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Abstract. EXplainable Artificial Intelligence (XAI) aims to help users to grasp
the reasoning behind the predictions of an Artificial Intelligence (AI) system.
Many XAI approaches have emerged in recent years. Consequently, the subfield
related to the evaluation of XAl methods has gained considerable attention, with
the aim of determining which methods provide the best explanation using var-
ious approaches and criteria. However, the literature lacks a comparison of the
evaluation metrics themselves that could be used to evaluate XAI methods. This
work aims to partially fill this gap by comparing 14 different metrics when ap-
plied to nine state-of-the-art XAl methods and three dummy methods (e.g., ran-
dom saliency maps) used as references. Experimental results on image data show
which of these metrics produce highly correlated results, indicating potential re-
dundancy. We also demonstrate the significant impact of varying the baseline hy-
perparameter on the evaluation metric values. Finally, we use dummy methods to
assess the reliability of metrics in terms of ranking, pointing out their limitations.

1 Introduction

EXplainable Artificial Intelligence (XAI) aims to provide accurate predictions and ex-
planations of the predictions of an Al system in humanly understandable terms [9]. One
of the most ubiquitous types of XAl methods in computer vision is that of attribution-
based methods, which provide a weighted set of relevant features concerning the pre-
diction of the model. These methods allow for relevant visualizations through saliency
maps and are sometimes referred to as “saliency methods.” While a broad class of such
methods exists, evaluating them remains a significant challenge because of the lack of
ground truth explanations [27]. Several properties and requirements (e.g., faithfulness),
leading to the formulation of quantitative metrics, have been proposed to assess the
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quality of saliency methods [3, 6]. While the existence of multiple metrics could allow
one to obtain a better overview of the reliability of a given method, newly proposed
saliency methods are often only compared to existing work using a limited subset of the
available evaluation metrics. Furthermore, there is little to no quantitative analysis or de-
tailed investigation into the potential redundancy of XAl evaluation metrics. This paper
proposes to fill this gap by studying the concordance and redundancy of XAI evalua-
tion metrics. To do so, we perform statistical analysis on various metrics after evaluating
nine state-of-the-art XAl methods for convolutional neural networks (CNN) applied to
computer vision and three dummy methods which are not real saliency methods and
are used as sanity checks. In addition, we evaluate the influence of the baseline hyper-
parameter of the metrics (e.g. black or white pixels to simulate the deletion/insertion
of pixels). Previous work has shown that the choice of the baseline has a big influence
on the results of XAI methods [34]. However, to the best of our knowledge, no work
has explored the impact of the baseline for the metrics, or its impact on the produced
scores. Finally, thanks to the dummy methods, we discuss the reliability of metrics. The
remainder of the paper is organized as follows. Section 2 presents an overview of re-
lated work. Section 3 describes the experimental setup that led to the results discussed
in Section 4. Section 5 concludes the paper.

2 State of the Art

2.1 Saliency Methods

There is a large variety of saliency methods. This work does not have the ambition of
being exhaustive, therefore we focus on three families only: gradient-based methods,
perturbation-based methods, and Class Activation Map (CAM) methods. The models
considered are CNNs, for which the XAl literature is extensive. Saliency maps for new
architectures, such as ViT [10] are not entirely interchangeable with respect to CNNSs,
apart from gradient-based methods and some perturbation methods. This section will
evoke the principal characteristics of the methods used in our experiments. For a de-
tailed description of the functioning of the different methods, we refer the reader to the
indicated papers specific to each method.

Gradient-based methods Gradient-based methods use the gradient with respect to
the inputs (or a modified, backpropagated version thereof), i.e., the derivative of the
model output with respect to its input!. This derivative produces a saliency map. These
methods were introduced in the pioneering work of Simonyan et al. [29] to highlight
the most significant pixels in the decision-making of an image classification neural
network. Here, we shall present three representative variants. SmoothGrad [32] was
proposed to explicitly reduce noise in attributions. It generates multiple samples by
adding Gaussian noise to the original image and averages the calculated gradients to
produce a saliency map. Guided backpropagation [33] is similar to [29], with a specific
handling of ReLu during the backpropagation. It keeps the non-negative values found in

! More precisely, the derivative of the preactivations of the softmax layer.
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the forward and backward passes when back-propagating through the ReLLU functions.
The Integrated Gradients method [35] linearly interpolates the input image = € RP
with a baseline image @’ over an a € [0, 1] parameter, and averages the gradient for
all of these interpolations. The baseline input represents the absence of a feature in the
image (e.g., black or uniform, Gaussian noise, blurred image, etc.).

