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An Adaptive Regularization Method in Banach Spaces

S. Gratton∗, S. Jerad† and Ph. L. Toint‡

4 X 2021

Abstract

This paper considers optimization of nonconvex functionals in smooth infinite dimen-
sional spaces. It is first proved that functionals in a class containing multivariate polyno-
mials augmented with a sufficiently smooth regularization can be minimized by a simple
linesearch-based algorithm. Sufficient smoothness depends on gradients satisfying a novel
two-terms generalized Lipschitz condition. A first-order adaptive regularization method
applicable to functionals with β-Hölder continuous derivatives is then proposed, that
uses the linesearch approach to compute a suitable trial step. It is shown to find an ε-

approximate first-order point in at most O(ε−
p+β
p+β−1 ) evaluations of the functional and its

first p derivatives.

Keywords: nonlinear optimization, adaptive regularization, evaluation complexity, Hölder gradi-

ents, infinite-dimensional problems.

1 Introduction

The analysis of adaptive regularization (AR) algorithms for nonlinear (and potentially non-
convex) optimization has been a very active field in recent years (see [19, 24, 7, 8, 10, 4, 17,
5, 6, 23, 18, 3, 2, 13], to cite only a few). This sustained interest of the research community
is motivated in part by the fact that these methods not only work well in practice, but also
exhibit excellent worst-case evaluation complexity bounds: one can indeed prove that the
number of function and derivatives evaluations which may be required to find an approxi-
mate critical point is small, at least compared to similar bounds for other standard methods
such as linesearch-based Newton or trust-region algorithms [24, 8]. As it turns out, evaluation
complexity results obtained for AR methods and nonconvex problems have been obtained, to
the best of the authors’ knowledge, in the context of IRn. It is the purpose of this short note
to show that this need not be the case, and that evaluation complexity bounds for computing
approximate first-order critical point can be derived in infinite-dimensional Banach spaces.

The main motivation for this generalization is twofold. Our first aim is to cover a number
of infinite-dimensional applications in optimal control and variational analysis, and show that
adaptive regularization methods do make sense in that context. Indeed, our developement
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covers optimization problems in Lp(IRn), `p and Sobolev spaces Wm,p(IRn) [29] for p ∈ (1,∞)
as well as in all Hilbert spaces.

Our second aim is to investigate the necessary methodological coherence when optimiza-
tion algorithms are applied to large-scale discretized problems: it is then important to show
that AR methods continue to make sense in the limit, as the discretization mesh converges
to zero. This coherence, sometimes called “mesh independence”, has long been considered as
an important feature of numerical optimization methods [22, 1, 16, 20, 27]. For trust-region
methods, this was studied in [26] in the Hilbert space context, and developed for Hilbert and
Banach spaces in [15, Section 8.3]. Considering the question for AR algorithms therefore seems
a natural development in this line of research. One might argue that most evaluation com-
plexity results are “dimensionless”, making this effort unnecessary. This argument however
ignores an important point: problems in infinite dimension (and thus their discretizations) are
often defined in spaces whose norms (and inner products when they exist) are not the stan-
dard Euclidean one. As a consequence, gradients must be measured in dual norms and thus
approximate first-order points detected using these norms. This makes most existing com-
plexity results applicable only though the use of norm-equivalence constants in large-scale
finite dimensional approximations, whose value may significantly increase with dimension.
The complexity estimates obtained using this approach can thus be severe overestimates for
large-dimensional discretizations of infinite-dimensional variational problems. Considering
the norm adapted to the problem may therefore provide substantially more robust evaluation
complexity bounds, which is the point of view developed in this paper.

Our second objective however raises specific technical difficulties. While the outline of
adaptive regularization methods is today quite well-known for finite dimensional spaces (see
[6], for instance), its simple generalization to infinite dimensions is impossible. Indeed, the
existence of a suitable step at a given iteration of the method in finite dimensions typically
hinges on approaching a minimizer of a regularized model, which may no longer exist in infinite
dimensions. Our analysis circumvents that problem by proposing a specialized optimization
technique which guarantees an acceptable step for a class of function that, at variance with
existing Lipschitz approaches, includes regularized polynomials.

Contributions. Having set the scene, we now make our contribution more precise.

• We first analyse the convergence of a first-order method for minimizing a regularized
differentiable functions on a bounded set, where the first-order approximation error for
the objective function’s and the regularization’s gradients satisfy a two-terms generalized
Hölder condition. Significantly, this class includes regularized multivariate polynomials.
To our knowledge, no such regularization has been considered before, even in finite
dimensional spaces.

• Exploiting this result, we then propose an adaptive regularization algorithm whose step
is found by minimizing a regularized polynomial and whose objective is to find first-order
points of nonconvex functions having Hölder continuous p-th derivative (in the Fréchet
sense). We analyze its evaluation complexity and show that the sharp complexity bound
known [11] for the finite-dimensional case is recovered, in that the algorithm requires

at most O
(
ε
− p+β
p+β−1

)
evaluations of the function and its first p derivatives to compute

such a point.
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Outline. The paper is organized as follows. Section 2 considers the minimization of smooth
regularized functionals in Banach spaces. Section 3 then introduces the class of Banach
spaces of interest and details our general adaptive regularization algorithm for first-order
minimization in these spaces, while Section 4 analyzes its evaluation complexity. We conclude
the paper in Section 5 with a brief discussion of the new results and perspectives.

