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On Integral Bases of
Certain Real Monogenic Biquadratic Fields

By
Yasuo MOTODA*

Abstract: Let K be a biquadratic field. M.-N. Gras and F. Tanoé gave a necessary
and sufficient condition that K is monogenic by using a diophantine equation of
degree 4 (Lemma 3). In Theorem, we determine all the generators of power integral
bases of certain real monogenic biquadratic fields by using the above equation.
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1. Introduction. Let Z be the ring of the rational integers. Let K, Zx and Dy be a
real biquadratic field Q (\/%, \/%) over the rationals @, the ring of integers of K and
the discriminant of K, respectively. Let D() be the discriminant of an integer € in Z.
The index I(£) of £ € Zy is defined by D(§) = I(€)?Dg. K is said to be monogenic if Zg
has a generator of a power basis, i.e., there exists an integer 6 of K such that Zx = Z[0],
namely 7(0) = 1.

M.-N. Gras and F. Tanoé [GT] gave a necessary and sufficient condition that a bi-
quadratic field K has a generator of a power basis (Lemma 3 and Remark 5).

In this paper, we treat trivial real monogenic biquadratic fields, which are defined by
M.-N. Gras and F. Tanoé [GT] (see Remark 1).

In section 2, we prepare some lemmas. In Lemma 2 we calculate an integral basis by

using Hasse’s conductor-discriminant formula (Lemma 1).
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10 On Integral Bases of Certain Real Monogenic Biquadratic Fields

In the proof of Lemma 3 which is done in section 3, we induce three equations of
degree 4 by calculating index I(&) of £ € Z.

In the proof of the theorem, we determine all the genarators of power bases of the trivial
real monogenic biquadratic fields by applying our key Lemma 5[NP] to above equations.

Lemma 5 gives squares in binary sequence which relates units of real quadratic fields.

2. Theorem and preliminaries. In this section, we show the theorem and pre-
pare some lemmas for the proof of the theorem. Let K be a real biquadratic field
Q (\/%, M) . We may assume that d, m, n are all positive square-free integers and
relatively prime to each other, dm = dn (mod 4), m =n =1 (mod 2) and m > n.

Then K is monogenic if and only if the equation
(u® = v*)*(2'm) — (u* +v*)*(2'n) = +4 (8)
has solutions, where ¢ is equal to 0 or 1 with mn = (—1)° (mod 4) [Remark 5].

Theorem. Let K be a real biquadratic field Q (\/%, \/%) with dm =dn =2 or 3
(mod 4). Then K is monogenic if and only if {u, v} in the equation above with u > v > 0,
(u, v) =1 satisfies one of the following three conditions:
(1) The case d=1, m—n=4, m=n=—1 (mod 4). Then we have

u=1 v=0, or

({i)m=f>+2, n=f2=2 u=f v=1 where f>1 is odd,
(2) The case d =2, m —n=2. Then we have

u=1 v=0, or

(i) m=2f24+1,n=2f2—1, u=2f, v=1,
(3) The case n=1, m—1=4d, d# 1 (mod 4). Then we have u=uv = 1.

Then all the generators 6 of power bases of Zyi are given by

_ § Ve
Qzuvl 5+22 mn+v2vdn+(u2—v2)M.
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Remark 1 ([GT]). By the conditions of Theorem, we see that d =2° or n=1. M.-N.
Gras and F. Tanoé called these conditions the trivial cases, where ¢ is 0 or 1 with
mn = (—1)° (mod 4). They gave solutions {u, v} of Theorem, i.e., {u, v} = {1, 0}
in the cases (1) and (2), and {u, v} = {1, 1} in the case (3). Then we shall call such a

field with the above conditions a trivial real monogenic biquadratic field.

Remark 2 ([Ms]). As for the non-trivial real monogenic biquadratic field, the author
proved that there exist infinitely many such fields for any pair {u, v} with (u, v) =1

and, at the same time, gave the method of their constructions.

