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ABSTRACT. In this paper we will make a correction of Nakahara’s table [N1] which
contains data of the structure of 3-Sylow subgroups in the ideal class groups for real
quadratic fields. We supply the correction by using algorithm in {K1] which enables
us to see the 3-rank of the ideal class groups of real quadratic fields. We also provide
a program of the algorithm written by PARI-GP.

0. Introduction.

In his paper {N1] Nakahara determines the structure of the 3-class group of a real
quadratic field Q(+/D) whose class number is divisible by 9. By using an algorithm
[K1, Theorem 0.5] we calculated the 3-rank of the ideal class group of Q(v/D) for
the same range of D as in [N1], and found 121 errors in {N1]. For each of the 121

cases, we checked our result by making use of a function equipped in PARI-GP.

Remark 0.1. In his paper [N1] we obtain not only the structure of the 3-class
group but also the class number in the wide sense, the number of reduced irrationals
in the principal class, accordingly the norm of the fundamental unit of Q(+/D) and
the number of the reduced irrationals in a real quadratic field Q(+/D) whose class

number is divisible by 9.

I especially thank Professor Toru Nakahara for his valuable advice and sugges-

tions. 1 am grateful to the referee for many helpful comments.

AMS subject classification: Primary 11R29, 11R11; secondary: 11Y16



Toru KOMASTU

1. Some remarks.

First we shall correct some mistakes in [N1]. At the Introduction in [N1], it is
stated that the numbers of real quadratic fields Q(+/D) whose class numbers are
divisible by 9 are 9386, 200, 300 and 400, when

(i) 1< D <1200000, (ii) 2000000 < D < 2022589,

(iii) 3000000 < D < 3029834, (iv) 4000000 < D < 4033723,

respectively. However,

Remark 1.1. The data for
(iv) 4000000 < D < 4039891
exist in [N1] disorderly. The data of D = 4033666, 4033718 and 4033723 are written
doubly (for the details, see Remark 1.3 below). Hence the data for D greater than
4000000 listed in [N1} are not on 400 fields @(+/D) such that 4000000 < D <
4033723 but on 397 fields Q(+/D) such that 4000000 < D < 4039891.

Remark 1.2. There is a correction that “exchange the pages 46 and 47” in the

errata.

We call the lower and the upper tables of page m by pp.m.A and pp.m.B,
respectively. The symbol X .n means the nth line from the top on a table X.

Remark 1.3. The data in the tables pp.89.B, pp.90.A and pp.90.B are not ar-
ranged in the numerical order of D’s. More precisely, the datum next to pp.89.B.49
is pp.90.A.35. The data from pp.89.B.50 to pp.90.A.34 must be connected to the
next of pp.90.B.60. The dafa pp-.90.B.61-63 are superfluous. In fact, they are the
same as the data pp.89.B.50-52.

2. Main algorithm.

For our correction we utilize the following algorithm in [K1].

Theorem 2.1 {elgorithm to know all unramified cyclic cubic extensions of o real
quadratic field and the 3-rank of the ideal class group [K1, Theorem 0.5)).

First let d be a square-free positive integer such that 31 d.



A CORRECTION OF NAKAHARA'S TABLE
Step 1. Put

{ 1 ifd=1 (mod 4),
e =
2  otherwise.

*

e¥ =

2
2 (e-e*=2).
. (e-e )

Step 2. Find all triples (a,b,c) € N® which satisfy
(A1) ei*{‘/e* @7d+1) < c < eVd,
(A.2) a?+ 27db% = e*2c3,

(A.3) ged(a,c) | lem(e, 3d),

L (A4) ws(e) #2,
where vs(a) is the greatest exponent n such that 3" | a. Let Wy be the set of all
such triples. For each (a,b,c) € Wy, there exists a unique integer s = S(gp,c) which

satisfies
.

(A5) —~<<s<$,
e €

{ (A.6) 3bs=a (mod e*c),

| (A7) 5% = —3d (mod e*c).
Let us define a subset Vg (C Wy) by

—3d
V= {(a, b,c) € Wy ‘ | Sabe) T ' > 1}.
e*c
Step 3. For each (a,b,c) € Vg, define a cubic polynomial f, (Z) by
fa,c(Z) = 23 —3¢cZ — ea.

Put n=4#Vz and r =logz(2n+1) € R.