Notation Throughout the paper, ‖.‖V denotes the norm over the space V. B(x,B) denotes
the open ball centered at x of radiusB. L(V⊗m; IR) denotes the space of multilinear continuous
functionals from V × V · · · × V to IR and Lmsym(V⊗m; IR) the subspace of Lm(V⊗m; IR) that
is m-linear symmetric. For a functional f defined from V to IR that is p times Fréchet
differentiable, ∇kxf(x) ∈ Lksym(V⊗k; IR) denotes the k-th derivative tensor for k ∈ {1, . . . , p}.
∇1
xf is an element of the dual space of V denoted V ′. The symbol 〈·, ·〉 denotes the dual pairing

between V and V ′, that is 〈y, x〉 def= y(x), for y ∈ V ′ and x ∈ V. The norm in the dual space V ′
will be denoted as ‖.‖V ′ . For S ∈ Lmsym, S[v1, v2 . . . , vm] ∈ IR denotes the result of applying S

to v1, . . . , vm. S[v]m is the result of applying S to m copies of v and S[v]l ∈ Lm−lsym (V⊗m−l; IR)
the result of applying it to l copies of v. We define the norm in Lmsym(V⊗m; IR) as

‖S‖ def
= sup
‖v1‖V=···=‖vm‖V=1

|S[v1, . . . , vm]|. (1.1)

2 Gradient descent with a Hölder regularization

We start by considering the minimization, for x in the Banach space V, of the regularized
objective functional

φ(x)
def
= ψ(x) + h(x), (2.1)

where h is a general regularization term. This is motivated by the need to replace the
problematic condition that the step of our yet to be defined regularization method is close to
a minimizer by some more appropriate condition for infinite dimensional spaces, where ψ will
play the role of the regularized model.

The space V and the functionals φ, ψ and h in (2.1) are assumed to satisfy the following
properties.
AS.1

(i) There exists φmin ∈ IR such that, for all x ∈ V, φ(x) ≥ φmin. Moreover, the set

D def
= {x ∈ V , φ(x) ≤ φ(0)} is bounded in the sense that supx∈D ‖x‖V ≤ ω for some

ω <∞.

(ii) ψ is a Fréchet differentiable function that satisfies the local two-terms Hölder condition

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xψ(x)−∇1

xψ(y)‖V ′ ≤ L1,δ‖x− y‖β1V + L2,δ‖x− y‖β2V ,

where β1 > 0 and β2 > 0, L1,δ > 0 and L2,δ > 0 are constants, the latter two depending
on δ.

(iii) h is a convex Fréchet differentiable function whose gradient satisfies the local two-terms
Hölder condition

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xh(x)−∇1

xh(y)‖V ′ ≤ L3,δ‖x− y‖β3V + L4,δ‖x− y‖β4V ,
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where β3 > 0 and β4 > 0, L3,δ > 0 and L4,δ > 0 are constants, the latter two depending
on δ. Moreover, min[β3, β4] ≤ 1

(iv) the space V is reflexive.

The conditions stated in AS.1(ii) and (iii) are verified by functionals with Hölder continuous
gradient as proven in [13, Lemma 2.1] (β1 is then equal to the Hölder exponent and L1,δ

equal to the Hölder constant). We use the more slightly more general conditions of AS.1(ii)
in order to widen the class of allowed functionals and, in particular, to cover multivariate
polynomials. Observe also that, should β3 and β4 both exceed one, then h must be affine
and, since we do not exclude an affine ψ, AS.1(i) could then be violated. This potential
contradiction justifies our assumption that min[β3, β4] ≤ 1.

The conditions stated in AS.1(ii) (for ψ) and (iii) (for h) are identical, and they obvioulsy
combine to yield that

∀δ > 0, ∀x ∈ B(0, δ), ∀y ∈ V, ‖∇1
xφ(x)−∇1

xφ(y)‖V ′ ≤ L′1,δ‖x− y‖
α1
V + L′2,δ‖x− y‖

α2
V , (2.2)

where α1 = min(β1, β2, β3, β4) ≤ 1, α2 = max(β1, β2, β3, β4) and L′1,δ = L′2,δ =
∑4

i=1 Li,δ. We
could clearly have assumed this condition on the gradient of φ directly, but we have preferred
separate statements because AS.1(ii) and (iii) will be proved separately for the functionals of
interest. We immediately verify that multivariate polynomials satisfy AS.1(ii). This result is
crucial for our purposes, as it will allow us to compute a step in the ARp-BS algorithm defined
below.