Perturbation-based Methods These methods analyze the evolution of the model’s
output as a function of variations in the input. They aim to measure whether information
lost due to the perturbation is negatively or positively correlated to the prediction score.
Among the most recent techniques, RISE [24] uses random occlusion patterns produced
by bilinear upsampling of lower resolution binary masks to perturb the input. The model
produces a probability score for each masked image for each class, the saliency map for
the original image being produced for each class of interest by a linear combination of
the masks, weighted by the corresponding class scores for each mask.

CAM Methods CAM methods use the activation from a convolutional layer to pro-
duce the saliency maps. The original method [39] uses the activations of the last con-
volutional layer and linearly balances them by the weights of a one-layer linear clas-
sifier. Since CAM has limited applicability across architectures, Grad-CAM [28] was
introduced as a generalization, defining the weighting factors for the linear combina-
tion of the activations as the average of the gradient flowing through each channel of
the last convolutional layer. Score-CAM [37] does not depend on gradients, as it gen-
erates the weighting factors to combine the activation map using its forward passing
score on the target class. The saliency map is then computed by a linear combination
of the obtained scores and activation maps. Poly-CAM [11] recursively multiplexes the
high-resolution activation maps in the early layers with upsampled versions of the class-
specific activation maps in the last layers. The weighting factors for the multiple CAMs
are derived from scores computed similarly to perturbation methods and Score-CAM.
Layer-CAM [17] gathers CAM from all layers of the CNN by directly multiplying the
gradient element-wise with the activation and averaging over the channels instead of
performing a linear combination. This allows object localization collection from rough
spatial localization to fine-grained details. CAMERAS [16] fuses the activation maps
and backpropagated gradients of a layer for different scaled versions of the same input
image before performing an element-wise product of these fused activation maps and
gradients, similarly to Layer-CAM on the last convolutional layer.

2.2 Evaluation Metrics

To evaluate and compare the different XAI methods presented in Section 2.1, there are
several types of metrics. We consider the four distinct families of such metrics that are
applicable to our dataset, based on the property of explainability they aim to character-
ize, following the formalism proposed in Quantus [14]. Faithfulness metrics measure
how explanations follow the predictive behavior of the model. Seven of them are ex-
plored in this paper. Faithfulness Correlation [6] partitions the input image into subsets
of features whose values are iteratively replaced by a baseline value (e.g., a black pixel),
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and computes the Pearson correlation between the drop in classification probability and
the sum of the relevance attribution of a subset. Similarly, Faithfulness Estimation [3]
calculates the Pearson correlation between the drop in classification probability and
feature relevance. Monotonicity Arya [4] measures the extent to which model perfor-
mance increases (as measured by classification probability) when features of increasing
significance are added, whereas Monotonicity Nguyen [23] follows the same idea, but
measures the model performance increase through probability estimation uncertainty.
Pixel Flipping [5], also called the Deletion metric by some authors [24, 37, 11] flips
pixels with high relevance scores from the relevance heatmap and looks at the evolution
of the probability score. Region Perturbation [27]) and Selectivity [22] both extend this
methodology to areas of an image. Robustness metrics measure the stability of expla-
nations to small input perturbations. Three of them are used in the following work. The
Local Lipschitz Estimate [2] measures the consistency in explanations for adjacent sam-
ples. Max-Sensitivity and Avg-Sensitivity [38] quantify how explanations change when
inputs are infinitesimally perturbed, through a Monte Carlo sampling-based approxi-
mation. Complexity metrics measure explanation conciseness. Three of them are com-
pared in the experiments. Sparseness [8] uses the Gini index to measure whether only
highly-attributed features are predictive of the model output. Complexity [6] measures
the entropy of the fractional contributions to the total attribution, whereas Effective
Complexity [23] looks at how many attributions exceed a certain threshold. Random-
ization metrics measure model deterioration as a function of parameter randomization.
Two methods are explored. Model Parameter Randomization [1] quantifies the similar-
ity between original explanations and explanations from sequential randomization of
successive model layers. The Random Logit Test [31] computes the distance between
the original explanation and the explanation obtained for another random class.

