Rep. Fac. Sci. Engrg. Saga Univ 32-2 (2003), Reports of the Faculty of Science and Engineering, Saga University, Vol. 32, No.2, 2003

## Mellin 変換を用いた DGLAP 方程式の数値解析

## 永井崇寛・熊野俊三

# Numerical analysis of DGLAP equations by using Mellin transformation

## By

Takahiro NAGAI and Shunzo KUMANO

**Abstract:** We investigate numerical solution for the DGLAP  $Q^2$  evolution equations by using the Mellin transformation. The evolution equations are complicated integrodifferential equations, which are often used in analyzing high-energy hadron scattering data. The numerical solution is discussed in comparison with the solution by a "brute-force" method. We find that the Mellin-transformation method could be an accurate and fast one, although we should be careful about the accuracy in the small- and large-x regions.

Key words: Parton, Quark, Gluon,  $Q^2$  evolution, QCD, Nucleon

## 1 序論

核子の内部構造を調べる手段の一つとして高エネ ルギーレプトン・核子散乱の実験研究が行われてき た。その散乱断面積を測定することにより、核子の 構造関数が求められる。一般的に、構造関数は2つ の変数  $x \ge Q^2$ の関数として表される。これらの変数 は運動量移行  $q \ge$ 核子運動量  $p \ge$ RHNT  $Q^2 = -q^2$ ,  $x = Q^2/(2p \cdot q) \ge$ 定義される。実験で測定された構 造関数を解析することにより、核子内のパートン分 布が定まる。

構造関数とパートン分布の  $Q^2$ 依存性はスケーリン グの破れとして知られており、この現象は DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)  $Q^2$  発 展方程式によって記述される。実験値は様々な  $Q^2$ の値で求まっており、これらを解析する際には  $Q^2$ の 違いを考慮する必要がある。この様な高エネルギー 反応の解析に  $Q^2$  発展方程式は頻繁に用いられるた め、その正確な解を求めることは応用上重要な課題 である。しかし、DGLAP 方程式は摂動高次項を含 めると複雑な微積分方程式となっており、容易に数 値解を求めることができない。

我々の研究室では過去に Q<sup>2</sup> 発展方程式を "Bruteforce"の方法 [1] や Laguerre 多項式の方法 [2] で解く

平成15年11月1日受理 工学系研究科物理科学専攻

ⓒ 佐賀大学理工学部

研究をした。しかし、小さいxにおいて精度が落ちる 問題や計算時間が長いなどの問題があった。そこで、 本研究では Mellin 変換を利用した数値解法 [3] を研 究し、文献 [1] の方法を用いた結果と比較した。 brought to you by

本論文は以下の様に構成されている。第2章でQ<sup>2</sup> 発展方程式を示し、数値解法としてBrute-forceの方 法とMellin変換の方法を説明する。第3章でMellin 変換法の結果を説明し、2つの方法の結果を比較検 討する。第4章に研究成果をまとめる。

## 2 DGLAP 方程式の数値解法

## 2.1 Q<sup>2</sup> 発展方程式

 $Q^2$ 発展方程式は分岐関数 (P) とパートン分布  $(q_i,g)$  で記述される。分岐関数は摂動論的量子色力 学を用いて計算でき、パートン分布は様々な高エネ ルギー散乱の実験データを解析して得られる。まず、 発展方程式を簡略化するために変数  $Q^2$  を次の変数

$$t = -\frac{2}{\beta_0} \ln \left[ \frac{\alpha_s(Q^2)}{\alpha_s(Q_0^2)} \right] \tag{1}$$

に変換する。ここで $\beta_0$ は

$$\beta_0 = \frac{11}{3}C_G - \frac{4}{3}T_R N_f, \quad C_G = N_c, \quad T_R = \frac{1}{2}$$
 (2)

で定義され、 $N_c \ge N_f$ は色数とフレーバー数である。 摂動の最低次においては実効結合定数は

$$\alpha_s(Q^2) = \frac{4\pi}{\beta_0 \ln(Q^2/\Lambda^2)} \tag{3}$$

であり、 $\Lambda$  は量子色力学のスケール・パラメータで ある。

変数  $x \ge t$ を用いて、フレーバー iの非 1 重項分 布  $q_{NS} = q_i - \bar{q}_i$ に対する DGLAP 方程式は

$$\frac{\partial}{\partial t}q_{NS}(x,t) = \int_{x}^{1} \frac{dy}{y} P_{qq}\left(\frac{x}{y}\right) q_{NS}(y,t) \qquad (4)$$