Lemma 2.1 Consider a multivariate polynomial functional ψ : V → IR given, for x ∈ V,
by

ψ(x) = ψ0 +

p∑
`=1

1

l!
S`[x]`, (2.3)

where S` ∈ L`sym(V⊗`) for ` ∈ {1, . . . , p}. Then, ψ satisfies AS.1(ii).

Proof. First observe that ∇1
xψ(x) =

∑p
`=1

1
(`−1)!S`[x]`−1. Suppose first that p = 1.

Then ‖∇1
xψ(x) − ∇1

xψ(y)‖V ′ = 0 for all x, y and the condition of AS.1(ii) holds for
arbitrary positive values of L1,δ, L2,δ, β1 and β2. Suppose therefore that p > 1. For
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x ∈ B(0, δ), y ∈ V and u ∈ V, ‖u‖V = 1 we then derive that

〈∇1
xψ(y)−∇1

xψ(x), u〉 =

p∑
`=1

1

(`− 1)!
〈S`[x+ (y − x)]`−1 − S`[x]`−1, u〉,

=

p∑
`=1

1

(`− 1)!

〈
`−1∑
i=0

(
`

i

)
S`[x]`−1−i[(y − x)]i − S`[x]`−1, u

〉
,

=

p∑
`=2

1

(`− 1)!

〈
`−1∑
i=1

(
`

i

)
S`[x]`−1−i[(y − x)]i, u

〉
,

≤
p∑
`=2

`−1∑
i=1

1

(`− 1)!

(
`

i

)
‖S`‖‖x‖l−1−iV ‖y − x‖iV ,

≤
p∑
`=2

κ`,δ‖y − x‖`−1V , (2.4)

For ‖y − x‖V ≤ 1, an upper bound on the right hand side of (2.4) is given by

〈∇1
xψ(y)−∇1

xψ(x), u〉 ≤
p∑
`=2

κ`,δ‖y − x‖V , (2.5)

while, for ‖y − x‖V ≥ 1, it is given by

〈∇1
xψ(y)−∇1

xψ(x), u〉 ≤
p∑
`=2

κ`,δ‖y − x‖p−1V , (2.6)

Combining (2.5), (2.6) and the fact that ‖u‖V = 1 yields AS.1(ii) with β1 = 1, β2 =
p− 1 ≥ 1 and L1,δ = L2,δ =

∑p
`=2 κ`,δ. 2

We now analyze the following very simple first-order linesearch-based algorithm on the fol-
lowing page for the minimization of φ.

Note that the existence of the direction dk in Step 1 is guaranteed by AS.1(iv) and James’
theorem [21]. The reader has undoubtly recognized the Wolfe linesearch conditions in (2.7)
and (2.8) (see [25]). Unfortunately, the general form of (2.2) prevents extending the standard
convergence theory for such algorithms applied to functions with Lipschitz gradients [25,
Theorem 3.2] to our case. However, a modest modification of the classical argument allows
us to prove the following convergence result.

Theorem 2.2 Suppose that ψ, h and V verify AS.1 and let {xk}k≥0 be the sequence
generated by Algorithm 2.1. Then

φ(xk+1) < φ(xk) for all k ≥ 0

and either the algorithm terminates in a finite number of iterations with an iterate xk
such that ∇1

xφ(xk) = 0, or
lim
k→∞

‖∇1
xφ(xk)‖V ′ = 0.
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Algorithm 2.1: A Simple First-Order Algorithm for Minimizing
Regularized Functionals Satisfying (2.2)

Step 0: Initialization. The constants 0 < c1 < c2 < 1 are given. Set x0 = 0 and
k = 0.

Step 1: Compute a search direction. Compute ∇1
xφ(xk) ∈ V ′. If ‖∇1

xφ(xk)‖V ′ = 0,
terminate and return xk. Otherwise, select a direction dk such that ‖∇1

xφ(xk)‖V ′ =
−〈∇1

xφ(xk), dk〉 and ‖dk‖ = 1.

Step 2: Linesearch. Compute tk a stepsize satisfying

φ(xk + tkdk) ≤ φ(xk) + tkc1〈∇1
xφ(xk), dk〉, (2.7)

〈∇1
xφ(xk + tkdk), dk〉 ≥ c2〈∇1

xφ(xk), dk〉. (2.8)

Step 3: Define the next iterate. Set xk+1 = xk + tkdk, increment k by one and
return to Step 1.