Conclusion. Then the number r is equal to the 3-rank of the ideal class group of
the real quadratic field Q(+/d). For each (a,b,c) € Vg, the minimal splitting field
of fac(Z) over Q is an unramified cyclic cubic extension of Q(v/d). Conversely,

every unramified cyclic cubic extension of Q(vd) can be obtained in this way by a
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suitable (a,b, c) € Vy. All splitiing fields are different from each other. The integer
n s equal to the number of unramified cyclic cubic extensions of Q(\/&)

When 3 | d, let us change the conditions (A.1) to (A.T) in Step 2 as follows.

,
(B.1) ;'3%ﬂd+m<c<5£:

(B.2) a?+ gbz = e*3c®,
(B3) god(a, o) |leme, 5),

| (B.4) max{vs(a®e® —d — 4),vs3(a),v3(d)} > 2.

((B5) —S<s<i,
e e

{ (B.6) bs=a (mod e*c),

d
| B7) s*= -3 (mod e*2¢).

And, put

Vd:{(a’b’c)ewd’]s(abc)'*‘\/*d ] }

Then the conclusion is the same as in the case 3t d.

Remark 2.2. Fach calculation described in this theorem are carried out by finite

steps. The polynomial f, .(Z) is irreducible over Q for every (a,b,c) € Vy.

We present a program of Theorem 2.1 written by PARI-GP. The first three

programs “evalf”, “maxabx” and “Inds” are supplymentary functions.
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{evalf(x) = local(intgprt, fretprt, fre, zeros);
intprt = floor(x); fretprt = frac(x);
if( fretprt ==
Jfre = concat(”.”, 0);
Af( fretprix10<1
Jfretprt = fretpri«10; zeros = concat(”.”,0);
while( fretprt+10<1, fretprt = fretprtx10; zeros = concat(zeros,0););
frc = concat(zeros, floor(fretprtx1073));
Jfrc = concat(”.”, foor(fretprt+10°3));
);
)i

concat(intprt, fre);}

{maxabx(a, b, €, d) = local(};
max(max(valuation(a,3), valuation(b,3)}, valuation(a"2+e"2—d—4,3))}

{fnds(a, b, ¢, d0, e, est, ops) = local(b3, s, s0, estc, est2c);
if( ops == 0, b3 = 3+b, b3 = b);
estc = estxc; est2c = est"2xc;
for( s = 0, floor(c/e),
i( (s"24d0)%est2c ==
Af( {(b3#s—a)%estc == 0, sO = s; break,);
if( (b3+s+a)%estc == 0 ,50 = —s; break,);
i
)
s0;}
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{unram(d) =
local{numVd, e, est, d27, lowbnd, uppbnd, d0, lcme, ¢, est2c3,b, a2, a, s, abst, rk);
if( type(d) == "t INT” && d>0
Jif( issquarefree(d) ==
;JounVd = 0;
if{ %4 ==1,e =1, e = 2); est = 2/e;
#( d%3>0
427 = 27+d;
lowbnd = ceil{(est=(d27+1))"(1/3)/est);
uppbnd = foor(exd™(1/2));
d0 = d=3; leme = lem(e,d0);
.. for( ¢ = lowbnd, uppbnd,
est2¢c3 = est™2xc™3;
for( b = 1, floor(sqrt((est2c3—1)/d27)), a2 = est2¢3—d27+b"2;
if( issquare{a2) ==1
,a = round(sqrt(a2));
if( leme%gcd(a,c}) == 0 && valuation(a,3)<>2
8 = fnds(a, b, ¢, dO, e, est, 0);
abst = abs{(s+sqrt(—d0))/(estxc));
if( abst>1
;print([a, b, ¢, s, evalf(abst), Z"3—3*cxZ—exal);
numVd = numVd--1;
print([a, b, ¢, s, evalf(abst), ¥ — "]);
)
)i
3%
);
%
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Jowbnd = ceil((9+est+(d+3))"(1/3)/(3xest));
uppbnd = foor{exd"(1/2)/3);
d0 = d/3; lcme = lem(e,d0);
for( ¢ = lowbnd, uppbnd,
est2e3 = est™2x¢"3; .
for{ b = 1, floor(sqrt((est2¢3—1)/d0}), a2 = est2c3—d0xb"2;
if( issquare{a2) ==
,a = round(sqrt(a2));
if( leme%ged(a.c) == 0 && maxabx(a,b,e,d) >1
5= fnds(a, b, ¢, d0, e, est, 1);
abst = abs((s+sqrt(—d0))/(est*c));
if{ abst>1
;print(fa, b, ¢, s, evalf(abst), Z"3—3+cxZ—exa));
numVd = numVd+1;
;print([a, b, ¢, s, evalf(abst), ” — ”]);
%

%
)
rk = valuation{2*numVd+1,3});
if( 3"tk == 2¥mumVd+1
;print(”3-rank of the ideal class group of Q(sqrt(”, d ,”)) =", rk);
;print("error on the number of Vd PLEASE REPORT!”);
)i
,print(d ,” is not square-free!”);
)
,print(d ,” is not a positive integer!”);

);
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For example, input “unram(23659);”. Then the output is as follows.

