the minimal solution {x0, y0} of the equation 2mx2 − d

2
y2 = ∓1. On the other hand,

since the fundamental unit of Q
(√

dm
)

is given by ε = 2m − 1 + 2
√

dm, we have

2mx2
0 +

d

2
y2

0 = 2m− 1. But this does not occur because 2mx2
0 +

d

2
y2

0 > 2m− 1. Thus in

the case n = 1, δ = 1, we obtain m = 3, d = 2.

Therefore we have proved theorem completely.

Corollary. We solved completely the following equations with u, v variables and

m parameter, and all the solutions are given the followings;

(1) (u2 + v2)2 − u2v2m = 1, m ≡ −1 (mod 4) and m, m − 4 are squarefree, then

{u, v} = {1, 0}, and {f, 1} with f > 1 is odd if m = f 2 + 2.

(2) (u2 + v2)2 − 2u2v2m = 1, and m, m − 2 are squarefree, then {u, v} = {1, 0},
and {2f, 1} if m = 2f 2 + 1.

(3) (u2 − v2)2m − (u2 + v2)2 = −4, m 6≡ 5 (mod 16) and m, m−1

4
are square-free,

then {u, v} = {1, 1}.

Remark 10. We partially prove Corollary by solving above equations directly.

First we consider the case (1) and try to find solutions with u > v ≥ 1. We have u4 −
(m − 2)v2u2 + v4 − 1 = 0 and hence u2 = 1

2

(

(m − 2)v2 ±
√

m(m − 4)v4 + 1
)

. Then we

can put t2 = m(m− 4)v4 +1. So we have t2 −m(m− 4)v4 = 1. By duality of the equation

(1) with respect to u and v, we can obtain the equation s2 − m(m − 4)u4 = 1. Then we

can apply Lemma 5 to these relations. By similar argument of the proof of Theorem (1),

we can obtain u2 = u2 = m − 2 = f 2 and v2 = u1 = 1 and hence u = f, v = 1.

Next we consider the case (2) and try to find solutions with u > v ≥ 1. We have u4 −
2(m − 1)v2u2 + v4 − 1 = 0 and hence u2 = (m − 1)v2 ±

√

m(m − 2)v4 + 1. Then we

can put t2 = m(m − 2)v4 + 1. So we have t2 − m(m − 2)v4 = 1. Similarly we can obtain

s2−m(m−2)u4 = 1. By the same argument as above we can obtain u2 = u2 = 2(m−1) =



22 On Integral Bases of Certain Real Monogenic Biquadratic Fields

(2f)2 and v2 = u1 = 1 and hence u = 2f, v = 1.

Remark 11. Three fundamental units in the proof of theorem and two of them in Remark

10 are of all Richaud-Degart type[D, H]. These units are obtained from the equations of

Proposition 1.
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