
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
5
4
9
/
4
6
9
3

|

d
o
w
n
l
o
a
d
e
d
:

2
9
.
1
1
.
2
0
2
3

Deep Learning Techniques for Mobility Prediction and
Management in Mobile Networks

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Negar Emami

von Teheran, Iran

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik

Original document saved on the web server of the University Library of Bern

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
(CC BY-NC-ND 4.0) where not stated differently. The license does not apply to several images, content,

tables, and algorithms (please see page iii and iv for details). To see the licence go to:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en.

Deep Learning Techniques for Mobility Prediction and
Management in Mobile Networks

Inauguraldissertation
der Philosophisch-naturwissenschaftlichen Fakultät

der Universität Bern

vorgelegt von

Negar Emami

von Teheran, Iran

Leiter der Arbeit:
Professor Dr. Torsten Braun

Institut für Informatik

Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen.

Bern, 27 September, 2023 Der Dekan:
Prof. Dr. Marco Herwegh

iii

Copyright Notice

This work includes different copyright licenses and is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) where not diferently stated.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

For any reuse or distribution, you must take clear to others the license terms of this work.

Any of these conditions can be waived if you get permission from the copyright holder.

Nothing in this license impairs or restricts the author’s moral rights according to Swiss law.

The detailed license agreement can be found: https://creativecommons.org/licenses/by-nc-nd
/4.0/legalcode.en

Images used in Figures 1.1 and 4.10 fall under the licenses mentioned in their image captions.
Figures 2.1, 2.2, 2.3, 4.4, 4.5, 4.6, 4.7, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 6.1, 6.3, 6.4, 6.5,
6.6, 6.7, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 8.1, 8.2, 8.4, 8.5, 8.6, 8.7, 9.2, 9.3, 9.4, 9.5, 9.6, 9.8, 9.9, 9.10, and 9.11
fall under IEEE Copyright. Partial content of Chapters 5, 6, 7, 8, and 9 fall under IEEE Copyright.
Moreover, all Tables and Algorithms of this work fall under IEEE Copyright.

iv

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of the University of Bern’s products or services. Internal or personal use of
this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for
advertising or promotional purposes or for creating new collective works for resale or redistribu-
tion, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink.

v

To my father ’Baba Isa’, whose consistent support and boundless knowledge have been a constant
source of inspiration and motivation throughout my doctoral journey.

vii

“The true delight is in the finding out rather than in the knowing.”

Isaac Asimov

ix

Abstract

Trajectory prediction is an important research topic in modern mobile networks (e.g., 5G and
beyond 5G) to enhance the network quality of service by accurately predicting the future loca-
tions of mobile users, such as pedestrians and vehicles, based on their past mobility patterns. A
trajectory is defined as the sequence of locations the user visits over time.

The primary objective of this thesis is to improve the modeling of mobility data and establish
personalized, scalable, collective-intelligent, distributed, and strategic trajectory prediction tech-
niques that can effectively adapt to the dynamics of urban environments in order to facilitate the
optimal delivery of mobility-aware network services. Our proposed approaches aim to increase
the accuracy of trajectory prediction while minimizing communication and computational costs
leading to more efficient mobile networks.

The thesis begins by introducing a personalized trajectory prediction technique using deep
learning and reinforcement learning. It adapts the neural network architecture to capture the
distinct characteristics of mobile users’ data. Furthermore, it introduces advanced anticipatory
handover management and dynamic service migration techniques that optimize network man-
agement using our high-performance trajectory predictor. This approach ensures seamless con-
nectivity and proactively migrates network services, enhancing the quality of service in dense
wireless networks.

The second contribution of the thesis introduces cluster-level prediction to extend the rein-
forcement learning-based trajectory prediction, addressing scalability challenges in large-scale
networks. Cluster-level trajectory prediction leverages users’ similarities within clusters to train
only a few representatives. This enables efficient transfer learning of pre-trained mobility models
and reduces computational overhead enhancing the network scalability.

The third contribution proposes a collaborative social-aware multi-agent trajectory prediction
technique that accounts for the interactions between multiple intra-cluster agents in a dynamic
urban environment, increasing the prediction accuracy but decreasing the algorithm complexity
and computational resource usage.

The fourth contribution proposes a federated learning-driven multi-agent trajectory prediction
technique that leverages the collaborative power of multiple local data sources in a decentralized
manner to enhance user privacy and improve the accuracy of trajectory prediction while jointly
minimizing computational and communication costs.

The fifth contribution proposes a game theoretic non-cooperative multi-agent prediction tech-
nique that considers the strategic behaviors among competitive inter-cluster mobile users.

The proposed approaches are evaluated on small-scale and large-scale location-based mobility
datasets, where locations could be GPS coordinates or cellular base station IDs. Our experiments
demonstrate that our proposed approaches outperform state-of-the-art trajectory prediction meth-
ods making significant contributions to the field of mobile networks.

xi

Acknowledgements
I am pleased to present my doctoral thesis, which was carried out at the University of Bern

under the Swiss National Science Foundation (SNSF) project "Intelligent Mobility Services". It has
been a long and challenging journey, and I would like to thank all the people who have contributed
to my academic achievements and made this possible.

I would like to express my deepest gratitude to my supervisor, Prof. Dr. Torsten Braun, for his
invaluable support and guidance throughout my Ph.D. journey. I am grateful to him for affording
me the opportunity to join the Communications and Distributed Systems (CDS) group in the In-
stitute of Informatics at the University of Bern and pursue my Ph.D.. I am also thankful for having
the opportunity to participate in diverse and intellectually stimulating activities, such as summer
schools, winter schools, seminars, and conferences. These activities have not only contributed
significantly to my academic growth but have also provided me with the priceless opportunity
to network and interact with esteemed researchers and scientists from various parts of the globe.
Dear Prof. Braun, I appreciate your guidance in helping me become an independent researcher
and follow my own ideas.

I am grateful to SNSF for providing me with the opportunity to work in a highly qualified
environment at the University of Bern and for supporting the national project "Intelligent Mobility
Services". I also thank Orange telecommunication company in France, for providing us with the
confidential mobility dataset that we used throughout this thesis.

I am thankful to Prof. Dr. Zhongliang Zhao and Dr. Antonio di Maio for their valuable ad-
vice and corrections during my doctoral studies. I especially thank my CDS colleagues, including
Maria, Eric, Hugo, Dimitrios, Diego, Lucas, Tofumni, Allison, and Eirini for the memorable con-
versations and moments we shared over the last four years. I also thank my old Iranian friends
for their support and encouragement throughout this journey.

I want to extend my thanks to CDS secretaries, Daniela Schroth and Priska Grunder, for their
infinite assistance with administrative procedures during the completion of my Ph.D.. I also thank
Dr. Peppo Brambilla, the computer science institute’s system administrator, for his infinite help.

I am deeply grateful to my parents, maman Rafi and baba Isa, as well as my brother Nima, for
their absolute love and support. Their encouragement has been a constant source of motivation,
and they have been there for me during the most challenging times. Finally, I would like to thank
my husband and best friend, Luca, for his unconditional support, love, and belief in me, especially
during the times when I had lost faith in myself. I cannot thank him enough for his patience and
understanding, allowing me to pursue my dreams. My dear family, you have always been my
pillars of strength, and I could not have achieved this success without you.

Negar Emami
Bern, 27 September, 2023

xiii

Contents

Abstract ix

Acknowledgements xi

1 Introduction 1
1.1 Overview . 2
1.2 Problem Statement . 3

1.2.1 Reliable and Computationally-Light Trajectory Prediction Gap in Mobility
Management Techniques of Modern Wireless Networks 3

1.2.2 Scalable and Convergent Individual-Agent Trajectory Prediction Gap in Cen-
tralized Large-Scale Mobility Networks . 7

1.2.3 Computationally-Efficient Multi-Agent Trajectory Prediction Gap in Cen-
tralized Social-Interactive Mobility Networks 8

1.2.4 Communication- and Computation-Adaptive Multi-Agent Trajectory Pre-
diction Gap in Distributed Mobility Networks 10

1.2.5 Strategically Robust Multi-Agent Trajectory Prediction Gap in Non-Cooperative
Mobility Networks . 11

1.3 Thesis Contributions . 12
1.3.1 Reinforced Deep Learning for Personalized and Computationally-Light Tra-

jectory Prediction and Proactive Mobility Management 13
1.3.2 Clustered Transfer Learning for Large-Scale Trajectory Prediction 16
1.3.3 Intra-Cluster Collaborative Learning for Social Trajectory Prediction 17
1.3.4 Network-Adaptive Federated Learning for Distributed Trajectory Prediction 19
1.3.5 Inter-Cluster Game-Theoretic Learning for Non-Cooperative Trajectory Pre-

diction . 22
1.4 Thesis Outline . 24

2 Theoretical Background 27
2.1 Chapter Introduction . 27
2.2 Mobility Prediction Definition . 27
2.3 Mobility Management Definition . 28

2.3.1 Handover Management Definition . 28

xiv

2.3.2 Service Migration Definition . 29
2.4 Supervised Machine Learning . 30

2.4.1 LSTM Neural Networks . 31
2.4.2 1D-CNN Neural Networks . 32
2.4.3 Transformer Neural Networks . 33

2.5 Unsupervised Machine Learning . 35
2.5.1 Clustering . 35

2.6 Reinforcement Learning . 37
2.7 Transfer Learning . 39
2.8 Collaborative Learning . 41
2.9 Federated Learning . 42
2.10 Game Theory . 43
2.11 Chapter Conclusions . 45

3 Related Works 47
3.1 Chapter Introduction . 47
3.2 Mobility Datasets . 47
3.3 Mobility Management in Wireless Networks . 48

3.3.1 Handover Optimization . 48
3.3.2 Service Migration . 49

3.4 Mobility Prediction . 50
3.4.1 Isolated-Agent Trajectory Prediction Models 50
3.4.2 Social-aware Multi-Agent Trajectory Prediction Models 53
3.4.3 Decentralized Multi-Agent Trajectory Prediction Models 54
3.4.4 Strategic Multi-Agent Trajectory Prediction Models 56

3.5 Chapter Conclusions . 57

4 Overview of Mobility Scenarios, Datasets, and Evaluation Metrics 59
4.1 Chapter Introduction . 59
4.2 Mobility Prediction Scenario . 59

4.2.1 Mobility Prediction as a Classification Task . 61
4.2.2 Mobility Prediction as a Regression Task . 61

4.3 Mobility Management Scenarios . 62
4.3.1 Handover Management . 62
4.3.2 Service Migration . 62

4.4 Datasets . 62
4.4.1 Orange Dataset . 63
4.4.2 ETH+UCY Dataset . 69

4.5 Data Preparation and Feature Extraction . 70
4.6 Data Quality and Periodicity Estimation . 71

4.6.1 Time Domain Signal Processing . 72
4.6.2 Frequency Domain Signal Processing . 73

4.7 Evaluation Methodology . 74

xv

4.7.1 Mobility Prediction Experimental Setup . 74
4.7.2 Mobility Management Experimental Setup . 75
4.7.3 Mobility Prediction Evaluation Metrics . 76
4.7.4 Mobility Management Evaluation Metrics . 77

4.8 Chapter Conclusions . 78

5 Reliable and Computationally-Light Trajectory Prediction for Wireless Network Mobil-
ity Management 79
5.1 Chapter Introduction . 79
5.2 RL-LSTM Trajectory Prediction System Architecture 80

5.2.1 Reinforcement Learning for LSTM Architecture Design 80
5.2.2 Transfer Learning for Expedition of the RL Process 82

5.3 RL-HEC Handover Management System Architecture 83
5.3.1 Measurement Phase . 84
5.3.2 Decision Phase . 84
5.3.3 Execution Phase . 84

5.4 RL-SM Service Migration System Architecture . 86
5.4.1 RL-SM Monitoring . 88
5.4.2 RL-SM Assignment . 88

5.5 Evaluations . 91
5.5.1 Experimental Details . 91
5.5.2 RL-LSTM Evaluation Results . 92
5.5.3 RL-HEC Evaluation Results . 95
5.5.4 RL-SM Evaluation Results . 97

5.6 Chapter Conclusions . 99

6 Scalable and Convergent Individual-Agent Trajectory Prediction in Large-Scale Mobil-
ity Networks 101
6.1 Chapter Introduction . 101
6.2 RC-TL Trajectory Prediction System Architecture . 103

6.2.1 User Trajectory Clustering and Reference Users Selection 104
6.2.2 Reinforcement Learning for CNN Architecture Design 106
6.2.3 Transfer Learning between Cluster Members 107

6.3 Evaluations . 108
6.3.1 Experimental Details . 108
6.3.2 Evaluation Results . 109

6.4 Chapter Conclusions . 113

7 Computationally-Efficient Multi-Agent Trajectory Prediction in Socio-Interactive Mo-
bility Networks 115
7.1 Chapter Introduction . 115
7.2 INTRAFORCE Trajectory Prediction System Architecture 118

7.2.1 Neighbor-Trajectory User Clustering . 119

xvi

7.2.2 Reinforcement Learning for Transformer Architecture Design 119
7.2.3 Intra-Cluster Social-Transformer Training . 122

7.3 Evaluations . 122
7.3.1 Large-Scale Mobility Scenario . 124
7.3.2 Small-Scale Mobility Scenario . 124
7.3.3 Large-Scale Evaluation Results . 125
7.3.4 Small-Scale Evaluation Results . 127

7.4 Chapter Conclusions . 127

8 Network-Adaptive Multi-Agent Trajectory Prediction in Distributed Mobility Networks129
8.1 Chapter Introduction . 129
8.2 FedForce Trajectory Prediction System Architecture 132

8.2.1 Local Client Eligibility Estimation . 134
8.2.2 Federated Head Client Selection and RL-TF Optimization 134
8.2.3 Efficient Participant Selection and Federated Training 136
8.2.4 Pre-trained Model Migration to Silent Clients 136

8.3 Evaluations . 137
8.3.1 Large-Scale Mobility Scenario . 137
8.3.2 Small-Scale Mobility Scenario . 137
8.3.3 Large-Scale Evaluation Results . 137
8.3.4 Small-Scale Evaluation Results . 142

8.4 Chapter Conclusions . 142

9 Strategically-Robust Multi-Agent Trajectory Prediction in Non-Cooperative Mobility
Networks 145
9.1 Chapter Introduction . 145
9.2 GTP-Force Trajectory Prediction System Architecture 148

9.2.1 Game Player Selection . 150
9.2.2 Distributed Reinforced Transformer Training 151
9.2.3 Inter-Cluster Social Interaction Payoff Computing 152
9.2.4 Non-Cooperative Mobility User Training . 153

9.3 Evaluations . 153
9.3.1 Large-scale Mobility Scenario . 154
9.3.2 Small-Scale Mobility Scenario . 154
9.3.3 Large-Scale Evaluation Results . 154
9.3.4 Small-Scale Evaluation Results . 159

9.4 Chapter Conclusions . 160

10 Conclusions 161
10.1 summary . 161
10.2 Contributions . 162

10.2.1 Trajectory Prediction-Driven Handover Management and Service Migration
in Multi-Access Edge Computing Environments 162

xvii

10.2.2 Large-Scale Individual-Agent Trajectory Prediction 163
10.2.3 Social-aware Multi-Agent Trajectory Prediction 164
10.2.4 Distributrd Multi-Agent Trajectory Prediction 165
10.2.5 Non-Cooperative Multi-Agent Trajectory Prediction 166

10.3 Future Work . 167

Bibliography 169

List of publications 179

xix

List of Figures

1.1 Mobility management in 5G ultra-dense networks. This image is sourced from the
paper by Shayea et al. [78] published in IEEE Access that is licensed under a Cre-
ative Commons Attribution 4.0 license, which is different than the license of this
thesis. For more information, see https://creativecommons.org/licenses/by/4.0/. . 4

1.2 Thesis contribution workflow diagram. 23

2.1 Stacked LSTM architecture [104] ©2022 IEEE. 31
2.2 Structure of the generic 1D-CNN built and trained by RC-TL [21] ©2022 IEEE. 32
2.3 Structure of a Transformer for the i-th user. The architecture contains an Encoder

Stack Ei made of ξ Encoder Layers and a Decoder Stack Di made of ξ Decoder
Layers [20] ©2022 IEEE. 34

2.4 An overview of Reinforcement Learning. 38
2.5 An overview of Transfer Learning. 39
2.6 An overview of Collaborative Learning through Social Pooling. 40
2.7 An overview of Federated Learning. 42
2.8 An overview of Payoff Matrix of a simultaneous Non-Cooperative Game (Prisoners

Dilemma). 45

4.1 Trajectory prediction as a classification task. The map images presented in this the-
sis were created using Folium Python library for visualization purposes and does
not involve public map data sources. 60

4.2 Trajectory prediction as a regression task. The map images presented in this thesis
were created using Folium Python library for visualization purposes and does not
involve public map data sources. 61

4.3 An example of mobile users’ visited locations (connected base stations) based on the
private Luzern telecommunication dataset. The map images presented in this thesis
were created using Folium Python library for visualization purposes and does not
involve public map data sources. 63

4.4 Distribution of the dataset size (a) and quality (b) for 100 random users in the large-
scale scenario (Orange dataset) [18] ©2023 IEEE. 64

4.5 A user’s several ping-pong handovers between surrounding BSs within a minute [104]
©2022 IEEE. 65

xx

4.6 A user’s consecutive connections to the same BS and cycle of connections [104]
©2022 IEEE. 65

4.7 Re-constructed topology of an user’s connected base stations [104] ©2022 IEEE. . . . 66
4.8 Demo of single-user trajectory prediction across cellular base stations on the recon-

structed topology of Orange dataset. 67
4.9 Demo of multiple-user trajectory prediction across cellular base stations on the re-

constructed topology of Orange dataset. 68
4.10 An example of the ETH dataset mobility scenario. This image is sourced from

the Papers With Code website https://paperswithcode.com/dataset/eth which ini-
tially is sourced from the Medium website https://medium.com/@zhenqinghu/
pedestrian-detection-on-eth-data-set-with-faster-r-cnn-19d0a906f1d3. The Papers
With Code website is a free resource with all data licensed under CC-BY-SA, which is
different than the license of this thesis. See https://creativecommons.org/licenses/by-
sa/4.0/deed.en. 70

4.11 Trajectory data signal in frequency domain. 73

5.1 Multi MEC RL-SM Scenario [104] ©2022 IEEE. 86
5.2 Sequence Diagram for Migration Procedure [104] ©2022 IEEE. 90
5.3 Average prediction accuracy of 100 users [104] ©2022 IEEE. 92
5.4 Average prediction accuracy of 100 users with/without TL [104] ©2022 IEEE. 93
5.5 Different predictors’ achieved accuracy grouped by the average number of unique

daily visited BSs per User [104] ©2022 IEEE. 94
5.6 Percentage of Ping-Pong handovers for different algorithms [104] ©2022 IEEE. . . . 95
5.7 Number of handovers for different algorithms [104] ©2022 IEEE. 96
5.8 Average network throughput for different algorithms [104] ©2022 IEEE. 96
5.9 Average service latency for different algorithms [104] ©2022 IEEE. 97
5.10 Number of service migration attempts for different algorithms [104] ©2022 IEEE. . . 98
5.11 Number of service migration failures for different algorithms [104] ©2022 IEEE. . . . 98

6.1 RC-TL trajectory predictor system architecture [21] ©2022 IEEE. 103
6.2 Two similar trajectories recognized by LCSS similarity Matrix. 105
6.3 Accuracy of mobility predictors trained on an individual isolated user data [21]

©2022 IEEE. 110
6.4 Build time of mobility predictors trained on an individual isolated user data [21]

©2022 IEEE. 110
6.5 RL-designed ANNs curves for the average user in Orange dataset [21] ©2022 IEEE. . 111
6.6 Learning curves for the best CNN and LSTM models selected by the RL agent for a

random user [21] ©2022 IEEE. 111
6.7 Performance of the non-clustered RL-CNN predictor, trained on a single user’s

data, compared with the clustered RC-TL [21] ©2022 IEEE. 112

7.1 Comparison of mobile user trajectory prediction in single-agent isolation (a) and
multi-agent collaboration (b) scenarios. 116

https://paperswithcode.com/dataset/eth
https://medium.com/@zhenqinghu/pedestrian-detection-on-eth-data-set-with-faster-r-cnn-19d0a906f1d3
https://medium.com/@zhenqinghu/pedestrian-detection-on-eth-data-set-with-faster-r-cnn-19d0a906f1d3

xxi

7.2 An overview of Reinforcement Learning-designed Social Learning for cooperative
trajectory prediction. 117

7.3 INTRAFORCE architecture [20] ©2022 IEEE. 119
7.4 Accuracy different trajectory predictors [20] ©2022 IEEE. 124
7.5 Build time of different trajectory predictors [20] ©2022 IEEE. 125
7.6 Accuracy convergence of the RL-designed predictors during the exploration and

exploitation phases [20] ©2022 IEEE. 125
7.7 Average build time of individual RL-TF versus social INTRAFORCE trajectory pre-

diction models [20] ©2022 IEEE. 126
7.8 Average model size of individual RL-TF versus social INTRAFORCE trajectory pre-

diction models [20] ©2022 IEEE. 126

8.1 FedForce architecture and workflow [18] ©2023 IEEE. 134
8.2 Accuracy convergence over federated training rounds of FedForce for the large-

scale scenario (Orange dataset) [18] ©2023 IEEE. 139
8.3 Time-varying wireless network bandwidth of FedForce for the large-scale scenario

(Orange dataset). 139
8.4 Train plus transmission time of FedForce over varying network throughput for the

large-scale scenario (Orange dataset) [18] ©2023 IEEE. 140
8.5 Choice of number of federated participants k in the FedForce system for the large-

scale scenario (Orange dataset) [18] ©2023 IEEE. 141
8.6 Choice of number of migration rounds p in the FedForce system for the large-scale

scenario (Orange dataset) [18] ©2023 IEEE. 141
8.7 Q table of RL, adopting Q-learning policy, with normalized Q(s, a) values, corre-

sponding to the FedForce cost function Ct [18] ©2023 IEEE. 142

9.1 An overview of Multi-Agent Reinforcement Learning-designed Social Learning for
non-cooperative trajectory prediction. 146

9.2 GTP-Force Architecture [19] ©2023 IEEE. 148
9.3 Transformer’s Encoder-Decoder TF(E,D) block for an individual user [20] ©2022 IEEE.150
9.4 Accuracy KDE of different trajectory predictors trained on an individual user data

for the large-scale scenario (Orange dataset) [19] ©2023 IEEE. 156
9.5 Accuracy of different trajectory predictors trained on an individual user data for

the large-scale scenario (Orange dataset) [18, 19] ©2023 IEEE. 156
9.6 Build time of different trajectory predictors trained on individual user data for the

large-scale scenario (Orange dataset) [18, 19] ©2023 IEEE. 157
9.7 Dense layer (a) and encoder (b) hyperparameters studying for RL-TF. 157
9.8 Accuracy of GTP-Force with respect to RL-based TF, GT-based TF without RL, and

social-TF in the large-scale scenario (Orange dataset) [19] ©2023 IEEE. 158
9.9 Model size of the GTP-Force with respect to the classical GT for the social-TF trajec-

tory prediction in the large-scale scenario (Orange dataset) [19] ©2023 IEEE. 158
9.10 Predicted trajectories by TF and LSTM versus the ground-truth trajectory [19] ©2023

IEEE. 159

xxii

9.11 Various RL-designed TF predictions versus the ground-truth path in the small-scale
scenario (ETH+UCY datasets) [19] ©2023 IEEE. 159

xxiii

List of Tables

3.1 Comparison of the state-of-the-art isolated-agent trajectory predictors [21] ©2022
IEEE . 50

3.2 Comparison of the state-of-the-art multi-agent social-aware trajectory predictors [20]
©2022 IEEE . 53

3.3 Comparison of the state-of-the-art multi-agent federated trajectory predictors [18]
©2023 IEEE . 55

3.4 Comparison of the state-of-the-art multi-agent cooperative and non-cooperative
trajectory predictors [19] ©2023 IEEE . 56

4.1 LSTM architectures suggested by RL agent for heterogeneous and homogeneous
user data [104] ©2022 IEEE . 72

4.2 Mobility Management Simulation Parameters [104] ©2022 IEEE 75
4.3 Service Migration Simulation Parameters [104] ©2022 IEEE 75

6.1 Fixed parameters of RC-TL System [21] ©2022 IEEE. 108
6.2 CNN hyper-parameter search space in RC-TL System [21] ©2022 IEEE. 109
6.3 Impact of the number of representative users k on accuracy and computational re-

quirements of RC-TL [21] ©2022 IEEE . 112

7.1 Experimental parameters for small-scale and large-scale scenarios in INTRAFORCE
System [20] ©2022 IEEE . 123

7.2 ADE [m] of different social trajectory predictors for the small-scale scenario (ETH+UCY
datasets) [20] ©2022 IEEE . 127

8.1 Experimental parameters for small-scale and large-scale scenarios in FedForce Sys-
tem [18] ©2023 IEEE . 138

8.2 ADE [m] of different social and federated trajectory predictors for the small-scale
scenario (ETH+UCY datasets) [18] ©2023 IEEE. 143

9.1 Experimental parameters of GTP-Force for small-scale and large-scale scenarios) [19]
©2023 IEEE . 155

9.2 ADE [m] of different social trajectory predictors for the small-scale scenario (ETH+UCY
datasets) [19] ©2023 IEEE . 159

xxv

List of Abbreviations

AI Artificial Intelligence
AMF Access and Mobility Management Function
ANN Artificial Neural Network
AR Augmented Reality
BS Base Station
CNN Convolutional Neural Network
DL Deep Learning
FL Federated Learning
GAN Generative Adversarial Network
GPS Global Positioning System
GRU Gated Recurrent Unit
GS Grid Search
GT Game Theory
Ho Handover
HO HyperOpt
IoT Internet of Things
ITS Intelligent Transportation System
KF Kalman Filter
LBS Location-Based Service
LSTM Long Short Term Memory
MDP Markov Decision Process
MEC Multi-Access Edge Computing
MIMO Multiple Input Multiple Output
ML Machine Learning
MME Mobility Management Entity
NAS Neural Architecture Search
NLP Natural Language Processing
NN Neural Network
QoE Quality of Experience
QoS Quality of Service
RF Random Forest
RL Reinforcement Learning

xxvi

RL-HEC Reinforcement Learning-based Handover for Edge Computing
RL-SM Reinforcement Learning-based Service Migration
RNN Recurrent Neural Network
RS Random Search
RSSI Received Signal Strength Indication
SDN Service Defined Network
SGD Stochastic Gradient Descent
TF Transformer
TL Transfer Learning
TP Trajectory Prediction
UE User Equipment
XR Extended Reality

1

Chapter 1

Introduction

The primary objective of this thesis is to explore the potential of the historical location and mobility
data in predicting future trajectories of mobile individuals or groups, including both pedestrians
and vehicles. The objective is to enhance the performance of mobility management units and han-
dover procedures in modern wireless networks, such as 5G and beyond-5G systems. These im-
provements will facilitate multi-edge computing, enabling closer data migration to edge servers
and end mobile users, thus creating a more efficient and robust wireless communication environ-
ment.

