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Abstract: A new method which allows identifying any shape of cluster patterns in case of numerical 
clustering is proposed. The method is based on the iterative clustering construction utilizing a nearest 
neighbor distance between clusters to merge. The method differs from other techniques of which the 
cluster density is determined based on calculating the variance factors. The cluster density proposed 
here is, on the other hand, determined with a total distance within cluster that derived from a total 
distance of merged cluster and the distance between merged clusters in the previous stage of cluster 
construction. Thus, the whole density for each stage can be determined by a calculated average of a total 
density within cluster of each cluster, and then split by referring the maximum furthest distance between 
clusters at that stage. Beside this, this paper also proposes a technique for finding a global optimum of 
cluster construction. Experimental results show how effective the proposed clustering method is for a 
complicated shape of the cluster structure 
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1. Introduction 

For many years, many clustering algorithms have 
been proposed and widely used. It can be divided into 
two categories, hierarchical and non-hierarchical 
methods. It is commonly used in many fields, such as 
data mining, pattern recognition, image classification, 
biological sciences, marketing, city-planning, document 
retrieval, etc. The clustering means a process to define a 
mapping f:D C from some data D={d1, d2,…,dn} to 
some clusters C={c1, c2,…, cn} based on similarity 
between di. 

The task of finding a good cluster is very critical 
issues in clustering. Cluster analysis constructs good 
clusters when the members of a cluster have a high 
degree of similarity to each other (internal homogeneity) 
and are not like members of other clusters (external 
homogeneity) [2,8]. 

In fact, most authors find difficulty in describing 
clustering without some grouping criteria. For example, 
the objects are clustered or grouped on the basis of 
maximizing the inter-cluster similarity and minimizing 
the intra-cluster similarity [8]. One of the methods to 
define a good cluster is variance constraint [6] that  
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calculates the cluster density with variance within cluster 
(vw) and variance between clusters (vb) [3,12]. The ideal 
cluster, in this case, has minimum vw to express internal 
homogeneity and maximum vb to express external 
homogeneity. 

The parameter of vw and vb, however, can just be 
applied for identifying condensed clustering cases, which 
are the cluster members gathered in surrounding values 
so that the centroid resides in the circle weight of the 
members. Therefore, vw and vb can not be used in shape 
independent clustering, such as convex shape clustering. 

One of the most famous clustering methods is 
hierarchical clustering. In hierarchical clustering the data 
are not partitioned into a particular cluster in at the first 
step. It runs with making a single cluster that has 
similarity, and then continues iteratively. 

Hierarchical clustering algorithms can be either 
agglomerative or divisive [4,9,11]. Agglomerative 
method proceeds by series of fusions of the “n” similar 
objects into groups, and divisive method, which separate 
“n” objects successively into finer groupings. 
Agglomerative techniques are more commonly used. 

One of similarity factors between objects in 
hierarchical methods is a single link that similarity 
closely related to the smallest distance between objects 
[1]. Therefore, it is called single linkage clustering 
method. Euclidian distance is commonly used to 
calculate the distance in case of numerical data sets [11]. 
For two-dimensional dataset, it performs as: 
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The algorithm of single linkage clustering method is 
composed of the following steps: 

1. Begin with an assumption that every point “n” 
is it’s own cluster ci, where i=1..n. 

2. Find the nearest distance between m(cr) and 
m(cu), where r≠u and m(cj) is members of 
cluster cj.  

3. Merge cr and cu into new cluster ca where m(ca) 
is members fusion of cr and cu. 

4. Repeat until it reaches an optimum 
 
2. Cluster structure 
 

In this section we describe the classification of 
cluster structure, which is divided into condensed cluster 
and shape independent cluster. 
  
2. 1. Condensed cluster 
 

The condensed cluster is defined as the cluster 
members gathered in closely surrounding locations as is 
shown in Fig.1. In the case of condensed cluster, the 
center of gravity resides in circle weight of the cluster 
members. The cluster density can, therefore, be 
determined with a calculated variance within cluster and 
variance between clusters. 

 
 
 
 
 
 
 
 
 
 
 
Fig.1 Examples of condensed clusters (centroids are 
shown with red dots). 
 
 
 
 
 
 
 
 
Fig.2 Examples of shape independent clusters 
 
2.2. Shape independent cluster 
 

The condensed cluster is very different from the 
shape independent cluster [10] that its similarity can be 
seen as such shape patterns. It, in this case, is very 

difficult to determine the centroid as is illustrated in 
Fig.2. Hence, the cluster density can not be defined by 
variance constraints. 
 