Proof. Because of the first Wolfe condition (2.7), the values {φ(xk)} produced by Algo-
rithm 2.1 are strictly decreasing, proving the theorem’s first statement. More guarantees
that all xk lie in the level set D. Using now the second Wolfe condition (2.8), we obtain
that

〈∇1
xφ(xk+1)−∇1

xφ(xk), dk〉 ≥ (c2 − 1)〈∇1
xφ(xk), dk〉 = (1− c2)‖∇1

xφ(xk)‖V ′ ,

which, together with the fact that both xk and xk+1 belong to D, (2.2) (with δ = ω) and
‖dk‖V = 1, ensures that

(1− c2)‖∇1
xφ(xk)‖V ′ ≤ 〈∇1

xφ(xk+1)−∇1
xφ(xk), dk〉 ≤ L′1,ωt

α1
k + L′2,ωt

α2
k ,

with α1 < α2. If tk ≤ 1, we obtain from the last inequality that

tk ≥

(
(1− c2)‖∇1

xφ(xk)‖V ′
L′1,ω + L′2,ω

) 1
α1

. (2.9)

Conversely, if tk ≥ 1, then

tk ≥

(
(1− c2)‖∇1

xφ(xk)‖V ′
L′1,ω + L′2,ω

) 1
α2

. (2.10)

Therefore,

tk ≥ µmin

[
‖∇1

xφ(xk)‖
1
α1
V ′ , ‖∇

1
xφ(xk)‖

1
α2
V ′

]
,

where

µ = min

( (1− c2)
L′1,ω + L′2,ω

) 1
α2

,

(
(1− c2)

L′1,ω + L′2,ω

) 1
α1

 .
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Combining this lower bound on tk with the first Wolfe condition yields that

φ(xk+1) ≤ φ(xk)− c1µmin

(
‖∇1

xφ(xk)‖
1
α1
V ′ , ‖∇

1
xφ(xk)‖

1
α2
V ′

)
‖∇1

xφ(xk)‖V ′ , (2.11)

To prove the second theorem statement, we first note that the definition of the algorithm
ensures the identity ∇1

xφ(xk) = 0 whenever termination occurs after a finite number of
iterations. Assume therefore that the algorithm generates an infinite sequence of iterates
and that

‖∇1
xφ(xki)‖V ′ ≥ ε, (2.12)

for some ε > 0 and some subsequence {ki}∞i=1. Summing over all iterations ki and using
AS.1(i), we obtain that

+∞ > φ(0)− φmin ≥
∞∑
i=1

c1µmin

(
‖∇1

xφ(xki)‖
α1+1
α1
V ′ , ‖∇1

xφ(xki)‖
α2+1
α2
V ′

)
,

≥ c1µ
∞∑
i=1

min[ε
α1+1
α1 , ε

α2+1
α2 ], (2.13)

which is a contradiction since the right-hand side diverges to +∞. Hence (2.12) cannot
hold and the second conclusion of the theorem holds. 2

Thus a vanilla linesearch gradient-descent algorithm with the standard Wolfe conditions ap-
plied to infinite-dimensional functionals verifying AS.1 yields asymptotic first-order station-
arity. This is significant for our purpose of developing an adaptive regularization algorithm
using a model defined by a regularized polynomial. Note that the iteration complexity of this
algorithm in terms of ε ∈ (0, 1] can easily be derived from (2.13) since

φ(0)− φmin ≥ c1µ
Nε∑
i=1

min[ε
α1+1
α1 , ε

α2+1
α2 ] ≥ Nεc1µε

α1+1
α1 . (2.14)

where Nε denotes the total number of iterations to achieve the algorithm’s termination condi-

tion. The iteration complexity for the linesearch Algorithm 2.1 is therefore O
(
ε
− 1+α1

α1

)
as a

function of the requested accuracy ε of the gradient’s norm. Note that α1 ≤ 1 and hence this
bound cannot be better than O

(
ε−2
)
. This is reminiscent of Theorem 3.2 in [12], where the

evaluation complexity of an adaptive regularization method in IRn is analyzed for functions
with Hölder continuous gradients and a more specific regularization h(x) = ‖x‖r2.

3 An adaptive regularization algorithm in Banach spaces

We now consider developing an adaptive regularization method for finding first-order points
for the problem

min
x∈V

f(x), (3.1)

and make our assumptions on the problem more precise.
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AS.2 f is p times continuously Fréchet differentiable with p ≥ 1.
AS.3 There exists a constant flow such that f(x) ≥ flow for all x ∈ V.
AS.4 The p-th derivative tensor ∇pxf(x) ∈ L(Vp; IR) is globally Hölder continuous, that is,
there exist constants L > 0 and β ∈ (0, 1] such that

‖∇pxf(x)−∇pxf(y)‖ ≤ L‖x− y‖βV , for all x, y ∈ V. (3.2)

For brevity, AS.2 and AS.4 will be denoted by f ∈ Cp,β(V; IR).
Let Tf,p(x, s) be the Taylor series of the functional f(x+ s) truncated at order p.

Tf,p(x, s)
def
= f(x) +

p∑
l=1

1

l!
∇lxf(x)[s]l. (3.3)

The gradient ∇1
xf(x) belongs to the dual space V ′ and will be denoted by g(x). Thus, for a

requested accuracy ε ∈ (0, 1], we are interested in finding an ε-approximate first-order critical
point, that is a point xε such that ‖g(xε)‖V ′ ≤ ε.