Mobility trace data are considered as time-series data that have been collected at different
points in time such as Global Positioning System (GPS) coordinates, WiFi access points, cellular
base stations, or location tags from social media. A mobility trace, or a series of visited locations,
can be viewed as a trajectory. Time-series prediction can be generalized as a process that extracts
useful information from historical records and estimates future values[25]. Therefore, a mobility
or trajectory predictor models users’ movements and anticipates their likely future locations.

This research seeks to explore new ways of leveraging location and mobility data to better
understand and predict mobility patterns and mutual interactions among multiple interfacing
users in an urban environment. We aim to boost the effectiveness of services that depend on
proactive and anticipatory mobility predictions while reducing both the computational and com-
munication complexity. Our focus is to improve existing mobility predictors’ performance in terms
of reliability, speed of convergence, scalability, computational efficiency, privacy, communica-
tion network adaptivity, and strategic robustness to various urban environment scenarios and
wireless network conditions. In this thesis, we identify the challenges associated with current
machine learning-based trajectory predictors concerning these metrics. Subsequently, we present
five trajectory predictors as our contributions, each designed to enhance the performance of the
aforementioned metrics while considering distinct scenarios, including isolated-agent prediction,
multi-agent prediction, centralized training, distributed training, cooperative interactions, and
non-cooperative interactions among multiple mobile users in a dynamic urban scenario.

This chapter sets the foundation for the rest of the thesis, providing an overview of the re-
search questions and the contributions that it makes toward improving mobility and Trajectory
Prediction (TP) schemes. In the beginning, it provides an introduction to the concept of mobility

2

prediction, highlighting its relevance in the context of location-based and proactive mobility ser-
vices. Afterwards, it discusses the fundamental limitations of TP models, identifying the gaps that
exist in current literature research. The chapter then goes on to outline the contributions that this
thesis makes toward addressing these limitations, and provides an overview of the subsequent
chapters.

1.1 Overview

The advent of next-generation wireless networks demands self-organization, cost-effectiveness,
efficiency, and a high Quality of Experience (QoE) for consumers. While 5G networks are al-
ready being deployed worldwide, the evolution beyond 5G, including 6G, must seamlessly han-
dle user mobility to meet the increasing demands of modern connectivity [32]. User mobility
serves as a defining characteristic of contemporary networks, encompassing crucial management
aspects such as handovers, service disruptions, network congestion, load balancing, and dynamic
resource allocation. It plays a pivotal role in ensuring uninterrupted connectivity, optimizing net-
work performance, and accommodating the dynamic needs and preferences of users as they move
within the network coverage area. In the pursuit of next-generation networks, proactive mobil-
ity management strategies leveraging Artificial Intelligence (AI) for forecasting and handling user
mobility become indispensable [85]. Adaptive and anticipatory network management enhances
operators to efficiently allocate resources, optimize network costs, and enhance the user experi-
ence. Mobility prediction, in particular, emerges as a vital component for improving the Quality
of Service (QoS) of network applications [99]. Accurate prediction of user movement patterns
enables network management systems to proactively manage handovers, migrate services, and
allocate network resources to meet user demands, resulting in a seamless and enhanced user ex-
perience [104]. By integrating advanced mobility prediction techniques, next-generation networks
can optimize network operations and ensure superior QoS and QoE for users.

On the other hand, trajectory and mobility prediction play a critical role in enhancing safety in
urban environments, as well as enabling efficient autonomous driving and robot-to-human inter-
action systems [46, 73]. By accurately forecasting future paths of moving objects, such as vehicles
or pedestrians, autonomous vehicles can navigate through traffic, avoiding obstacles and hazards.
This ensures the safety of passengers, pedestrians, and other road users [63]. Furthermore, mo-
bility prediction is essential in the development of advanced traffic management systems, which
can improve traffic flow and reduce congestion in urban areas [75]. This optimization of travel
time and reduction of accident risk can greatly benefit urban areas. Predicting mobility patterns
and trajectories of mobile users is a vital component in the fields of urban planning, smart cities,
Intelligent Transportation Systems (ITSs), emergency applications, and rescue operations [14].

The rapid advancement of Location-Based Services (LBSs), GPS, and other technologies such
as smartphones, social network applications, wireless access points, cellular base stations, and
satellites have generated an enormous amount of location data [7, 15]. This data has become a
valuable resource for understanding human motion behaviors in different contexts, such as ur-
ban mobility, congestion, and social interactions. However, the sheer volume and complexity
of location data present a significant challenge for traditional statistical modeling and analysis

1.2. Problem Statement 3

techniques. In recent years, Machine Learning (ML), Deep Learning (DL), and Artificial Neural
Networks (ANNs) have emerged as powerful tools to learn features from location data and pre-
dict human behavior patterns [50, 61]. These techniques can help develop accurate and efficient
prediction models, leading to more effective and personalized LBSs.

However, despite the promising results of ML and ANNs in learning location data features,
spatiotemporal dependencies, and user trajectories, several research challenges remain to be ad-
dressed, which are the focus of this thesis. Specifically, this thesis proposes high-performance mo-
bility and trajectory prediction algorithms that surpass the state of the art, enhancing performance
criteria such as reliability, convergence, scalability, computational efficiency, latency, and robust-
ness. In the following two sections, we will provide an in-depth analysis of these challenges, and
highlight and present the contributions of this thesis.

1.2 Problem Statement

This section provides an overview of the current shortcomings of existing Neural Network (NN)-
based mobility prediction and management models and outlines the research questions that this
thesis aims to address. We analyze the limitations of existing trajectory predictors across vari-
ous scenarios, such as isolated-agent, multi-agent, centralized, distributed, cooperative, and non-
cooperative trajectory prediction. These limitations primarily pertain to the reliability, robust-
ness, scalability, computational and communication resource consumption, privacy, communica-
tion overhead, and adversarial interactions among mobile users in dynamic urban environments.

To comprehensively define the challenges of the state-of-the-art NN-based trajectory predic-
tors, we begin by identifying the specific problems encountered in isolated-agent predictors. We
then transition to multi-agent collaborative predictors, where the impact of users on each other
becomes a critical factor to consider. Additionally, we explore the shift from centralized models
to distributed models to ensure user data privacy. Furthermore, we analyze challenges within
cooperative and non-cooperative social-aware trajectory predictors.

This thesis specifically emphasizes the identification of limitations and the proposal of solu-
tions for cutting-edge NNs rather than non-NN machine learning models. NNs and deep learning
have revolutionized time-series prediction tasks by their ability to capture complex non-linear re-
lationships and dependencies within the sequential data [25]. Their neural architectures allow for
the extraction of meaningful features at different levels of abstraction, enabling them to model
both short-term and long-term dependencies effectively. Moreover, advancements in computa-
tional resources and parallel processing have facilitated the training of deep networks, enabling
the exploration of larger and more sophisticated architectures. However, in the evaluation section
of our study, we will conduct a comprehensive performance comparison between our proposed
predictors and other NN and non-NN-based predictors.

1.2.1 Reliable and Computationally-Light Trajectory Prediction Gap in Mobility Man-
agement Techniques of Modern Wireless Networks

As stated, forecasting mobile users’ behaviors and future trajectories is crucial for modern wire-
less networks to provide them with a high QoS for their applications [2]. Next-generation wireless

4

FIGURE 1.1: Mobility management in 5G ultra-dense networks. This im-
age is sourced from the paper by Shayea et al. [78] published in IEEE
Access that is licensed under a Creative Commons Attribution 4.0 license,
which is different than the license of this thesis. For more information, see

https://creativecommons.org/licenses/by/4.0/.

networks, such as 5G and beyond 5G, are characterized by more densely deployed base stations
with smaller coverage areas, enabling finer-grained mobility information of users beyond their
connection points in the network [78]. In addition to the sequence of small cells that users connect
to in their trajectories, this information includes the frequency of connections and disconnections
from base stations, such as handovers. Handover refers to the process in a mobile communication
system where an active call or data session is transferred from one base station or cell to another
as the mobile user moves through the wireless network. Therefore, the dense base station de-
ployment in 5G and beyond results in more frequent handovers, which can cause a significant
signaling overhead for the network, as well as frequent disruptions in the consumption of con-
tents and services in case of handover failure. Figure 1.1 illustrates the crucial role of managing
mobility in ultra-dense 5G networks containing various types of connections [78].

Modern applications have very strict requirements in terms of storage, computing, latency, and
bandwidth. Applications such as Autonomous Driving and Driving Assistance, Extended Real-
ity (XR), Immersive Holographic communications, and others impose the need for the network

1.2. Problem Statement 5

infrastructure to provide high-quality access to edge servers that will support such applications.
In this direction, various heterogeneous services will be offloaded from the cloud to servers lo-
cated at the edge of the network, which is closer to end-users, constituting another challenge from
the mobility management standpoint, constituting the notion of Multi-Access Edge Computing
(MEC) [38]. Since the edge computing paradigm is geographically distributed, its services are
sensitive to users’ mobility. As users move to different areas in the city, the services being con-
sumed in an edge server can be disrupted, or be located many hops away from the user, reducing
the QoS of applications [65].

Furthermore, the computing power at the edge of the network is still inferior to traditional
cloud computing and must be carefully managed. Service migration is one of the most used
approaches for keeping critical services close to users even as they move through the scenario,
thus improving QoS levels for the applications they consume. In the context of wireless networks,
the term "service", in service migration, refers to the various applications, functionalities, or tasks
provided to users over the network. User mobility in these edge-enabled scenarios raises the need
for services to be migrated to keep QoS requirements for each service under acceptable levels [88].
However, since service migrations typically occur in a reactive manner after handover events,
this can cause disconnections and interruptions to user services. In mobile networks, handover
is caused primarily by user mobility, and the handover process can be optimized for better QoS
for the end-user with a prediction mechanism in place [24]. In this context, the network can offer
predictive resource allocation and release, as well as optimize the users’ connection points and
routes with a predictive view of the users’ trajectories.

In this direction, one of the major problems with state-of-the-art handover management works
is the lack of resilient predictive schemes or mobility information incorporated into the decision-
making process [93]. While some works attempt to address excessive and redundant handovers
in small cell networks using mobility-aware algorithms, their solutions are offline and not fast-
reactive enough for challenging real-time scenarios. Additionally, most models proposed for con-
ventional wireless networks do not account for the higher number of handovers expected in new-
generation ultra-dense small-cell modern networks, and may not be suitable for all scenarios.

Moving to the predictive service migration paradigm for an edge computing-enabled scenario,
some works have proposed mobility prediction solutions that have certain limitations. Decision-
making of service migration in MEC environments presents significant challenges, particularly
when it comes to large-scale experiments. While existing solutions aim to reduce overall migration
costs through specialized mobility models, these models are often heuristically designed and not
feasible for real-time network management [95]. Moreover, most of the existing works propose an
offline migration decision for services in mobile edge computing, which limits the system’s ability
to respond quickly to real-time changes.

As a result, developing high-performance mobility prediction mechanisms is essential to op-
timize mobility management units, including handover management and service migration, in
wireless networks. Recently, Recurrent Neural Networks (RNNs) have emerged as groundbreak-
ing models for time-series data analysis. Their unique architecture is specifically designed to
handle sequential data by capturing dependencies and patterns over time. Unlike traditional
feedforward neural networks, RNNs possess internal memory that allows them to retain informa-
tion from previous time steps and incorporate it into the current prediction or decision-making

6

process. Moreover, RNN variants such as Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) have been introduced to address the vanishing gradient problem and improve the
modeling of long-term dependencies. These architectures have further enhanced the performance
of RNNs in processing sequential data.

However, the major challenge regarding existing RNN mobility predictors in literature is due
to the inflexibility of their NN architectures, which are unable to adapt to new input data types
or integrate new mobility features. Current TP models often rely on designing the NN archi-
tectures based on heuristics and experts’ knowledge, which can be a time-consuming and error-
prone process. Relying solely on experts’ prior knowledge can be limiting and misleading in less-
explored fields such as TP compared to well-established fields like image processing where high-
performance models such as AlexNet, VGG, and ResNet, which are designed for well-explored
data such as MNIST1 and CIFAR102.

In this direction, Neural Architecture Search (NAS) approaches such as Hyperopt (a type of
Auto-ML) have been proposed to automate the design of NN models to optimize the architec-
ture for each user’s unique movement patterns and mobility features [17]. Auto-ML3, short for
Automated Machine Learning, is a process that automates the selection and tuning of machine
learning algorithms and hyperparameters. It employs optimization methods such as Bayesian
optimization, grid search, random search, or evolutionary algorithms to search through the hy-
perparameter space and find optimal settings for a given ML model [65]. Auto-ML encompasses
several techniques, including popular tools such as Hyperopt, Optuna, and Auto-sklearn.

NAS approaches aim to discover the optimal NN architecture for a given dataset’s character-
istics. The objective function of NAS is to identify the NN architecture that achieves the highest
accuracy among a vast search space of possible architectures. However, this objective function
is often non-convex due to the complex nature of the architecture search space, which involves
discrete variables and non-linear relationships with performance metrics. Consequently, NAS be-
comes an NP-hard problem of integer non-linear programming, for which traditional optimization
algorithms cannot guarantee an optimal solution in polynomial time.

On one hand, to model NAS in the field of TP, a few existing works use Auto-ML methods
that can be computationally intensive and not efficient if the size of the search space grows due to
the random search nature of such algorithms. On the other hand, some works employ brute force
methods and grid search as NAS techniques, which are impractical to use in large-scale networks
due to their exorbitant computational costs. Indeed, in certain cases, researchers may attempt
to reduce the search space to make bruteforce methods more feasible. However, a drawback of
such an approach is that it can compromise the guarantee of high accuracy, potentially leading
to the exclusion of optimal models during the search process. Thus, keeping a balance between
computational complexity, convergence rate, and accuracy becomes a significant challenge in NAS
techniques.

Therefore, personalized NN architectures using more efficient and effective NAS techniques
are needed to enhance the performance and reliability of the existing mobility predictors and offer

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html
3https://www.automl.org/automl/hpo-overview/

1.2. Problem Statement 7

computationally-light solutions, leading to significant improvements in prediction-based mobility
management services.

In the direction of the above limitations, we aim to address the following research questions.

• RQ 1.1: How can we increase the reliability of current NAS techniques in the field of trajectory
prediction, maintaining a desirable balance between the prediction accuracy and the NAS convergence
rate?

• RQ 1.2: How can we enable a robust proactive handover mechanism with high QoS and service con-
tinuity for network applications like service migration, using NAS-enabled high-performance NNs?

In Section 1.3.1, we outline our specific contributions in detail to address the aforementioned
research questions.

1.2.2 Scalable and Convergent Individual-Agent Trajectory Prediction Gap in Cen-
tralized Large-Scale Mobility Networks

As we discussed in Section 1.2.1, designing a computationally-light NAS algorithm to personalize
NNs for individual mobile users based on their unique data features can significantly enhance
predictive accuracy while maintaining lower computational complexity compared to other NAS
methods such as the popular AutoML. However, in the context of large-scale networks with thou-
sand to millions of mobile users, it becomes impractical to train a separate personalized NN for
each user. In large-scale mobility networks, computational complexity is a critical factor due to
limitations on computational and communication resources within a centralized network. The
use of multiple NAS-personalized NNs in such networks can be prohibitively expensive or even
infeasible. Therefore, in this section, we aim to explore alternative approaches beyond individ-
ually training each user to come up with a scalable solution and cope with large-scale network
requirements. We aim to apply scaling techniques that optimize the performance of the predic-
tion process by efficiently utilizing computational resources while maintaining high prediction
accuracy.

Moreover, although RNNs, and especially their variants LSTM models, have shown promis-
ing results in predicting mobility patterns and trajectories, they still have remarkable limitations.
One of the main limitations of RNNs is their inability to capture long-term dependencies effi-
ciently [58]. In other words, they may not be able to learn from past data that is far away from
the current time step. This can result in the model not being able to make accurate predictions
when the gap between the current and previous data is large. LSTM models were developed to
address this limitation by introducing a memory cell that can selectively remember or forget infor-
mation [96]. However, LSTM models still have challenges in capturing long-term dependencies in
complex scenarios with high variability. Furthermore, RNNs and LSTM models may present high
computational requirements as they process data in a sequential, rather than parallel, manner, and
their implementation may demand a considerable amount of training data to attain high accuracy
levels [65]. Such characteristics can render these models impractical for certain real-world scenar-
ios. In this direction, in this section, we desire to explore alternative neural network architectures

8

for trajectory prediction that offer improved learning efficiency and convergent training through
parallelization compared to traditional RNNs.

In the direction of the above limitations, we aim to address the following research questions.

• RQ 2.1: How can we utilize alternative NN architectures for trajectory prediction instead of the
commonly-used RNNs, considering their limitations of memory constraints, computational complex-
ity, and difficulties in parallelization?

• RQ 2.2: How can we effectively scale NAS-based personalization in large-scale networks? What is
the optimal tradeoff between computational resource consumption and prediction accuracy through
scaling techniques?

In Section 1.3.2, we outline our specific contributions in detail to address the aforementioned
research questions.

1.2.3 Computationally-Efficient Multi-Agent Trajectory Prediction Gap in Central-
ized Social-Interactive Mobility Networks

In Section 1.2.1 and Section 1.2.2, we focus on modeling individual users, in small- and large-scale
networks, respectively, where each agent is considered in isolation from the impact of its neigh-
boring users’ movements. However, in crowded public spaces, mobile users’ movements are
governed by social rules, such as estimating other users’ mobility status, respecting their personal
space, avoiding collisions, and coordinating group destinations. This implies that there is a strong
interdependence among the mobility patterns and decisions of neighboring users. Understanding
social interactions and spatio-temporal dependencies among mobile users’ paths can significantly
enhance the prediction of their complex motion behaviors. Socially-aware methods have demon-
strated considerable improvement over socially-unaware methods in multi-agent scenarios where
users are not acting in isolation. Therefore, in this section, we aim to explore social-aware collab-
orative trajectory prediction and enhance the performance of the existing works.

Recent research in trajectory prediction has undergone a shift from individual models to joint
models, which leverage the mutual influence among individuals in a complex dynamic environ-
ment to form group intelligence. This approach allows individuals to learn from their own histor-
ical data and the historical data of their neighbors, resulting in improved prediction performance
of the system. In recent years, data-driven social mobility predictors have become more popular
compared to the previously proposed Social-force models, which rely on simple repulsive and at-
traction forces [34, 33] for group learning. ML and DL models have replaced these models due
to their better modeling of sequential patterns and ability to achieve higher prediction accuracy
with less computation. Rather than modeling kinetic forces and energy potentials as in social-
force models, social-pooling [3, 31], attention [4, 74], and graph [94, 60] mechanisms complement
NNs to share information about neighboring users’ trajectories, capturing complex interactions in
crowded environments.

Existing social-aware DL methods have demonstrated good performance in predicting social
interactions among multiple mobile users. However, these algorithms suffer from the significant
drawback of being computationally complex and resource-intensive. This is because the existing

1.2. Problem Statement 9

algorithms require the trajectories of all users within a scene to be fed to the social predictor’s
encoders, leading to high computational costs and resource requirements. This can limit the scal-
ability of these algorithms, especially in large-scale social trajectory prediction systems. Thus, in
this section, our objective is to explore solutions that effectively capture user interactions from rel-
evant users, those whose movements have a significant impact on each other’s trajectories, rather
than considering interactions from every individual.

Another important challenge in existing social-aware trajectory predictors is the lack of NN ar-
chitecture adaptation, which can lead to suboptimal performance as the neural architecture may
not capture the unique mobility patterns and behaviors of each user. Compared to isolated indi-
vidual predictors, the NN inflexibility is even more pronounced in social-aware predictors where
multiple users are merged into a shared neural layer to exchange their data. Therefore, in this
section, we aim to broaden the scope of the discussed efficient NAS-enabled individual trajectory
prediction to include social-aware trajectory prediction.

Additionally, while some works use CNNs for trajectory prediction, which show better ef-
ficiency than RNNs, they may not be fully suitable for sequential data. Therefore, we explore
another efficient alternative, such as attention-based neural networks, which are well-suited for
modeling time-series data.

To summarize, in this section, we aim to extend the scope of highly accurate, convergent,
and scalable isolated-agent centralized trajectory prediction, as described in Section 1.2.1 and Sec-
tion 1.2.2, to encompass multi-agent collaborative trajectory prediction. This expansion allows us
to further optimize the trajectory prediction process by considering the interactions and dynamics
among multiple agents. While centralized social-aware trajectory predictors have the potential to
compromise privacy based on how they handle and store personal data, it is important to note that
our current focus lies in addressing the problem of excessive computational resource consumption
within existing state-of-the-art collaborative predictors. In subsequent stages of our research, we
plan to incorporate privacy considerations by transitioning to decentralized models.

In the direction of the above limitations, we aim to address the following research questions.

• RQ 3.1: How can we utilize alternative NN architectures for trajectory prediction instead of CNNs,
to more effectively learn the sequential mobility data?

• RQ 3.2: How can we achieve a balance between reducing the computational complexity of modern
trajectory predictors, which utilize social-aware techniques to capture user interdependencies, while
ensuring that overall prediction accuracy is maintained?

• RQ 3.3: How can we integrate the NAS personalization paradigm into multi-agent social trajectory
prediction, so that it can search for the high-performance NN tailored to the unique mobility patterns
of interactive users instead of individuals?

In Section 1.3.3, we outline our specific contributions in detail to address the aforementioned
research questions.

10

1.2.4 Communication- and Computation-Adaptive Multi-Agent Trajectory Prediction
Gap in Distributed Mobility Networks

In Section 1.2.1, Section 1.2.2, and Section 1.2.3, we focus on centralized trajectory prediction (in-
cluding isolated-agent and collaborative-agent scenarios), where all users’ datasets are collected,
processed, and trained through a central server. However, such a modeling approach raises con-
cerns about user privacy and data security, as well as communication network limitations, espe-
cially due to uploading large, private datasets to a centralized server. Therefore, in this section,
we aim to broaden the scope of centralized multi-agent trajectory prediction, as outlined in Sec-
tion 1.2.3, to include distributed collaborative trajectory prediction. This extension enables us to
enhance the trajectory prediction process by simultaneously increasing privacy and scalability in
computations and communication.

To address centralized ML issues, the research community has recently introduced Feder-
ated Learning (FL) as a distributed ML framework [57]. In this section, we aim to bring the FL
paradigm to the field of mobility prediction. In the context of FL, each participant trains a local
model using their own private dataset, and then sends the trained model’s weights to a central
server for aggregation into a global model. This global model is then sent back to the participants
for further training to reduce generalization errors, with the entire process constituting a single
training round. The retraining and aggregation steps are repeated for multiple rounds until con-
vergence is achieved. By ensuring that location data remains private and localized on the user
device, FL-based TP offers an intuitive solution to concerns regarding data privacy. Furthermore,
the scalability of training large-scale networks with extensive mobility data is greatly enhanced
by FL’s ability to distribute and process data.

While FL has been explored in various fields, its application in the field of mobility prediction
is relatively novel. The few existing FL works have achieved success in trajectory prediction, yet
they suffer from several issues [23, 54, 87, 90]. Primarily, neural architecture inflexibility arises
when all clients share the same NN to execute a task, which might not fit the features of each
user mobility dataset and network performance conditions. The NN inflexibility in FL is even
more severe than in centralized TP models due to the requirement of transmitting distributed lo-
cal models over dynamic wireless networks. For example, a model might be too large for some
clients with reduced computation and communication resources, and too small for others with
complex datasets. Therefore, in this section, we aim to develop an advanced multi-objective NAS
optimization technique that considers prediction performance and communication and computa-
tional costs together for designing a NN architecture tailored to the user’s data features, compu-
tational resource capacity, and the wireless network’s available throughput in an FL setting.

The other significant challenge with existing FL methods is the handling of ineligible train-
ing clients. In classical FL, the aggregation server must collect local models from all participating
clients to compute a global model, resulting in computation delays due to local model training
and communication delays due to model transmission. This method’s limitation is that even if a
single participating client is ineligible, meaning it has reduced computational or communication
resources (i.e., a "straggler"), the whole federated global model training process is slowed down.
Furthermore, the participation of ineligible low-quality data clients in federated training reduces
overall global accuracy and increases the system’s computational resource consumption. Hence,

1.2. Problem Statement 11

in this section, we aim to develop data estimation techniques to enable the central server to es-
timate the local user dataset’s quality without seeing their raw data. This way, the server can
elect trustworthy and eligible users to participate in FL training rounds, reducing computational
resource usage and communication overhead.

In the direction of the above limitations, we aim to address the following research questions.

• RQ 4.1: How can we develop an approach to estimate the quality of local user datasets in an FL
setting, which can be reported to the central server without the server having access to the raw data,
in order to provide the server with a general understanding of the local users’ potentials?

• RQ 4.2: How can we minimize computational resource usage and communication overhead in FL by
selecting only a subset of eligible local users to participate in each federated training round?

• RQ 4.3: How can we design a multi-objective NAS algorithm that designs a high-performance NN
simultaneously optimizing accuracy, training time, and transmission time, utilizing federated par-
ticipants’ datasets and resources and the varying network throughput, to achieve an optimal trade-off
among these factors?

In Section 1.3.4, we outline our specific contributions in detail to address the aforementioned
research questions.