Remark 3 ([KP, P]). A. Pethé determined all CNS bases by using power bases obtained
from Theorem (Remark 5). Let K be an algebraic number field with the ring of integers
Zk. It is called CNS (canonical number system) ring if there exists a € Zg such that for
any non-zero y € Zx there are integers co, c1,- -+ ,¢¢ € {0,1,-- -, |[Ng/g(a)| — 1} such that
v = Zf:o c;al. Tt is well known that Zg is CNS if and only if the field K is monogenic.

Lemma 1 (Hasse’s Conductor-Discriminant Formula[W]). Let K be the number field
associated to the group X of Dirichelet characters. Then the discriminant of K is given
by

D(K) = (=1 [] e

xX€X

Here f, and 2r; denote the conductor of x and the number of the complex conjugations

of K/Q), respectively.

Lemma 2 ([GT, My, My]|). Let K be a biquadratic field Q (\/dm, \/dﬂ). Then an

integral basis of Zyi and the discriminant Dy of K are given by the followings;

(1) in the case dm =dn =1 (mod 4);

1++v/mn 1+vdn 1+ey/mn+vVdm++Vdn

Zi =27 |1
K 9 2 4

Y

Dy = d*m?*n?, where e = £1 such that d=m =n = e (mod 4),
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(2) in the case dm =dn =3 (mod 4) or (3.1) dm=dn=2, mn=1 (mod 4);

ZK =27 y DK = 24d2m2n2,

171+\2/mn’\/%7 \/dm;‘\/dn

(3.2) in the case dm =dn =2, mn =3 (mod 4);

\/%’\/%4-\/%

5 , Dr = 28d?m>n?.

Zx =4 |1,v/mn,

Proof. Since in the case of a quadratic field k, the field discriminant and the conductor

of k coinsides with to each other, by Lemma 1 we have Dy = Dy, Dy, Dy, where k;

Q(v/mn), ky = Q(vdn), ks = Q(v/dm). First we consider the case (1). Since Dy,

mn, Dy, = dn, Dy, = dm, we have Dg = mn - dn - dm = d*m*n®. Let G be the

Galois group of K, which is defined by <a,7’; Vdn’ = —v dn, Vdm ' = —\/dm>. For

a; € I, 1 =1,2,3,4, we define Aoy, ag, az, ay] by the determinant

Q1 G (3 04
o g g o

of of af af
T T

Qo Qg3 Qy
oT oT oT

Qp Gy O3 Oy

If A2[ay, an, a3, ] = = Dp, then we have Zy = Z[ay, s, as, ayl.

Now since

Z. Then we have

A2 1+vmn  1++dn
17 ’ 2

ey/mn+Vdm+Vdn -
/ 1+\/_+4 + —9 8A2[1, fmm, Vd

~
=)

Y

H
95§
5

1 /mn vdm vdn 1
_ o8 1 /mn’ \/dmj \/dnj _ o8 1 —y/mn —vdn
1 vmn™  Vdm vVdn 1 —v/mn —vVdm Vdn
1 vmn? Vdm°’ Vdn* 1 vmn —Vdm —+vdn
11 1 1 )
1 -1 1 -1
_ o8 2.2 9
= 27%(mn)(dn)(dn) 1 -1 -1 1 = d*m?n”.
1 1 -1 -1

Therfore we have

v/ v/ — 1+ey/ Vd d 1+ey/ Vd Vd
1+2dm % 1+2dn — d4em+ +e mn+4 m-&-ﬁj we have +e mn+4 m+vdn c
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1

1++v/mn 1+ vVdn 1+eymn+vVdm+Vdn

I =2
K 9 9 4

Similarly, we can obtain the discriminants and integral bases in the cases (2), (3,1)

and (3,2) 1

Remark 4 ([GT]). Lemma 2 (2), (3.1) and (3,2) are presented by the following form;

1= 5+ 2 /mn Vm + Vi
7 =7 |1, +2 m”,\/dn,$ | Dy = A2F 222

where § is 0 or 1 with mn = (—1)° (mod 4).

We will prove Lemma 3 after Proposition 1 in section 3.