3.1 Smooth Banach spaces

In a generic Banach space, we can only ensure “a decrease principle” as stated in [14, Theo-
rem 5.22]. To obtain more conclusive results, we need to introduce additional assumptions.
We choose to work with the class of uniformly q smooth Banach spaces. For the sake of com-
pleteness, we briefly recall the context. Given a Banach space V, we first define its module of
smoothness, for t ≥ 0, by

ρV(t)
def
= sup
‖x‖V=1 ,‖y‖V=t

{
‖x+ y‖V + ‖x− y‖V

2
− 1

}
, (3.4)

and immediately deduce from the triangular inequality that ρV(t) ≤ t. We now say that V is

a uniformly smooth Banach space if and only if limt→0
ρV (t)
t = 0. Going one step further, we

say that a Banach space V is uniformly q smooth for some q ∈ (1, 2] if and only if

∃κV > 0, ρV(t) ≤ κVtq. (3.5)

It is easy to see that, if V is uniformly q smooth, it is also uniformly q′ smooth for all
1 < q′ < q. Indeed, one can easily show(1) that ρV(t) ≤ max(1, κV)tq

′
from definition (3.4)

and inequality (3.5).
We motivate our choice of this particular class of Banach spaces by giving a few examples.

Lp(IRn), 1 < p <∞, are uniformly smooth Banach spaces. In particular, Lp(IRn) is uniformly
2 smooth for p ≥ 2 and uniformly p smooth for 1 < p ≤ 2. The same results apply for `p and
the Sobolev spaces Wm,p(IRn). Moreover, all Hilbert spaces are 2 smooth Banach. See [29]
for more details, in particular for the fact that q cannot be larger than 2.

From here on, we assume that

AS.5 V is a uniformly q smooth space.

Uniformly smooth Banach spaces are also reflexive (See [29, Proposition 1.e.3, p.61]), so that
AS.1(iv) automatically holds. Let us now define the set

Jp(x)
def
=
{
v∗ ∈ V ′ , 〈v∗, x〉 = ‖x‖pV , ‖v

∗‖V ′ = ‖x‖p−1V
}
. (3.6)

(1)If t ∈ [0, 1] this follows from (3.5) and q′ < q. If t > 1, ρV(t) ≤ t ≤ tq
′
.
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It is known [28] that Jp(x) is the subdifferential of the functional 1
p‖ · ‖

p
V , p ≥ 1 at x.

We may now introduce another characterization of uniform smoothness.

Theorem 3.1 Let

F def
= {ψ : IR→ IR | ψ(0) = 0, ψ is convex, non decreasing and ∃κF > 0 | ψ(t) ≤ κFρV(t)}.

Then, for any 1 < p <∞, the following statements are equivalent.

(i) V is a uniformly smooth Banach space.

(ii) Jp is single valued and there exists ϕp(t) =
ψp(t)
t where ψp ∈ F and such that

‖Jp(x)− Jp(y)‖V ′ ≤ max(‖x‖V , ‖y‖V)p−1ϕp

(
‖x− y‖V

max(‖x‖V , ‖y‖V)

)
. (3.7)

Proof. [29, Theorem 2]. 2

As we will be only working with ‖.‖pV for p > 1 in the rest of the paper, we define Jp(x) as
the unique value in the set (3.6). As the subdifferential of ‖.‖pV reduces to a singleton for
p > 1 and ‖.‖pV is a convex function, ‖.‖pV is Fréchet differentiable for p > 1 since it verifies
[14, Condition 4.16]. The reader is referred to [28] or [29] for more extensive coverage of
characterizations of the norm in uniformly smooth Banach spaces.

For all ` > 1, we now prove an upper bound of the norm of ‖J`(x) − J`(y)‖V ′ in terms
of ‖x − y‖V in a uniform q smooth Banach space. Let us first remind the useful inequality
(x+ y)r ≤ max(1, 2r−1)(xr + yr) for all x, y ≥ 0 and all r ≥ 0, before stating the next crucial
lemma.

Lemma 3.2 Suppose that V is a uniformly q smooth Banach space and that x ∈ B(0, ω).
Then for all ` > 1, there exist constants κω, κ` > 0 such that

‖J`(x)− J`(y)‖V ′ ≤ κω‖x− y‖
min[q,`]−1
V + κ`‖x− y‖`−1V , (3.8)

where κω and κ` depend only on ω, `, κF and κV .

Proof. As ` > 1, if q > `, we can use our remark above and decrease the q smooth
order until q′ = min[q, `] ≤ `. We now develop the upper bound (ii) of Theorem 3.1 and
use the definition of the set F to derive that

‖Jl(x)− Jl(y)‖V ′ ≤ max(‖x‖V , ‖y‖V)`−1κFκV

(
‖x− y‖V

max(‖x‖V , ‖y‖V)

)q′−1
,

≤ max(‖x‖V , ‖y‖V)l−q
′
κFκV‖x− y‖q

′−1
V .
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Using now the inequalities max(‖x‖V , ‖y‖V) ≤ ‖x‖V +‖x−y‖V and ` ≥ q′, we obtain that

‖Jl(x)− Jl(y)‖V ′ ≤ κFκV(‖x‖V + ‖x− y‖V)`−q
′‖x− y‖q

′−1
V ,

≤ κFκV max(1, 2`−q
′−1)(‖x‖`−q

′

V + ‖x− y‖`−q
′

V )‖x− y‖q
′−1
V ,

≤ κFκV max(1, 2`−q
′−1)ω`−q

′‖x− y‖q
′−1
V

+ κFκV max(1, 2`−q
′−1)‖x− y‖`−1V ,

≤ κω‖x− y‖q
′−1
V + κ`‖x− y‖`−1V .