[270, 2, 138,45,71.957", Z"3 — 414 x Z — 540)
[1837,2,181, —86,71.546”, Z"3 — 543 x Z ~ 3674]
(2998, 2,226, —103,71.263", Z "3 — 678 x Z — 5996]
[2872, 3,241, —29,71.111, Z "3 ~ 723 = Z — 5744]
[1862, 6,298, —20,70.899",” — 7]

3-rank of the ideal class group of Q(sqrt(23659)) = 2

The 1st—3rd components a, b, ¢ of each row mean a solution (a, b, ¢) which satisfies
{A.1)-(A.4) of Theorem 2.1. The above data show |Wazss9| = 5. The forth com-
porent is equal to s, 5 ) determined by (A.5)—{A.7) of Theorem 2.1, and the fifth
is equal to the absolute value [(5q,.) + vV—3d)/(e*c)|. (The decimals are rounded
off.) Thus |Vasese| = 4 and the 3-rank of the ideal class group of Q(+/23659) is equal
to 2. Every unramified cyclic cubic extensions of Q(~/23659) is one of the minimal
splitting fields over Q of Z% — 4147 — 540, Z° — 5437 — 3674, Z3 — 678 — 5996
and Z% — 723Z — 5744. It is known that 23659 is the smallest positive integer D
such that the 3-rank of the ideal class group of Q(+v/D) is greater than 1.

3. Some data.

Let us denote by H3y 3-Sylow group of the ideal class group of Q(+/D) described
in [N1), by 7k 3-rank of the ideal class group of Q(v/D) obtained by using the
algorithm in [K1], and by Clp ideal class group of Q(v/D) calculated on PARI-GP.
Here we take advantage of the function “bnfinit(z? — D).clgp” in PARI-GP to
see the ideal class group of Q(v/D). All calculations for rk and Clp are done on the
vefsion Ver.2.0.14 of PARI-GP. The following Tables 3.1-3.3 are the lists of data

where 7 are contrary to H3x. We simply denote by ny X ng X - -+ X ng a finite



abelian group Z/n; X Z/ng X - -- X L/n.

D
100014
125310
193610
207026
207879
219894
221527
245010
208447
324915
330635
354039
416111
419487
466990
468951
471511
473258
478587
485342
547563
555026
565598
580771
594435
603507
606395
631230
634283
689495
690938
698918
700010
719051
719106
724110

H3n
Ix3
3x3
I3x3
Ix3
3x3
Ix3
Ix3
3x3
27
3x3
Ix3

Ix3

27
Ix3
I3x3
3x3
3x3

27
3x3
Ix3
Ix3

27
3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3
3x3

27
Ix3
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)—IMI—lI—\I—\I-*I—-‘l—'I—\J—\I—‘t—ll—l!—ll\")—‘l—‘}—‘t\))—‘)—‘l—‘l—‘l\ﬂ)—'I—‘HL\JHHI—‘I—‘I—‘I—'I—‘I—*;

Table 3.1 (1 < D < 1000000)

Clp
18x2
18 x 2
18x2
36 x 2
I8x2x2
36 x 2
36 x 2
18 x 2
18 x 3
18x2
18 x 2
18x2x2
18x3
18x2
18 x2x2
18x2x2
T2 % 2
18x 3
18 x 2
18x2
3B x2
36 x 3
18x2
90 x2
18%2x2
36 x2
18x2
18x2x2
18x 2
18 x 2
18 x 2

36
18 x 2

90
18x3
18 x 2

D
729102
738647
743259
751655
751686
757563
757718
762226
786770
796259
301102
816613
820162
837347
841645
851258
858291
865306
868210
876018
895607
911118
928030
940415
940895
943315
949343
950547
950619
950690
960407
961751
068262
970955
972478
973470

H3y
3x3
Ix3
3x3
3x3
Ix3
27
I x3
3x3
Ix3
Ix3
Ix3
3x3
3%x3
3x3
3x3
Ix3
Ix3
3x3
3x3
3x3
Ix3
Ix3
Ix3
3Ix3
27
Ix3
3x3
Ix3
Ix3
Ix3
3x3
3x3
3x3
Ix3
3x3
Ix3