となる。これは特に価クォーク分布の  $Q^2$  発展に使用 される。クォーク分布と反クォーク分布との総和で 表されるフレーバー 1 重項分布  $q_s = \sum_i (q_i + \bar{q}_i)$  は グルーオン分布 g と結びついた微積分方程式として 表される。

$$\frac{\partial}{\partial t} \begin{pmatrix} q_{s}(x,t) \\ g(x,t) \end{pmatrix} = \int_{x}^{1} \frac{dy}{y} \begin{pmatrix} P_{qq}(x/y) & N_{f}P_{qg}(x/y) \\ P_{gq}(x/y) & P_{gg}(x/y) \end{pmatrix} \begin{pmatrix} q_{s}(y,t) \\ g(y,t) \end{pmatrix}$$
(5)

これは連立方程式になっているので、フレーバー非 1 重項の式(4)と比べると多少複雑である。しかし、 基本的な解き方は非1重項の場合と同様であるため、 以下には非1 重項の数値解法のみを説明する。

## 2.2 Brute force

Brute-force の方法とは x および t を N<sub>x</sub>, N<sub>t</sub> 個の 小さいステップにそれぞれ分割して単純に微分と積分 を行う方法である。この方法は数値積分法としては簡 単すぎるように考えられるが、単純であるがゆえの利 点がある。例えば、Q<sup>2</sup> 発展に高次ツイストの効果を 含んだ方程式は、Mellin 変換の方法では解くことが できず、また直交多項式で展開する方法でも解くこと ができない。その様な方程式の数値解は Brute-force 法によって容易に求めることができる。また、数値 計算のプログラムを作成する場合、単純であるがゆ えに誤りをする可能性が小さく、新しい数値解法を 研究する場合の確認プログラムとして使用できる利 点もある。

この方法では *t* の 微分、 及び *x* の 積分を

$$\frac{df(x,t)}{dt} \Rightarrow \frac{f(x_i,t_{j+1}) - f(x_i,t_j)}{\Delta t_j} \tag{6}$$

$$\int dx f(x,t) \Rightarrow \sum_{k=1}^{N_x} \Delta x_k f(x_k, t_j)$$
(7)

の様に近似して数値計算を行う。ただし、 $\Delta t_j = t_{j+1} - t_j, \ \Delta x_k = x_k - x_{k-1}$ である。よって、非 1 重項分布の $t_j$ から $t_{j+1}$ への $Q^2$ 発展は単に

$$q_{NS}(x_i, t_{j+1}) = q_{NS}(x_i, t_j)$$
  
+  $\Delta t_j \sum_{k=i}^{N_x} \frac{\Delta x_k}{x_k} P_{qq}\left(\frac{x_i}{x_k}\right) q_{NS}(x_k, t_j)$  (8)

の計算となる。初期 $t_1 = 0$ におけるパートン分布が 与えられれば、 $\Delta t_1$ 後の $t_2$ におけるパートン分布が 求まる。このステップを $N_t - 1$ 回繰り返すと最終的 な $t_{N_t}$ の分布が決まる。これは簡単な方法だが、十 分正確な数値解を求めるためには $N_x \ge N_t$ を大きく 取らなければならない。しかし、構造関数はゆるや かに変数tに依存しているため、 $N_t$ は $N_x$  と比較し て大きく取る必要はない。

#### 2.3 Mellin 変換

 $Q^2$  発展方程式 (4) の右辺は畳み込み積分で表され ており、この部分の取り扱いが発展方程式を解くた めには重要である。一般的にこの様な積分は Mellin 変換を使用すれば、変換された関数の単なる積とな ることが知られている。従って、面倒な積分を単純 な積にすることが可能で、数値解を求めるために非 常に有用であることが予想できる。一般的な分布関 数f(x)の Mellin 変換は

$$\hat{f}(s) = \int_0^1 x^{s-1} f(x) \, dx \tag{9}$$

で定義される。ここで分布関数は  $f(x \ge 1) = 0$  で あるため、積分の上限は 1 とした。この  $\hat{f}(s)$  を関数 f(x) のモーメントと呼ぶ。