2

It results from this theorem that the primal representation of the gradient of a regularization
term of the form ‖s‖αV does satisfy the condition of AS.1(iii). This will be crucial as it will
allow applying Algorithm 2.1 to a model consisting of a multivariate polynomial (satisfying
1S.1(ii)) augmented by such a regularization term.

3.2 The ARp-BS algorithm

Adaptive regularization methods are iterative schemes which compute a step form an iterate
xk by building, for f ∈ Cp,β(V; IR), a regularized model mk(s) of f(xk + s) of the form

mk(s)
def
= Tf,p(xk, s) +

σk
(p+ β)!

‖s‖p+βV , p ≥ 1. (3.9)

As in [11] but at variance with [12], we will assume here that β, the degree of Hölder continuity
of the p-th derivative tensor of f , is known. The p-th order Taylor series is “regularized” by
adding the term σk

(p+β)!‖s‖
p+β
V , where σk is known as the “regularization parameter”. This

term guarantees that the functionnal mk(s) is bounded below and thus makes the procedure
of finding a step sk by (approximately) minimizing mk(s) well-defined. In our uniform q
smooth setting, mk(s) is Fréchet differentiable but this is unfortunately insufficient to derive
results on the Lipschitz continuity of its gradient, which makes the use of more standard
gradient-descent methods impossible.
Our proposed algorithm is similar in spirit to ARC [8] and proceeds as follows. At a given
iterate xk, a step sk is first computed by approximately minimizing (3.9). Once the step is
computed, the value of the objective functional at the trial point xk + sk is then evaluated.
If the decrease in f from xk to xk + sk is comparable to that predicted by the p-th order
Taylor series, the trial point is accepted as the new iterate and the regularization parameter
is (possibly) reduced. If this is not the case, the trial point is rejected and the regularization
parameter is increased. The resulting algorithm is formally stated as the ARp-BS algorithm
on the next page.

The ARp-BS algorithm follows the main lines of existing ARp methods [8, 6]. However, as
we have already mentioned, the existence of a minimizer of mk(s) may not be guaranteed
in infinite dimensions and hence a point s? such that ∇1

smk(s
?) = 0 may not exist. As a

consequence, standard proofs that a step satisfying both (3.12) and (3.13) exists no longer
apply. We thus need to check that a suitable step can still de found in our context. This is
achieved using Algorithm 2.1.
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Algorithm 3.1: p-th order adaptive regularization in a uniform q smooth
Banach Space (ARp-BS)

Step 0: Initialization: An initial point x0 ∈ V, a regularization parameter σ0 and a
requested final gradient accuracy ε ∈ (0, 1] are given. The constants η1, η2, γ1, γ2,
γ3, χ ∈ (0, 1), and σmin are also given such that

σmin ∈ (0, σ0], 0 < η1 ≤ η2 < 1 and 0 < γ1 < 1 < γ2 < γ3. (3.10)

Compute f(x0) and set k = 0.

Step 1: Check for termination: Evaluate gk = ∇1
xf(xk). Terminate with xε = xk

if
‖g(xk)‖V ′ ≤ ε. (3.11)

Step 2: Step calculation: Evaluate f(xk) and {∇ixf(xk)}pi=2. Compute a step sk
which sufficiently reduces the model mk defined in (3.9) in the sense that

mk(sk) < mk(0), (3.12)

and
‖∇1

smk(sk)‖V ′ ≤ max
[
χε, θ‖sk‖p+β−1V

]
. (3.13)

Step 3: Acceptance of the trial point. Compute f(xk + sk) and define

ρk =
f(xk)− f(xk + sk)

Tf,p(xk, 0)− Tf,p(xk, sk)
. (3.14)

If ρk ≥ η1, then define xk+1 = xk + sk; otherwise define xk+1 = xk.

Step 4: Regularization parameter update. Set

σk+1 ∈


[max(σmin, γ1σk), σk] if ρk ≥ η2,
[σk, γ2σk] if ρk ∈ [η1, η2),
[γ2σk, γ3σk] if ρk < η1.

(3.15)

Increment k by one and go to Step 1.
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Theorem 3.3 Suppose that AS.2, AS.4 and AS.5 hold. Suppose also that ‖g(xk)‖V ′ >
0. Then a step satisfying both (3.12) and (3.13) always exists.