2.3 Benchmarking Saliency Evaluation Metrics

Previous works that quantitatively evaluate metrics of saliency methods are mainly
found in XAl literature surveys. For example, general overviews of XAl method eval-
uations are available [7]. Beyond descriptions, Zhou et al. [40] couple XAI methods
with corresponding evaluation metrics. In this paper, we assume families of metrics as
described in Section 2.2. While several works in the literature discuss XAl evaluation
metrics, very little is known about potential redundancies between metrics in the same
family or not. Noteworthy is the work from Li et al. [21], which presents a review that
encompasses a quantitative evaluation of seven saliency methods. These methods are
compared using three types of metrics: faithfulness, localization, and robustness. Li
et al. [21] point out that RISE and Grad-CAM perform well for most metrics. How-
ever, they also indicate that no particular method is consistently ranked as best with all
metrics. Our work goes beyond the aforementioned approaches by offering an inquiry
focused on metrics rather than methods. We evaluate and identify representative and
potentially redundant metrics to obtain a comprehensive view of a method in terms of
XAI evaluation.
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3 Experimental Setup to Compare Evaluation Metrics

This section describes the experimental setup to obtain the results presented in Sec-
tion 4. Section 3.1 presents the image data set and the deep learning models used to
obtain the image classifications to be explained. Sections 3.2 and 3.3 introduce the
selected saliency methods and evaluation metrics, respectively. Finally, Sections 3.4
and 3.5 describe how we process and analyze the results. The code is made available
for reproducibility?.

3.1 Data Set and Model for Image Classification

When evaluating saliency methods, it is common to use the ImageNet (2012 ILSVRC)
validation set [26] (as in [37, 24]) or the CIFAR10 dataset [20] (as in [8, 38, 3]). In accor-
dance with [37], we use a subset of 2000 randomly selected images from ImageNet, and
we employed two widely known pretrained models (ResNet-50 [13] and VGG-16 [30])
from the PyTorch model zoo to obtain predictions, which are explained using the meth-
ods in Section 3.2. The preprocessing is done by scaling each image to a 224 x 224
resolution and normalizing RGB channels with a mean of [0.485,0.456, 0.406] and a
standard deviation of [0.229, 0.224,0.225], as for the training set of ImageNet ([26]).
For CIFAR10, the first 2000 images of the test dataset were utilized with a ResNet50
model pretrained on CIFAR10 available at [25]. Each image has an original size of
32 x 32 pixels and is normalized using a mean of [0.4914, 0.4822,0.4465] and a stan-
dard deviation of [0.2023,0.1994, 0.2010], following the preprocessed values utilized
by the ResNet-50 pretrained model (and the other models) from [25].

3.2 Selected XAI Methods for Image Classification Explanation

For image classification explanation, we use state-of-the-art XAl methods that include
Integrated Gradient [35], SmoothGrad [32], Guided Backpropagation [33], Grad-CAM [28],
Score-CAM [37], Layer-CAM [17], Poly-CAM [11], RISE [24] and CAMERAS [16].
Three dummy saliency maps were added to the methods used to compare metrics: a
randomly generated map (sampling a standard uniform distribution U(0, 1) for each
pixel), a Sobel filter and a map produced from a two-dimensional centered Gaussian
(= 0, X = I). These three methods can be seen as an “ablation study” on metrics,
which is a new contribution of our study since it has not been investigated before to
the best of our knowledge. Indeed, they allow the comparison of rankings produced
for a metric according to the expected ranking of dummy methods (w.r.t. the evalu-
ated property such as faithfulness). This is shown in Section 4.3, on the reliability of
the metrics. Gradient-based implementations stem from Captum ([19]), whereas CAM-
based ones come from TorchCAM ([12]). The implementations of Poly-CAM, RISE as
well as CAMERAS come from their authors?. Following common practices, the method

Zhttps://github.com/multitel-ai/Evaluation-XAI-Metrics—GD6-TR
ATL.

https://github.com/andralex8/polycam, https://github.com/ecliqg
ue/RISE, and https://github.com/VisMIL/CAMERAS resp.
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parameters are fifty input perturbations (with unit variance Gaussian noise) for Smooth-
Grad, fifty interpolation steps for Integrated Gradient, four thousand perturbations for
RISE and all the ResNet blocks for Layer-CAM and Poly-CAM.