1.2.5 Strategically Robust Multi-Agent Trajectory Prediction Gap in Non-Cooperative
Mobility Networks

In Section 1.2.4, we focus on distributed ML through the FL framework for private, network-
adaptive, and computationally-efficient collaborative trajectory prediction. However, from an-
other perspective, distinct from the ones presented in Section 1.2.4, an important challenge asso-
ciated with centralized and decentralized social-aware trajectory predictors, is their difficulty in
effectively handling non-cooperative social behaviors. Non-cooperative social interactions refer
to situations where the agents do not actively collaborate or coordinate their actions toward a
common goal. Instead, each agent acts independently, pursuing its own objectives without any
shared strategy or cooperation with other agents. Therefore, each mobile user acts autonomously,
making decisions solely based on their personal trajectory data and preferences. In Section 1.2.3
and Section 1.2.4, we focus on cooperative collaboration where the interacting mobile agents share
their NN architectures, which might be against their personal desires. Such an approach in large-
scale networks can end up in a reduced average prediction accuracy. Therefore, in this section, we
aim to develop strategical non-cooperative social-aware trajectory predictors.

While centralized TP models are common in the literature, the decision-making power is taken
away from individuals and given to a centralized unit to make optimal cooperative decisions by
dedicating a single NN model to multiple input users of the multi-agent social-aware predictor.
The problem is that not only the NN is heuristically designed but also a single model is shared
among heterogeneous users. On the other hand, the challenge with the existing decentralized TP
models, such as FL, is that aggregating through the common method of averaging locally trained
models can limit the ability to personalize NN architectures. Although local models could get

12

personalized by individually tuning their neurons’ weights, they must have identical architec-
tures (identical number of layers, sequence of layers, and number of neurons) to enable matrix
summation. This limitation hinders the ability of users to optimize their local NN architectures
according to their specific data characteristics and movement strategies, which is crucial for accu-
rate trajectory prediction.

Conducted surveys found that classical AI and game-theoretic approaches have the potential
for modeling human behaviors in dynamic multi-agent systems. Therefore, in this section, we aim
to expand the scope of centralized and decentralized cooperative multi-agent trajectory prediction
to encompass non-cooperative multi-agent trajectory prediction within the context of Game The-
ory (GT). This allows us to enhance the trajectory prediction process by incorporating individual
agents’ distinct desires in multi-modal scenarios.

Currently, few research works conducted GT in the trajectory prediction field. However, these
models have multiple limitations [53, 27, 5]. Firstly, the existing works are mainly designed for
sequential games and may not be suitable for modeling simultaneous games. In TP problems,
individuals may take actions simultaneously, making it necessary to use non-cooperative simul-
taneous games to more accurately model their impulsive behaviors.

Moreover, existing GT-based TP approaches do not personalize the NN architectures of non-
cooperative users but instead, use implicit layers to learn the underlying relationships between
input and output data to determine the best response of each agent in a Nash Equilibrium of
the game. The problem with these approaches is that they do not take into account the unique
characteristics of individual non-cooperative users when designing NN architectures. By using
implicit layers to learn the relationships between input and output data, the resulting models may
not be optimized for the specific data patterns and behaviors of each user.

In this section, our focus is on developing methods that can effectively handle non-cooperative
behaviors by employing multiple contesting NAS-enabled NN architectures in a simultaneous
game. The objective of these networks is to accurately predict the joint trajectories of multiple
adversarial users within a multi-agent setting.

In the direction of the above limitations, we aim to address the following research question.

• RQ 5: How can we extend game-theoretic techniques to incorporate multiple contesting NAS, en-
abling the accurate capture of cooperative and non-cooperative user behaviors in collaborative multi-
agent trajectory prediction?

In Section 1.3.5, we outline our specific contributions in detail to address the aforementioned
research question.

1.3 Thesis Contributions

As mentioned in Section 1.2, there is a pressing need to enhance the performance of current tra-
jectory and mobility prediction methods across various aspects. Given the complexity of dynamic
urban environments, accurately forecasting the trajectories of pedestrians and vehicles presents
considerable challenges. Current trajectory prediction techniques often have limitations and may

1.3. Thesis Contributions 13

not fully account for the unique characteristics of various types of mobility data, social interac-
tions among multiple interfacing users, strategic behaviors among multiple competing users, and
the distributed nature of mobility data from decentralized devices in urban environments. We
propose several research contributions in Section 1.3.1 to Section 1.3.5 to solve the research prob-
lem indicated in Section 1.2.1 to Section 1.2.5. These contributions involve the development of
advanced NNs and intelligent decision-making techniques that can account for the unique char-
acteristics of urban mobility data, improve the prediction accuracy, speed up the learning conver-
gence, offer scalable solutions, bring privacy, adapt to wireless network resources, while reducing
computational and communication costs in isolated, social collaborative, centralized, distributed,
cooperative, and non-cooperative mobile-network scenarios.

The relation between our proposed five trajectory predictors is illustrated in Section 1.4, Fig-
ure 1.2. We begin with an isolated-agent personalized trajectory prediction, where individual
users’ preferences are taken into account separately. As we progress, we expand our approach to
incorporate scalable personalization in large-scale networks. Furthermore, we introduce the con-
cept of social-aware collaborative multi-agent prediction, harnessing group intelligence to cap-
ture interactions among mobile users. Our initial social-aware predictor operates in a centralized
manner, focusing on resolving computational management issues rather than considering pri-
vacy concerns for multiple users. Subsequently, we transit to a distributed social-aware trajectory
prediction approach by developing a network-adaptive federated learning model. This model en-
sures the preservation of privacy for a multi-agent scenario while addressing network adaptivity.
Lastly, we introduce the concept of non-cooperative trajectory prediction, employing game theory
to capture interactions among multiple mobile users who may not necessarily have joint strategies
aligned with other individuals’ desires.

1.3.1 Reinforced Deep Learning for Personalized and Computationally-Light Trajec-
tory Prediction and Proactive Mobility Management

To solve the research problems discussed in Section 1.2.1 and as the first contribution of this thesis,
we propose a reinforcement learning-based NAS method that automates the design of the LSTM
neural network in a more efficient manner, achieving a desirable balance between high accuracy
and low algorithm complexity. This model is called RL-LSTM and serves as the cornerstone of
our work. The advantage of utilizing RL-based NAS optimization is its cumulative nature, which
enables the partial training of different NN architectures within each episode for a limited number
of epochs. The sequential and cumulative RL algorithm enables effective exploration of a vast
search space, identifying high-performance NN architectures while minimizing computational
costs. This is in contrast to other non-cumulative optimization methods that necessitate training
each NN architecture for the complete number of epochs at once. Thus, the RL technique offers
a significant reduction in computational complexity compared to grid search and Auto-ML NAS
models, increasing the speed of ML convergence while maintaining high levels of accuracy.

Building upon our RL-LSTM framework, we introduce two mobility management systems:
RL-HEC (proactive handover management system) and RL-SM (proactive service migration sys-
tem). These systems serve as examples of how our RL-LSTM technique significantly enhances the
performance of wireless network applications.

14

In the subsequent paragraphs, we provide an overview of our contributions, while a more
comprehensive discussion of our proposed models can be found in Chapter 5 of this thesis. Addi-
tionally, for further in-depth information, we refer readers to our journal paper [104].

LSTM Trajectory Predictor Design through RL

Generally, deep learning models and NNs have a large set of hyperparameters, including activa-
tion functions, neural layer types, numbers, and sequential orders, and dropout values and units.
For instance, LSTMs consist of LSTM, dense, and dropout layers. With the exponential growth
of possible hyperparameter combinations, selecting the optimal NN architecture becomes an NP-
hard optimization problem. As stated, exhaustive grid search, naive heuristics, or random search
algorithms are not feasible or optimal solutions and cannot solve the NAS optimization problem
within a polynomial time. Instead, utilizing reinforcement learning can offer a faster convergence
solution and enable solving the NAS problem in polynomial time, overcoming the limitations of
traditional search methods.

RL is an unsupervised technique that enables agents to make sequential decisions by learning
from interactions with an environment. The agent receives feedback in the form of rewards or
penalties based on the actions taken, and through this iterative process, the agent learns to iden-
tify the optimal policy that maximizes the cumulative reward. By reducing the computational
complexity of the algorithm while identifying the optimal solution, RL significantly improves the
solution quality, computational complexity, and convergence of trajectory prediction models with
respect to other NN search mechanisms.

RL is a well-suited solution when dealing with non-convex objective functions, prioritizing
the attainment of satisfactory solutions rather than finding the global optimum. Furthermore,
RL demonstrates remarkable effectiveness in addressing problems that involve accumulating re-
wards over multiple iterations during state transitions, resembling the nature of Markov Decision
Process (MDP). The NAS problem can be effectively formalized using the MDP concept within
RL, which allows us to treat each NN architecture as an agent that makes decisions to maximize
cumulative rewards over multiple training iterations. The MDP state transition captures the pro-
gression of the NN architecture through different configurations during the search process, and
the accumulation of partial training at each iteration leads to the final accumulated knowledge,
which guides the architecture towards optimal performance and improved computational effi-
ciency in NAS.

In response to RQ 1.1, we address the design of high-performance LSTM neural network ar-
chitectures using a reinforcement learning approach. Our aim is to leverage RL to optimize the
architecture of LSTM trajectory predictors based on features extracted from specific mobility data
in a more efficient way than other NAS mechanisms.

To achieve this, we employ RL to iteratively search and evaluate different LSTM architecture
configurations. During each RL itteration or episode, the agent selects an action (a NN archi-
tecture) based on its policy. Then, the prediction accuracy (in classification problems) or mean
squared error (in regression problems) of the suggested architecture is used as a reward metric for
the RL agent. Such a feedback serves as a measure of how well the LSTM model performs in pre-
dicting trajectories based on the given mobility data. Through successive RL iterations, the search

1.3. Thesis Contributions 15

space for LSTM architectures gradually narrows down. This narrowing occurs as the RL algorithm
explores different combinations of neural layers, neuron counts, and other relevant parameters,
and evaluates their performance using the accuracy metric. The RL agent learns from these eval-
uations and adjusts its exploration strategy to converge towards the optimal LSTM architecture
that maximizes prediction accuracy for the specific dataset.

By incorporating RL into the architecture design process, we can systematically explore and
optimize LSTM configurations, tailoring them to the unique characteristics and patterns present
in the mobility data. This approach enables us to develop high-performance LSTM trajectory
predictors that are well-suited for accurate trajectory prediction in a given dataset.

Reinforced Trajectory Prediction-Driven Proactive Handover Management and Service Migra-
tion

As a user moves to different areas, the network must react to route and topology changes and ad-
just them to ensure uninterrupted service. Such handover process involves multiple signaling pro-
tocols between the mobile user, source/target base station, and core networks. In modern wireless
networks with dense cell placement, mobility between cells is frequent, resulting in an increase
in the number of handovers. More frequent handovers can increase delay, decrease throughput,
and lead to signaling overhead. Since service migrations occur reactively after handover events,
delays in handovers can result in service discontinuity. Thus, robust predictive models that can
accurately forecast the future behavior and mobility patterns of mobile users can greatly enhance
the performance of handovers in wireless networks. Predictive models can also enable the net-
work to anticipate handover events and prepare in advance, leading to more seamless transitions
and improved overall user experience.

In response to RQ 1.2, we propose to design a proactive handover mechanism, so called Rein-
forcement Learning-based Handover for Edge Computing (RL-HEC), by integrating our proposed
relible and convergent RL-LSTM mobility predictor into the handover decision. With this design,
the source, and target base station exchange messages before the mobile user switches the connec-
tion [59]. Our proposed anticipatory model can be used to predict the occurrences of ping-pong
handovers and also service migration patterns. In this direction, we have developed an RL-based
personalized LSTM NN trajectory predictor, which is integrated with a handover decision-making
mechanism. Our proposed scheme seeks to avoid ping-pong handovers and maximize service
continuity by considering the specific services being consumed by end-users and connection in-
formation. This approach helps to prevent link failures and service disruptions that may be caused
by handovers.

Additionally, we introduce a service migration framework, so called Reinforcement Learning-
based Service Migration (RL-SM), that leverages the RL-LSTM mobility prediction model. This
framework is specifically designed for edge computing scenarios and improves the performance
of delay-sensitive services in a MEC environment. Overall, our proposed models provide an effec-
tive solution for ensuring smooth and uninterrupted network operations in the face of increasing
user mobility and service demands.

16

Our various simulation results demonstrate that our proposed solutions have the potential to
greatly reduce ping-pong handover rates, with some cases seeing a decrease to nearly zero. Ad-
ditionally, the proposed solutions show an improvement in network throughput, with measure-
ments indicating a 1.5 times increase compared to state-of-the-art solutions. This improvement
in performance is accompanied by a notable reduction in the number of migration attempts and
failures, indicating greater reliability and efficiency of the network.

1.3.2 Clustered Transfer Learning for Large-Scale Trajectory Prediction

To solve the problems discussed in Section 1.2.2 related to scalability issues of NAS techniques in
large-scale networks, we present the second contribution of this thesis. We propose Reinforcement
Convolutional Transfer Learning (RC-TL), a CNN-based scalable trajectory prediction system that
clusters users with similar trajectories, dedicates a single RL agent per cluster to design a high-
performance CNN architecture, trains one model per cluster using the data of a small user subset,
and transfers the NN model to the other users in the cluster employing Transfer Learning (TL)
techniques. These proposed methods aim to enhance the scalability of the NAS-enabled trajec-
tory predictor while not sacrificing too much the mobility prediction accuracy in dynamic urban
environments.

In the subsequent paragraphs, we provide an overview of the steps required to build RC-TL,
while a more comprehensive discussion of our proposed models can be found in Chapter 6 of this
thesis. Additionally, for further in-depth information, we refer readers to our paper on RC-TL
[21].

1D-CNN Trajectory Predictor Design through RL

In response to RQ 2.1, we propose to adopt One-dimensional (1D) CNNs for the task of trajectory
prediction. CNNs are deep learning models that excel at capturing spatial and hierarchical pat-
terns in 2D data, while 1D CNNs specifically specialize in extracting features and patterns from
1D sequential data. Thus, 1D-CNNs could be another approach to modeling sequential mobility
data. Compared to RNNs, which have a sequential nature and can suffer from slow training and
the vanishing gradient problem, CNNs are more robust and can efficiently parallelize the training
process. In addition, 1D-CNNs can be more effective in modeling sequential data than RNNs.
This is because 1D-CNNs consider the entire sequence of input data as a single input and apply a
fixed-size filter to extract local features, rather than considering windows of sequences like RNNs.
This allows 1D-CNNs to capture long-term dependencies in the input data more effectively.

CNNs contain convolutional, max-pooling, flatten, dense, and dropout layers, each of these
layers serving a unique purpose. Designing a high-performance CNN involves exploring a vast
search space, which can dramatically increase in size and complexity. In this direction, we pro-
pose a highly-accurate CNN architecture designed through RL (RL-CNN) for trajectory prediction
in large-scale networks. The parallelization within CNN makes it a faster convergent predictor,
making it well-suited for large-scale networks and providing better fitting capabilities.

1.3. Thesis Contributions 17

Similar-Trajectory User Clustering

In relation to RQ 2.2, we group users with similar trajectories into disjoint clusters using the
Longest Common Sub-Sequence (LCSS) similarity measure technique between every pair of user
trajectories in the dataset, which populates a symmetric distance (proximity) matrix represent-
ing the difference between trajectories. Unlike other distance measures that require trajectories to
have the same length or alignment, LCSS can handle sequences of varying lengths. It identifies the
longest subsequence that is common to both trajectories, regardless of differences in the number
of points or the temporal alignment.

We then apply clustering algorithms that use distances between points, such as Birch, DB-
SCAN, K-Means, Mean-Shift, Ward, and Optics, to compare pairwise the distances between loca-
tions within trajectories and group the trajectories into disjoint clusters.

Computational and Communication Cost Management through Transfer Learning

In response to RQ 2.2 and given clusters of similar-trajectory users, we propose training only a
subset of users within each cluster who have high-quality and periodic data to become represen-
tative users to manage the scalability and computational resource usage in large-scale networks.
The remaining users within the cluster can stay silent during the training phase, and the pre-
trained models can be transferred to them using the transfer learning paradigm. TL is based on
the idea that the knowledge gained while solving one problem can be used to improve the per-
formance of a related problem, speeding up the process and saving computational resources. By
employing TL, we can reduce the computational cost of training and achieve better performance
in the mobility prediction task.

This approach can result in significant resource savings, with the number of representative
users being determined balancing system accuracy with computational resource usage. The se-
lection of the number of representative users plays a crucial role in balancing system accuracy
and computational resource utilization in RL-CNN training. Increasing the number of represen-
tative users enhances the model’s generalization for intra-cluster features, resulting in improved
accuracy. However, it also introduces higher computational complexity. The determination of an
appropriate compromise between accuracy and computational resources depends on the specific
requirements of the application at hand. By considering the application’s specific needs, the op-
timal number of representative users can be determined, achieving the desired balance between
accuracy and computational complexity.

1.3.3 Intra-Cluster Collaborative Learning for Social Trajectory Prediction

To solve the problems discussed in Section 1.2.3 related to lack of an efficient NAS and high
computational costs in the existing social-aware trajectory prediction methods, we present the
third contribution of this thesis. We propose Intra-Cluster Reinforced Social Transformer (IN-
TRAFORCE) trajectory prediction system as a high-performance and low-complex collaborative
predictor. INTRAFORCE uses RL to build a Social-Transformer architecture that learns the social
interaction within clusters of similar mobile users based on their intra-cluster mobility features.

18

In the subsequent subsections, we provide an overview of the steps required to build IN-
TRAFORCE, while a more comprehensive discussion of our proposed models can be found in
Chapter 7 of this thesis. Additionally, for further in-depth information, we refer readers to our
paper on INTRAFORCE [20].

Transformer Trajectory Predictor Design through RL

In response to RQ 3.1, we propose an optimized and automated trajectory predictor based on
transformer NNs using reinforcement learning. Transformers are a type of deep learning model
that utilize self-attention mechanisms to capture complex patterns and dependencies in sequen-
tial data. While CNNs are known for their efficiency, particularly in tasks involving grid-like data
such as image recognition, transformers have demonstrated exceptional performance in Natural
Language Processing (NLP) and machine translation tasks, thanks to their self-attention mecha-
nism that captures long-range dependencies and contextual relationships in sequential data. Con-
sidering the task of mobility prediction as a time-series prediction, transformers can be a more
promising alternative to both RNNs and CNNs due to their ability to handle sequential data ef-
ficiently. Hence, our proposal revolves around utilizing transformers as the core architecture for
our social trajectory predictor, as accurately capturing user interdependencies is of utmost impor-
tance.

Transformers are composed of Encoder and Decoder stacks with multi-head attention layers,
add and norm layers, feed-forward layers, and dropout layers. Optimizing a high-performance
transformer from a vast search space demands an efficient NAS mechanism. Therefor, we op-
timize and fine-tune our transformer-based social-aware trajectory predictor through our previ-
ously proposed RL technique.

Intra-Cluster Social Interaction Extraction

In response to RQ 3.2, we propose a multi-modal TP that takes into account the social interac-
tions between users within a cluster (intra-cluster users) through a social-pooling layer, who are
grouped based on their geographical proximity and similarity. The social TP is achieved through
the utilization of a social-pooling layer. Clustering adjacent trajectories enables us to compute
the social interactions only among users who have a significant impact on each other, rather than
considering all users in the mobility scenario as existing methods do. By focusing on intra-cluster
interactions, we can reduce the computational requirements for social TP models. This is because
we only consider interactions between users in the same cluster, rather than interactions between
all users in the system.

Social-Transformer Trajectory Predictor Design through RL

In response to RQ 3.3 and in order to create a high-performance multiple-input multiple-output
social neural network, we incorporate our proposed RL technique from Section 1.2.1 into the intra-
cluster users. Due to the highly similar mobility features among users within the same cluster, only
one RL training per cluster of socially impactful users would be sufficient for personalizing the so-
cial TP model, ensuring efficient resource utilization without unnecessary wastage. Consequently,

1.3. Thesis Contributions 19

in our proposed approach, a single user within each cluster is selected to train the reinforcement
learning-based transformer (RL-TF) model, which is then shared and migrated to the other users
within the same cluster. By leveraging this knowledge transfer, the architecture and learned in-
sights are disseminated among the cluster mates. Subsequently, all the users within the cluster
are combined using a social pooling mechanism to form a cohesive multi-agent trajectory predic-
tor. This collective approach allows for the integration of diverse user behaviors and interactions
within the cluster, leading to improve social trajectory prediction capabilities.

1.3.4 Network-Adaptive Federated Learning for Distributed Trajectory Prediction

To solve the problems discussed in Section 1.2.4 related to lack of multi-objective NAS and in-
eligible participants in distributed trajectory prediction, we present the fourth contribution of
this thesis. We propose Network-adaptive Federated Learning for Reinforced Mobility Predic-
tion (FedForce) system. FedForce is a distributed system that employs RL-based NAS to design
a transformer NN architecture that jointly optimizes multiple objectives of prediction accuracy,
training time, and transmission time based on the mobility dataset’s unique features, the client’s
computing capacity, and the available network throughput.

Moreover, in classical FL, the aggregation server collects local models from all participating
clients to compute a global model. However, this approach faces challenges in terms of train-
ing delays and accuracy reduction due to existence of participants with limited computational or
communication resources or low-quality data. The FL paradigm prevents the central server from
accessing raw local data, making it unable to distinguish eligible users from ineligible ones. To
address this issue, FedForce introduces a local data estimation technique. This enables local de-
vices to locally compute the quality and periodicity of their data and report this information to
the server using a single value, allowing for more efficient and accurate participation in the FL
process.

In the subsequent subsections, we provide an overview of the steps required to build FedForce,
while a more comprehensive discussion of our proposed models can be found in Chapter 8 of this
thesis. Additionally, for further in-depth information, we refer readers to our paper on FedForce
[18].

Time- and Frequency-Domain Data Signal Processing for Data Quality Estimation and Eligible
User Selection

Regarding to RQ 4.1 and RQ 4.2, to manage the computational resource costs while increasing the
global accuracy and decreasing the latency created by stragglers, we propose selecting an eligible
subset of users for federated training while the rest of the system users can stay silent. However,
a critical question arises concerning the determination of eligible users who can effectively con-
tribute as representative participants in a decentralized federated system. In contrast to central-
ized models, in FL the eligibility of participants becomes crucial as the inclusion of ineligible users
can significantly impact prediction accuracy or introduce system slowdowns. Selecting represen-
tative users in a decentralized system is harder than in a centralized system because it requires
accounting for various challenges associated with distributed data, diverse user characteristics,

20

and limited communication capabilities. In a decentralized setting, the data is spread across mul-
tiple local devices or nodes, making it difficult to access and aggregate. Additionally, each user
may have unique characteristics and behaviors that need to be considered in the selection pro-
cess. Furthermore, the limited communication between nodes adds complexity in coordinating
the selection process and exchanging information. These challenges necessitate the development
of sophisticated algorithms and strategies to ensure fair representation and effective collaboration
in decentralized environments.

In response to RQ 4.1, we propose a data quality estimator metric called regularity ratio by
processing the mobility data, which is a time-series signal, in both time and frequency domains.
Afterward, we establish specific thresholds to filter out eligible users based on their data quality.
The acceptable value for regularity ratios is determined empirically based on the characteristics of
the available dataset. By combining information from both the time and frequency domains, we
can estimate the quality and periodicity of user data with a reasonable degree of accuracy. This
approach enables the identification of regular mobility patterns, which are easier to analyze and
predict.

In response to RQ 4.2, we propose selecting representative or eligible users for federated train-
ing in distributed systems based on the highest regularity ratios while considering users who
satisfy both ratios. By prioritizing users with the highest ratios and meeting the defined criteria
for both ratios, we aim to ensure the inclusion of highly representative and reliable participants
in the federated training process. Afterwrads, the global federated model trained by these partic-
ipants can then be transferred to the silent users, significantly reducing computational resources
and communication overheads by minimizing the need for communication signaling. By keeping
a portion of ineligible users silent, not only are computational and communication costs reduced,
but the risk of stragglers causing interference and slowing down the entire FL system is also min-
imized. Carefully choosing the number of local participants is essential to achieving an optimal
equilibrium between the overall system accuracy and the efficient utilization of computational re-
sources. Similarly, selecting the appropriate number of pre-trained model migrations to all users
is vital in maintaining the right balance between the overall system accuracy and minimizing
communication overheads.

In the following paragraphs, we present the detailed methodology of our proposed regularity
ratio metric, which serves as a data quality estimator in both the time and frequency domains.

1. Time Domain: Based on extensive experiments through training and testing heterogeneous
data users, we have inferred that users who produce more data samples while visiting rela-
tively fewer locations display more regular mobility patterns, leading to better TP accuracy.
Thus, the regularity ratio in time domain is defined as the ratio between the number of total
data samples and the number of unique visited locations, providing a score to estimate the
quality and periodicity of the data associated with each user. Users with relatively higher
regularity ratio have visited a limited set of distinct locations multiple times, making it eas-
ier for a NN to infer periodic behavior compared to rest of users with extremely low or high
regularity ratios.

1.3. Thesis Contributions 21

2. Frequency Domain: Our observations also indicate that converting the timeseries signal to
frequency domain can provide valuable insights for predicting user mobility patterns. Specif-
ically, a high power spectral density with a dominant frequency that is sufficiently high,
coupled with a high Signal-to-Noise Ratio (SNR), suggests the presence of a strong and well-
defined oscillation at a high frequency, with relatively low levels of noise. This results in user
data that is easier to analyze and predict, as the oscillations are distinct and identifiable. In
contrast, a low dominant frequency indicates a longer or more irregular pattern of oscilla-
tions, while a very high dominant frequency suggests a more complex and less predictable
pattern. We define the regularity ratio in the frequency domain as the ratio between the
SNR and the dominant frequency of the user’s time-series data signal. Users with relatively
high dominant frequencies and high signal SNR typically exhibit strong oscillations in their
sequential data and frequently visit multiple locations, making it easier for a NN to detect
periodic behavior. In contrast, users with extremely low or high dominant frequencies may
have visited a wide range of locations or not moved significantly, resulting in non-periodic
behavior.

Network-Aware Federated Learning Design through Multi-Objective Reinforcement Learning

Many existing distributed TP works utilize heuristically-designed NN architectures. However,
only a few existing works that apply NAS on NN optimization consider only the predictors per-
formance without taking clients’ computational and communication resource limitations into ac-
count. On the other hand, a few works consider the utilization of computational resources but
do not take into account the transmission of model size from local devices to the central server
over the wireless network or the accuracy of the predictor. To address this research gap and in
response to RQ 4.3, we propose a multi-objective RL-based NAS for federated TP. We convert the
multi-objective optimization problem into a single-objective optimization problem by defining a
cost function based on the linear combination of three parameters of performance, computational
cost, and communication cost.