Proof. First note that AS.2 and AS.4 imply that p + β > 1. In order to apply
Algorithm 2.1 to the problem of minimizing (3.9), we just need to prove that mk(s)
satisfies AS.1 of Section 2. We have that

mk(s) ≥ mk(0)−
p∑
i=1

‖∇ixf(x)‖‖s‖iV +
σk

(p+ β)!
‖s‖p+βV →∞ as ‖s‖V →∞,

and thus mk is a coercive functional verifying AS.1(i). Lemma 2.1 ensures that the Taylor
series term Tf,p(xk, s) satisfies AS.1(ii). Lemma 3.2 (applied with δ = ω, ` = p + β − 1,
L3,δ = κ`, β3 = min[q, `] − 1 ∈ (0, 1], L4,δ = κω and β4 = ` + β − 1 > 0) then ensures

that ‖.‖p+βV satisfies AS.1(iii). We already noted that, being uniformly smooth, V must be
reflexive, which ensures that AS.1(iv) holds. All the requirements of AS.1 in Section 2 are
therefore met and, since ∇1

smk(0) = g(xk), Theorem 2.2 applies to the functional mk(s).
As a consequence, a suitable step sk such that mk(sk) < mk(0) and ‖∇1

smk(sk)‖V ′ ≤ χε
exists. 2

Observe that equation (2.14) and the fact that α1 = min[q, p + β] − 1 and α2 = p + β − 1
(all the other powers ranging from 2 to p), imply that, for our iterative gradient descent
Algorithm 2.1,

lim
i→∞

min

[
κA‖∇1

sm(si)‖
min[q,p+β]

min[q,p+β]−1

V ′ , κB‖∇1
sm(si)‖

p+β
p+β−1

V ′

]
= 0.

As a consequence, the first term in the minimum indicates that the smoother the space, the
faster the convergence for p ≥ 2.
Following well-established practice, we now define

S def
= {k ≥ 0 | xk+1 = xk + sk} = {k ≥ 0 | ρk ≥ η1},

the set of indexes of “successful iterations”, and

Sk
def
= S ∩ {1, . . . , k},

the set of indexes of successful iterations up to iteration k. We also recall a well-known result
bounding the total number of iterations in terms of the number of successful ones.

Lemma 3.4 Suppose that the ARp-BS algorithm is used and that σk ≤ σmax for some
σmax > 0. Then

k ≤ |Sk|
(

1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
. (3.16)

Proof. See [6, Theorem 2.4]. 2
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4 Evaluation complexity for the ARp-BS algorithm

Before discussing our analysis of evaluation complexity, we first restate some classical lemmas
of ARp algorithms, starting with Hölder error bounds.

Lemma 4.1 Suppose thatf ∈ Cp,β(V; IR) holds and that k ∈ S. Then

|f(xk+1)− Tf,p(xk, sk)| ≤
L

(p+ β)!
‖sk‖p+βV , (4.1)

and

‖gk+1 −∇1
sTf,p(xk, sk)‖V ′ ≤

L

(p− 1 + β)!
‖sk‖p−1+βV . (4.2)

Proof. This is a direct extension of [13, Lemma 2.1] since the proof in this reference
only involves AS.2, AS.4 and unidimensional integrals. 2

From now on, the analysis follows that presented in [6] quite closely.

Lemma 4.2

∆Tf,p(xk, sk)
def
= Tf,p(xk, 0)− Tf,p(xk, sk) ≥

σk
(p+ β)!

‖sk‖p+βV . (4.3)

Proof. Direct from (3.12) and (3.9). 2

Lemma 4.3 Suppose that f ∈ Cp,β(V; IR). Then, for all k ≥ 0,

σk ≤ σmax
def
= γ3 max

[
σ0,

L

(1− η2)

]
. (4.4)

Proof. See [6, Lemma 2.2]. Using (3.14), (4.1), and (4.3), we obtain that

|ρk − 1| ≤
(p+ β)!|f(xk + sk)− Tf,p(xk, sk)|

σk‖sk‖p+βV
≤ L

σk
.

Thus, if σk ≥ L/(1 − η2), then ρk ≥ η2 ensures that iteration k is successful and (3.15)
implies that σk+1 ≤ σk. The mechanism of the algorithm then guarantees that (4.4) holds.
2

The next lemma remains in the spirit of [6, Lemma 2.3], but now takes the condition (3.13)
into account.
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Lemma 4.4 Suppose that f ∈ Cp+β(V; IR) holds and that k ∈ S before termination.
Then

‖sk‖p−1+βV ≥ εmin

[
(1− χ)(p+ β − 1)!

L+ σmax
,

(p+ β − 1)!

L+ σmax + θ(p+ β − 1)!

]
. (4.5)

Proof. Successively using the fact that termination does not occur at iteration k and
condition (3.13), we deduce that

ε < ‖g(xk+1)‖V ′ ,

≤ ‖g(xk+1)−∇1
sTf,p(xk, sk)‖V ′ + ‖∇1

smk(sk)‖V ′ + σk
(p+ β − 1)!

‖Jp+β(sk)‖V ′ ,

≤ L
(p− β + 1)!

‖sk‖p−1+βV + max
[
χε, θ‖sk‖p−β+1

V

]
+ σk

(p+ β − 1)!
‖sk‖p+β−1V .