3.3 Selected Evaluation Metrics to Compare XAI Methods

In order to evaluate the above XAI methods, evaluation metrics were selected from
those introduced in Section 2.2. For faithfulness metrics, these include Faithfulness
Correlation, Faithfulness Estimate, Pixel Flipping, Selectivity, Monotonicity Nguyen
and Monotonicity Arya. We did not consider the Region Perturbation metric [27],
as it behaves in the same way as the Selectivity metric [22]. For robustness metrics,
the selected metrics include the Local Lipschitz Estimate, Max-Sensitivity and Avg-
Sensitivity, which were applied with ten Monte Carlo samples (to have a reduced com-
putational burden*). From the group of complexity metrics, those selected were Sparse-
ness, Complexity and Effective Complexity. Random Logit and Model Parameter Ran-
domization were included as randomization metrics. The latter was used with a top-
to-down randomization scheme [1]. We used the metric implementations from Quan-
tus [14].

For faithfulness metrics on ImageNet, the number of steps for each is 224 (in ac-
cordance with [11]), except for Selectivity employing a patch-based approach. In order
to harmonize the number of patches and the number of steps, we set the size of these
patches to 14 x 14. A parallel strategy is applied for the CIFAR10 dataset, where the
patch size is updated to two pixels to maintain the same proportion (one-fourteenth
of the image width). As for the Monotonicity Arya metric, we revisited its output to
obtain a monotonicity ratio, replacing the binary outcome of true or false. The initial
binary nature of the metric’s output hindered meaningful comparison with other metric
results. In addition, the original design led to consistently false outcomes since the ma-
jority, if not all, methods did not exhibit monotonic increments throughout the metric’s
duration. By presenting the output as a percentage, we achieve two objectives: firstly,
enabling method ranking based on the percentage values, and secondly, facilitating an
analysis of the degrees of monotonicity across methods. It is important to note that this
enhancement does not alter significantly the core functionality of the metric.

Finally, one important consideration when evaluating faithfulness metrics is the sim-
ulation of feature removal, which is technically done by replacing a pixel value to a
baseline value (e.g., black, white, or random). We studied the influence of this baseline
hyperparameter on the scores generated by faithfulness metrics. As explained in Sec-
tion 2.2, faithfulness metrics measure how explanations relate to the predictive behavior
of the model by perturbing parts of each input with a chosen value. In our experiments,
we used four baselines: black, white, random, and uniform values as implemented in
Quantus. Specifically, the baseline replacement with random and uniform comes from
the implementation of the random package in the Python Library ([36]). The values
for each pixel with random are between 0 (included) and 1 (excluded), while the value
chosen for uniform is between the minimum and the maximum in an image or patch.

* For example, evaluating Poly-CAM on Avg-Sensitivity with 10 MC samples took approxi-
mately 22 hours with five parallel jobs on an NVIDIA Geforce GTX 1080 Ti.
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3.4 From Method Evaluation Scores to a Matrix of Scores

As a result of running all the aforementioned methods and evaluating them with the 14
listed metrics, we obtained, for each method either a score or a list of scores for each
image, depending on the metric. From the listed metrics, only Pixel Flipping, Selec-
tivity and Model Parameter Randomization returned a list of scores for each image. In
these cases, it is common to aggregate the result by computing the AUC of the list of
scores [37]. As our goal is to understand how metrics behave in relation to each other,
we want to obtain a matrix X whose rows and columns correspond to methods and met-
rics, respectively. Each element of this matrix X;; is obtained by averaging the scores
of the j-th metric applied to the outputs (i.e., 2000 images) of the ¢-th method, similar
to what Li et al. [21] did.

3.5 Comparison of Evaluation Metrics through Method Scores

In order to investigate pairwise comparisons of metrics, we compute the correlation
coefficients on the scores produced by these metrics (i.e., the columns X.; of X de-
scribed above). The objective is to identify potential pairs of redundant metrics. Since
we possibly have nonlinear relationships between scores, an adequate solution to as-
sess correlations is to use Kendall’s 73, rank coefficients [18]. The use of p-values with
Kendall’s 7, can reveal significant correlations. In the rest of this paper, Kendall’s 73, will
simply be referred to as Kendall’s 7. By multiplying pairwise comparisons, the risk of
wrongly rejecting a null hypothesis (i.e., the absence of correlation) increases. To pre-
vent this, we used Holm—Bonferroni-corrected p-values [15] with a family-wise error
rate of 0.05. Beyond significance, it is important to remain cautious about the interpre-
tation of correlations in the context of XAI methods. Correlated scores can still contain
some major differences. Only (near-) perfectly correlated metrics, i.e., with a Kendall
7 superior to 0.9, will be considered potentially redundant. Based on the definition of
Kendall’s 7

L (p—2q) ’ 0

VP +a+t)p+aq+u)

with p the number of concordant pairs, g the number of discordant pairs, ¢ the number
of ties in the first ranking, and u the number of ties in the second ranking, and on the
hypothesis that there are no ties in any of the two compared rankings (t = u = 0), the
percentage of concordant pairs can be derived from Kendall’s 7. The threshold of 0.9
that we use corresponds to 95 % matching pairs (i.e., fewer than 3 discordant pairs).