Lemma 3 ([GT]). Let K be a biquadratic field Q <\/%, \/%), then K is monogenic
if and only if one of the following conditions is satisfied ;

(1) In the case (3.1) dm =dn =2, mn =1 (mod 4) or dm =dn =3 (mod 4), and
m—n=4d, the equation (u* —v*)*m — (u® +v*)?’n = £4 has a solution {u,v} in Z,
or

(2) in the case (3.2) dm = dn = 2, mn = 3 (mod 4), and m —n = d, the equation

(u? — v?)?*m — (u® + v*)?n = £2 has a solution {u,v} in Z.

Remark 5 ([GT]). Two equations of Lemma 3 are presented by the following form;
(u? — v*)%(2°m) — (u® + v*)*(2°n) = +4

where § is equal to 0 or 1 with mn = (—1)° (mod 4).
If K is monogenic, then we have Zx = Z[f] with

1—§+2°/mn v v
0 =uv 5+2 mn+v2vdn+(u2—v2)M.



14 On Integral Bases of Certain Real Monogenic Biquadratic Fields

Remark 6. From the equation (2) of Lemma 2, 6 is determined up to parallel transfor-
mations by a rational integer, the signature of u, v, u? — v?, u? + v?, and permutation
u and v. Especially, it is admissible to permute «? and —u?, and v? and —v? simulta-
neously, because the following identity holds;

+(u? + v?) £ (u? —v?)
2 ’ 2

+u? =

Let G =<0 > x <7 > be the Galois group of K/Q, where Vdm '’ =+dm, Vdn°® =
—Vdn and Vdm = —v dm, Vdn " = Vn. By Lemma 2, 6 is also determined up to

automorphisms of K. Because the following identity holds;

—§—=9¢ \/ —/

1-46 22 vmn o oo (u? — %) dm2 dn

_ 5

1-0+2 \/mn_u2 /_dn—(v2—u2)\/dm+vdn.

2 2

0° =uv

=uv(l —9) —uv

We can obtain the similar results for the cases 67 and 677.

Lemma 4 ([NS, My]). Let K =Q (\/%, \/%) and let k be a quadratic subfield of
K. Then K does not have any power basis if one of the following conditions is satisfied,
(1) 2 decomposes completely in k, say (2) = pip2, and Pp; remains prime or
decomposes completely in K/k,

(2) 3 decomposes completely in K/Q.

Remark 7. If K = Q(v/DM, v'DN) satisfies the condition DM = DN =1 (mod 4),
then by using Lemma 4, we can show that K is non-monogenic [Ms].

In the cases DM = DN = 2 or 3 (mod4), 2 ramifies in k& = Q(v/DM), say
(2) = p?. In these cases, there exists infinitely many real monogenic biquadratic fields
satisfying each of following condition in K /k;

(i) p remains prime, (ii) p decomposes completely or (iii) p ramifies [Ms)].

3. The proofs of Lemma 3 and Theorem. First we prepare one lemma and two

propositins for the proof of Lemma 3 and Theorem.
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Proposition 1. Let a > 1 and b > 1 be relatively prime and square-free rational
integers. Assume that the equation ax®—by? = k has a solution {xg, yo}, with the positive
minimal unit %(:Eo\/% + yo\/@), where k = 1, 2 or 4. Moreover we assume that the
fundamental unit € of the quadratic field Q(v/ab) is presented by the form v + u\/ab with
rational integers u,v if k = 1 and asuume that xo = yo = 1 (mod 2) if k = 4. Then ¢ is

1
equal to z <a9§3 + by + 2w0yo V ab) with positive norm.

aro+yoVab

Proof. By the identities (ax)? — aby® = ak, we obtan gy = —————— = 7(azj +
axg — YoV ab

9 1 arg—yovVab 2 i i

bys + 2xoyoVab) and g, = 7 (axg 4 byg — 2woyoVab). So ey is a unit

axy + YoV ab B
with positive norm. Let ¢ be the fundamental unit > 1 of Q <\/ ab) . € is presented