In Section 1.3.4, the objective or cost function of the RL agent, in the form of a reward func-
tion, is to search for a transformer architecture that satisfies all three parameters of accuracy, train
time, and transition time. In contrast to our contributions in Section 1.3.1 to Section 1.3.3, the
reward function of the RL agent aimed to suggest neural network architectures that only ensure
prediction accuracy, without considering training time or model size of the suggested NNs based
on the communication and computational limitations. The transmission time of a model with a
specific size is significantly influenced by the available network throughput. In FedForce, the RL
component considers varying bandwidths and adjusts the neural network sizes according to the
available throughput. This network-adaptive approach ensures efficient utilization of the network
resources, enabling FedForce to adapt to different network conditions.

In multi-objective optimization problems, designing a neural model with multiple objectives,
such as accuracy, model size, and latency, introduces increased complexity compared to solely op-
timizing for accuracy. This complexity highlights the advantages of using reinforcement learning
in comparison to AutoML in addressing such nonlinear, interconnected NAS problems. Therefore,
our RL-based proposed technique, tailored for multi-objective optimization problems, provides an
even more efficient and effective solution in NAS context.

22

1.3.5 Inter-Cluster Game-Theoretic Learning for Non-Cooperative Trajectory Predic-
tion

To address the challenge outlined in Section 1.2.5 concerning the lack of robustness in develop-
ing models capable of accommodating both cooperative and non-cooperative user preferences,
we introduce the fifth and final contribution of this thesis. We propose Game-Theoretic Trajec-
tory Prediction through Distributed Reinforcement Learning (GTP-Force) system. GTP-Force is
designed to construct a highly accurate trajectory predictor that captures the social interactions
among multiple competing mobile users. GTP-Force employs RL to develop a high-performance
transformer NN architecture based on intra-cluster users, known as cooperative users with similar
data and preferences. Next, our approach utilizes non-cooperative game theory to determine the
optimal combination of inter-cluster NN architectures in a dynamic multi-agent environment.

To minimize computational expenses, we assumed cooperative behavior among intra-cluster
users since they have similar trajectories, and instead model a game among inter-cluster users
who are definite competitors. In addition to effectively managing resource usage, this approach
enables us to model both cooperative and non-cooperative users within a multi-agent scenario.
By considering the diverse behaviors and preferences of users, we can develop a comprehensive
framework that captures the dynamics of interactions among agents, accommodating cooperative
behavior as well as individualistic and non-cooperative tendencies.

In the subsequent subsections, we provide an overview of the steps required to build GTP-
Force, while a more comprehensive discussion of our proposed models can be found in Chapter 9
of this thesis. Additionally, for further in-depth information, we refer readers to our paper on
GTP-Force [19].

Intra-Cluster Cooperative Predictor Design through RL

Existing social-aware TP models assume cooperative behavior from all users in a multi-agent en-
vironment and use a single NN model to predict trajectories of all users. However, in reality,
human agents tend to optimize their personal goals instead of joint strategies, leading to inaccu-
racies in joint TP, particularly for inter-cluster users with differing trajectory features. Conversely,
intra-cluster users, who exhibit similar mobility characteristics, can take advantage of their shared
traits by utilizing a common neural network model. This approach improves prediction accuracy
and addresses the challenges posed by heterogeneous user behaviors in multi-agent TP.

To address the cooperative part of RQ 5, our proposed approach involves applying a single rein-
forcement learning technique to each cluster. This allows us to design multiple high-performance
transformer NNs tailored to the unique mobility patterns of inter-cluster users. By doing so, we
aim to enhance the predictive capabilities of the model and accommodate the specific require-
ments of different user groups within the multi-agent system.

Inter-Cluster Non-Cooperative Multi-Modal Game Design

To address the non-cooperative part of RQ 5, we present a novel approach that incorporates a non-
cooperative game model for inter-cluster users. This model takes into account the individual goals
of each user while maintaining overall system accuracy. Non-cooperative agents strategically

1.3. Thesis Contributions 23

FIGURE 1.2: Thesis contribution workflow diagram.

24

select a combination of competing neural networks that optimize individual players’ decisions,
while simultaneously enhancing the overall system strategy.

Hence, the role of RL goes beyond designing the highest-performance neural network for each
player or cluster. Instead, in our approach, each player, represented from a distinct cluster, con-
tributes a list of high-performance neural networks, and through a simultaneous game, a combi-
nation of multi-agent RL determines the optimal configuration that benefits the entire competitive
system.

In our distributed GTP-Force system, game players upload only their RL-trained weights and
not data, ensuring efficient communication. Each player in the game possesses a collection of po-
tential high-performance transformer architectures. To train a multi-agent trajectory prediction
model and evaluate the impact of each player’s decision on others, a social pool layer is incorpo-
rated in the central server. This facilitates the formation of a game’s payoff matrix.

Finally, by analyzing the Nash equilibrium, GTP-Force identifies the most rational combination
of NNs for the multi-agent environment. This approach enables us to strike a balance between
individual user objectives (and their intra-cluster mates) and the collective accuracy of the system
(inter-cluster players), ultimately enhancing the TP model’s effectiveness.

1.4 Thesis Outline

Figure 1.2 presents a complete diagram of our five contributions (from Section 1.3.1 to Section 1.3.5)
including five high-performance trajectory predictors. This diagram offers a comprehensive visual
representation of our proposed mobility prediction and management systems which are elabo-
rated in Chapter 5 to Chapter 9. This diagram comprises 5 main blocks, each representing one of
our proposed contributions. The first block involves personalized isolated-agent trajectory pre-
dictors for individual users, leveraging LSTM and RL optimization techniques for accurate and
reliable predictions, efficiently solving the NP-hard problem of NAS. In the second block, user
data is clustered, and cluster-level personalization is applied, ensuring scalability with CNNs for
parallelized training and faster convergence. The third block addresses isolated-agent prediction
challenges by capturing interdependencies among neighbor-trajectory users after clustering in a
computationally-efficient manner, while also optimizing transformer architectures for time-series
mobility data through RL. In the fourth block, we transition to distributed ML using federated
learning, with RL optimizing multiple objectives of accuracy, communication overhead, and com-
putational resource consumption. Lastly, the fifth block demonstrates our work in resolving non-
cooperative strategies among inter-cluster users with distinct desires using multiple contesting RL
agents.

The rest of the thesis is as follows.
Chapter 2 describes in detail the theoretical background of mobility prediction and mobility

management models and techniques.
Chapter 3 provides an overview of the related works of the domains that are relevant to our

research, including state-of-the-art isolated, multi-agent, centralized, distributed, cooperative, and
non-cooperative trajectory prediction models. The chapter discusses the relevant literature and

1.4. Thesis Outline 25

research that have been conducted in these areas and provides a comprehensive review of the
limitations of existing approaches.

Chapter 4 provides a comprehensive understanding of the user mobility context by defining
mobility and trajectory prediction, describing the mobility scenario, and presenting the details of
the datasets, and data pre-processing and feature extraction techniques used to train various NNs
in this study. The chapter also presents a detailed overview of our experimental setup and the
evaluation metrics used to assess the performance of our proposed trajectory prediction models.

Chapter 5 presents the RL-LSTM trajectory predictor used to develop proactive handover man-
agement system (RL-HEC) and proactive service migration system (RL-SM) in detail with their
framework architectures and operations.

Chapter 6 provides a detailed overview of the architecture and performance of the RC-TL
trajectory predictor, including its clustering module, RL agent, and CNN-based predictor, and
presents experimental results demonstrating its high prediction accuracy and reduced computa-
tional resources.

Chapter 7 provides a detailed description of the INTRAFORCE, which builds a trajectory pre-
dictor that learns the social interaction within clusters of similar mobile users using RL. The chap-
ter covers the system’s architecture, including its social-transformer architecture and intra-cluster
user mobility features, and presents comprehensive experimental results demonstrating its supe-
rior accuracy and computational resource management compared to state-of-the-art models.

Chapter 8 presents the FedForce system, which employs RL to design a transformer NN ar-
chitecture that jointly optimizes prediction accuracy, training time, and transmission time. The
chapter provides a detailed description of the system’s architecture, including the RL agent, the FL
framework, and the joint optimization approach, and presents experimental results demonstrat-
ing its superior performance in terms of accuracy, training time, and communication overhead
compared to state-of-the-art predictors.

Chapter 9 provides a detailed description of the GTP-Force system, which constructs a highly
accurate trajectory predictor that captures the social interactions among inter-cluster competing
mobile users using multi-agent reinforcement learning modelled through a simultanious non-
cooperative game. The chapter covers the system’s architecture, including the multiple decen-
tralized competitive RL agents and the game-theoretic approach. The chapter then presents ex-
perimental results demonstrating its superior accuracy and computational resource management
compared to state-of-the-art models.

Finally, Chapter 10 summarizes and concludes the contributions of this thesis and provides an
overview of future research directions that could build upon the work presented in this thesis.

27

Chapter 2

Theoretical Background

2.1 Chapter Introduction

In this chapter, we investigate the theoretical background that underlies mobility prediction, mo-
bility management, predictive ML models, and intelligent decision-making techniques used in
this thesis. We explore the principal ideas, methodologies, and techniques that form the foun-
dation of these fields. Our aim is to provide the reader with a deeper understanding of the key
components, which will serve as a basis for the subsequent chapters.

In Section 2.2, we provide the theoretical foundations and mathematical principles underly-
ing mobility prediction. In Section 2.3, we focus on mobility management, specifically Hanover
management and service migration techniques. Moving forward, in Section 2.4, we delve into
supervised machine learning predictors, while in Section 2.5, we discuss unsupervised cluster-
ing methods. Furthermore, Section 2.6 explores reinforcement learning, Section 2.7 covers trans-
fer learning, Section 2.8 addresses collaborative learning, Section 2.9 explores federated learning,
and Section 2.10 investigates game theory principals. These comprehensive discussions lay the
groundwork for the development of our mobility prediction contributions in this thesis.

2.2 Mobility Prediction Definition

Mobility prediction involves anticipating the future movements or locations of mobile devices or
users based on historical data, patterns, or trends as they navigate through different locations. It is
a critical component in many areas, including wireless communication networks, urban planning,
and transportation systems.

While mobility prediction can be viewed as location prediction, particularly when predicting a
mobile user’s next (1-hop) location, it is not limited to this definition. Mobility prediction can also
involve predicting more detailed characteristics of the movement, such as speed, direction, and
acceleration. When predicting a sequence of multiple locations, we often refer to it as trajectory
prediction. This involves predicting the entire path that a user or device will follow over a certain
period, not just the next immediate location. A trajectory is defined as the path followed by a
mobile user, either a human, a vehicle, or a robot, as it moves through space or time. The trajectory

28

of a mobile user is typically derived from their mobility or historical sequence of visited locations,
which can include GPS coordinates or wireless base stations [65].

However, mobility prediction is not only about location or trajectory prediction. It may also
involve predicting behavioral patterns related to mobility, such as the time a user spends in a
particular location (dwell time), regularity in movement patterns (e.g., daily commute to work),
or predicting large-scale population movements (e.g., during a concert or a football game) [65]. It
can also encompass the prediction of handovers in a cellular network context, where the goal is to
predict when a mobile device will switch from one cell tower to another.

In this thesis, when we mention mobility prediction, our primary focus is on trajectory predic-
tion. We extend the context of trajectory prediction beyond individual users to encompass group
users. Moreover, we shift the focus from isolated individual trajectories to predicting the collective
behavior of multiple interactive users through social prediction. Additionally, we transition from
centralized prediction approaches to decentralized ones. Lastly, we explore the challenges and
complexities of non-cooperative prediction involving multiple users, moving beyond the domain
of cooperative prediction stratgies.

2.3 Mobility Management Definition

Mobility management refers to the set of techniques, protocols, and strategies employed to op-
timize and manage the mobility of users in a wireless network. It encompasses various aspects
such as handover management and service migration. Handover management ensures continu-
ous connectivity as mobile devices transition between different wireless network cell boundaries,
enabling a seamless user experience. Service migration involves dynamically transferring ongoing
services to other network nodes after handover management, facilitating uninterrupted service
delivery [65].

By leveraging accurate mobility prediction, mobility management aims to achieve efficient
resource allocation, minimize service disruptions, and enhance the overall user experience. It
allows network operators to proactively adapt their infrastructure, allocate resources effectively,
and optimize network performance based on anticipated user mobility patterns. Effective mo-
bility management contributes to seamless connectivity, improved service quality, and enhanced
user satisfaction in wireless communication systems. Therefore, the primary objective of this the-
sis is to develop robust mobility and trajectory predictors that effectively enhance the performance
of mobility management services in modern wireless networks. By focusing on this direction, we
aim to create predictive models that can accurately anticipate and adapt to users’ mobility pat-
terns, enabling more efficient and reliable network management.

2.3.1 Handover Management Definition

Handover management refers to the process of transferring an ongoing communication session
from one base station to another as the user moves through a wireless network. The handover
decision is typically based on the received signal strength, and various algorithms can be used to
determine when and to which base station the handover should occur. One common approach to
handover management is to take into account the current signal strength and the historical signal

2.3. Mobility Management Definition 29

strength of the current and neighboring base stations [65]. The handover decision is made based
on an empirical threshold, which is defined as the minimum difference in signal strength between
the current base station and the neighboring base station before a handover is initiated.

Let RSSn,b denote the received signal strength (RSS) at UE n from base station b, and let Th
denote the hysteresis threshold. The hysteresis-based handover decision can be made using the
following equation:

Hn,b =

1 if RSSn,b −max
b′ ̸=b

RSSn,b′ > Th

0 otherwise
(2.1)

where Hn,b is a binary variable that indicates whether or not UE n should handover to base
station b.

Another approach to handover management is to use a prediction-based algorithm, which uti-
lizes a mobility prediction model to predict the future location and signal strength of the UE [65].
The handover decision is made based on the predicted signal strength of the neighboring base
stations and the quality of the prediction model. Let Pn,b denote the predicted signal strength of
UE n from base station b, and let Qn denote the quality of the mobility prediction model associated
with UE n. The prediction-based handover decision can be made using the following equation:

P′n,b =

Pn,b if xn = 1
max
b′ ̸=b

RSSn,b′ otherwise (2.2)

where P′n,b is the predicted signal strength of UE n from base station b after taking into account
the presence or absence of the mobility prediction model. If the model is present (xn = 1), the
predicted signal strength Pn,b is used. Otherwise, the maximum RSS from the neighboring base
stations is used as the prediction. The handover decision is then made based on the predicted
signal strength P′n,b, and the quality of the prediction model Qn.

2.3.2 Service Migration Definition

To minimize end-to-end latency in low-latency wireless applications, edge services should always
be close to their user to some extent. However, simply transferring the service to the closest edge
server ignores the dynamic nature of edge-enabled networks, such as how other users may reserve
the available resources of the servers at the moment of the migration request. To address this issue,
we can use a resource-aware service migration optimization algorithm that takes into account the
dynamicity of the network and the available resources of nearby servers [65].

The resource-aware service migration optimization algorithm can be formulated as follows:

• Determine the next base station Bt+1
n that user n will connect to based on the mobility pre-

diction scheme.

• Use the learning model Mb,k associated with edge data center Eb to determine the opti-
mal base station k for hosting the service Sn,b, taking into account the resources available
at nearby edge data centers.

30

• If the optimal base station k is different from the current base station b, initiate a service
migration from base station b to base station k.

• Monitor the resources available at nearby edge data centers to ensure that the service migra-
tion does not disrupt the services being consumed by other users.

We can use the following equations to implement the above algorithm: To determine the next
base station Bt+1

n that user n will connect to based on the mobility prediction scheme:

Bt+1
n = f (Bt

n, Bt−1
n , . . . , Bt−m

n) (2.3)

, where f is a function that takes into account the user’s m previous locations and predicts the next
base station. To determine the optimal base station k for hosting the service Sn,b:

k = argminl ∈ 1, 2, . . . , B(Db,l + Rl + Wl) (2.4)

, where Db,l is the distance between base station b and base station l, Rl is the remaining resources
at edge data center El , and Wl is the weighted average of the resources currently being used by the
services hosted at edge data center El . To initiate a service migration from base station b to base
station k:

Sn,k = Sn,b (2.5)

, where Sn,k denotes the service being consumed by user n at base station k. To monitor the re-
sources available at nearby edge data centers: If the remaining resources Rl at an edge data center
El fall below a certain threshold, the migration algorithm can avoid overloading the server by
temporarily blocking new migration requests to that server until the resources are replenished: if
Rl < threshold, temporarily block new migration requests to El .

2.4 Supervised Machine Learning

In this section, we explore supervised ML techniques used in this thesis to develop resilient tra-
jectory predictors. Supervised learning involves training the models using labeled data, allow-
ing them to learn patterns and make predictions based on known trajectories. By leveraging the
power of supervised ML, we aim to improve the accuracy and effectiveness of mobility predic-
tion, enabling better understanding and anticipation of user movements in various contexts and
scenarios.

In trajectory prediction, labeled data refers to the mobility dataset where each sample is associ-
ated with a corresponding ground truth label. For historical time and location data for individuals,
the labeled data could include a sequence of past time and location observations as the input, and
the target label would be the actual or observed location at a future time. This labeled data is used
to train a trajectory prediction model to learn the underlying patterns and relationships between
time, location, and movements.

In this thesis, we develop LSTM, CNN, and attention-based transformer NNs for trajectory
prediction. In the following sections, we will explain the performance of these predictors.

2.4. Supervised Machine Learning 31

FIGURE 2.1: Stacked LSTM architecture [104] ©2022 IEEE.

2.4.1 LSTM Neural Networks

LSTM is a type of RNN commonly used for sequence data processing, such as time series or NLP
tasks. Unlike traditional RNNs, LSTM networks are designed to capture and remember long-term
dependencies in sequential data. They achieve this by incorporating memory cells and various
gating mechanisms that control the flow of information through the network. This enables LSTMs
to effectively model and retain important information over longer time intervals [65].

The LSTM neural architecture consists of a chain of memory cells, as shown in Figure 2.1. These
memory cells are responsible for transferring information at different time steps, and each cell has
three gates that control the flow of information: the input gate, the forget gate, and the output
gate. Each gate contains a sigmoid layer that decides how much information passes through the
memory blocks. The presence of three sigmoid σ gates can be observed within each memory cell
depicted in Figure 2.1. The input gate controls which part of the input will be utilized to update
the cell state, while the forget gate controls which part of the old cell state will be discarded.
Additionally, the output gate controls which part of the cell state will be exposed as the output.
Together, these gates allow the LSTM to selectively remember or forget information from previous
time steps, making it particularly effective for time-series data analysis [65].

The LSTM NN’s performance can be defined based on a set of equations that calculate the out-
put of a recurrent neural network by taking into account the input, previous output, and memory
state. The equations are given as follows:

it = σ(Wxixt + Whiht−1 + bi) (2.6)

ft = σ(Wx f xt + Wh f ht−1 + b f) (2.7)

ot = σ(Wxoxt + Whoht−1 + bo) (2.8)

gt = tanh(Wxgxt + Whght−1 + bg) (2.9)

32

FIGURE 2.2: Structure of the generic 1D-CNN built and trained by RC-TL [21] ©2022
IEEE.

ct = ft ⊙ ct−1 + it ⊙ gt (2.10)

ht = ot ⊙ tanh(ct) (2.11)

where it, ft, ot, gt, ct, and ht are the input, forget, output, cell, memory, and hidden states of the
LSTM cell at time step t, respectively. xt is the input at time step t, ht−1 is the hidden state at the
previous time step, and W and b are weight and bias parameters, respectively. As stated, the sym-
bol σ represents the sigmoid activation function, while ⊙ represents element-wise multiplication,
and tanh represents the hyperbolic tangent activation function. The equations describe the flow
of information within the network, including how inputs are processed, how the memory state is
updated, and how the output is calculated. The equations also include activation functions, such
as sigmoid and hyperbolic tangent, which are commonly used in neural networks to introduce
non-linearity.

2.4.2 1D-CNN Neural Networks

CNN is a deep learning architecture designed for processing and analyzing structured grid-like
data, such as images, by applying convolutional filters to capture local patterns and hierarchically
extract meaningful features. CNNs are inspired by the organization of the visual cortex in animals
and use a hierarchical structure to learn and extract features from the input data. Unlike fully
connected neural networks, which have connections between all input and output neurons, CNNs
use sparse connections and parameter sharing to efficiently learn the relevant features in the input
signal. In a CNN, the input is typically a multidimensional array or tensor, such as a color image
represented as a three dimensional (3D) array of pixel values [65].

One dimensional CNN is a variant of the convolutional neural network architecture specif-
ically designed for processing sequential or time-series data, where the input data has a linear
structure. It applies one-dimensional filters over the input sequence to capture local patterns and
extract relevant features, enabling effective analysis and prediction tasks in domains like time

2.4. Supervised Machine Learning 33

series, NLP, and audio processing. The 1D-CNN architecture is similar to the standard CNN.
Figure 2.2 shows the generic 1D-CNN developed in this thesis.

A CNN is composed of layers, each with a different purpose, e.g., convolutional, max-pooling,
flatten, dense, and dropout layers. A convolutional layer applies the convolution operator be-
tween the input data x and a set of kernels wk ∈ Rs, producing a set of feature maps yi = x ∗ wk,
where s is a fixed kernel size. The goal of the convolutional layers is to detect the presence of
spatio-temporal patterns in the input data. The size and the number of the different used kernels
are decided at design time, whereas the numerical values of the kernels wk are computed during
the model training process. The max-pooling layer reduces a feature map’s dimension by parti-
tioning it into same-size neighborhoods (strides) and generating a smaller feature map replacing
each neighborhood of the original feature map with the maximum value of each neighborhood. A
flattening layer converts a feature map to a one-dimensional array of features. A dense layer com-
prises a set of perceptrons that are fully connected to the previous and following layers. Finally, a
dropout layer is used to reduce over-fitting by setting each element of an input array to 0 with a
fixed probability called dropout ratio during the training [65].

The formula for a convolutional layer in a CNN is given by:

yi,j = σ

(
K

∑
k=1

L

∑
l=1

wk,lxi+k−1,j+l−1 + b

)
, (2.12)

where yi,j is the output activation at position (i, j) in the feature map, xi+k−1,j+l−1 is the input
activation at position (i + k − 1, j + l − 1) in the receptive field, wk,l are the learnable weights of
the filter, b is the bias term, and σ is the activation function.

Consequently, the formula for a convolutional layer in a 1D-CNN is similar, but the input and
filter tensors have only one spatial dimension:

yi = σ

(
K

∑
k=1

wkxi+k−1 + b

)
, (2.13)

where yi is the output activation at position i in the feature map, xi+k−1 is the input activation
at position i + k − 1 in the receptive field, wk are the learnable weights of the filter, b is the bias
term, and σ is the activation function.

2.4.3 Transformer Neural Networks

Transformers were developed after the concept of attention-based neural networks. Attention
mechanisms were initially introduced as an enhancement to RNNs and LSTMs to address the lim-
itation of capturing long-range dependencies in sequential data. Early attention models, such as
the Bahdanau Attention and the Luong Attention, were primarily used in tasks like machine trans-
lation, where the model learns to align and focus on relevant source words during the translation
process [51, 65].

Transformers revolutionized the use of attention mechanisms in neural networks. The trans-
former architecture, introduced in the paper "Attention Is All You Need" in 2017, presented a
novel and powerful approach to sequence modeling [86]. Transformers employ a self-attention

34

FIGURE 2.3: Structure of a Transformer for the i-th user. The architecture contains
an Encoder Stack Ei made of ξ Encoder Layers and a Decoder Stack Di made of ξ

Decoder Layers [20] ©2022 IEEE.

mechanism called the "Scaled Dot-Product Attention." This mechanism enables the neural model
to effectively capture global dependencies, accurately weigh the significance of elements in the in-
put sequence, and attend to relevant parts in parallel. Consequently, transformers facilitate more
efficient and effective learning by surpassing the limitations of traditional RNNs in capturing
long-range dependencies. Unlike conventional RNNs and LSTMs, which process data sequen-
tially within fixed memory windows, transformers globally process the input sequence, paving
the way for enhanced sequence modeling capabilities. Moreover, transformers employ multi-head
attention, executing the self-attention mechanism multiple times in parallel with distinct learned
weights. This enables the model to simultaneously consider multiple segments of the input se-
quence, thus enhancing its capability to capture intricate relationships among the inputs [65]. The
parallelization achieved through self-attention results in significantly reduced training times com-
pared to RNNs.

Figure 2.3 illustrates the generic transformer architecture comprising encoder and decoder
stacks, which form the neural network developed in this thesis for our trajectory predictors. The
Encoder Stack consists of a positional encoding layer and several encoder layers, in charge of con-
verting a trajectory to an abstract representation, followed by the Decoder Stack to output a pre-
dicted trajectory from the learned abstract representations of the user mobility. The Decoder Stack
consists of several decoding layers, dense layers, dropout layers, and an output layer (linear for
regression and softmax for classification problems).

The encoder and decoder layers themselves are composed of multi-head attention modules,
add and normalization layers with two residual connections, feedforward layers, and dropout
layers. As stated, the self-attention mechanism is a key component of the transformer architecture.

2.5. Unsupervised Machine Learning 35

The multi-head attention layer is composed of multiple self-attention units enabling a parallel at-
tention mechanism over distinct parts of the input sequence. In the add and normalization layer,
the term add refers to the residual connection that prevents gradients from vanishing or explod-
ing during deep neural network training. The feedforward fully-connected layers are responsi-
ble for learning the non-linear mapping between the input and output representations, enabling
the model to capture complex relationships and patterns. While dropout layers are not typically
employed in transformer models due to the presence of regularization techniques like layer nor-
malization and residual connections, they can still be used after multiple dense layers to provide
additional regularization and enhance generalization performance, similar to their utilization in
other neural network architectures [65].

Transformers utilize projection matrices WQ, WK, and WV to map the input into the query, key,
and value spaces, respectively. In addition, the feedforward network includes parameters W1, b1,
W2, and b2. The scaled dot-product attention operation is defined by the equation:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V, (2.14)

where Q, K, and V represent the query, key, and value matrices, respectively, and dk is the
dimensionality of the key vectors. As stated, the attention mechanism is used to weigh the impor-
tance of different parts of the input sequence when generating the output sequence.