4 Experimental Results for Evaluation Metrics

This section analyzes the correlations between metrics, the influence of hyperparame-
ters of metrics, and the reliability of evaluation metrics.

4.1 On the Correlation of Evaluation Metrics

Given pairs of metrics of the same type, we investigate which of these pairs achieve
possible agreement. First, we find two couples of metrics that can be considered poten-
tially redundant (based on the threshold of 0.9 defined in Section 3.5). For complexity
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metrics (bottom right red square in Fig. 1a, 1b and 2), the Sparseness and Complexity
metrics are significantly correlated with a Kendall’s 7 correlation coefficient of 0.97
(ResNet-50) and 1.0 (VGG-16) on ImageNet, and 0.94 (ResNet-50) on CIFAR10. For
robustness metrics (second red square in Fig. 1a, 1b and 2), the results show that Max-
Sensitivity and Avg-Sensitivity are correlated for CIFAR10 on ResNet-50 ((7 = 0.88)
and largely correlated for both models on ImageNet (- = 0.91 for ResNet-50 and
7 = 1.0 for VGG-16) where they can be considered potentially redundant. Indeed, it
is intuitive that Avg-Sensitivity and Max-Sensitivity are potentially redundant because
the more similar the perturbed values in the neighborhood of the input are, the more the
average values will be correlated to the maximum value. The choice is left to users as
to whether they want to give importance to some maximum perturbation outliers and
prefer the Avg-Sensitivity rather than the Max-sensitivity.

After analyzing the correlations above 0.9, we have the metrics that are significantly
correlated below the 0.9 threshold defined in Section 3.5. For randomization metrics
(third red square in Fig. 1a, 1b and 2), the results show that there is a moderately sig-
nificant intra-group correlation between Model Parameter Randomization and Random
Logit, i.e., 0.76 (ResNet-50) and 0.76 (VGG-16) on ImageNet, and 0.53 (ResNet-50) on
CIFARI10. This suggests that even though the functioning of the randomization metric
is significantly different (layer randomization versus explanation class randomization),
explainability methods being sensitive to both types of randomization may be close.

Finally, for faithfulness metrics with black as a default baseline, there are no pairs of
metrics that are significantly correlated on all models and datasets. We can only observe
that in the case of ImageNet on both the Resnet-50 and VGG-16 models (Fig. 1) as well
as on several baselines (Fig. 3), Faithfulness Correlation and Faithfulness Estimate are
significantly correlated (7 = 0.82 for Resnet-50, 7 = 0.73 for VGG-16). Furthermore,
Pixel Flipping and Selectivity are significantly correlated on CIFAR10 (7 = 0.79 on
Resnet-50). We suggest that users use these metrics to analyze methods having similar
maps (e.g., gradient-based methods only or CAM methods only), because methods such
as the gradient-based methods produce sparser saliency maps (with high-frequency pix-
els) that will, most of the time, outperform any other methods. Beyond an intra-group
analysis, it can be seen that there is no significant inter-group correlation between met-
rics for both models. This result is consistent with the fact that different types of metrics
evaluate different properties of saliency methods.

4.2 On the Hyperparameters of Evaluation Metrics

In this section, we evaluate and discuss correlations for faithfulness metrics (with the
ResNet-50 model) according to baseline values. All previous results were reported us-
ing black as the default baseline (value given to a pixel to simulate the feature removal)
for all the faithfulness metrics that relied on this hyperparameter. We explore the impact
of the baseline for the metrics and its impact on the produced scores.