by the form é(v —i—u@), where u, v are rational integers and e =1ifk=1or 2,e =2
if k = 4. Now we show that N(¢) =1, where the symbol N(-) denotes the norm of an
integer of Q (\/@) . If g9 = 1(zov/a+yovb)? is equal to an even power £ of &, with a
positive rational integer r, then ﬁ(zo\/a + yo\/g) = ¢". This does not occur, for the left
hand side is an irrational integer of degree 4, while the right hand side is one of degree 2.
So ¢ is equal to an odd power of . Threfore we obtain N(g) =1 because N(gp) = 1.
Hence we have ¢! = L(v—uv/ab) > 0. Then \/Zpe ! = ﬁ(azox/&—i—yo\/g)-%(v—uﬂ) is a
unit - ((xov — yobu)Vak + (yov — xoau)\/%) of the biquadratic field Q <\/&, \/@) :
Then since /Zpe ™! has degree 4, we have =(zov — yobu) # 0, = (yov — zoau) # 0,
which are coefficients of the vak-part and +/bk-part, respectively. By the minimality
of \/go and \/Ege ! < /g, we obtain (i) v — yobu > 0 and yov — zpau < 0 or (ii)

Tov — yobu < 0 and yov — xpau > 0. Now

1 1
V< gt = %(a:rg + byg + QxOyO\/%) . ;(v _ ux/@)
1
== ((axg + bya)v — 2abxoyou — {(azd + by )u — 2x0y0v}\/%> ,

We evaluate the coefficient of the vab-part. In the case (i), we have

0< i ((axd + by2)u — 2z0yov) < i ((azd + byd)u — 2y - yobu) = i(am% — by u = %u

1

Thus we obtain gpe~! =1 namely &y =¢. In the case (ii), we have 0 < (az+bys)u—
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220y0v < (axd + byd)u — 2x¢ - ¥oau = —(axd — bys)u = —ku, which is a contradiction.

Therefore £y is the fundamental unit.

Remark 8. On the equation above in the case k& = 1, if the fundamental unit e
1
of Q <\/ ab) does not belong to Z[vab], then z <ax(2) + bys + 2x0y0V ab) is equal to &3

[Remark 9]. For each k = 1, 2 and 4, Proposition 1 relates to equations of Lemma 3 or

Remark 5. We must use this proposition for the proof of Theorem.

Remark 9. Let ¢ = i(v + uv/D) be the fundamental unit of the quadratic field

1
2
Q(V/D), where u = v =1 (mod 2) and D is a square-free positive integer. Then we have
D =5 (mod 8). Put &" = 3(v, + u,v'D). Then v, = u, = 0 (mod 2) i.e., " belongs
to Z[v/D] if and only if n = 0 (mod 3). These results are well known. If az?2 — by2 = 1
with xg, yo are minimal positive integers, a > 1,b > 1 and the fundamental uint £ does
not belong to Z[v/D] Then we have az? + by2 + 2zoyov/ab = £3. For example, the fields
Q(v/21) has the fundamental unit € = 1(5 + v/21) which does not belong to Z[v/21] and
€3 =55 +12v21 = (3v3+2V7)? 32-3-22.7T=1,ie,a=3,b="T,20 =3,y = 2.
Also, the field Q(v/69) has the fundamental unit ¢ = (25 + 31/69) with positive norm.
Therefore the equation 322 — 23y% = 4 has a solution zg = 3, yy = 1.

On the other hand, the field Q(v/85) has the fundamental unit & = (81 + 1/85) with

negative norm. Therefore the equation 52° — 17y* = £4 does not have any solution.

Proof of Lemma 3. Assume K is monogenic and let £ be a generator of a power basis of
1—0+2°/mn Vdm + Vdn

5 + asVdn + a3———,
where a;, i = 0,1, 2,3 are rational integers. Then we have

D) ={( =€) =€) (=€) —¢7) - (=€) =€)} Now put . = ar,y =
2ay + a3,z = asz. Then we have y = z (mod 2) and (£ — £7)(€ — €7)7 = (2°z/mn +
Z\/%)(—Qél’\/ﬁ + Z\/%) = 22dm — 4%2%2mn = 25m722d_2%6m2”, (E—¢&N(E—-¢7) =
(2082 /mn+yVdn)(—20x/mn+yVdn) = y2dn—4x>mn = 2%%% and (£—£77)(£—

Zk. We calculate the index of €. Put £ = ag + a4
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7Y = (y/an-+ o) (gt — /) = i — P = PP here et