2.5 Unsupervised Machine Learning

Unsupervised learning is an ML paradigm that trains models on unlabeled data, enabling the dis-
covery of hidden patterns and structures within the data. One popular method in unsupervised
learning is clustering, which aims to group similar instances together based on their characteris-
tics. In this thesis, our focus is on mobility data, where we employ clustering techniques to group
similar trajectories and profile mobile users. Our primary objective is to enhance network scala-
bility. By applying clustering algorithms, we can identify groups of users with similar behaviors,
forming homogeneous clusters. This approach allows us to create a single model for each cluster
accommodating scalable trajectory prediction techniques.

2.5.1 Clustering

To cluster users effectively, it is necessary to measure the similarity between pairs of users’ data
sequences. This similarity measurement plays a critical role in grouping users based on their
characteristics. There are various approaches to quantify user similarity depending on the specific
context and data available. In the context of mobility data, measuring similarity often involves
utilizing distance metrics such as Euclidean distance or cosine similarity algorithms. In this thesis,
we specifically employ the Longest Common Sub-Sequence (LCSS) similarity measure to group
users with similar trajectories into distinct clusters [35]. The LCSS measure allows us to capture
the common subsequences shared by trajectories. It calculates the similarity between each pair
of trajectories in the dataset and generates a symmetric distance matrix. This matrix represents

36

the variations between trajectories. What sets LCSS apart from other distance measures is its
ability to handle sequences of different lengths or alignments. It identifies the longest subsequence
that is shared by both trajectories, regardless of disparities in the number of points or temporal
alignment.

The mathematical representation of the LCSS similarity measure can be expressed as follows:

LCSS(T1, T2) =
Minimum Length of (T1, T2)

Length of the Longest Common Sub-Sequence
(2.15)

where, T1 and T2 represent two trajectories. The Length of the Longest Common Sub-Sequence
is the length of the longest subsequence that is common to both trajectories. The Minimum Length
of (T1, T2) is the minimum length between T1 and T2, considering their different lengths.

After obtaining the distance metrics or similarities for each pair of user data, clustering algo-
rithms can be applied to group the users based on their similarities. In the context of trajectory
prediction, where the data consists of sequences of locations, clustering algorithms that rely on
the distance between points are particularly useful. In this thesis, we employ various clustering
algorithms, such as Birch, DBSCAN, K-Means, Mean-Shift, Ward, and Optics, to group trajecto-
ries into distinct clusters based on the distances between their trajectory points [97, 92]. These
algorithms compare the pairwise distances between locations within the trajectories and assign
them to appropriate clusters. By applying these clustering algorithms, we can effectively partition
the trajectories into disjoint clusters, facilitating the identification of distinct groups and patterns
within the dataset.

Mathematically, clustering algorithms leverage distance measures to determine the similarity
or dissimilarity between data points. Each clustering algorithm has its own mathematical for-
mulation and principles for clustering data based on distance metrics. The K-Means algorithm
minimizes the sum of squared distances between data points and their assigned cluster centroids.
DBSCAN identifies dense regions by considering the density of neighboring points within a spec-
ified distance threshold.

For example, given a dataset with n data points X = {x1, x2, . . . , xn} and a predefined number
of clusters k, the K-Means algorithm aims to minimize the within-cluster sum of squared distances.
This objective is achieved by iteratively updating the cluster assignments and recalculating the
cluster centroids. Let C = {c1, c2, . . . , ck} represent the set of cluster centroids. The K-Means
algorithm minimizes the following objective function:

J(C) =
k

∑
i=1

∑
x∈Ci

∥x− ci∥2 (2.16)

where Ci denotes the data points assigned to cluster ci and |xci| represents the Euclidean dis-
tance between a data point and the centroid ci. By iteratively updating the cluster assignments
and recalculating the centroids, the K-Means algorithm converges to a locally optimal solution
that minimizes the objective function J(C).

2.6. Reinforcement Learning 37

Other clustering algorithms1, such as Birch, DBSCAN, Mean-Shift, Ward, and Optics, also uti-
lize mathematical formulations and distance measures to group trajectories into disjoint clusters.
Each algorithm has its own specific mathematical representations and principles for clustering
based on distance metrics.

2.6 Reinforcement Learning

Reinforcement Learning is a subfield of ML concerned with decision-making and learning through
interactions with an environment. It involves an agent that learns to make optimal decisions in a
dynamic environment by maximizing a cumulative reward signal. Before diving into the details
of RL mechanisms, it is important to introduce foundational terms that form the basis of RL: agent,
environment, reward, state, action, policy, and Q-Table [65].

• Agent: The agent is an entity that interacts with the environment, learns from its actions,
and makes decisions based on its observations and learned policies. It aims to maximize the
cumulative reward it receives from the environment.

• Environment: The environment is the external system or framework in which the agent
operates. It is a dynamic entity that the agent interacts with and receives feedback from.
The environment can be as simple as a simulated game environment or as complex as a
real-world system.

• Reward: The reward is a scalar value provided by the environment to the agent after each
action. It represents the feedback or evaluation of the agent’s behavior. The agent’s goal is
to maximize the cumulative reward over time by learning to take actions that lead to higher
rewards.

• State: The state represents the current situation or condition of the environment. It includes
all relevant information that the agent needs to make decisions. The agent’s perception or
observation of the environment at a particular time is captured by the state.

• Action: An action is a specific decision or choice made by the agent based on its current state.
It represents the agent’s behavior or response to the environment. The actions available to
the agent depend on the specific problem or task.

• Policy: A policy is a mapping from states to actions. It defines the behavior of the agent,
specifying the action to be taken in a given state. The policy can be deterministic, where
each state is associated with a single action, or stochastic, where the policy selects actions
probabilistically.

• Q-Table: The Q-Table is a data structure used in Q-Learning, a popular RL algorithm. It is
a lookup table that stores the expected cumulative rewards, Q-values, for each state-action
pair (Q(s, a)). The Q-Table guides the agent’s decision-making process by providing esti-
mates of the long-term rewards associated with different actions in different states. Through

1https://scikit-learn.org/stable/modules/clustering.html

38

FIGURE 2.4: An overview of Reinforcement Learning.

exploration and exploitation, the agent updates the Q-Table to gradually converge towards
optimal policies.

In classic RL, an agent interacts with an environment by taking an action at at time step t,
which affects the environment’s state st, and receives a reward rt corresponding to the taken action
from the environment, as shown in Figure 2.4. The sequence of aforementioned steps is called
an episode. The goal of the RL agent is to maximize the expected sum of discounted rewards
E[∑T

t=0 γtrt], where γ is a discount factor that controls the importance of future rewards. The
agent’s policy π(at|st) determines the probability of taking each possible action given the current
state. The agent learns by iteratively improving its policy through value-based or policy-based
methods.

In value-based methods, the agent learns the state-value function V(st) or the action-value
function Q(st, at), which estimate the expected sum of discounted rewards starting from the cur-
rent state or state-action pair, respectively. The agent updates its value function using the Bellman
equation:

V(st) = E[rt + γV(st+1)|st] (2.17)

Q(st, at) = E[rt + γ max
at+1

Q(st+1, at+1)|st, at] (2.18)

In policy-based methods, the agent directly optimizes its policy to maximize the expected sum
of discounted rewards [65]. The agent updates its policy using the policy gradient:

∇θ J(πθ) = E[
T

∑
t=0
∇θ log πθ(at|st)Qπ(st, at)] (2.19)

where J(πθ) is the objective function that measures the performance of the policy, and Qπ(st, at)
is the action-value function under the policy.

Value-based methods are preferable over policy-based methods for NAS in trajectory predic-
tion because they allow for the estimation of the optimal value function, which provides a more

2.7. Transfer Learning 39

FIGURE 2.5: An overview of Transfer Learning.

accurate measure of the desirability of state-action pairs. This enables the identification of the
most promising architectural choices that maximize the expected cumulative reward, resulting in
more effective and efficient trajectory prediction models. In this direction, we hire value-based RL
in this thesis for the task of reliable and convergent trajectory prediction.

2.7 Transfer Learning

Transfer learning is an ML technique that involves utilizing knowledge gained from one pre-
trained network to initialize or enhance the learning of another network. The idea behind transfer
learning is to leverage the learned representations or weights from a source network, typically
trained on a large-scale dataset, and apply them to a target network that is trained on a different
but related task or dataset. By utilizing the learned representations from the pre-trained network,
transfer learning can expedite the training process and conserve computational resources. This
approach is particularly useful when the target task has limited labeled data or when training a
model from scratch would be time-consuming or resource-intensive [65].

Mathematically, transfer learning can be represented as follows:
Let Nsource represent the pre-trained source network with learned weights Wsource, and Ntarget

denote the target network with weights Wtarget. The transfer learning process involves initializing
the weights of the target network Wtarget using the learned weights from the source network Wsource
as follows.

40

FIGURE 2.6: An overview of Collaborative Learning through Social Pooling.

[t]Wtarget = Wsource (2.20)

This initialization step allows the target network to start with a set of well-tuned weights
obtained from the source network. Once the target network is initialized with the pre-trained
weights, it can be further fine-tuned or trained on a smaller target dataset specific to the task
at hand. The transfer of knowledge from the pre-trained network helps the target network to
converge faster, generalize better, and achieve improved performance compared to training from
scratch.

As shown in Figure 2.5 transfer learning, it is not necessary to transfer the entire network. For
example, when training a model to classify different animals, the initial layers that capture general
visual features can be shared between tasks such as recognizing cats and dogs. However, in other
scenarios where datasets have highly similar characteristics, more layers can be shared to leverage
the shared knowledge effectively.

In this thesis, we adopt a transfer learning approach by sharing the first n− 1 layers of a pre-
trained network among users belonging to a similar-trajectory cluster. The reason for sharing n− 1
layers is that the last layer, responsible for classification, needs to be tailored based on the number
of distinct classes in the specific task or dataset. By selectively sharing and reusing layers, we aim
to leverage the learned representations, accelerate the training process, and reserve computational
resources for trajectory prediction models in a cluster-based setting.

2.8. Collaborative Learning 41

2.8 Collaborative Learning

Collaborative learning aims to leverage the collective knowledge and expertise of multiple agents
or models to improve individual and overall performance. In this context, each user acts as an in-
dependent agent with their own neural architecture, processing their respective inputs. However,
at a certain stage, their individual architectures are combined or merged, allowing them to share
information and learn from each other. This collaboration enables the models to benefit from the
diverse perspectives and insights of each user, leading to improved predictions and performance.
This unified representation is then used to generate multiple outputs, each corresponding to a
specific user or task [65].

There are several collaborative learning techniques that enable knowledge sharing among mul-
tiple agents or models, including Knowledge Distillation, Ensemble Learning, multi-task learning,
social pooling, Federated Learning, Multi-agent Reinforcement Learning, game theory, and Coop-
erative Coevolution. In this thesis, we propose collaborative models that capture the cooperative
and non-cooperative interactions among multiple agents and their mutual impact. To achieve
this, we employ techniques such as social pooling, federated learning, multi-agent reinforcement
learning, and game theory, enabling a comprehensive understanding of the complex dynamics
among the agents.

Figure 2.6 illustrates the architecture of a collaborative learning model designed to handle
multiple user inputs. The model incorporates distinct neural network architectures for each user,
which are subsequently combined using a social pooling layer. The interactions among multiple
agents within the model lead to the generation of multiple outputs, capturing the collective intel-
ligence and insights derived from their collaborative interactions. We consider a socio-interactive
network comprising N individuals, each contributing input feature denoted as X1, X2, ..., XN .
These input features capture various aspects of individual behavior, preferences, or characteristics
relevant to the prediction task. To harness the collective knowledge and patterns within the so-
cial network, we introduce a social pooling layer. The inputs from the individuals, X1, X2, ..., XN ,
are merged using the social pooling operation denoted as Pooling(·). The social pooling layer
captures the collaborative information and interactions among individuals, resulting in the gen-
eration of aggregated features, denoted as Aggregated Features. The social pooling operation can
be defined as:

Aggregated Features = Pooling(X1, X2, . . . , XN) = concat(f (X1), f (X2), . . . , f (XN)). (2.21)

Here, f (·) is a function that maps individual input features to a common feature space, and
concat(·) denotes the concatenation operation that combines the transformed features from all
individuals. Next, the aggregated features are utilized for predicting multiple output variables.
Let’s assume we have M output variables to predict. We employ a prediction function, denoted as
Predict(·), which takes the aggregated features as input and generates predictions for the multiple
output variables. The predicted values are represented as Y1, Y2, ..., YM.

42

FIGURE 2.7: An overview of Federated Learning.

2.9 Federated Learning

As mentioned, federated learning is a form of collaborative learning that involves constructing
a single model using data from multiple users. Additionally, federated learning is a distributed
model that addresses privacy concerns and enhances scalability compared to centralized collab-
orative models. By keeping the training process decentralized and performing computations lo-
cally on user devices, federated learning ensures data privacy while efficiently leveraging a large
number of users’ data for model training.

In federated learning, the training process occurs locally on user devices, where each user
trains a local model using their own data. The local models are then aggregated to form a global
model through a weighted averaging process. The weights of the global model are distributed
back to the users, who then repeat the local training with the updated global model. This iterative
process continues until the global model converges or achieves the desired performance.

Mathematically federated learning can be modeled as follows: K represents the total number
of participating clients, T denotes the total number of communication rounds (t = 1 to T), w signi-
fies the global model parameters, wi represents the local model parameters of client i, Ci denotes
the local dataset of client i, η represents the learning rate, and T signifies the number of local itera-
tions per communication round. Figure 2.7 shows an example of federated learning among K = 4
distributed users. The communication rounds until convergence involve the following steps. Ini-
tially, an initial global model w0 is set. Each federated client i performs T local iterations to update
its local model parameters wi

t+1 using its local dataset Ci and the current global model wt. The
local model updates are then communicated and aggregated to obtain the updated global model
wt+1. This aggregation step involves weighted averaging based on the sizes of the local datasets,
ensuring fair representation of client contributions. The weighted averaging can be represented
as:

2.10. Game Theory 43

wt+1 = ∑
i∈St

Ci

∑j∈St
|Cj|

wi
t. (2.22)

A convergence check is performed, and if a convergence criterion is met, the federated learning
process terminates. Finally, the final converged global model w∗ is returned. In the local model
update step, the optimization algorithm used for updating the local model parameters is denoted
by the function Update(·). It can be based on stochastic gradient descent (SGD) or a variant
thereof. The convergence criterion in the check step depends on specific requirements and can be
based on model performance or other convergence metrics [65].

2.10 Game Theory

Game theory is a mathematical framework that analyzes strategic interactions and decision-making
among rational agents in competitive or cooperative settings. It provides a powerful tool for un-
derstanding how individuals or entities make choices and how these choices impact each other.

In this thesis, the trajectory prediction scenario involves multiple users who are influenced
by each other’s decisions and may have their own individual desires or objectives. To address
this complex and dynamic environment, we further formulate the collaborative learning problem
as a non-cooperative game to capture the interactions and strategic behavior of the users. Each
user is considered as a player in the game, and they make decisions and adjust their strategies
based on the observed outcomes and the strategies employed by other users. The game-theoretic
framework enables the users to learn and adapt their strategies over time, taking into account the
influence of other users’ decisions on their own trajectory prediction.

Before diving into the details of game theory mechanisms, it is crucial to familiarize ourselves
with some foundational terms such as a game, players, decision, payoff matrix, Nash equilibrium,
dominant strategy, and best response [65].

• Game: A game represents a formal model of strategic interaction between multiple players.
It encompasses the rules, actions, and payoffs that define the structure and outcomes of the
game.

• Players: Players are the individuals or entities involved in the game. Each player makes
decisions or takes actions with the aim of maximizing their own utility or payoff.

• Decision: In a non-cooperative game, each player makes decisions independently, without
coordination or communication with other players. These decisions determine the actions
taken by the player within the game.

• Payoff Matrix: The payoff matrix is a tabular representation that shows the payoffs or utili-
ties associated with each possible combination of actions chosen by the players. It indicates
the rewards or outcomes that each player receives based on their choices and the choices of
other players.

44

• Nash Equilibrium: Nash equilibrium is a concept in game theory that describes a stable state
where no player has an incentive to unilaterally change their strategy given the strategies
chosen by the other players. In a Nash equilibrium, each player’s strategy is optimal, given
the strategies of the other players.

• Dominant Strategy: A dominant strategy is a strategy that provides a player with the high-
est payoff regardless of the strategies chosen by other players. If a player has a dominant
strategy, it is always in their best interest to choose that strategy.

• Best Response: A best response is a strategy that yields the highest possible payoff for a
player, given the strategies chosen by the other players. It represents the optimal response to
the strategies employed by the other players, maximizing the player’s own utility or payoff.

• Strategy Profile: A strategy profile in refers to the combination of strategies chosen by all
players in a game, representing their individual actions or decisions. It captures the complete
set of choices made by the players, influencing the overall outcome of the game. The concept
of a best response is closely related to the strategy profile, as it identifies the optimal strategy
for a player, maximizing their payoff given the strategies chosen by the other players within
the strategy profile.

In a classic non-cooperative simultaneous game, each player chooses their strategy indepen-
dently of the other players, and there is no communication or coordination between players. Mul-
tiple players make decisions simultaneously, without knowing the decisions made by the other
players. Let K = {p1, . . . , pk} be the set of players, where each player pj ∈ K can select a strategy
σj ∈ Σ among m = |Σ| possible strategies. The payoff for each player depends on the combina-
tion of strategies chosen by all players. The game’s outcomes for each player can be represented
by a payoff matrix A ∈ Rmk×k with entries aσ1,...,σk ,j, where σ1, . . . , σk ∈ Σ. Each row of matrix
A represents one of the mk possible combinations of strategies for all players. The entry a1,...,k,j
represents the payoff for player j when the players choose the strategies σ1, . . . , σk. The matrix A
can be constructed as follows:

A =

 a1,...,1,1 a1,...,1,2 . . . a1,...,1,m
...

...
. . .

...
am,...,m,1 am,...,m,2 . . . am,...,m,m

 (2.23)

After having the payoff matrix, it becomes evident how the decisions of multiple agents in-
fluence each other within the game. The payoff matrix reflects the interdependencies and inter-
actions among the agents, showing the rewards or outcomes that each agent receives based on
their choices and the choices of other agents. Once we have the payoff matrix, we analyze it to
determine the Nash equilibrium.

A strategy profile σ∗ = (σ∗1 , σ∗2 , . . . , σ∗k) is a Nash equilibrium if, for each player j ∈ K, their
strategy σ∗j is the best response bj to the strategies of the other players, i.e., ∀σ ∈ Σk : uj(σ

∗) ≥
uj(σ). In this context, uj denotes the utility function of player j, which represents the player’s
preference over the possible outcomes. In other words, player j’s strategy σ∗j is a best response to

2.11. Chapter Conclusions 45

FIGURE 2.8: An overview of Payoff Matrix of a simultaneous Non-Cooperative
Game (Prisoners Dilemma).

the strategies (σ∗1 σ∗2 . . . , σ∗j−1σ∗j+1 . . . , σ∗k) chosen by the other players. To find the best response of
player j, bj, in a non-cooperative game, we use the following formula:

bj(σ−j) = arg max
σj∈Σ

uj(σj, σ−j), (2.24)

where σ−j denotes the strategies of all other players in the game. To determine whether a given
strategy profile is a Nash equilibrium, we can find the best response of each player to the strate-
gies of the other players, using the formula for the best response given above, substituting σ−j
with (σ∗1 , σ∗2 , . . . , σ∗j−1, σ∗j+1, . . . , σ∗k). If each player’s chosen strategy is the best response to the
strategies of the other players in the given strategy profile, then the strategy profile is a Nash
equilibrium [65].

Figure 2.8 showcases the payoff matrix of an illustrative example of the simultaneous non-
cooperative game known as the Prisoner’s Dilemma. The Prisoner’s Dilemma is a classic game
theory scenario where two individuals face a decision to cooperate or betray each other, with
the possibility of greater individual gain through betrayal. In this non-cooperative game, the
Nash equilibrium may not necessarily yield the global maximum. In the best-case scenario, both
players would choose not to confess, resulting in a one-year jail sentence. However, due to the
simultaneous nature of the game and the absence of communication between players, the rational
decision, equivalent to the Nash equilibrium, is for both players to confess, unless there is a change
in incentives and the potential punishment is sufficiently high. We extend the framework of the
Prisoner’s Dilemma game to model the non-cooperative interactions among competing users in
the context of multi-agent trajectory prediction.

2.11 Chapter Conclusions

In this chapter, we have explored the theoretical foundations of the mobility predictor, mobility
management, predictive machine learning models, and intelligent decision-making techniques

46

that will be further developed in the upcoming chapters. Through an in-depth examination of
the fundamental concepts, methodologies, and techniques underlying these fields, we have estab-
lished the necessary mathematical and theoretical background to drive our subsequent investiga-
tions and analyses.

47

Chapter 3

Related Works

3.1 Chapter Introduction

In this chapter, we provide a comprehensive review of the current state-of-the-art in the field of
mobility prediction and management, including its applications and use cases and examine the
limitations of existing works. In Section 3.2, an overview of existing mobility datasets is provided
and compared to the datasets used in this thesis. Section 3.3 compares various handover man-
agement and service migration works and algorithms aiming to enhance the latency-sensitive
applications in wireless networks. In Section 3.4.1, existing works on isolated-agent trajectory
forecasting models are investigated. Social-aware multi-agent trajectory prediction models in
dynamic environments are introduced in Section 3.4.2, with their advantages compared to iso-
lated trajectory predictors highlighted. Decentralized multi-agent trajectory prediction models
are then presented in Section 3.4.3, discussing their benefits over centralized predictors. Finally,
non-cooperative strategic multi-agent trajectory prediction models are delved into and compared
to cooperative models in Section 3.4.4.

3.2 Mobility Datasets

Mobility datasets collected by network operators are important information sources to infer users’
mobility patterns. The datasets normally include information of millions of users distributed over
geographical areas. The basic information usually stores an user’s identification, the timestamp
of the event, the base station’s identification related to an event [30, 10]. Custom features added
to basic information are provided in terms of event granularity, event duration, type of the appli-
cation (e.g., call detail records and mobility data), collection period, etc.

Previous real-world Call Detail Records Call Detail Records (CDR) datasets explore the mobil-
ity pattern of individuals logged whenever an user made/received a call or a text message [30, 10].
Gonzalez et al. [30] analyze two datasets with more detailed information about users, such as an
average service area of 3 km2 and 30% of base stations covering smaller areas up to 1 km2. Chen
et al. [10] provide mobility trajectory reconstruction with GPS coordinates of base stations as well.
However, both works rely on users’ GPS data, which might pose considerable privacy risks. The

48

storage of user-sensitive event data, such as base station identification and geographical position
is not likely to be provided for privacy concerns.

This thesis employs two datasets to support the research, namely the large-scale private dataset
from Orange telecommunication S.A.[104], and the small-scale public dataset from ETH[68] plus
UCY [47]. More information regarding these datasets is provided in Section 4.4. To protect user
privacy, the Orange dataset anonymizes user and cellular base station identifiers, as well as re-
moving GPS data. Consequently, user trajectory forecasting becomes more challenging due to the
absence of geographical coordinates. In contrast, the ETH+UCY datasets offer GPS coordinates of
pedestrians obtained from bird-eye cameras.

3.3 Mobility Management in Wireless Networks

Effective handover management and service migration in wireless networks rely heavily on ef-
ficient mobility management, particularly in new-generation mobile networks, e.g., 5G and 6G,
where dense cellular networks and high mobility are common. The QoS experienced by end-users
is directly affected by the performance of mobility management, especially in modern applications
where even minor delays can have significant consequences. To address this, several approaches
to mobility management have been proposed in the literature, including both ML-based and non-
ML-based schemes.

3.3.1 Handover Optimization

Authors in [93] propose a delay-oriented cross-tier handover skipping scheme, i.e., a handover
algorithm that minimizes the number of handovers in order to maximize the performance of
low latency applications in ultra-dense networks. Their work derives an analytical expression
for users’ adequate capacity during the handover execution and proposed a resource allocation
scheme in target base stations to reduce blocking probability. However, it does not employ pre-
dictive schemes or mobility information into the decision, which may improve the decision quality
and positively impact user QoE.

Gong et al. [29] propose a multi-criteria handover algorithm for heterogeneous networks. Con-
sidering multiple criteria in the decision process can be a complex process, and some techniques
were developed to balance the parameters based on degrees of importance, such as analytic hier-
archical process attributes weights to each parameter based on predefined degrees of importance.
Based on these schemes, the cross-tier handover performance is improved in terms of failure prob-
ability and ping-pong rate, i.e., when a user disconnects and connects multiple times from a base
station or a group of base stations in a short period of time. To make the decision more reliable and
avoid unnecessary handovers, the authors also consider previous measurements in the process.
However, their proposed solution is not as fast-reactive as necessary on challenging scenarios of
modern networks.

Authors of [55] and [59] provide prediction-based handover optimization mechanisms with
limitations. The authors in [55] choose a scheme based on the reference signal received power, ref-
erence signal received quality and mobility parameters for mobile users. The work aims to elimi-
nate excessive and redundant handovers during a user’s path in a small cell network. However,

3.3. Mobility Management in Wireless Networks 49

when considering a small cell network, a higher number of handovers is expected to keep ser-
vice and coverage continuity for the users, thus simplifying mobility prediction and a mechanism
to avoid handover execution may not be suitable for all scenarios. The authors of [52] propose
a group-based pre-handover authentication scheme for 5G high-speed rail networks, which has
shown some success. However, the performance of the mobility predictor used in the scheme has
multiple limitations. In all above cases, a more accurate, efficient, and reliable prediction model is
essential for a good handover algorithm.

3.3.2 Service Migration

The process of decision-making for service migration in MEC environments has presented sig-
nificant challenges that require large-scale experiments and greater utilization of AI techniques,
as noted in [102]. Many works focus on service pre-migration in vehicular scenarios, such as
Yu et al. [95], which propose a migration decision executed offline for services in mobile edge
computing. The work uses a mobility prediction scheme to minimize the average latency of the
service in the long term. The algorithm, while finding an optimal solution, may have limitations
if being used in real-time, as the processing is assumed to be complex.

Jing et al. [39] propose LSTM-based prediction of cloud resources for service migration pur-
poses without considering knowledge of mobility prediction. Zhang et al. [100] proposes a deep-
belief network for prediction of tasks in a cloud computing environment. However, prediction
techniques are far too simplistic for modern networking scenarios. Thus, modern 5G and edge
computing networks require a robust predictor in order to offer satisfactory network performance.