Fig. 3 shows Kendall’s 7 correlation coefficients for the faithfulness metrics on
different baselines. According to this figure, there are significant variations in the cor-
relations calculated according to the baselines, such as the correlation between Mono-
tonicity Arya and Pixel Flipping for a white and uniform baseline (—0.67 and —0.01
respectively). This is further emphasized in the results of Fig. 4, illustrating Kendall’s
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Fig. 1: Kendall’s 7 correlation coefficients for all metrics, with black as default base-
line for faithfulness metrics. Groups of metrics are highlighted in red with (from left to
right) Faithfulness, Randomisation, Robustness and Complexity *. Intra-group signifi-
cant values are starred (“*”), based on Holm—Bonferroni-corrected p-values by taking
into account the corresponding group sub-matrix.
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Fig.2: Kendall’s 7 correlation coefficients
for all metrics using ResNet-50 on CI-
FAR10, with black as default baseline for
faithfulness metrics*. Intra-group significant
values are starred (“*”), based on Holm-
Bonferroni-corrected p-values by taking into
account the corresponding group sub-matrix.
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Fig. 3: Kendall’s 7 correlations for faith-
fulness metrics using different base-
lines on ImageNet* using Resnet-50:
Faithfulness Correlation (FC), Faithful-
ness Estimate (FE), Monotonicity Arya
(MA), Monotonicity Nguyen (MN),
Pixel Flipping (PF) and Selectivity (Se).
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Fig. 4: Kendall 7T correlation coefficients for the faithfulness metrics and different base-
lines on ImageNet 4. Black (B), Random (R), Uniform (U), White (W) on ResNet-50.

7 correlation coefficients for each baseline and each faithfulness metric. Apart from
Selectivity which shows resilience with correlation coefficients consistently over 0.85,
the faithfulness metrics demonstrate high variability in the concordance of the scores
depending on the baseline: all correlations are below 0.9, implying at least 3 discor-
dant pairs in the scores according to the baseline (sometimes even below 0.2 such as
for Pixel Flipping or Monotonicity Arya). Therefore, we recommend that new authors
use multiple baselines in experiments using faithfulness metrics for a fair comparison.
This becomes especially important considering faithfulness metrics are, to our knowl-
edge, the most widely used in the state-of-the-art to evaluate XAI methods. Otherwise,
it would mean drawing conclusions about potentially better XAl methods for a problem
or dataset that may prove unreliable, as shown by the variability of results for different
baselines.

4.3 On the Reliability of Metrics in Terms of Rankings

This section explores how the ranking attributed by evaluation metrics to the three
dummy explanation methods defined in Section 3.2 (Sobel, Gaussian, and Random)
compares to the ranking of state-of-the-art saliency methods. As the former are not
valid explainability methods, their ranking in comparison to the ranking of the latter
can unveil the strengths and weaknesses of the evaluation metrics. As each family of
evaluation metrics is different, some may give dummy methods a low ranking, while
others may provide a high ranking. This is discussed in detail below based on Fig. 5,

* Significant values are in italic bold, based on Holm-Bonferroni-corrected p-values by taking
into account the complete matrix.
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Fig. 6, and Fig. 7, which show the average ranking (rank 1 being the best) of the meth-
ods for each metric (based on the ranking for each image given by the metric scores)
according to the model and dataset. We start the analysis by families of metrics from
right to left in the figures.

Method rank by metric (ResNet-50 / ImageNet)
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Fig. 5: Ranking of XAI methods with respect to metrics for ResNet-50 model on Ima-
geNet (lower rank is better).

Method rank by metric (VGG-16 / ImageNet)
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Fig. 6: Ranking of XAl methods with respect to metrics for VGG16 model on ImageNet
(lower rank is better).
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Method rank by metric (ResNet-50 / CIFAR-10)
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Fig. 7: Ranking of XAI methods with respect to metrics for Resnet-50 model on CI-
FAR10 (lower rank is better).

For complexity metrics, intuitively the complexity of the Sobel method depends
on the input image, while that of Random is variable by definition. Thus, the ranking
of these two dummy methods is not defined. However, the Gaussian method, with its
constant and large map, should (and does) achieve a consistently poor ranking. The
results obtained are consistent for all models and datasets.

For randomization metrics, Model Parameter Randomization (MPR) and Random
Logit (RL) give a bad score to Sobel and Gaussian methods. This is the expected result
since they do not depend on the model weights (MPR metric) or on the explanation
(RL metric), and thus do not change with the randomization of the model or of the
explanation class. On the other hand, as the Random dummy method produces a differ-
ent result according to the model randomization (MPR metric) or the explanation class
randomization (RL metric), it achieves an artificially good ranking by mimicking the
big influence of the randomization. Note that this also shows that these metrics can be
fooled by a nondeterministic explainability method. One result is, however, inconsis-
tent between datasets because the Random Logit metric ranks the Random method with
CIFAR10 (Fig. 7) very highly.