3. Proposed algorithm 
 

In this paper, a new simple algorithm of numerical 
clustering is proposed, in particular, for a shape 
independent clustering. The proposed method can also be 
applied in the case of condensed clustering. The grand 
idea of the proposed is utilizing single linkage 
hierarchical clustering method (SLHM) as a basic 
method to solve case of shape independent clustering. It 
is good method to get a hierarchy instead of an 
amorphous collection of groups [5]. The method itself 
actually can, however, not be applied for the case. To 
make SLHM as considerable method to solve the 
aforementioned case, there are two critical items those 
we must redefine: the cluster density and the global 
optimum. The proposed method can solve any cases of 
shape independent clustering. The problem solving by 
the proposed method is absolutely constant, even though 
the shape independent case is more complex. It is 
somewhat different from CLUSTER method [10] that is 
based on Relative Neighborhood Graph (RNG). The 
CLUSTER method needs to determine the appropriate 
threshold value more precisely and the suitable small 
discretization of the fraction Max-Min to solve the more 
complex shape independent cases. 

 
3.1 Determining the cluster density 
 

In this paper, a new clustering method with a 
definition of cluster density is proposed. It is very unique 
and simple, because we just utilize the total distance 
between clusters at each stage of cluster construction. 
Before calculating the cluster density, we calculate at 
first d(i,j) as the nearest distance between clusters for 
each clusters j in stage i. Then, we set the minimum of 
d(i,j) as below: 
 

f (i) = min(d(i,j))   (1) 
 
If и(a)=b expresses the nearest cluster a is b, then we 
look for the cluster characteristics will be merged that 
classified as: 
 

1. d(i,j) equals to f(i) 
2. и(a)=b, и(b)=a, and и(xp)={a|b} where и(xp) are 

clusters those their nearest cluster refer to a or b, 
and p=1,…,n. 

 
Therefore, if new cluster j constructed and i now is next 
stage, then the total distance within cluster σ (i,j) for new 
cluster j in the next stage i can be defined as: 
 
 
 

d(x,y) =      Σ  | xi – yi |2      

i=1

n 
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ϕ =   
max(∂ ) 

Candidate max(∂ ) 

 
       
       

(2) 
 
If p(i,j) is number of members within cluster j in stage i, 
then the density within cluster δ (i,j) in cluster j in stage i 
can be defined as: 
 
       
     (3) 
where j=1,2,…,number of cluster in stage i. After that, 
we calculate the average of δ (i,j). The last, we can 
calculate the density of all cluster δi in stage i as follows: 
 

  
(4) 

 
3.2. Finding the global optimum 
 

The proposed technique is derived from 
analyzing the values moving pattern of δ at each 
stage. Then we identify the considerable formula 
to find the global optimum. After applying it to 
some experiments so that we can analyze the 
accuracy, we find the global optimum can be 
reached at the stage of i that has maximum ∂, 
where: 
 

∂i = δi+1 - δi   (5) 
 

In order to construct cluster automatically, we 
put the threshold value λ to get a maximum ∂. 
The value of λ expresses the value of ∂ ×100. It 
means, if we set λ=1, the global optimum can be 
reached at the stage of i when ∂i > 0.01. The more 
amorphous shape independent case needs smaller 
λ to set as more precise as possible. By setting the 
value of λ, the well-separated cluster will be 
constructed. 
 
4. Experimental results 
 

We examine our proposed algorithm to some of 
different cases for the shape independent 
clustering. It covers determining the cluster 
density as well as the global optimum. Various 
cases those examined can determine the accuracy 
of the proposed method. For every case, we record 
the valuable data that has moving values of each 
stage. We also involve the accuracy parameter to 
observe the performance of all clustering cases.  
In our experimental cases, we use λ =1-2 to reach 
the global optimum. We also use an additional 
variable ϕ to express the different values between 

max(∂ ) and ∂i that has candidate max(∂ ). 
 

  
(6) 

 
The value of ϕ can show a distant value to get 

global optimum. The high ϕ, at least ϕ ≥2, expresses 
possibility to construct well-separated clusters. It avoids 
cluster construction reaching any local optima. If the 
closer value is non-positive, the value of ϕ will be φ, 
means the global optimum is absolutely right and the 
well separations between clusters are constructed very 
well. The value of φ,can represent the performance of 
cluster construction and precision of the proposed 
method to solve the clustering cases. Fig.3 and 4 shows 
how the proposed method works for avoidance of the 
local minima in comparison to the U-shape data set as is 
shown in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. U-shape data set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The result of applying the proposed method 
 

It is found that our proposed method is 
superior to the existing shape independent 
clustering in this clustering case. The result 

δ (i,j) 
f (i,j) 

δi  = 

p=1 

n 

σ (i,j) =  σ (i-1,a) +  σ (i-1,b) + ∑ σ (i-1,p) + f (i-1) × (n+1)

σ (i,j) 
p(i,j) 

δ (i,j)
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shows the accuracy of ∂ to express the global 
optimum, as viewed in Fig. 5. In the top case of 
Fig.5, n=44. We use λ =2 to reach the global 
optimum. The experimental result showed that 
the maximum of ∂ = 0.03228, in the stage 4 which 
numbers of well-separated cluster is 2. It is 
proved that the global optimum will be reached 
with 2 numbers of clusters. The value ϕ = 6.0757. 
In the bottom case of Fig.5, n=36. We use λ=1 to 
reach the global optimum. The experimental 
result showed that the maximum of ∂ = 0.026139, 
in the stage which numbers of well-separated 
cluster is 2. It is proved that the global optimum 
will be reached with 2 numbers of clusters. The 
value ϕ = 23.5486. 