Concerning predictive migration for an edge computing-enabled scenario, some works have
proposed solutions with certain limitations. Liang et al. [49] showcases the opportunities for
optimizing resource allocation in a wireless-access edge computing network. The authors pro-
pose joint computing and communication resource management in order to achieve high QoS
for end-users. Integer programming is used to provide an optimal solution for the allocation of
computation and communication resources, and simulation results achieve near-optimal perfor-
mance. However, complex optimization procedures are not feasible to be executed in real-time
network management, and in real systems are often substituted for lightweight heuristics without
a significant decrease in QoS.

Furthermore, Zhang et al. [101] propose a genetic algorithm-based task migration solution for
pervasive cloud computing. However, such solution must be re-evaluated for modern B5G edge
computing scenarios. Li et al. [48] propose a joint service migration and caching for a Service
Defined Network (SDN)-enabled edge network. In this context, the proposed mechanism focuses
on providing reliable multimedia streaming for users at the edge of the network based on a Q-
Learning decision policy that dynamically learns a caching strategy. However, the system does not
make use of predictive mobility information about the users’ connection points or geographical
position, which could provide the system with proactive management capabilities and increase
the perceived QoS for users. In the same manner, [102] present a survey on decision-making in
the context of task migration. Such a mechanism, however, is designed for small task offloading
from mobile devices and can be adapted for larger containers and VMs on demand in the context
of edge computing.

50

On the other hand, Ouyang et al. [66] tackle the problem of keeping services close to users
in edge computing scenarios, where user mobility is unpredictable. The system does not need
prior information about user mobility statistics, as it applies real-time optimization in order to
reduce the complexity of the problem. The solution aims to reduce overall migration costs with
specialized mobility models. However, it is not fully successful with respect to works that consider
the user mobility. Gao et al. [26] as well propose a heuristic-based migration algorithm to serve
users with varying deadlines, considering user-generated data and the contact patterns between
the nodes. Despite employing mobility models in the decision, the proposed solution lacks QoS
and radio resources support for applications and services.

Currently, there is a research gap in the development of accurate, robust, and personalized
trajectory predictors for effective mobility management in wireless networks. To address this gap,
we propose a high-performance RL-designed LSTM NN-based mobility predictor. Utilizing this
RL-LSTM trajectory prediction, we then develop the Reinforcement Learning-based Handover
for Edge Computing (RL-HEC) system, which combines RL techniques into the handover deci-
sion process. Additionally, we introduce the Reinforcement Learning-based Service Migration
(RL-SM) system, which leverages individual user mobility prediction to perform proactive ser-
vice migrations, ensuring continuous service. Integrating TP and mobility management in this
way ensures guaranteed uninterrupted communication, QoS, and service migration performance,
resulting in improved overall performance and reliability of wireless networks. By combining
advanced DL techniques with traditional mobility management approaches, we aim to provide a
more comprehensive and effective solution for managing mobility in wireless networks.

3.4 Mobility Prediction

3.4.1 Isolated-Agent Trajectory Prediction Models

TABLE 3.1: Comparison of the state-of-the-art isolated-agent trajectory predic-
tors [21] ©2022 IEEE

Trajectory Predictor Model ANN RL Clustering TL
Zhang et al. [103] RNN ✓ - - -
Phillips et al. [70] LSTM ✓ - - -
Nikhil et al. [64] CNN ✓ - - -
Shrivastava et al. [79] LSTM ✓ - ✓ -
Sung et al. [81] Markov - - ✓ -
Karimzadeh et al. [41] LSTM ✓ ✓ - -
RC-TL CNN ✓ ✓ ✓ ✓

Trajectory forecasting is a critical component in intelligent mobility and transportation ser-
vices. In general, TP can be categorized into two classes: physics-based and maneuver-based
models [45]. Physics-based prediction models are mainly based on statistical models such as the

3.4. Mobility Prediction 51

family of Bayesian filters and Kalman Filters (KF). The authors in [8] implement KF to predict
future trajectories of mobile users. On the other hand, maneuver-based predictions are mainly
based on ML algorithms [91]. Heuristic-based classifiers [37], Markov models and Random Forest
(RF) classifiers are all examples of maneuver-based trajectory predictions through different ML
algorithms.

Traditional mobility prediction methods such as Markov-based, Hidden Markov models, Gaus-
sian models, and Kalman filters have limitations in accurately predicting user movement patterns
in modern networks that generate large volumes of data [72, 89, 71]. Markov models, for instance,
assume that the future state of a system depends only on the current state and not on its history.
Hidden Markov models assume that the underlying state of the system is hidden and can only
be inferred from observable data. Similarly, Gaussian models assume that the distribution of data
follows a normal distribution, which is often not the case for mobile user location data. Kalman
filters rely on the assumption that the system is linear and has Gaussian noise, which limits their
applicability in many real-world scenarios.

In this direction, ML and DL techniques have been proposed to improve TP accuracy. In recent
years, AI algorithms have replaced conventional statistical models to analyze mobility data and
predict future trajectories of mobile users, e.g., pedestrians and vehicles [16, 76, 84]. In the litera-
ture, the problem of TP has been extensively tackled with RNN [103], and their variants including
GRU [13] and LSTM [36, 70, 69], as successful DL models designed for time-series prediction.
Despite the success of RNNs, GRUs, and LSTMs they face a slow training process, as they must
process the input data in sequential order. In contrast, CNNs are other powerful DL tools that can
concentrate on sequential data from a hierarchical perspective processing the data as a whole and,
thus, can become a suitable alternative for RNNs. The predictors presented by Nikhil et al. [64]
and Zamboni et al. [98] is from the limited existing works that apply CNNs for the isolated TP
field.

Although all the abovementioned DL works successfully predict trajectories, they design the
NN architectures manually following human-expert-based heuristics, which is an error-prone and
time-consuming process. NN architecture design is an NP-hard problem that conventional opti-
mization methods, such as random search, cannot solve it in polynomial time as the search space
expands. Moreover, designing NN models can be especially challenging in less-explored domains
such as TP, compared to more established fields such as image processing, where a wealth of
knowledge is readily available for NN design. Furthermore, they apply the same NN architecture
to every user dataset, assuming everyone has similar mobility behaviors without personalization.
Several search methods have been proposed to automate the NN architecture design process given
a dataset in other fields than mobility prediction. In their work, Elsken et al.[17] conduct a sur-
vey on existing NAS methods and demonstrate that formulating hyper-parameter optimization
as a Reinforcement Learning (RL) algorithm is a more efficient search technique when compared
to naive methods like Grid Search (GS), Random Search (RS) [9], and Bayesian search [77, 43].
Bayesian optimization leverages probabilistic models to search for optimal hyperparameters, re-
ducing the need for exhaustive evaluations. However, constructing a probabilistic model of the
hyperparameters and iteratively updating it with new observations is computationally expensive,
specifically when dealing with large search spaces. Zoph et al. [105] were the first to introduce
the concept of computationally-efficient NN architecture design through RL. They used an RNN

52

controller trained with the REINFORCE policy gradient algorithm to generate various NN ar-
chitectures on the CIFAR-10 image dataset. Most of the NAS works apply RL to find the best
architecture for image classification tasks, where defining well-suited search spaces is compara-
tively easy due to human experience and the existence of several manually-designed models [105,
6, 40].

Yet, the potential of NAS methods in less explored domains is still unclear [17]. Inspired by
Zoph et al. [105], the use of RL in trajectory prediction has been suggested by Karimzadeh et.
al. [41], but the current approach raises concerns regarding its efficiency. In the existing method-
ology, the complete set of epochs (i.e., 200) for each neural architecture is trained in every RL
episode. This mixing of grid searches, which can identify global optima, and RL’s ability to nar-
row down the search space early, is inefficient. Consequently, this model does not yield polyno-
mial time complexity and leads to a significant waste of computational resources. Therefore we
propose and study a convergent RL-based NAS method in the field of trajectory prediction by
proposing to train the suggested LSTM, on each RL episode, with only partial training epochs
(e.g., 10 out of 200) [104].

Moreover, Computationally-light NAS methods have not been studied in the literature [17].
RL for NAS is computationally lighter than GS methods and can achieve better accuracy than RS
methods, but is still computationally expensive. In a real network scenario with thousands of
mobile users’ trajectories, training an RL agent per user dataset to optimize their neural network
architecture would be impossible. Multiple users in an urban area might partially follow similar
trajectories during a specific period of the day by chance or by groups’ intentions [11]. In this
direction, we propose to cluster similar trajectory users and train a single RL agent for each cluster
of users instead of for each user to reduce computational requirements in large-scale individual
TP networks.

In the literature, some relevant TP works have suggested clustering similar users. Neverthe-
less, their approaches have many shortcomings and are not within the scope of NAS. For example,
the recently proposed model in [79] clusters similar trajectory users and then feeds only parts of
complete trajectories (referred to as partial trajectories) within a cluster to an LSTM. However,
their approach faces three problems. First, training only a part of trajectories disregards long-term
spatio-temporal dependencies information. Besides, training partial trajectories of all users within
all clusters still requires a considerable amount of computational resources. Moreover, Shrivastava
et al. [79] apply the same heuristically-designed LSTM architecture to all clusters, which does not
guarantee the optimal prediction performance.

Alternatively, Sung et al. [81] cluster similar users and then aggregate all user data within a
cluster by averaging them to a single data sequence and feeding it to a Markov-based predictor.
This model also suffers from three shortcomings. Primarily, averaging all users’ data discards use-
ful spatio-temporal information. Furthermore, their model needs access to all users’ data for the
aggregation, which is expensive in terms of communication and computation. Finally, Markov-
based predictors are much less potent than ANNs and cannot guarantee optimal performance.

In this direction, we propose Reinforcement Convolutional Transfer Learning for Large-scale
Trajectory Prediction (RC-TL) system [21] to address all the shortcomings mentioned above by
bringing a combination of NAS and TL to the cluster-level mobility prediction. RC-TL offers an

3.4. Mobility Prediction 53

accurate yet computationally efficient trajectory prediction without the requirement of processing
all users’ data.

Table 3.1 compares our solution RC-TL to existing state-of-the-art isolated pedestrian or vehic-
ular trajectory predictors in terms of the techniques used to achieve the mobility prediction. We
can observe that the majority of works use some form of ANN as a predictor. We observe RC-TL
is the only compared work that employs an RL-designed ANN together with TL and clustering
techniques to achieve higher accuracy at comparable or lower computation costs.

Compared to our previous work on RL-LSTM trajectory prediction in [104], where the neural
network was personalized for each individual user, RC-TL takes a more realistic approach and
is scalable by personalizing a single neural architecture for a cluster of neighboring trajectories.
However, RC-TL does not consider social interactions between users and only predicts trajectories
based on isolated data from each individual user.

3.4.2 Social-aware Multi-Agent Trajectory Prediction Models

TABLE 3.2: Comparison of the state-of-the-art multi-agent social-aware trajectory
predictors [20] ©2022 IEEE

Trajectory Predictor Neural Network Social Module NAS

Alahi et al. [3] LSTM Social Pool -
Gupta et al. [31] LSTM-GAN Social Pool and Pooling Vector -

Sadeghian et al. [74] LSTM-GAN Attention -
Yu et al. [94] Transformer Graph Convolution -

INTRAFORCE Transformer Social Pool and Clustering RL

Social-aware predictors leverage the social interactions among individuals to improve TP per-
formance by considering group intelligence. Data-driven social mobility predictors have gained
popularity compared to the previously proposed Social-force models, which use simple repulsive
and attraction forces [33]. The vast majority of modern social-aware trajectory predictors are based
on DL models, such as RNNs, LSTMs, CNNs, and attention-based neural networks, which require
less computation and achieve higher prediction accuracy compared to social-force models due to
their better modeling of sequential patterns [104, 21, 28]. Instead of modeling kinetic forces and
energy potentials as in social-force models, social-pooling [3, 31], attention [4, 74], and graph [94,
60] mechanisms complement neural networks to share information about neighboring user’s tra-
jectories to capture complex interactions in crowded environments.

Alahi et. al. [3] introduce the Social-LSTM, which relies on a social pooling layer that connects
multiple LSTMs to model the interaction among pedestrians. Social-LSTM considers user inter-
actions within a fixed-size local area, which reduces the flexibility in considering the interaction
among any two users that might affect each other’s trajectory. To solve such limitation, Social-
GAN [31], a Generative Adversarial Network (GAN)-based trajectory predictor, extracts social in-
teractions among all users in the system. Social-GAN stores the relative positions between all users

54

of the social pool in a pool vector, in order to let each user make mobility decisions based on in-
formation of other users at the decoder side. However, Social-GAN weights each user trajectory’s
influence on the model identically. Sophie [74] solves this limitation by proposing another GAN-
based social network that feeds all users of the scene to a social attention component, which aggre-
gates various agents interactions and extracts users who have more influence on each other from
the surrounding neighbors. Even though the social-pooling algorithms perform well in learning
and predicting social interactions, they are computationally complex and resource-intensive be-
cause they feed trajectories of all users within a scene to the social predictor’s encoders. In contrast
to these works, our propose Intra-Cluster Reinforced Social Transformer for Trajectory Prediction
(INTRAFORCE) system, which generates a set of Social-Transformer trajectory predictors, each
trained on the data of a different group of users with similar mobility. Transformers (TF) have
emerged as a state-of-the-art NN architecture for time series prediction. The TF architecture was
first introduced in the seminal paper "Attention Is All You Need" [86], which showed that trans-
formers can achieve state-of-the-art performance on time-series machine translation tasks. In this
direction, INTRAFORCE adapts TFs for social trajectory prediction models. For an environment
containing n mobile users, INTRAFORCE learns the social interactions among the nk ≪ n users
in each cluster ck. In this way, the cluster’s social-transformer is trained over nk datasets instead
of n, saving the computational resources needed for training over the n− nk datasets associated
to users whose mobility features are irrelevant for cluster ck.

Another shortcoming of the existing social trajectory predictors, similar to isolated models
in Section 3.4.1, is that their NN architectures are heuristically designed, and that the same NN
is applied to a wide range of mobility datasets with no neural architecture adaption. To miti-
gate such drawbacks, we propose to personalize the NN architecture design given each group
of neighbor users’ motion behaviors. We propose to formulate the problem of optimizing NN
hyper-parameters of the multi-agent social-aware mobility prediction through RL. Users within
each cluster share similar trajectories and exhibit stronger interactions with each other. Therefore,
a RL algorithm is proposed to personalize a NN for each cluster. Previously, in RC-TL [21] we sug-
gested applying RL for individual TP, where users are left isolated. While, in INTRAFORCE we
propose and develop a RL algorithm in the field of social TP. Table 3.2 compares the characteristics
of our solution with those of existing state-of-the-art social-aware trajectory predictors.

3.4.3 Decentralized Multi-Agent Trajectory Prediction Models

As presented in Section 3.4.2, Social-LSTM [3], Social-GAN [31], Sophie [74], Social-Ways [4],
Social-STGCNN [60], and STAR [94] are popular social-aware TP models in the existing literature.
However, all of these works are based on centralized models, which can give rise to scalability
and confidentiality issues. FL models are proposed to enable decentralized ML, allowing multi-
ple devices to collaboratively train a shared model without exchanging raw data to preserve data
privacy and reduce the network overhead by minimizing the amount of data sent to a central
server.

FedAvg [57] is the first federated training method designed for training distributed NNs that
uses Stochastic Gradient Descent (SGD) optimizer to train each federated client. To improve the

3.4. Mobility Prediction 55

TABLE 3.3: Comparison of the state-of-the-art multi-agent federated trajectory pre-
dictors [18] ©2023 IEEE

Characteristics Flow-FL [54] ATPFL [87] MOB-FL [90] FedForce

Improvement over FedAvg ✓ ✓ ✓ ✓
Training participant election ✓ - - ✓
Local data quality estimation - - - ✓
NN architecture optimization - ✓ - ✓
Computational optimization - - ✓ ✓
Communication optimization - - - ✓

Multi-objective RL - - - ✓

classical FedAvg, Per-FedAvg [22] allows federated users to enforce an extra SGD update after re-
ceiving the global model at the end of training rounds to add a small amount of personalization to
each client’s model. To further advance the FL performance, pFedMe [82] suggests using diverse
optimization methods letting federated users perform multiple extra SGD updates as far as each
personalized model does not diverge noticeably from the global model parameters. Inspired by
above models, researchers have studied FL-based TP. PMF [23] proposes a group optimization ap-
proach to advance the conventional FL algorithm for human mobility prediction achieving a better
tradeoff between prediction performance and privacy. Flow-FL [54] proposes a gossip learning,
server-less FL, model for robot TP that studies the effects of data collection-related parameters on
the FL’s performance. Despite the success of forenamed works in FL-based TP, they suffer from
resource-intensive computations on the client side since there is no limit on the upper bound num-
ber of FL participants. Moreover, none of these TP works estimates local users’ data quality to be
able to choose eligible users for training. In contrast, we propose Network-adaptive Federated
Learning for Reinforced Mobility Prediction (FedForce) system, which trains a portion of clients
that their local data are qualified before participation based on their computed regularity ratios.
Moreover, training a set of users during FL rounds instead of all users lets FedForce save consid-
erable computational resources. Some of the FL studies explore complex client selection strategies
[12]. However, our proposed regularity ratio offers a light weight solution. Our method is highly
efficient and fast to compute on each local device. Moreover, our approach transmits only a single
value over the wireless link representing the user’s trajectory information to the server, resulting
in excellent communication efficiency and minimal overhead.

To initialize the federated local training process, the abovementioned TP papers adopt a heuris-
tically designed NN architecture based on the experts’ domain knowledge, which is time-consuming
and error-prone, similar to the problem of centralized TP works stated in Section 3.4.1 and Sec-
tion 3.4.2. Manually-designed models are flawed especially in less-explored domains such as
TP compared to the image processing field, where there is small information available about
manually-created models compared to the image processing field. A recent federated TP study,
ATPFL [87], proposes to use the Auto-ML-based NAS to automate the neural architecture design
process. However, ATPFL considers only the predictor’s performance to be optimized through
NAS, ignoring clients’ computational and communication resource constraints. On the other

56

hand, MOB-FL [90] is the only FL-based mobility predictor that considers the computational re-
source utilization of constraint client devices. MOB-FL proposes an accelerated FL algorithm to
maximize the resource utilization of intelligent connected vehicles over short-lived wireless con-
nections by optimizing the duration of federated training rounds and the number of local iter-
ations. However, this acceleration approach is simply fine-tuning the ML training process that
considers neither the performance of the predictor nor the size of the model which must be trans-
mitted over the wireless network. Therefore, there have not been many federated TP researches
taking care of predictors’ performance, local clients’ resource limitations, and the communication
throughput. In contrast to previous works, we propose FedForce, a multi-objective RL-based NAS
for federated TP to address this research gap. Table 3.3 shows that FedForce addresses a wider
range of issues from prediction accuracy to network performance compared to state-of-the-art
FL-based TP works.

Unlike our previously proposed RC-TL [21] and INTRAFORCE [20] trajectory predictors, in
Section 3.4.1 and Section 3.4.2, that only rewarded high-accuracy neural networks, FedForce re-
wards architectures that optimize multiple objectives simultaneously, including accuracy, model
size, training time, and transmission time.

3.4.4 Strategic Multi-Agent Trajectory Prediction Models

TABLE 3.4: Comparison of the state-of-the-art multi-agent cooperative and non-
cooperative trajectory predictors [19] ©2023 IEEE

Characteristics Alahi [3] Bahram [5] Geiger [27] Ma [53] GTP-Force

Social-aware TP ✓ ✓ ✓ ✓ ✓
Personalization - - - ✓ ✓

RL-designed NN - - - - ✓
Decentralized TP - - - - ✓

Strategic TP - ✓ ✓ ✓ ✓
Non-Cooperative Game - - ✓ ✓ ✓

Simultaneous Game - - ✓ - ✓
Sequential Game - ✓ - ✓ -

Social-aware TP models face a significant challenge beyond NN architecture inflexibility and
centralized models. These works assume cooperative behavior from all users in a multi-agent
environment. However, in reality, human agents tend to optimize their personal goals instead of
joint strategies, leading to significant inaccuracies in joint TP. According to the survey conducted
by Rudenko et al. [73], classical AI and game-theoretic approaches hold great potential for mod-
eling human behaviors in multi-agent systems. As a step in this direction, Ma et al. [53] and
Geiger et al. [27] are among the few existing papers that partially address the problem of social-
aware non-cooperative TP through Game Theory (GT). Bahram et al. [5] propose a cooperative
prediction and planning framework for automated driving in dynamic environments based on

3.5. Chapter Conclusions 57

the game theory methods. However, this work does not consider the non-cooperative dynam-
ics among mobile users. Ma et al. [53] propose a method for predicting the interactive dynamics
of pedestrians using a combination of GT and deep learning-based visual analysis via Fictitious
Play. In Fictitious Play, players play their best responses to their opponents. Each player updates
their beliefs about the other players’ strategies based on the observed outcomes and then selects
their strategy for the next round. However, a limitation of this approach is that Fictitious Play
is designed for sequential games and may not be well-suited for modeling simultaneous games.
In the context of TP problems, individuals may take actions simultaneously, necessitating the use
of non-cooperative simultaneous games to more accurately model their impulsive behaviors. On
the other hand, Geiger et al. [27] propose a game-theoretic framework for predicting the future
trajectories of multiple agents in a social environment, using implicit layers to learn the best re-
sponse of each agent in a Nash equilibrium of the game. The implicit layer is a neural network
layer that learns the underlying relationships between input and output data through a non-linear
mapping function. However, this approach lacks personalized neural network models for indi-
vidual agents to capture their unique characteristics and identify the best trajectory predictions.
Personalized models can help to capture the unique features and preferences of each agent, which
can ultimately lead to more accurate predictions. In contrast, the use of a single implicit layer to
calculate the expected utility of different TPs may not be sufficient to capture the full complexity
of the social environment and the individuals within it.

In contrast, we propose Game-Theoretic Trajectory Prediction through Distributed Reinforce-
ment Learning (GTP-Force) system, which addresses the limitations of the abovementioned meth-
ods by taking a number of steps. First, GTP-Force decentralizes the training process on local
devices, while the aggregation step is performed through a centralized server. Second, GTP-
Force personalizes the NN architecture for a cluster of similar-trajectory users based on their
intra-cluster unique mobility data features, using a RL algorithm. Third, GTP-Force defines a
non-cooperative simultaneous game to search for the best combination of NN models among
competing inter-cluster users. Table 3.4 shows that GTP-Force addresses a wider range of issues
from prediction accuracy to network performance compared to state-of-the-art game theoretic TP
works.

Unlike our previously proposed INTRAFORCE [20] and FedForce [18] trajectory predictors,
GTP-Force focuses on modeling non-cooperative behaviors among inter-cluster users. This ap-
proach is justified because inter-cluster users often have different data features and computing
requirements compared to intra-cluster users.

3.5 Chapter Conclusions

In this chapter, we discussed the previous research conducted in the same field as our thesis. This
provided insights into the significance of our research and identified some limitations in existing
works. Our proposed models, which we will describe in detail in the following sections, aim to
address these challenges.

59

Chapter 4

Overview of Mobility Scenarios, Datasets,
and Evaluation Metrics

4.1 Chapter Introduction

This chapter serves as a foundation for the subsequent chapters where we develop various trajec-
tory predictors. It focuses on the exploration and definition of mobility scenarios we have consid-
ered, specifically tailored for mobility prediction and management, enabling the development of
the proposed technologies.

Within this chapter, we introduce the datasets used in this thesis. Additionally, we discuss
the techniques employed for data preparation and preprocessing, optimizing the input for our AI
predictors. Furthermore, we present the experimental setups and evaluation metrics that will be
utilized to assess the performance of our proposed trajectory predictors in the next chapters.

Apart from introducing the analytics, datasets, preprocessing, and experimental setups, the
main contribution of this thesis is the presentation of our proposed regularity ratio metric. This
metric, based on signal processing in the time and frequency domains, allows us to estimate the
quality and periodicity of user data without relying on an AI predictor.

4.2 Mobility Prediction Scenario

We define a scenario in which n users move within an urban area containing S base stations pro-
viding Internet access via a cellular radio network. Each user has a wireless device that connects to
the base station with the strongest signal. As users move, the received signal power from the base
stations changes, which requires a handover to a new base station. The timestamps at which each
user connects and disconnects from each base station are recorded. In our system, without loss of
generality, we assume that time is discretized as a sequence of countable time slots of variable or
uniform length, that we index with the symbol t ∈ N. We assume that at any timestamp vu, user
u is located at coordinates (xu, yu) ∈ R2 and may be connected to a base station with cell ID bu ∈ N.
The vector pu = (vu, xu, yu, bu) ∈ R3×N represents a single data point about the user’s status and
is referred to as the user information vector. This formulation allows for cases in which information

60

FIGURE 4.1: Trajectory prediction as a classification task. The map images presented
in this thesis were created using Folium Python library for visualization purposes

and does not involve public map data sources.

about the base stations or the exact locations of users may not be available. Each user u has a total
of mu user information vectors recorded. The set of these vectors Tu = {pu(1), . . . , pu(mu)}, is re-
ferred to as the user’s trajectory, and the set of all user trajectories is denoted as Θ = {T1, . . . , Tn}.

The set of user trajectories can be partitioned into a set of disjoint clusters C = {ci ⊆ Θ|i =
1, . . . , q}, with ci ∩ cj = ∅, ∀i, j ∈ {1, . . . , q}, i ̸= j, where each cluster contains close-distance
trajectories. Our proposed models operate on each cluster independently, thus, an instance of the
proposed method runs in parallel for each trajectory cluster.

Given the mobility scenario, RC-TL aims to predict the future location pt+1
u , and subsequently,

future trajectory Tt+1
u , of an individual user u, using its m past location data {pt

u, pt−1
u , . . . , pt−m

u }.
On the other hand, INTRAFORCE, FedForce, and GTP-Force predict the future trajectory Tt+1

u of
each user, u, based on the mobility data of both the individual and other users {Θt, Θt−1, . . . , Θt−m},
utilizing multi-agent models’ collective intelligence. Intra-cluster features are utilized to personal-
ize the models in INTRAFORCE and FedForce for centralized and decentralized training, respec-
tively. GTP-Force, on the other hand, personalizes multiple non-cooperative NN architectures
based on inter-cluster user adversaries.