27 46..2 .2 . .
yd—tozim and L 5= are rational integers. Therefore D(¢)

20
_ 24+2§d2 2p2. <z2d—46a}2n)2. (de—45x2m)2_ (an—ZQm)Q Since Dx = 24+2§d2 2,2 h
— 2(5 25 22 > ce K — m-n 3 we ave
22 6..2 27 6.2
I(6) = |Pastietn | atlatn pnsin) ) yamely 220~ hatn = 490, yPd — Ada?m =

+2° 4%n — 2>m = +227%. Now we have the identity:
(E—ENE—E&) = (E—&)NE-&) +(E-E)NE-E7) =

namely 2°m F 2°n + 227°d = 0. Since m > n, we obtain (i) 2°m — 2°n = 227°d or (ii)
20m+29n = 2%79d. For solutions of Pythagorian equation X2+Y?2 = Z2ie., (X,Y,7) =1,
it has a property Z = 1 (mod 2). Therefore from the case (i) we can obtain (y? — 2?)d =
422%(m —n), and m —n = 417%d, i.e., y*> — 22 = 422, hence y?> = 22 + 422. In the Gauss
field Q(7), since (2 +2zi, z —2xi) = 1, we can put (u+wvi)*> = z+ 2xi for a suitable Gauss
integer v + vi. Then we have u? —v? = z,uv = x, hence y = u? + v2. Moreover we can
deduce that the case (ii) does not occur. In fact, if m+mn = 417%d, then mn +n? = 4 ~%dn
(mod 4),namely mn = —1+ 4'7%dn (mod 4). If § = 0, then mn = —1 = (—1)° (mod 4),
hence 0 = 1, whichi is a contradiction. If 6 = 1, then mn = —1 + dn (mod 4), and

mn = (—1)° = —1 (mod 4) hence dn = 0 (mod 4), whichi is a contradiction, because dn

is square-free. Therefore we obtained Remark 5 and hence Lemma 3. 1

Proposition 2. Let D be not a square integer and let ¢ = %(v—i—x/ﬁ) be the fundamental
unit of Q(vD) with a positive norm. Put " = %(v, + u,v/D). Then the sequences
{vn} and{u,} have the same binary recurrent sequence X, 2 = vX,1; — X, with initial

conditions vg = 2, v; = v, ug =0, u; = 1. Further we have u,,, = %(vun + vp,).

Proof. ¢ is a solution of the equation 22 —vx+1 = 0. Then we have "2 —pe" T 4£" = (.
So the sequences {v, } and{u,} have the same binary recurrent sequence X, 1o = vX, 411 —
X,,. Since "' = £" . ¢, we have %(Un_;_l + Up VD) = (vn + upV/D) - %(v ++/D) and

hence u, 11 = %(’Uun + vy). 1
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Lemma 5 ([NP]). Let a > 2 be a rational integer, D = a®>—4 > 5 with D is not square
and S s the set of the square rational integers. Put o = %(CH—\/E), o = %(Uﬁ—un\/ﬁ)
Then wu, € ¢S forn >3 and ¢ € {1,2,3,6} if and only if (n,a,c) = (4,338,1)
or (6,3,1). Here a is a unit of Q(\/D) and has the positive norm with respect to

Q(vD)/Q.