-
=

e T o T S R e R e e T e e e T e B e S R SR N, S S R S R ey =

Clp .
18x2
18 x 2
18x2x2
18x2x2
18x2x2
18x6
18x 2
T2 X 2
18x2x2

63
18 x2x2

36
126
18x2x2
18x2
18x2
18x2x%x2
T2 % 2
18x2x2
18x2x2
18 % 2
18 x 2
36 x2x2
18x2x2
18 x 3
T2 x2
18 x 2
36 x 2
36 x 2
18x2x2

36

36

72
18 x 2
36 x 2
JEx2x2
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Table 3.2 (1000000 < D < 1200000)

D H3N TK Clp D H3N TK Clp
1000002 27 2 183x 3 1065018 3x3 1 ~-36x2
1005951 3x3 1 18 x2x2 1072731 3x3 1 36 x 2
1016070 3x3 1 18x2x2 1105310 3x3 1 18x%x2
1017759 3x3 1 18x2x%x2 1110854 3x3 1 18x2x2
1018018 27 2 18x 6 1113838 3x3 1 Bx2
1023891 3x3 1 18x2x2x2 1119455 3 x3 1 18x2 -
1024166 3x3 1 3b6x2 1138511 3x3 1 18x2x2
1025738 3x3 1 18 x 2 1146922 3x3 1 36x2x2
1030227 3x3 1 3Bx2 150435 3x3 1 36x2x2
1032510 3x3 1 18 x2x%x2 1163490 3x3 1 18 x 2
1033170 3x3 1 18x2 1173003 3x3 1 18x2x2
1046526 3x3 1 36 x 2 1189686 3x3 1 90
1050082 3x3 1 6x2 1189810 3x3 1 18 x 2
1058862 3x3 1 Bx2x2

Table 3.3 (D satisfies (ii),(iii) or (iv'))

D H3n 7 Clp D H3nw 7K Clp
2002370 3x3 1 18 x 2 4000999 3x3 1 18x2
2012426 3x3 1 18x2x2x2 4011114 27 2 18x6
2020487 3x3 1 18 x 2 4020827 27 2 18x6
2022242 3x3 1 72 4027826 3x3 1 90x2
3009182 3x3 1 18 x2x2 4033135 3x3 1 144x2
3014443 3x3 1 72 4033718 3Ix3 1 18x2
3025906 3 x3 1 18 x 2 4034371 3x3 1 18x2
4003951 3x3 1 18 x 2 4037867 3x3 1 72
4003999 3x3 1 171 4038241 3x3 1 18
4004506 3 x3 1 18 x 2 4038205 3x3 1 18x2
4004674 3x3 1 18 4039483 3Ix3 1 90

Proposition 3.4. For every case in the above tables, rx agrees with Clp.

Remork 3.5. The calculating ways of rx and Clp are essentially distinct. The
calculation for Clp is done in the real quadratic field Q(\fﬁ) itself. On the other
hand, that for r¢ is done substantially in the imaginary quadratic field Q{/~3D).

Remark 3.6. The datum for D = 3025906 in the page 406 of Nakahara's other
paper [N2] is the same as the above H3y. It also should be corrected.

For each m =0,1,...,11, let Ay, be the set of all (square-free positive) integers
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D in the tables of [N1] with 100000m + 1 < D < 100000(m + 1). Let Asg, Aao
and Agp be the set of all integers D in [N1] such that D satisfy (ii),(iii) and (iv'),
respectively. Let B,, be the set of all integers which are contained in A,, and exist .

in Tables 3.1-3.3. We put am = |An|, bm = |Bm| and py, = (bm/am) x 100.

Table 3.7 (the number of different results and its percentage)

m 0 1 2 3 4 5 6 7 8 9 10 11 |0-11
am | 550 702 742 832 813 804 771 821 819 825 920 787 | 9386

bm 0 3 6 3 8 5 7 14 11 15 16 11 ; 99

7m(%)| 0.0 0.43 0.81 0.36 0.98 0.62 0.91 1.71 1.34 1.82 1.74 1.40 1.05

m 20 30 40 | total
an | 200 300 397 | 10283

bm 4 3 15| 121

pm(%)| 2.00 1.00 3.78| 1.18

Remark 3.8. The numbers p,,, in Table 3.7 are rounded.

Remark 3.9. The percentage pyp is extremely bigger than others pn,. These
phenomena, intimate the limitation of double precision in calculation by Fortran 77

on the computers which were employed to construct the Nakahara’s table.

Remark 3.10. One can obtain the program in § 2 written by PARI-GP at

http:/ /www.comp.metro-u.ac.jp/ trkomatu/unram/algo.tar.gz
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