Q<sup>2</sup> 発展方程式 (4) の Mellin 変換を取ると、左辺は 非1 重項分布のモーメントの微分となり、右辺は非 1 重項分布と分岐関数のモーメントの積となる。

$$\frac{\partial}{\partial t}\hat{q}_{NS}(s,t) = \hat{P}_{qq}(s)\hat{q}_{NS}(s,t) \tag{10}$$

これは単純な微分方程式で、解は

$$\hat{q}_{NS}(s,t) = \exp[\hat{P}_{qq}(s)t]\,\hat{q}_{NS}(s,t=0)$$
 (11)

となる。従って、モーメントの Q<sup>2</sup> 発展は初期分布と 分岐関数のモーメントがわかれば、簡単に計算する ことができる。しかし、実験結果との比較や理論の 模型計算をする場合は、*x* で表された分布関数で示 さなければならない。そのためには逆 Mellin 変換

$$q_{NS}(x,t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} ds \, x^{-s} \, \hat{q}_{NS}(s,t) \qquad (12)$$

を計算する必要がある。ここで c は実定数であるが  $f(x)x^{c-1}$  が絶対積分可能である必要がある。更に  $\phi$ を実定数として、変数 s を $s = c + ze^{i\phi}$  とおくことに より s から実変数 z に積分変数を変換する。これは 積分経路を図 1 の様に取ることに相当し、逆変換は

$$q_{\scriptscriptstyle NS}(x,t) = \frac{1}{\pi} \int_0^\infty dz \,\operatorname{Im}\left[ \exp(i\phi) \, x^{-c-ze^{i\phi}} \right. \\ \left. \times \exp\left(\hat{P}_{qq}(s)t\right) \hat{q}_{\scriptscriptstyle NS}(s,t=0) \, \right] \quad (13)$$

となる。



Fig. 1: Integration contour of the Mellin inversion

積分路は図の定数  $c \geq \hbar g \phi$ によって特定される。 積分は基本的には  $c \Leftrightarrow \phi$ に依存しないため、式 (13) を数値積分しやすいように設定すれば良い。特に、 $\phi$ の値を調整して、被積分関数の値を zが大きくなる につれて急速に小さくなるように設定すれば、積分 の上限をある有限値  $z_{max}$  で打ち切ることができる。 そこで、被積分関数の中にある

$$x^{-c-ze^{i\phi}} = \exp(c\log\frac{1}{x}) \,\exp(z\cos\phi\log\frac{1}{x}) \\ \times \exp(i\sin\phi\log\frac{1}{x}) \tag{14}$$

に着目する。変数 x は 0 < x < 1 の範囲内である ため、zが大きくなるにつれて因子  $\exp(z\cos\phi\log\frac{1}{x})$ が急激に小さくなるためには  $90^\circ < \phi < 180^\circ$ の範囲 内で  $\phi$  を取れば良いことがわかる。ただし、 $90^\circ$ の場 合には  $\cos\phi = 0$  となり、上記因子が 1 となり被積分 関数が大きい z で収束しないため注意する必要があ る。 $90^\circ < \phi < 180^\circ$ の範囲内で  $\phi$  を変えて数値計算 を行った結果、 $90^\circ$ と  $180^\circ$ 付近を除けば  $\phi$  を変えて も数値解に影響しないことを確かめた。従って、以 後は  $\phi = 135^\circ$ と固定して結果を示す。また、cの取 り方による依存性を調べるために、その値を 1 から 5 まで変えてみた結果、cが 3 を超えると精度に問題 が生じることがわかった。この様な検討から c = 1.1と固定するすることにした。 方程式 (13) は実関数の積分であり、この積分を Gauss-Legendre 求積法を用いて数値計算をする。定 数を c = 1.1,  $\phi = 135^{\circ}$ と固定し、 $x \ge 10^{-5}$  から 0.9 まで変化させた場合、被積分関数の絶対値は z = 30 で  $10^{-5}$  以下となり十分小さいと判断できるため、積分 の上限値を  $z_{max} = 30$  とした。この様にして、Mellin 変換を用いた数値解析で、最終的に計算精度を決定 する要因は Gauss-Legendre 積分のポイント数  $N_{GL}$ である。この  $N_{GL}$  依存性を次章の結果に示す。