For robustness metrics, we expect Sobel and Random to have poor rankings, be-
cause the maps are completely different each time for Random, which makes them very
unstable, and Sobel detects new edges, being sensitive to local perturbations. Since
Gaussian is insensitive to any perturbations of the input, it provides trivial constant ex-
planations and is the optimal choice as stated in the authors’ paper [38]. This is what
turns out to be the case for Max-Sensitivity and Avg-Sensitivity. However, the Local
Lipschitz Estimate rates Sobel as one of the best methods, which is not coherent with
the purpose of the metric.

For faithfulness metrics, the general goal is that perturbing/adding the most signifi-
cant pixels or areas of an image has the most noticeable effect on the prediction for the
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best explainability method (and vice versa). However, in addition to being the group of
metrics with the weakest correlations in Section 4.1, we observe that across the three
figures, it is also the only family where the results do not agree at all for different mod-
els and datasets. All XAI methods are extremely close in rankings for VGG-16, and we
observe a lot of crossovers between rankings for all metrics in the other two figures.
In terms of dummy methods, since none of the three dummy methods aim to select
the most significant pixels, we initially expect them to be consistently ranked poorly.
However, we find that Pixel-Flipping and Selectivity assign a good ranking to the Ran-
dom method using Resnet50, or that Gaussian is assigned the best or worst ranking
by Monotonicity Arya depending on the dataset used. Overall, there is no faithfulness
metric that consistently gives a bad ranking to the three dummy methods for all models
and datasets used, contrary to what one would logically expect from a reliable method.

5 Discussion and Conclusion

Despite the existence of multiple quantitative metrics assessing the quality of saliency
methods [3, 6], the evaluation of these methods remains challenging in the absence of
ground truth explanations [27]. There are also very few objective criteria for choosing
methods and metrics. To the best of our knowledge, no previous work exists that focuses
on metric comparison instead of saliency method comparison. This paper compares
14 metrics by evaluating nine state-of-the-art XAI methods, applied to 2000 images
from the ImageNet validation set and 2000 images from the CIFARIO test set, using
pretrained CNN models.

We studied the pairwise correlation of metrics through Kendall’s 7, followed by an
analysis of the baseline hyperparameter for the faithfulness metrics, and finally a relia-
bility analysis of the ranking given by the metrics to the XAI methods with the addition
of 3 dummy methods used to detect potential issues. From experimental results, we un-
veil for complexity metrics that Sparseness and Complexity are very highly correlated
on all datasets and therefore potentially redundant with each other to represent com-
plexity. For robustness metrics, we find out that Max- and Avg-Sensitivity are strongly
correlated. Moreover, as Local Lipschitz Estimate rated unexpectedly highly the Sobel
dummy method in the reliability analysis, it would favor the choice of either Max- or
Avg-Sensitivity to represent robustness metrics. Model Parameter Randomization and
Random Logit demonstrate a significant correlation between each other without being
redundant in the randomization metrics, with no consistent flaws found by the use of
dummy methods, both representing well different aspects of the randomization. Last,
though faithfulness metrics are arguably the most widely used group in the state-of-
the-art, this metric group does not find any redundant metrics or significantly correlated
ones on all datasets. The reliability analysis shows that the ranks given to the methods
vary enormously across datasets and models and that for these we also cannot find a
faithfulness method that gives the assumed rank (worst rank) to the dummy methods
used. All of this is in addition to the fact that the ranks given by the faithfulness metrics
vary significantly depending on the baselines used, as shown in our experiments. It is
therefore essential to include a variation of this hyperparameter to draw reliable conclu-
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sions, and to be cautious when comparing a small number of faithfulness metrics, given
the inconsistent results obtained in this work.

Since there is no ground truth for explainability, the families of metrics each eval-
uate a different aspect of an explainability method. In real experiments, between the
families, it is up to the user to decide which types of metrics they want to focus on
(e.g., favor robustness over complexity). Within a family, we show which metrics are
correlated and may have less interest to compute in common. In addition, the flaws
identified using dummy methods indicate to the user which metrics they may want to
avoid. Future work could extend the paper to analyze reliability under vision transform-
ers or explore the impact of other hyperparameters than the baseline (e.g., the size of
patches).
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