We applied the proposed method to solve some 
various shape independent cases (Fig. 6 - Fig. 12). The 
result of clustering construction is indicated with a 
different color. 
 
∂ 
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of clusters at each stage of cluster construction 
 
∂                     Number of clusters at each stage 
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Fig. 5. The moving values of ∂ at each stage 
 
From the experiment, we can see that the proposed 

algorithm computed high ϕ. Actually, the high 
ϕ  expresses the high possibility to construct 
well-separated clusters. The limitation of ϕ  that we set is 
≥ 2.It means if ϕ < 2, there is another ∂  which is very 

close to be global optimum that we determine as 
max(∂ ). 

The experiment results with several data sets perform 
high ϕ. Moreover, some of data sets, interrelated and 
complex interrelated data set, reach φ. We can also see 
that our proposed algorithm can solve the more complex 
shape independent clustering cases, such as Nested 
diamond data set. In the nested diamond data set, the 
accuracy performs high ϕ =5.7585. 

Table 1 perform the gap values between max(∂ ) and 
candidate max(∂ ) for all data sets. 

 
Table 1 Gap value between max(∂ ) and candidate 
max(∂ ) 
 

Data set Gap value 
 (×100) 
 
Interrelated 4.0855 
S-shape 4.9559 
Nested circle 9.5790 
Contiguous 6.5495 
Nested diamond 7.3309 
Complex interrelated     1.9269 
Random 0.8617 
 
 
It is found that our proposed method is 

superior to the existing shape independent 
clustering in this clustering case. The result 
shows the accuracy of ∂ to express the global 
optimum, as viewed in Fig. 5. In this case, n=44. 
We use λ =2 to reach the global optimum. 

The experimental result showed that the 
maximum of ∂ = 0.03228, in the stage 4 which 
numbers of well-separated cluster is 2. It is 
proved that the global optimum will be reached 
with 2 numbers of clusters. The value ϕ = 6.0757. 

We applied the proposed method to solve some 
various shape independent cases (Fig.6-Fig. 12). The 
result of clustering construction is indicated with a 
different color.. 
Besides applying to the shape independent clustering 
cases, we also tried to apply our proposed method in 
condensed clustering case (Fig.13). The result showed 
the usability of the proposed method to apply in 
condensed clustering cases.  

The use of threshold is very simple. In most of 
cases, we usually set λ =2. But, for an amorphous 
shape independent clustering cases, such as 
complex interrelated and random data set, we 
need to set λ  smaller. In those cases, we set λ =1. 

Besides applying to the shape independent 
clustering cases, we also tried to apply our 
proposed method in condensed clustering case 
(Fig.13). 
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Fig. 6. Interrelated data set, n=50, λ=1, max(∂) 
= 0.020407, ϕ = φ. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. S shape data set, n=49, λ=1, max(∂) = 
0.026284, ϕ = 3.647. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Circular nested data set, n=61, λ=2, 
max(∂) = 0.05081, ϕ = 3.9418. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Contiguous data set, n=53, λ=1, max(∂) 
= 0.015496, ϕ = φ. 
 
 
 

 
 
 
 
 
 
 
 
 
Fig. 10. Diamond nested data set, n=76, λ=1, 
max(∂) = 0.035718, ϕ = 5.6072. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Complex interrelated data set, n=84, 
λ=1, max(∂) = 0.014641, ϕ = 16.16. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Random data set, n=43, λ=0.5, max(∂) = 
0.009148, ϕ = 4.3458. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Normal data set, n=43, λ=1, max(∂) = 
0.232249, ϕ = 49.7534. 
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The high ϕ =25.4074 expressed that the 
proposed algorithm is able to make automatic 
well-separated clusters. Besides the gap value 
that computed is very large, 16.5165 (×100). The 
result showed the usability of the proposed 
method to apply in condensed clustering cases. 
 
5. Conclusions 
 

It is found that the proposed method can be 
used for shape independent clustering as well as 
condensed clustering. From the experimental 
results with some various clustering cases, the 
proposed method can solve the clustering problem 
and create well-separated clusters. 

The variable ϕ showed in those cases that the 
possibility of constructing well-separated clusters 
is high, implies that the proposed method can also 
avoid any local optima and find the global 
optimum. 

The threshold of λ is easy to set ensuring 
reach the global optimum. For more the 
amorphous shape independent cases need smaller 
λ to set as more precise as possible. By setting the 
value of λ, the well-separated cluster will be 
constructed. The very high value of ϕ for normal 
data sets proves that the proposed method is also 
considerable to solve the problems for condensed 
clustering cases.  
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