## 3 結果

今回の報告では摂動最低次の  $Q^2$  発展方程式を用いた解析結果を示す。ここでは積分のポイント数  $N_{GL}$ を変化させ、精度がどのように変わるかを調べた。結果の比較検討をするために、 $Q^2=1$  GeV<sup>2</sup> で与えられる MRST02 [4] の初期分布を  $Q^2=100$  GeV<sup>2</sup> まで発展させて数値解を比較した。スケール・パラメータは MRST02 解析で得られた  $\Lambda=0.220$  GeV を使用した。

Brute-force の方法において  $N_t$ =200,  $N_x$ =4000 の 分割を使用すれば、精度が 1 %以内であることが文 献 [1] の研究により判明しているため、それを基準と して Mellin 変換法による数値解の精度を評価する。 つまり、Mellin 変換で求めた  $Q^2$ =100 GeV<sup>2</sup> におけ る分布と Brute-force で求めた分布の比として結果を 図を表す。非 1 重項分布の  $Q^2$  発展結果を Fig. 2 に、 1 重項分布の結果を Fig. 3 に、グルーオン分布の結 果を Fig. 4 に示す。

これらの図より Gauss-Legendre 積分のポイント数 N<sub>GL</sub> が少ない場合、つまり10や20ポイントでは 十分な精度が得られないことがわかる。特に、その傾 向は小さい x や大きい x 領域で明らかである。50 ポイントから80ポイント取れば、 $10^{-5} < x < 0.5$ の領域で正確な数値計算となっていることがわかる。 しかし x = 1 に近い、大きい x 領域では正確な数値 計算となっていない。この原因は  $x \to 1$ の場合、式 (14) において log(1/x) が0となり、zが大きくなって



Fig. 2: Accuracy for the  $Q^2$  evolution of  $xq_{NS}$ 



Fig. 3: Accuracy for the  $Q^2$  evolution of  $xq_s$ 



Fig. 4: Accuracy for the  $Q^2$  evolution of xg

も被積分関数が収束しないことが原因と考えられる。 この様に小さいx や大きいx 領域で多少精度に問題 はあるが、 $N_{GL}$  を50以上に取ることにより精度良 い数値計算法として採用できる。また、計算時間を 短縮できる利点があることもわかった。Brute-force 法と比較すると、 $N_{GL}$ =50を取った場合に計算時間 は約半分となる。従って、積分の上限 $z_{max}$ を工夫し て $N_{GL}$ を小さく取れる様にすれば、更に効率よい計 算方法になると考えられる。

最後に、小さい x や大きい x 領域での問題点を明示するために、(13)式の被積分関数を図 5 に示す。小さい x では  $(x = 10^{-3}, 10^{-5})$ 関数が急激に振動しているため、正確に数値積分をするためにはポイント数  $N_{GL}$ を多く取らなければいけないことがわかる。



Fig. 5: Integrand of Eq. (13)

大きい x においては z が増しても関数が小さくなら ない特徴があり、 $z_{max}$  を更に大きく取る必要性が出 てくる。また、x = 0.9の曲線からわかるように、正 の分布と負の分布の積分がほぼ同じで打ち消し合っ ている。これは数値計算において桁落ちを意味し、精 度が悪くなる原因となっている。

## 4 まとめ

Mellin 変換を用いて  $Q^2$  発展方程式の数値解を研究 した。Mellin 変換により分布関数のモーメントの  $Q^2$ 変化を容易に計算することができる。このモーメント を x の分布に戻すために逆 Mellin 変換をするが、こ の部分に Gauss-Legendre 求積法を用いた。複素平面 内の積分経路を工夫することにより、正確な数値解が 求まることがわかった。特に、Brute-force の数値解法 と比較して数値解の精度を示した。Gauss-Legendre 積分のポイント数  $N_{GL}$  としては 5 0 程度取れば十分 良い精度となることが判明した。ただし、小さい xと大きい x 領域で多少精度が落ちる問題があり、数 値解法に関して更なる工夫が必要である。

#### 参考文献

- M. Miyama and S. Kumano, Comput. Phys. Commun. 94 (1996) 185.
- [2] S. Kumano and J. T. Londergan, Comput. Phys. Commun. 69 (1992) 373.
- [3] M. Glück, E. Reya, and A. Vogt, Z. Phys. C48 (1990) 471; D. Graudenz *et. al.*, Z. Phys. C70 (1996) 77; S. Kumano and T.-H. Nagai, research in progress.
- [4] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne, Phys. Lett. B531 (2002) 216.