The task of ML-based trajectory predictors involves training a model to learn the patterns of
movement and predict future trajectories of mobile users. This process typically involves dividing
a dataset into training, testing, and validation sets. The training set is used to train the model by
feeding it a portion of the data and allowing it to learn the underlying patterns of movement.
The testing set is then used to evaluate the performance of the model by testing its accuracy in
predicting future trajectories. Finally, the validation set is used to further evaluate the performance
of the model and make any necessary adjustments to improve its accuracy. The validation set
plays a crucial role in ensuring the generalization of the model by assessing its performance on

4.2. Mobility Prediction Scenario 61

FIGURE 4.2: Trajectory prediction as a regression task. The map images presented in
this thesis were created using Folium Python library for visualization purposes and

does not involve public map data sources.

unseen data, aiding in the identification of potential overfitting or underfitting issues. By splitting
the dataset into these three sets, the ML model can learn and predict future trajectories accurately,
leading to more effective mobility management in wireless networks.

Trajectory prediction can be approached as both a classification and a regression task, depending
on the specific problem and the desired output format.

4.2.1 Mobility Prediction as a Classification Task

In the case of cellular networks, mobility is often represented by a sequence of connected base
station IDs. As users move from one location to another, they connect to different base stations,
and this sequence of base station IDs represents their mobility. In this case, the user information
vector can be defined as pu = (tu, bu) . By analyzing this sequence of IDs over time, the trajectory
of the user can be derived, and their movement patterns and behaviors can be studied. In this
case, the task of trajectory prediction becomes a classification problem. The goal is to predict
the next base station ID that the user will move to. This approach is commonly used in cellular
networks to optimize handover procedures and reduce call drops. ML algorithms can be trained
on the historical base station IDs visited by the user to predict their future movements accurately.
Figure 4.1 shows an example of a trajectory defined as a sequence of cellular base stations.

4.2.2 Mobility Prediction as a Regression Task

In location-based services, the historical sequence of visited locations is represented by GPS coor-
dinates. Each time a user visits a new location, the GPS coordinates of that location are recorded,
creating a sequence of visited locations. In this case, the user information vector can be defined

62

as pu = (tu, xu, yu). By analyzing this sequence of GPS coordinates over time, the trajectory of
the user can be derived, and their movement patterns and behaviors can be studied. In this case,
the task of trajectory prediction becomes a regression problem. The goal is to predict the next
GPS coordinate, which includes both longitude and latitude. This approach is commonly used in
location-based services to predict user movements and to recommend relevant services based on
their location. ML algorithms can be trained on the historical GPS coordinates visited by the user
to accurately predict their future movements. Figure 4.2 shows an example of a trajectory defined
as a sequence of GPS coordinates.

4.3 Mobility Management Scenarios

4.3.1 Handover Management

We consider a mobile network, such as the one represented by Section 4.2. We assume the presence
of N User Equipments (UEs), each connected to one of the B base stations present in the scenario.
Users move through the scenario and trigger handover events according to the handover algo-
rithm. A given UE n ∈ N may or may not have a mobility prediction model m associated with it,
depending on the quality Q of the data available for the UE. Each model m ∈ M has an accuracy
level known by the network. Overseeing the handover process, we consider a handover Manager
similar to the 4G Mobility Management Entity (MME) or the 5G Access and Mobility Management
Function (AMF). This handover Manager has access to the individual mobility prediction models
for users and their connection history for ping-pong detection.

4.3.2 Service Migration

Let Sn,b denote the service being consumed by user n at base station b, and let Eb denote the edge
data center associated with base station b. We assume that each edge data center is capable of
running cloud-based services for users in the scenario. To optimize the services being consumed
at the network’s edge, we can use learning models at the edge of the network. Let Mb,k denote
the learning model associated with edge data center Eb for optimizing services at base station k.
The architecture can take advantage of the user mobility prediction scheme to perform service
migrations proactively to the next edge server the user shall connect to. To perform service migra-
tions proactively based on user mobility prediction, we can use a next base station (BS) prediction
scheme. Let Bt+1

n denote the next base station that user n will connect to based on the mobility
prediction scheme.

4.4 Datasets

Location-based mobility datasets are important resources for studying human and vehicle mo-
bility patterns in urban environments. These datasets contain spatiotemporal information about
the locations visited by individuals or vehicles, which can provide insights into the dynamics of
urban mobility. The location information can be collected through various means, including GPS
latitude-longitude coordinates, cellular base station signals, or Wi-Fi access points. These datasets

4.4. Datasets 63

FIGURE 4.3: An example of mobile users’ visited locations (connected base stations)
based on the private Luzern telecommunication dataset. The map images presented
in this thesis were created using Folium Python library for visualization purposes

and does not involve public map data sources.

can cover a wide range of urban areas, from small neighborhoods to entire cities, and can span dif-
ferent time periods, from days to years. As stated before, the trajectories of humans or vehicles are
constructed by combining the location data over time, creating a sequence of visited locations. To
better explain, the mobile users’ visited locations are plotted on a map using the Folium1 Python
library, as seen in Figure 4.3. Trajectory data can be used to extract a variety of mobility features,
including travel patterns, activity hotspots, and trip purposes. Such information can be used to
develop predictive models that can assist in the design of efficient and effective transportation
systems.

Our proposed ANN-based mobility predictors’ performance are evaluated on two mobility
scenarios: a small-scale and a large-scale scenario, in comparison to a set of state-of-the-art mo-
bility predictors. The two scenarios are named based on the size of the users’ moving area. The
large-scale scenario is based on the Orange telecommunication S.A. [104] private dataset, while the
small-scale scenario is based on the ETH [68] plus UCY [47] public camera dataset.

4.4.1 Orange Dataset

In the large-scale scenario, we assume that users can move within an area that spans several kilo-
meters. In this case, the information about the microscopic user mobility (small-scale coordi-
nates) over a short time-interval is not relevant to characterize mutual interactions between users.
Hence, we consider only the information about which base station the user is connected to. For the
large-scale scenario, we use a private cellular network management dataset provided by Orange
telecommunication S.A., France [104].

1https://python-visualization.github.io/folium/

64

15000 30000 45000
Local dataset size (# samples)

0.0

0.3

0.6

0.9

1.2
Fr

eq
ue

nc
y

1e 4

(a)

30 60 90
Local dataset quality (# unique BS ID)

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

1e 2

(b)

FIGURE 4.4: Distribution of the dataset size (a) and quality (b) for 100 random users
in the large-scale scenario (Orange dataset) [18] ©2023 IEEE.

This dataset contains the timestamps and the cellular connections of 1.3 million users that
move near a district of Paris between July and September 2019. For each user, this dataset holds
information regarding user Global eNB id as the anonymized unique ID of a connecting base
station, the start and end time of the user connected to a base station, and anonymized IMSI as the
user ID. Note that we pick the connections’ starting time as user timestamps. For privacy reasons,
the exact location coordinates of the subset of 131 identified base stations are inaccessible, and the
user identities are anonymized. Trajectories in the large-scale scenario will contain sequences of
a few thousand information vectors pu = (tu, bu), sequence of timestamps and base station IDs
as mentioned in Section 4.2.1, where the timestamps of any two consecutive vectors are separated
by a few minutes from each other. We assume that the prediction models deployed in the large-
scale scenario observe each user’s trajectory for the past Tobs = 16 timestamps and predicts the
trajectory for the future Tpred = 1 timestamp.

To reduce simulation time, and without loss of generality, we assume that this scenario con-
tains 100 users randomly sampled from the Orange dataset. We generate a local dataset for each
user by splitting the Orange dataset into several sub-datasets, grouping samples by unique user

4.4. Datasets 65

18:03:13

18:03:23

from 1 sec

FIGURE 4.5: A user’s several ping-pong handovers between surrounding BSs within
a minute [104] ©2022 IEEE.

18:03:10

18:08:57

+1 min~1 min

~1 min
~1 min

~1 min
~1 min

FIGURE 4.6: A user’s consecutive connections to the same BS and cycle of connec-
tions [104] ©2022 IEEE.

IDs, and storing these local datasets on each user to simulate both centralized- and distributed-
dataset scenarios for isolated and interactive mobility predictions. In Section 4.4.1, we provide a
detailed description of the preprocessing steps applied to the Chaos Orange dataset and the se-
lection of individual user data after cleaning. Figure 4.4a shows the distribution of 100 random
users’ dataset sizes expressed in number of data samples. The bars represent the frequency his-
togram of each user’s dataset size expressed in its number of samples. The red curve represents
the pdf of an exponential distribution E(λ) fitted on the data, with λ = 1/8088.59. Figure 4.4b
shows the distribution of 100 users’ dataset quality. High-quality datasets contain samples over a
larger set of unique visited Base Station IDs. The bars represent the frequency histogram of each
user’s number of unique base stations visited. The red curve represents the pdf of a Gaussian
distribution N (µ, σ2) fitted on the data, with µ = 65.52 and σ = 22.02.)

66

FIGURE 4.7: Re-constructed topology of an user’s connected base stations [104]
©2022 IEEE.

Orange Data Preprocessing

The main challenges regarding Orange data preparation are the immense data size and to dis-
criminate characteristics of the dataset. It is important to note that we received exclusive access
to this dataset from Orange S.A. and are the first researchers to work with it and perform prepro-
cessing. In the following, we summarize some of the Orange dataset’s particular characteristics,
which makes it challenging to apply NN algorithms. The Orange dataset has a size of 600GB, in-
cluding information of more than a million users, which are not homogeneous in terms of the data
sampling rate, as shown in Figure 4.4a. The collected mobility traces do not include equally-sized
granularity of time, which means that sometimes there is only one sample per minute, and there
are many samples within another minute. In other words, users frequently change their cellular
connections and bounce among surrounding base stations. However, short connection times (a
few seconds) with base stations might not be caused by user mobility. This behavior could be
because users connect to more than one of the surrounding base stations or perform ping-pong
handovers between neighbor base stations due to varying received signal strength. In this work,
we consider a ping-pong handover, according to the definition of Tartarini et.al. [83], as a discon-
nection and re-connection to base stations within 4 seconds.

Figure 4.5 illustrates how users suffer from ping-pong handovers among surrounding base
stations within the same minute. Figure 4.6 shows how sometimes users hop back to the first base
stations within a short time period, forming a cycle of connections.

The reason behind the frequent ping-pong handovers and bounces in the Orange dataset is
unknown to us due to the lack of precise locations of users and base stations, signal power, speeds,
and direction of users’ movements. Since the Orange dataset does not provide location and GPS
coordinates of base stations, to visualize the base stations’ distribution, we extract the relative
topology from the mobility traces to re-construct the relative base stations’ topology. From each
user’s trace data, we detect unique visited base stations, and then for each unique base station, we
extract all consecutive connections and assume them as the base station’s neighbor nodes. Finally,

4.4. Datasets 67

FIGURE 4.8: Demo of single-user trajectory prediction across cellular base stations
on the reconstructed topology of Orange dataset.

we assign relative coordinates to all the nodes (base stations). Figure 4.7 shows an example of a
re-constructed topology from the trace data of a random user within 30 days using the NetworkX2

Python library. During this period, the user has moved among 101 different base stations (out of
a total of 131 base stations). Figure 4.8 and Figure 4.9 display screenshots from our developed
animation of single- and multiple-user mobility prediction across 19 and 30 cellular base stations,
respectively, on the reconstructed topology of the Orange dataset. This animation serves as a
demonstration of our proposed trajectory predictor, which was presented in the Demo section of
the Orange project.

2https://networkx.org/

68

FIGURE 4.9: Demo of multiple-user trajectory prediction across cellular base stations
on the reconstructed topology of Orange dataset.

User Filtering

To implement and test our mobility predictor, we need to pick a group of users, which represents
the characteristics of the total dataset, but, at the same time, are containing the minimum amount
of required data samples to train a NN. The Orange dataset contains users with heterogeneous
data quality. As shown in Figure 4.4a, some users possess a large number of data samples, while
others have a small number. Additional information would be required for users with insufficient
mobility data, indicated by falling on the right side of Figure 4.4a). Social data, such as users’
professions, ages, education levels, job locations, and attended social events, may provide valu-
able context to enhance the quality of their mobility data. However, this type of information is
currently unavailable in the Orange dataset. Therefore, we cluster users based on their number
of data samples into two classes of good quality and bad quality users and then randomly select a
group of users from the class of good quality users. However, NNs are designed to work with data

4.4. Datasets 69

of different level of quality, users with more data samples have more chances to achieve higher
prediction accuracy. To identify the good quality users, we set the minimum threshold equivalent
to 1600 data samples per user over a total of 63 days. This threshold is selected empirically based
on the specific characteristic of the dataset. In this dataset, we frequently observe the appearance
of the same base stations in consecutive timestamps. In such cases, we keep the first unique sam-
ple (base stations) and remove redundant ones. Therefore, the threshold on the number of data
samples is chosen in such a way that after cleaning duplicated successive base stations, there are
still enough data for training the LSTM NN. After applying the threshold on the number of user
samples, we lose almost 86.2% of users, meaning that only 13.8% of users contain enough data to
be trained and achieve acceptable accuracy.

The achieved percentage of 13.8% corresponds to 180,000 good quality users out of the total
1.3 millions users. This percentage is considered as our sample space for training and testing
the mobility predictor. After filtering the good quality users, the Orange dataset keeps a notable
proportion of users compared to two well-known studies, which kept only 0.45% and 1.67% of the
total data respectively [30].

User Selection

In the good quality subset, we choose a group of 100 random users. Within the chosen group,
different users have different mobility patterns. Some users travel more often per day, on average,
and switch between base stations more frequently while others move less or are quite stationary.
Some users show periodic behavior in their trace history while others have irregular patterns.
Some users contain data for all days during the total 63 days of the dataset, while others miss data
during some days. This article demonstrates how the proposed mobility predictor applies for any
users with high or low quality, periodicity, and mobility patterns and achieves reasonably high
accuracy. Furthermore, to better infer users’ mobility characteristics and extract the most effective
features on prediction accuracy, we proposed to evaluate for each user its time and frequency
domain regularity ratio metric as described in Section 4.6.

4.4.2 ETH+UCY Dataset

In the small-scale scenario, we assume that users move within an area that spans a few tens of me-
ters. Therefore, the information about the base station to which users are connected does not char-
acterize inter-user mobility interaction, nor contribute to improving the mobility prediction task.
For this reason, we disregard any information about base stations and only consider small-scale
user position coordinates in their trajectories. For the small-scale scenario, we use the information
contained in the ETH [68] and UCY [47] public datasets3 containing video streams of real-world,
small-scale pedestrian mobility in urban scenarios captured from bird-eye-view cameras, where
users interact with each other and influence respective movements according to real social inter-
actions at a microscopic scale. An example of a mobility scenario captured from a bird’s-eye-view
camera can be seen in Figure 4.10.

3For more information regarding ETH dataset check: https://paperswithcode.com/dataset/eth, and regarding
UCY dataset check: https://paperswithcode.com/dataset/ucy.

70

FIGURE 4.10: An example of the ETH dataset mobility sce-
nario. This image is sourced from the Papers With Code website
https://paperswithcode.com/dataset/eth which initially is sourced
from the Medium website https://medium.com/@zhenqinghu/
pedestrian-detection-on-eth-data-set-with-faster-r-cnn-19d0a906f1d3. The
Papers With Code website is a free resource with all data licensed un-
der CC-BY-SA, which is different than the license of this thesis. See

https://creativecommons.org/licenses/by-sa/4.0/deed.en.

From both video datasets we extract the trajectories of 1536 pedestrians from five different ur-
ban scenarios with sampling rate of 0.4 s following the image processing method proposed at [28],
and save unique users’ data separately to simulate both centralized and distributed ML training
scenarios. The ETH dataset contains two urban scenarios named ETH and Hotel whereas, the
UCY dataset contains three scenarios named Univ, Zara1, and Zara2. As a result, each trajec-
tory Tu in the small-scale scenario will contain a sequence of up to 100 user information vectors
pu = (tu, xu, yu), where the timestamp granularity of any two consecutive vectors is 0.4 s. We
assume that the prediction models deployed in the small-scale scenario observe each user’s tra-
jectory for the past Tobs = 8 timestamps (3.2 s) and predicts the trajectory for the future Tpred = 12
frames timestamps (4.8 s). To ensure a fair comparison with other state-of-the-art trajectory pre-
dictors that use the same dataset, we selected the values of Tobs and Tpred from the literature.

4.5 Data Preparation and Feature Extraction

Input data preparation for time-series trajectory prediction is a crucial step as raw data is often
not in a convenient structure for researchers and lacks organization for ML applications. Data

https://paperswithcode.com/dataset/eth
https://medium.com/@zhenqinghu/pedestrian-detection-on-eth-data-set-with-faster-r-cnn-19d0a906f1d3
https://medium.com/@zhenqinghu/pedestrian-detection-on-eth-data-set-with-faster-r-cnn-19d0a906f1d3

4.6. Data Quality and Periodicity Estimation 71

preprocessing plays a vital role in transforming the data and creating relevant features that are
useful for accurate prediction. Proper feature extraction is fundamental in applying supervised
machine learning algorithms.

Features can be categorized into various groups, including temporal and spatial features. Tem-
poral features capture context information related to the duration of a visit. Users tend to ex-
hibit certain temporal patterns when visiting specific places, such as regular office hours or lunch
breaks. These temporal patterns can provide valuable insights for prediction models.

Spatial features focus on contextual information related to the geographical aspects of visits.
They aim to measure aspects such as the frequency of a user’s visits to a particular location and
the pattern of periodicity and sequence of visited locations over time. Combining location and
time information provides a comprehensive understanding of the trajectory patterns and enables
the modeling of location dynamics.

In addition to these features, cosine and sine transformations of location coordinates can be uti-
lized to capture cyclic patterns and improve predictions for periodic behaviors. By incorporating
these transformed coordinates, the model can better capture the cyclic nature of certain activities
or movements that exhibit regularity, such as daily routines or seasonal patterns.

Feature extraction in time series prediction is a crucial step that involves transforming raw time
series data into a set of representative features, capturing essential information for the prediction
task. In the context of our approach, the input to the ANN consists of a multivariate time series.
This time series encompasses multiple sequences of time stamps, visited location IDs and GPS
coordinates, as well as cyclic cosine and sine features derived from the location sequence.

By incorporating both temporal and spatial features, as well as combinations of location and
time, along with cosine and sine transformations, in the data preprocessing stage, important con-
textual information can be effectively captured. This comprehensive approach enhances the accu-
racy of time series trajectory prediction models, allowing for more precise and meaningful predic-
tions in various applications such as transportation planning, location-based services, and urban
mobility analysis.

4.6 Data Quality and Periodicity Estimation

As presented in Section 1.3.4, we propose regularity ratio metrics in both the time and frequency
domains as a measure of data quality and periodicity to identify users whose data is easier to
learn for an ANN. We compute the regularity ratios for each mobile user, and utilize the resulting
values to select only eligible users for training tasks. By doing so, we aim to reduce computational
complexity and costs. The pretrained models are then migrated to the remaining silent users. If
both regularity ratios ρt

j and ρ
f
j meet a predefined threshold that we have set for data quality and

periodicity, then the users are deemed eligible to be included in the system.
The acceptable threshold on ratios for peaking users as eligible users is determined empirically

based on the characteristics of the available dataset. This allows us to distinguish between users
whose data is likely to be learned easily by an ANN and those whose data may be more difficult
to learn. By selecting users with higher-quality data, we can improve the overall performance and
accuracy of the ANN-based system.

72

TABLE 4.1: LSTM architectures suggested by RL agent for heterogeneous and homo-
geneous user data [104] ©2022 IEEE

user ID total visited BSs neuron/LSTM layer neuron/dense layer no. layers
59 110 16 150-40-110 3 layers
16 105 16 80-150-102 3 layers
10 49 16 150-49 2 layers
81 22 16 40-20 2 layers

4.6.1 Time Domain Signal Processing

According to our experiments, the complexity of each suggested NN architecture by an RL agent
is affected by the type of user movement. Users with large numbers of visited base stations (het-
erogeneous movement) and less periodic behavioral history have been suggested architectures
with deeper hidden layers. In contrast, users with a few numbers of visited base stations (homo-
geneous movement) and predictable movements got simpler architectures.

Table 4.1 exposes RL’s suggested LSTM NN architectures of 4 different users, from the cho-
sen 100 random users, with different mobility patterns including 2 random heterogeneous and 2
random homogeneous users, respectively. An observable trend is that as the number of visited
locations in a user’s history log increases, more complex and deeper ANNs are required to accu-
rately predict trajectories using RL techniques. This suggests that the increased complexity and
depth of ANNs are necessary to capture and learn the intricate patterns and dependencies present
in the trajectory data as the user’s history becomes more diverse and extensive.

Let us define |Tj| as the length of the trajectory Tj. For datasets containing mobility information
as the sequence of Base Station IDs to which each user connects, we define Dj as the number of
unique visited base stations that appear in the trajectory Tj. Figure 4.1 shows the user trajectory,
between points A and B in an area, defined as the sequence of visited base stations. As stated
in Section 4.2.1, in such a scenario, trajectory prediction aims to predict the next base station ID
which is a classification task. As is shown in Figure 4.1, we can count the number of unique
visited base stations to compute Dj in classification problems. In contrast, for datasets containing
mobility information as geographical GPS location coordinates, we define Dj as the number of
unique visited areas of the trajectory Tj. In this case, each location coordinate is mapped to an area
through spatial indexing. Figure 4.2 shows the user trajectory, between points A and B in an area,
defined as the sequence of GPS latitude-longitude coordinates. As stated in Section 4.2.2, in such a
scenario, the aim of trajectory prediction is to predict the next GPS coordinate which is a regression
task. In this case, we first divide the area into a grid and group multiple coordinates into smaller
areas, assigning each area a unique index. Then, we can calculate the number of distinct areas
visited and use this to compute Dj in regression problems. This approach facilitates the detection
of periodicity in the visited areas of datasets that contain numerical coordinates, as depicted in
Figure 4.2.

We define the time domain regularity ratio for the j-th user as ρt
j = |Tj|/Dj ∈ [1,+∞), which

is proportional to the user trajectory quality. We design such a trajectory quality metric after

4.6. Data Quality and Periodicity Estimation 73

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Frequency (Hz)

30

0

30

60

PS
D

(d
B/

Hz
)

FIGURE 4.11: Trajectory data signal in frequency domain.

observing that users who produce more data samples while visiting a limited number of locations
display more regular mobility patterns and reach higher prediction accuracy as shown in 5.5.

4.6.2 Frequency Domain Signal Processing

On the other hand, let us define Sj af the Signal-to-Noise (SNR) Ratio and Fj as the dominant Fre-
quency of the trajectory Tj in the frequency domain. we define the frequency domain regularity

ratio for the j-th user as ρ
f
j = Sj/Fj. The dominant frequency in a signal refers to the frequency

component with the highest amplitude in its power spectrum. If a signal is periodic, its power
spectrum will have discrete peaks at the harmonics of the fundamental frequency, and the dom-
inant frequency can correspond to the fundamental frequency of the periodic signal. Over the
course of experiments, we observed that users with relatively high dominant frequencies and
high signal SNR tended to exhibit strong oscillations in their sequential data and frequently vis-
ited multiple locations. This behavior made it easier for a neural network to detect periodic pat-
terns in their data. On the other hand, users with extremely low or high dominant frequencies
may have visited a wide range of locations or not moved significantly, resulting in non-periodic
behavior that was more difficult for the neural network to detect.

Similar to the time domain, the SNR and the number of data samples can be indicative of data
quality in the frequency domain. In addition, the dominant frequency and number of unique
visited base stations are related and similarly informative for showing the periodicity of user
movement. Users with relatively low (but not very low) numbers of unique visited locations
and relatively high (but not very high) periods of oscillation in their data exhibit a clear periodic
pattern that can be effectively predicted by neural networks.

74

Figure 4.11 shows a random mobile user’s trajectory signal data in the frequency domain from
the Orange dataset. To process such a signal we divide it into smaller portions to possibly extract
the periodicity, calculate its highest peak and dominant frequency, and the power of signal and
noise. Furthermore, we apply smooth algorithms to better interpret the signal.

4.7 Evaluation Methodology

In this study, we compare the performance of our four proposed trajectory predictors, named,
RC-TL, INTRAFORCE, FedForce, and GTP-Force, against several non-NN- and NN-based mobil-
ity prediction models. Our evaluation is conducted on both large-scale and small-scale scenarios,
using the Orange and ETH+UCY datasets, as presented in Section 4.4.1 and Section 4.4.2, respec-
tively. Following this, we will describe our system setup and the evaluation metrics used to assess
its performance.

4.7.1 Mobility Prediction Experimental Setup

We have utilized several Python open-source libraries to implement various machine learning,
neural network predictors, reinforcement learning processes, federated learning, and game theory
simulations. Specifically, Keras4, TensorFlow GPU, TensorFlow Federated, NetworkX, PyTorch,
Scikit-learn, Matplotlib, Seaborn, Numpy, Pandas, and Nashpy libraries were employed in our
implementation.

In this research, the predictors are trained and evaluated on a High-Performance Computing
Cluster at the University of Bern in Switzerland (HPC Cluster - UBELIX 5) on an eight-core ma-
chine of Intel(R) Xeon (R) E5-2630 v2 @ 2.60 GHz with 4 GB RAM process environment. The
UBELIX cluster presently comprises approximately 320 compute nodes, boasting roughly 12,000
CPU cores and 160 GPUs, amounting to nearly one million GPU cores. Our building models use
a single core (both CPU and GPU cores) for each user on UBELIX enabling parallel execution of
the predictor for multiple users. Note that the implementation does not depend on a specific set
of hardware but only needs robust software library configurations.

In Chapter 8, we model the average wireless channel throughput Bt between local mobile
clients and the server at each time slot t as a uniform distribution from 10 Mbit/s to 100 Mbit/s,
formally Bt = U ([10, 100]), ∀t ∈ N. We categorize the throughput values into three intervals: low
throughput, from 10 Mbit/s to 40 Mbit/s, medium throughput, from 40 Mbit/s to 70 Mbit/s, and
high throughput, from 70 Mbit/s to 100 Mbit/s.