Proof of Theorem. Let K be trivial and monogenic. we note that d = 2°, where &
is 0 or 1 with mn = (-1)° (mod4) or n=1.Put z = uv,y = u?+v% 2z =u* —v?in
Lemma 3. First, assume d =2° and put w =1, v =0, then we have y =2 =1 and
the equations of Lemma 3 are satisfied. Moreover if d =1, then m =n =3 (mod 4) by
Lemma 3 (1). Next, assume n =1 and put u=wv =1, then we have y =2, 2 =0 and
by Remark 5, —4-2%n = —4. This holds when § = 0. Then we have m —1 =4d, d # 1
(mod 4) by Lemma 3. We have obtained (1)(i), (2)(i) and (3) of Theorem.
So we assume u > v > 1. We show that any other trivial and monogenic biquadratic
field does not exist and at the same time, we search all the other power bases.  First,
we consider the case (1) d =1,6 =0. Since m =n+4, we have mn =1 (mod 4).
The case m = 5,n =1 does not occur because K should be a biquadratic field. Since
m - 12 —n - 12 = 4, by Proposition 1 the fundamental unit ¢ of Q (y/mn) is equal to
T(m -1+ n-1% + 2y/mn) namely $(m — 2+ y/mn) with positive norm. Any prime
factor of n ramifies in @ (y/mn). If there exist integers « and ( of @ (y/mn) such
that N(a) =n and N(B8) = —n, then (a)* = (8)? namely (a) = (8) as ideals.
So % is a unit of @ (y/mn) with the negative norm. This is a contradiction. Since
N(3(n+ +/mn)) = —n, we obtain 1{(yn)? — z*mn} = n - (+1) = —n. Then there exists
aunit €® = 2 (v, + ugy/mn) such that $(yn + zy/mn) = 3(n+ /mn) - 5 (vp + w/mn)
and hence
y =
L

Therefore by Proposition 2, we have

(v + wpm)

N[= N

(vg + ugn).

(2uv)? = y* — 22 = wp {204 + 2up(m — 2)} = dugupy ;.
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We may assume k >0 because u_p = —uy. Since (ug, ugr1) =1, wugp and wugy; are
square numbers. But by Lemma 5, if k£ > 3, then at most one of u; or wuy,; is a square

number. This is a contradiction. Two sequences {v;} and {ui} are given by

{u}={2, m—-2, (m—22-2, (m—2)3-3(m—2), -},

{w} =10, 1, (m—2), (m—2)2—1, ---}.

Then w3 = (m —2)? — 1 is not square. We can obtain k =1 or k=0 because
dupugy is square. If k=1, then m—2= f2 iie. m= f2+2 and n = f?—2, where
f>1isodd and v?+ v’ =y=m—1, u>—v>=z2=m—3,u=f,v=1. Thisis the
case (1) (ii). If k=0, then y=1,2=1,u=1,v=0. This case is excluded because
we assume v > 1.

Next, we consider the case (2) d = 2,0 = 1. Since m —n = 2, by Proposition
1 the fundamental unit e of Q(y/mn) is equal to 3(m + n + 2y/mn) namely m —
1+ /mn with positive norm. By the assumption, we obtain N(n + /mn) = —2n.
So on the signature of the right hand side, by the same reason as in the case (1), we
Vg + upvV4amn

mn = —2n. Then there exists a unit ¥ = — such that

obtain (yn)? — 22

yn + zy/mn = (n +/mn)

Urm

v + upvV4amn
2

and hence

Uk
Z = 5 + ugn,

Therfore by Proposition 2, we have
v
(Quv)? =y?* — 22 = 4uk(§k +up(m — 1)) = dugug.

By the same way as in the case (1), we may assume k > 0. Since (ug, ugs1) = 1,
up and wugyq are square numbers. But by the same reason as in the case (1), k > 3 is
impossible.

Two sequences {vy} and {ug} are given by

{o} =1{2, 2(m —1), 4(m —1)2 =2, 8(m —1)3—=5(m —1), - -},
{up} =40, 1, 2(m —1), 4(m —1)> =1, ---}.
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Since wuz = 4(m — 1) — 1 is not square, we obtain k¥ =1 or k=0 because 4upugyi
is square. If k=1, then 2(m —1) = (2f) ie. m=2f2+1 n=2f2-1 and
wW4vt=y=2m—1,u*—v*=2=2m—3,u=2f,v=1. This is the case (2) (ii). If
k =0, then v =1,v =0. This case is excluded because we assume v > 1.

Finally, we consider the case (3) n =1. We may show the following two cases;

(x)1if n=1, 6=0, then u=v=1.
(%)2if n=1, 6 =1, then m =3, d =2. This case is contained in (2) (ii).