By treating each case in the maximum separately, we obtain that either

(1− χ)ε ≤
(

L

(p+ β − 1)!
+

σk
(p+ β − 1)!

)
‖sk‖p−1+βV ,

or

ε ≤
(

L

(p+ β − 1)!
+

σk
(p+ β − 1)!

+ θ

)
‖sk‖p−1+βV .

Combining the two last inequalities gives that

‖sk‖p−1+βV ≥ min

[
(1− χ)ε(p+ β − 1)!

L+ σmax
,

(p+ β − 1)!ε

L+ σmax + θ(p+ β − 1)!

]
.

This in turn directly implies (4.5). 2

We may now resort to the standard “telescoping sum” argument to obtain the desired evalu-
ation complexity result.

Theorem 4.5 Suppose that AS.2–AS.5 hold. Then the ARp-BS algorithm requires at
most

κARpBS
f(x0)− flow
ε

p+β
p+β−1

,

successful iterations and evaluations of {∇ixf}i=1,2,...,p and at most

κARpBS
f(x0)− flow
ε

p+β
p+β−1

(
1 +
| log γ1|
log γ2

)
+

1

log γ2
log

(
σmax

σ0

)
,

evaluations of f to produce a vector xε ∈ V such that ‖g(xε)‖V ′ ≤ ε, where

κARpBS =
(p+ β − 1)!

η1σmin
min

[
(1− χ)(p+ β − 1)!

L+ σmax
,

(p+ β − 1)!

L+ σmax + (p+ β − 1)!θ

] p+β
p+β−1

.
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Proof. Let k be the index of an iteration before termination. Then, using AS.3,
the definition of successful iterations, (4.3) and (4.5), and the fact that computing an
appropriate step is of constant order of complexity, we obtain that

f(x0)− flow ≥
k∑

i=0,i∈S
f(xi)− f(xi+1) ≥ η1

∑
i∈Sk

∆Tf,2(xi, si) ≥
|Sk|

κARpBS
ε

p+β
p+β−1 .

Thus

|Sk| ≤ κARpBS
f(x0)− flow
ε

p+β
p+β−1

,

for any k before termination. The first conclusion follows since the derivatives are only
evaluated once per successful iteration. Applying now Lemma 3.4 gives the second con-
clusion.

2

Theorem 4.5 extends the result of [6] in the case β = 1 and some results of [13] to uniform
q smooth Banach spaces. We recall that Lp, `p and Wm,p are uniform q smooth spaces
for 1 < p < ∞, and hence that Lemma 3.2 and Theorem 4.5 apply in these spaces. We
may also consider the finite dimensional case where IRn is equipped with the norm ‖x‖r =

(
∑n

i=1 |xi|r)
1
r . We know that, for all 1 < r < ∞, this is a uniform min(r, 2) smooth space,

and therefore Theorem 3.5 again applies. We could of course have obtained convergence of
the adaptive regularization algorithm in this case using results for the Euclidean norm and
introducing norm-equivalence constants in our proofs and final result, but this is avoided by
the approach presented here. This could be significant when the dimension is large and the
norm-equivalence constants grow.

Finally note that the evaluation complexity of Algorithm 2.1 discussed at the end of
Section 2 is interesting but irrelevant for the evaluation complexity of the ARp-BS algorithm,
because the former only evaluates the model mk without requiring any evaluations of f or its
derivatives beyond those already performed in ARp-BS.

5 Discussion

We have proposed a generalized Hölder condition and a gradient-descent algorithm for min-
imizing polynomial functionals with a general convex regularization term in Banach spaces,
and have applied this result to show the existence of a suitable step in an adaptive reg-
ularization method for unconstrained minimization in q smooth Banach spaces. We have
also analyzed the evaluation complexity of this latter algorithm and have shown that, un-
der standard assumptions, it will find an ε-approximate first-order critical point in at most

O
(
ε
− p+β
p+β−1

)
evaluations of the functional and its first p derivatives, which is identical to the

bound known for minimization in (finite-dimensional) Euclidean spaces. Since these bounds
are known to be sharp [11], so is ours.

It would be interesting to consider convergence to second-order points, but the infinite
dimensional framework causes more difficulties. Indeed, considering second-order derivatives
as in [13] is impossible since we do not know if a power of the norm is twice differentiable.



Gratton, Jerad, Toint: Adaptive Regularization in Banach Spaces 16

As an example, consider Lr([0, 1]) for p > 1, where

∇1
f

(
‖f‖pLr([0,1])

p

)
= ‖f‖p−rLr([0,1])f |f |

r−2.

The right-hand side of the last equation involves an absolute value which is only differentiable
for specific values of r. It is interesting to study the case of r = 2 with the objective of
extending our analysis to the second order. Another line of future work is to extend these
results to metrizable spaces (using the Bregman divergence or the Wasserstein distance) and
to the complexity of second order adaptive regularization in an infinite-dimensional Hilbert
space.
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