Now we consider the case (x); n =1, 6 = 0. Then m — 4d = 1. By Proposition

1 the fundamental unit of Q (\/%) is equal to m + 4d + 4v/dm namely 2m — 1 +

V16dm with positive norm. From y? — 22m = +4 and m — 1 = 4d, we obtain

2?m — y?d = £1 and hence (yd)? — dma? = Fd. Since N(2d + Vdm) = —d, we
i Vg, + uk\/m

obtain (yd)? — dmx? = —d. Then there exists a unit &* = such that

2
+ upv64
yd + zvdm = (2d + \/dm)vk WV 6ddm

2
Yy = v + dmuy,

and hence

T = Q;—k + 8duy,.

So by proposition 2 we have
22 =y? —42? = 16uk{%k + (m + 4d)ug} = 16ugug 1.

Since (ug,ugs1) =1, wur and wugyq are square numbers. However by Lemma 5, k > 3

is imposible. Two sequences {v;} and {uy} are given by

{ue} =1{2, 22m — 1), 42m —1)2 -2, 8(2m — 1) —6(2m — 1), - - -},
{up} =10, 1, 22m — 1), 42m —1)2 =1, ---}.

uy =2(2m —1) and wuz =4(2m —1)? — 1 are not square numbers. So we have k =0
and hence z =0, u =v = 1. Therefore in the case n =1, § =0, we obtain u=wv = 1.

Now we consider the case (x)s n =1, 6 = 1. In this case, we have m =3 (mod 4).
By Remark 3 (2), y?—2?m = F2 and hence m(2r)? —dy? = F2. Especially, we see that
2|d. Then 2ma? — ng = F1. We may assume 3 # 1, because in the case g =1, we

have already considered in the case (2) and have obtained uw =2, v =1, m =3, d = 2.
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Then since the above equation satisfies the conditoin of Proposition 1, we can obtain the

fundamental unit & = 2ma? + gyg + 220yovVdm of the quadratic field Q (\/ dm) with

the minimal solution {wg,y0} of the equation 2ma? — §y2 = F1. On the other hand,

since the fundamental unit of Q (\/ dm) is given by ¢ = 2m — 1 4+ 2v/dm, we have

2mak + Eyg = 2m — 1. But this does not occur because 2mag + §y(2) > 2m — 1. Thus in
the case n=1, d =1, we obtain m =3, d=2.

Therefore we have proved theorem completely. 1

Corollary. We solved completely the following equations with w, v wvariables and

m  parameter, and all the solutions are given the followings,

(1) (u?*+v*)?2 —w*v*m =1, m=—1 (mod 4) and m, m —4 are squarefree, then
{u, v} ={1, 0}, and {f, 1} with f>1 isoddif m= f>+2.

(2) (u? +0v?)? —2u*?m =1, and m, m —2 are squarefree, then {u, v} = {1, 0},
and {2f, 1} if m=2f*+1.

(3) (u?—v?)*m — (u* +v?)?=—4, m#5 (mod 16) and m, L are square-free,

then {u, v} ={1, 1}.

Remark 10. We partially prove Corollary by solving above equations directly.
First we consider the case (1) and try to find solutions with u > v > 1. We have u* —

(m — 2)v*u? + v* — 1 = 0 and hence v? = 3 ((m —2)v% & /m(m — 4)vt + 1) . Then we

can put * = m(m —4)v* + 1. So we have t* —m(m — 4)v* = 1. By duality of the equation
(1) with respect to u and v, we can obtain the equation s> — m(m — 4)u* = 1. Then we
can apply Lemma 5 to these relations. By similar argument of the proof of Theorem (1),

2

we can obtain u? = uy =m — 2 = f? and v> = u; = 1 and hence u = f, v = 1.

Next we consider the case (2) and try to find solutions with u > v > 1. We have u* —

2(m — 1)v*u? + v* — 1 = 0 and hence u?> = (m — 1)v® £ /m(m — 2)v* + 1. Then we
can put t2 = m(m — 2)v* + 1. So we have t* — m(m — 2)v* = 1. Similarly we can obtain

s> —m(m—2)u* = 1. By the same argument as above we can obtain u? = uy = 2(m—1) =
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(2f)? and v* = u; = 1 and hence u = 2f, v =1.

Remark 11. Three fundamental units in the proof of theorem and two of them in Remark
10 are of all Richaud-Degart type[D, H]. These units are obtained from the equations of

Proposition 1.
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