4.7. Evaluation Methodology 75

TABLE 4.2: Mobility Management Simulation Parameters [104] ©2022 IEEE

Parameter Value
Number of UEs 20
Number of BSs 60
Macro Cell Transmission Power 46 dBm
UE Transmission Power 15 dBm
Propagation Loss Model Nakagami
Simulated Time 100 Seconds
Number of Simulations 33

TABLE 4.3: Service Migration Simulation Parameters [104] ©2022 IEEE

Parameter Value
Number of UEs 20
Number of Macro s 60
Macro Cell Transmission Power 46 dBm
User Device Transmission Power 15 dBm
Propagation Loss Model Nakagami
Simulated Time 100 seconds
Service Modeled Augmented Reality
Number of Edge Servers 60
Number of Simulations 33

4.7.2 Mobility Management Experimental Setup

Hanover Management

We implemented the Reinforcement Learning-based Handover for Edge Computing (RL-HEC)
algorithm in the NS-3.306 network simulator. RL-HEC was implemented on the LTE stack of the
simulator accordingly to the Orange Dataset scenario, where 33 simulations have been performed
using the parameters described in Table 4.2. In each simulation, the random seed of the simulator
was varied, and different users from the dataset were chosen to populate the scenario. Results are
shown with a confidence interval of 95%. Each user in the scenario is equipped with a UDP-based
application. Users move according to real-world traces, and each BS in the scenario is assigned
one device generating a constant bit rate traffic of 1 Mbps.

Service Migration

We implemented the Reinforcement Learning-based Service Migration (RL-SM) algorithm as well
in NS-3.30 network Simulator. Table 4.3 shows the main parameters used in the simulations and

4https://keras.io/
5https://docs.id.unibe.ch/ubelix
6https://nsnam.org

76

results are shown with a confidence interval of 95%. Users in the simulated scenario consume
a cloud-based application. For this work, we choose an Augmented Reality (AR) application
with the requirements as defined by Lau et al. [44]. This application was selected as it is one of
the emerging applications in intelligent MEC scenarios. It will benefit from the presence of ML
models at the edge. Its requirements are defined as low latency (generally agreed upon at 10 ms
maximum), high bandwidth, and moderate to high priority when compared with less demanding
applications. Simulations are conducted 33 times, with different random seeds and users set from
the dataset present in the scenario.

4.7.3 Mobility Prediction Evaluation Metrics

We define a set of metrics to evaluate the performance of our proposed mobility predictors com-
pared to other state-of-the-art predictors in both large- and small-scale mobility scenarios.

Large Scale Scenario

To measure the model performance for the classification task of predicting future base station IDs
for each user, we define accuracy as the ratio between correctly predicted next locations and the
total number of predictions made by the model. Formulating the large-scale scenario through
classification instead of regression (predicting the next ID and not the exact location coordinates)
is due to the unavailability of the base stations’ coordinates in the large-scale Orange dataset.

To measure the computational performance, we measure build time, train time, model size, and
computational complexity and resource consumption defined as the time to build and train the per-
sonalized model by RL agent, the average time to train the RL-designed model by all systems
users, number of RL-designed NN model’s training parameters, and the total amount of compu-
tational resources spent in developing individual-social, centralized-distributed, or cooperative-
non-cooperative trajectory prediction models.

To measure the communication performance, we evaluate transmission time and communication
overhead defined as the transmission time of an RL-designed mobility predictor model to the server
and the total communication volume to migrate the trained global model from distributed FL
participants to users who were not allowed to participate in training.

Small Scale Scenario

To measure the model’s performance in the regression task of predicting future location coordi-
nates for each user, we define the displacement error as the average squared Euclidean distance (E)
between the predicted points of a user’s trajectory (x̂t

u, ŷt
u) and the true locations (xt

u, yt
u) over a

prediction window of Tpred future time stamps, given the user’s history of visited locations over an
observation window of Tobs past time stamps as:

E(u) =
1

Tpred

Tobs+Tpred+1

∑
t=Tobs+1

(x̂t
u − xt

u)
2 + (ŷt

u − yt
u)

2. (4.1)

4.8. Chapter Conclusions 77

We evaluate the model’s trajectory prediction performance using the Average Displacement Er-
ror (or Mean Square Error) as:

ADE =
1
n

n

∑
u=1

E(u), (4.2)

which is averaged over the n users.

4.7.4 Mobility Management Evaluation Metrics

We define a set of metrics to evaluate the performance of our proposed mobility prediction-based
handover management and service migration algorithms compared to other state-of-the-art simi-
lar works.

Handover Management

To measure the proposed proactive handover management algorithm’s performance, we define
the number of ping-pong handovers and the average throughput.

Ping-pong handovers refer to the count of how many times a mobile device switches back
and forth between two different base stations or access points within a certain period, which can
indicate potential problems with network coverage, signal strength, or interference. High ping-
pong handovers can lead to a degraded user experience, as the device may experience intermittent
connectivity or decreased network performance.

Average throughput measures the average amount of data that can be transmitted over a net-
work in a given time period. It is used to evaluate the quality of the connection between a mobile
device and a base station or access point. Higher average throughput values indicate a faster and
more reliable connection, while lower values may indicate network congestion or other issues that
can affect the user experience.

Service Migration

To measure the proposed anticipatory service migration algorithm’s performance, we define la-
tency, number of migration attempts, and number of migration failures.

Latency is the time delay between when a user requests a service and when the service is
delivered. For the proposed anticipatory service migration algorithm, latency refers to the time it
takes for the migrated service to become available to the user.

The number of migration attempts represents how many times a service migration is attempted
from one location to another. Each migration attempt consumes network resources and can po-
tentially cause service disruption or increased latency.

The number of migration failures refers to instances where a service migration attempt is un-
successful, which can occur due to network congestion, connectivity issues, or other technical
problems. Migration failures can lead to service disruptions, increased latency, or other nega-
tive impacts on the user experience. Therefore, it is essential to monitor migration failures and
minimize their occurrence.

78

4.8 Chapter Conclusions

In conclusion, this chapter has provided a strong foundation for the development of accurate and
reliable trajectory predictors by offering a comprehensive understanding of mobility and trajec-
tory prediction, including the creation of a mobility scenario to simulate the TP process, a discus-
sion of mobility datasets, and techniques employed for data preprocessing and data periodicity
estimation. Additionally, the chapter has introduced the evaluation metrics used to assess the per-
formance of mobility predictors and mobility-relying wireless services. Building on this knowl-
edge, the upcoming chapters will focus on the development of our four novel trajectory predictors
and their performance evaluation, which are critical for improving the performance and reliability
of wireless network services such as handover management and service migration.

79

Chapter 5

Reliable and Computationally-Light Tra-
jectory Prediction for Wireless Network
Mobility Management

5.1 Chapter Introduction

In modern wireless networks, ensuring low latency communications and high QoS is crucial for
delivering a satisfactory user experience. The handover procedure in mobility management plays
a critical role in determining the performance of services consumed by mobile users. Further-
more, an efficient service migration scheme performed ahead of time can ensure service continuity
for end-users. However, current mobility management approaches have limitations, either being
reactive methods or naive predictive methods. To overcome these limitations, next-generation
networks require alternative mobility management techniques that leverage robust learning and
predictive behavior analysis of mobile users [65]. In this context, developing personalized neural
networks using NAS methods for mobility and trajectory prediction based on individual users’
movement features is critical. However, NAS mechanisms face challenges due to expensive com-
putational costs for optimization and search. Therefore, exploring alternative optimization ap-
proaches is of great importance. In this chapter, we aim to address research questions stated in
Section 1.2.1 as follows.

"RQ 1.1: How can we achieve a higher level of computationally-efficiency and reliability in current
NAS techniques for trajectory prediction, while maintaining a desirable balance between the accuracy of
neural networks and their convergence rate?".

"RQ 1.2: How can we enable a resilient proactive handover mechanism that ensures high QoS and
uninterrupted service continuity for network applications, such as service migration, by leveraging high-
performance neural networks?".

Our objective is to improve the performance of mobility management techniques by devel-
oping reliable and convergent mobility predictors. In pursuit of these goals, we introduce three

80

novel algorithms: the Reinforcement Learning-designed LSTM neural network (RL-LSTM) mobil-
ity predictor, the Reinforcement Learning-based Handover for Edge Computing (RL-HEC), and
the Reinforcement Learning-based Service Migration (RL-SM) [104]1.

In response to RQ 1.1, neural architecture search plays a crucial role in designing neural net-
work architectures that are tailored to specific user data. However, existing NAS methods, such
as Auto-ML, often suffer from computational inefficiency as they rely on random or grid search
methods to explore the performance of each neural architecture. Therefore, our objective is to find
a more computationally-efficient NAS solution that improves the accuracy of neural network ar-
chitectures while reducing the computational resources required for architecture search. Our first
contribution lies in proposing RL-LSTM, a reinforcement learning-based deep learning method
that designs a suitable LSTM architecture tailored to the unique mobility features of each user.
Unlike grid search or Auto-ML models, RL-LSTM trains for a few epochs during each iteration,
efficiently narrowing down the search space.

Moving on to RQ 1.2, the research problem to solve is how to address the integration of
RL-LSTM into the handover process to facilitate proactive handover management, which en-
sures high QoS and uninterrupted service continuity for network applications, including service
migration. Thus, our second contribution is the introduction of RL-HEC and RL-SM, proac-
tive handover management and service migration approaches, respectively. These leverage the
high-performance RL-LSTM mobility predictor to provide uninterrupted service for end-users.
Through multiple experiments, we observe that the combination of mobility predictive analysis
and proactive management strategies in our proposed techniques leads to a significant enhance-
ment in the overall user experience in wireless networks.

The remaining sections of this chapter are organized as follows: In Section 5.2, we introduce
our RL-LSTM approach for designing personalized trajectory predictors in urban environments.
Section 5.3 presents the proposed proactive handover management RL-HEC, while Section 5.4
focuses on the RL-SM approach for service migration. Experimental evaluations and performance
assessments are provided in Section Section 5.5. Finally, Section Section 5.6 concludes the chapter.

5.2 RL-LSTM Trajectory Prediction System Architecture

5.2.1 Reinforcement Learning for LSTM Architecture Design

As mentioned earlier in Section 2.4.1 and depicted in Figure 2.1, the architecture of the LSTM
comprises multiple layers with various hyperparameters, including a number of hidden layers,
LSTM layers, dense layers, dropout layers, and the number of memory cells or neurons per layer,
dropout ratio, and the order of layers. In our LSTM-based mobility predictor design, we con-
sider multiple layers of basic LSTM cell units to form a stacked LSTM network. The LSTM layers
themselves consist of a chain of memory cells. These hyperparameters play a crucial role in the
model’s performance and its ability to capture spatio-temporal dependencies in mobility data. Se-
lecting the appropriate hyperparameters is critical to achieving the desired level of accuracy and
efficiency in the LSTM.

1Partially reproduced in this chapter – Copyright ©2011 IEEE.

5.2. RL-LSTM Trajectory Prediction System Architecture 81

To optimize LSTM hyperparameters and improve prediction accuracy while reducing training
time, we employ an RL agent to search for high-performance networks tailored to the mobility
characteristics of user data. We use value-based RL to automate and personalize the design of
LSTM architectures for the task of trajectory forecasting.

As the performance of RL is stated in Section 2.6, we define a search space for the RL agent
to explore. The search space consists of multiple LSTM NNs with different hyperparameter char-
acteristics. The RL agent selects the optimal architecture from a finite and fixed space of admis-
sible architectures, which we call the state space. The state space is a subset of all the possible
combinations of values that the LSTM hyperparameters can assume. Specifically, the state-space
dimensions are:

• The number of layers that make up the LSTM

• The type of each layer among LSTM, dense, and dropout layers

• The number of memory cells per each LSTM layer

• The type of activation function

• The number of perceptrons in each dense layer

• The dropout ratio of each dropout layer.

The RL-LSTM state space can become considerably large depending on the values of the men-
tioned parameters, making it impossible to test the performance of every LSTM architecture in the
space through grid searching or even random searching. RL provides a method to search for the
optimal architecture, avoiding an exhaustive grid search, through exploration and exploitation.
As already stated, "exploration" and "exploitation" are two phases in RL. During the exploration
phase, the RL agent tries out different actions to learn the rewards associated with them. In the
exploitation phase, the agent exploits the knowledge it has acquired during the exploration phase
to make optimal decisions. The goal is to balance exploration and exploitation to find the best
strategy.

As shown in Figure 2.4, at the beginning of an episode, the agent takes an action a from a subset
A(s) of the action space, where A(s) depends on the currently observed state s. Every action adds
one layer to the current LSTM and fixes the added layer’s type and parameter values, leading the
environment (i.e., the LSTM) into a new admissible state (i.e., architecture). In order to guarantee
the arrival state is admissible, the new layer’s type is constrained by a set of rules:

• First and last LSTM ’s layers must be a LSTM and a dense layer, respectively

• The last dense layer’s number of neurons must be compatible with the number of unique
classes in the visited location history

• LSTM layers can be followed only by other LSTM and dense layers

• Dense layers can be followed by other LSTM, dense, and dropout layers

82

• Dropout layers can be followed only by dense layers.

After the agent has taken action, the corresponding reward is unknown and must be computed
by training the resulting LSTM with the cluster’s representative users’ data for a limited amount
of epochs (exploration training). The model’s prediction accuracy on the mobility dataset is the
reward associated with taking that action in that state. The RL agent uses the Q-learning algorithm
with an ε-greedy strategy to learn the policy for selecting actions and stops searching the state space
for better CNN architectures when it has reached either a target accuracy or a maximum number of
episodes. The reward for taking each action in each state is computed using the Bellman equation,
presented in Equation 2.18.

RL-LSTM sets ε = 1 at the beginning of the exploration phase as the probability of taking a
random action. When the agent has taken a number of actions equal to the maximum number of
layers allowed by the state space, it starts over from a state with a single layer and linearly de-
creases ε. The process is repeated until ε reaches a minimum value ε0 to complete the exploitation
phase. In this way, the agent prefers randomly exploring the space during the first phase of the
learning to identify promising architectures and gradually changes its policy to select actions that
guarantee higher reward to identify higher-performing architectures.

Finally, RL-LSTM selects the LSTM architecture with the highest accuracy among all those ex-
plored by the RL agent and trains it, allowing a much larger number of epochs compared to the
exploration epochs. We note that, during the search (exploration) phase, the RL algorithm gener-
ates and evaluates a large number of candidate LSTM architectures, and for each architecture, it
trains the network for a small number of epochs to get a quick estimate of its performance. Once
the search phase is complete and the best architecture is identified, the network is then trained for
a longer period of time, typically hundreds of epochs, to achieve the best possible performance on
the task at hand.

5.2.2 Transfer Learning for Expedition of the RL Process

The RL agent suggests possible architectures from the search space to the LSTM predictor to be
explored. Although the way RL explores the search space is remarkably faster than grid searching,
yet it is very time-consuming. Therefore, in RL scheme, it is not efficient to train each proposed
NN architecture from scratch. Therefore, in this section, we present a transfer learning framework,
which offers a way to transfer knowledge from the previously trained LSTM predictor to a newly
suggested LSTM predictor with partially similar layers in order to speed up the searching process.

Transfer learning approaches can be applied both between different neural networks and within
a single neural network from one layer to another. Transfer learning aims to leverage knowledge
gained from one task or domain and apply it to another related task or domain, thereby improving
the performance and efficiency of the learning process.

In this way, at each iteration, the newly suggested LSTM can pass the learning phase faster.
In our RL-based NAS method, the process of adding a layer at each episode to form the new ar-
chitecture follows a sequential model. When consecutive episodes result in LSTM architectures
with similarities in terms of hidden layers, neurons per layer, and connectivity, we apply transfer
learning to leverage this knowledge transfer. TL involves transferring the knowledge of similar
layers from the LSTM architecture at iteration t − 1 to the LSTM architecture at iteration t. The

5.3. RL-HEC Handover Management System Architecture 83

knowledge here refers to the traiend weights of the LSTM NN architecture that is saved and trans-
ferred to the other partially-similar LSTM to be initialized with. By doing so, we can capitalize on
the learned representations and architectural choices from previous iterations, enhancing the effi-
ciency and performance of the NAS process.

Let the LSTM ardhitecture at episode t − 1 contain n layers denoted as: L = {l1, l2, . . . , ln},
where the layers l1 and ln express the input and output layers of the NN. We assume that the RL
controller proposes a new architecture at episode t, which is exactly the same as the previous one,
but contains an extra new layer l′i . This layer would be implemented between layers with index
n − 1 and index n (output layer) as follows: L̃ = {l̃1, l̃2, . . . , l̃n−1, l′i , l̃n}. We define the function
υ(lj) ∈ N> 0 that represents the number of hidden neurons of each layer lj, so that 1 ≤ j ≤ n.
Further, we define a weight function ω(lj) ∈ Rn×m, where n, m ∈ N> 0, in order to build the
weight matrix corresponding to NN. We assume that the teacher and student LSTMs have the
same number of neurons in each of the layers if: L

⋂
L̃ := {li | υ(li) = υ(l̃i)} for i = 1, . . . , n− 1.

Thus, we can transfer knowledge from li to l̃i for i = 1, . . . , n− 1. Transferring knowledge means
carrying and copying the first n− 1 layers’ neurons weights from the teacher to the student LSTM
as: ω(l̃i) := ω(li), ∀i = 1, . . . , n− 1.

5.3 RL-HEC Handover Management System Architecture

This section details our handover algorithm called RL-HEC, a service-aware handover algorithm
based on a DL mobility prediction. RL-HEC takes advantage of the NAS-enabled high-performance
individual trajectory prediction model trained for users to avoid ping-pong handovers and max-
imize service continuity. The proposed scheme considers the services being consumed by end-
users and connection information to avoid link failures and service disruptions caused by the
handover. This is achieved by assuming knowledge of the service instances’ locations being con-
sumed by users, since handover executions may require rerouting of such services, compromising
service requirements. The proposed scheme performs better than state-of-the-art algorithms.

RL-HEC takes as inputs the proposed RL-LSTM mobility prediction models of each user and
the location of the services in terms of where the session is located in the network topology. We
define a ping-pong handover as disconnection and reconnection to a certain Base Station (BS)
within an interval of 4 seconds [83]. The prediction model for a given user can forecast with
significant accuracy the next connection of a user and thus can be used to predict the occurrences
of ping-pong handover and also service migration patterns.

We divide the handover procedure into three phases: (i) measurement, (ii) decision, and (iii)
execution. In traditional signal-based handovers, the measurement phase comprises the user de-
vices reporting the signal from all the neighboring BSs they can detect. However, this a purely
reactive approach i.e. when the user moves from one coverage area to another, they switch BSs
accordingly.

At the borders of base stations’ coverage areas, signal fluctuations often occur [1]. This causes
unnecessary handovers, such as ping-pong handovers, which are characterized by consecutive
disconnections and re-connections within a group of two or more BSs. RL-HEC takes advantage

84

of the future connections predicted by the individual LSTM models to employ a reliable ping-
pong avoidance mechanism capable of reducing ping-pong handovers by as much to almost zero,
as shown in Section 5.5.3.

5.3.1 Measurement Phase

The measurement phase of the algorithm is responsible for receiving the necessary inputs for
the execution. In the case of RL-HEC, these inputs are the mobility prediction model for the
respective user being considered, the location of the services being consumed by the user, and
signal measurements. RL-HEC must then assess the quality of the prediction model received, as a
low accuracy model can impact the overall performance of the network. We assume that trained
models are located within a centralized entity and can be accessed by BSs. Here we must define
a threshold Th as model accuracy, below which the model is not used in the algorithm. If the
accuracy is above the threshold, the algorithm uses the trained model for the user. For practical
purposes, we use the value of 0.8 as the threshold, as it means that in the vast majority of cases
the prediction will be valid, and in the few cases, where it might be wrong, the other parameters
of the decision can offer more reliability for the handover decision.

5.3.2 Decision Phase

The decision phase in RL-HEC happens within the handover Manager, which is located in the
user’s serving BS. The Handover Manager is a distributed entity running in every BS of the net-
work. Therefore, each BS performs the handover decisions for its users. The algorithm’s decision
phase can occur independently for each user, as it is a distributed process.

Let us consider the case for a single user with a mobility prediction model associated with
it. The handover manager assesses the next handover predicted for the given user. In order to
avoid ping-pong handover executions, the handover manager checks if the handover in question
is a ping-pong handover. After a series of ping-pong handovers, mobile users will usually have a
more stable connection in a given BS’s coverage area, thus, we must detect in which BS the user
will remain connected. Then, before the handover is actually executed, the handover algorithm
must notify the RL-SM migration algorithm about the upcoming handover, so that any necessary
service migrations can be performed in advance. This is possible, because handovers usually
occur within overlapping coverage areas of two or more BSs. Thus, the UE’s previous BS may still
be available for a short period of time.

5.3.3 Execution Phase

We consider that a sudden handover execution can be a disruptive event for user applications,
as the changes in routes can increase the end-to-end latency between the service’s location and
the end-users. For this reason, in the execution of RL-HEC, the algorithm waits for any pending
service migrations to be finished, thus, improving service continuity. However, there are cases in
which a disconnection occurs before pending migration is finished. In such case, the handover
must be executed as soon as possible, and a discontinuity for the service being consumed may be
inevitable.

5.3. RL-HEC Handover Management System Architecture 85

Algorithm 1: RL-HEC Algorithm [104] ©2022 IEEE
Data: Prediction depth

1 for each connected UE do
2 if UE has prediction model then
3 if Prediction accuracy is above threshold then
4 Perform mobility prediction;
5 if Handover is expected then
6 if Next handoveris a ping-pong HO then
7 Define best BS as BS in which the client will stay the longest;

8 else
9 Define the best BS as the predicted BS

10 Notify migration algorithm;
11 while handovernot executed do
12 Wait for service migration to finish;
13 if Disconnection is imminent then
14 Perform handover to best BS;
15 Return handover status;

16 Perform handover to best BS;
17 Return handover status;

For users with a poor prediction model or without a RL-LSTM prediction model at all, a normal
signal-based handover decision is made since these users cannot benefit from mobility prediction.
However, the performance of the ping-pong avoidance system depends heavily on the accuracy
of the models. For now, we assume that for each model, the accuracy at the time of the prediction
is known and then compared with the threshold set. The complete function of the algorithm
is given in detail by Algorithm 1. In this algorithm, RL-HEC checks for each connected User
Equipment (UE), if a prediction model is available and, if so, assesses the prediction accuracy
against a predetermined threshold. If the accuracy exceeds the threshold, mobility prediction is
performed. The algorithm then determines if a handover is expected based on the predictions,
selecting the best base station depending on the scenario. If it is a ping-pong handover, the best
base station is defined as the one where the client is expected to stay the longest. Otherwise,
the predicted base station is considered the best. The migration algorithm is notified, and the
algorithm waits for ongoing service migration to complete. If disconnection becomes imminent,
the handover to the best BS is executed. The handover status is returned, ensuring a seamless
transition for the UE.

We consider that not all user models have the minimum accuracy in performing a good han-
dover decision based on the predictions, so we define the existence of a threshold accuracy for
each UE. In the algorithm, the case in which a user has a sufficiently accurate model is shown. The
ping-pong handover avoidance mechanism can be accomplished by extrapolating the mobility

86

BS 3

BS 1

BS 2

Fog Server Pool

Edge
Server

Edge
Server

Edge
Server

Fog
Server

Fog
Server

Fog
Server

Fog
Server

FIGURE 5.1: Multi MEC RL-SM Scenario [104] ©2022 IEEE.

prediction to the desired depth and checking if the predicted handovers are ping-pong handovers.
After a handover has been predicted, the best BS is selected as the user’s stable connection, the one
in which the UE converges after the ping-pong handovers. After that, a handover is scheduled.

5.4 RL-SM Service Migration System Architecture

This section discusses our proposed service migration strategy, socalled RL-SM, driven by our
NAS-enabled mobility predictor. RL-SM relies on individual user RL-LSTM mobility prediction to
perform proactive service migrations and guarantee service continuity. Furthermore, we consider
the likelihood that UE will connect to a certain BS in the future to infer the best edge server to
serve the user.

We assume an edge-enabled network such as shown in Figure 5.1. We see that users access
the network through BSs with different coverage areas and follow some mobility patterns. Such
BSs are directly connected to edge servers that are capable of providing low-latency computing to
the users affiliated. However, edge servers are limited in computing power and cannot support
many users at the same time. Thus, edge servers are placed a level above in the hierarchy and can
be accessed with decreased latency compared to traditional cloud data-centers. We consider that
computing nodes can be accessed close to the end-users, in what we call the Fog Server Pool. We
assume that prediction models for users are pre-trained in the Fog Server Pool and are accessible
to all other servers in the network after training.

5.4. RL-SM Service Migration System Architecture 87

RL-SM considers an edge-enabled network scenario, where users can consume services run-
ning on edge servers. As shown in Figure 5.1, users move and perform handover operations, the
topology of the network may change, and the routes from user to service may be sub-optimal.
These services are orchestrated and allocated to an appropriate server. Therefore, we consider
an orchestrator entity with knowledge of the network deployment, servers’ QoS and resources,
as well as users’ historical and future mobility information. In this work, we assume a service-
agnostic approach in which services are encapsulated in VMs or containers, according to the
EdgeIoT paradigm [80]. In such scenarios, the conditions of the back-haul and access networks
are highly dynamic. User mobility and BS connection fluctuations with edge servers and network
resources may induce errors and decrease QoS for end-users. For this reason, the network must
monitor user QoS levels and perform the necessary operations, such as migration. This requires
continuous re-evaluation of the best edge server to ensure service continuity and perform the
necessary migration operations.

Service migrations can be triggered by user mobility or when the user’s current server is no
longer capable of maintaining appropriate QoS levels for them. In such cases, a migration proce-
dure is started on the server by a controller based on the user’s future location and the server’s
QoS performance. To define the servers’ QoS performance, we must consider the type of applica-
tion being considered in terms of QoS requirements. The server lists the delivered QoS statistics it
achieved for applications with the same requirements and feeds these values into an Exponential
Moving Average component, which attributes more weight to recent measurements to reflect the
recent network conditions according to Equation 5.1, where Qt is the QoS average at a time t, and
Qs is defined as the QoS score achieved by the server s at the time of the measurement. The num-
ber of the measurement is given by variable n, and α ∈ [0, 1] is a decay factor. We define the QoS
parameter Qs for the server as whether it is able to provide the applications it is serving with the
necessary requirements. Server QoS Qs is defined as the fraction of applications running in the
server provided with their minimum requirements.

Qt =

{
Qs, if n = 1
αQs + (1− α)Qt−1, if n > 1

(5.1)

The algorithm functions as follows: considering an UE u in the set of UEs U, u may be as-
sociated with a mobility prediction model that can be applied to find when a handover will be
triggered for a given UE. This is achieved in conjunction with the handover algorithm operat-
ing in the network, which must report imminent handovers to the service migration framework.
Each time the UE u moves, there is the possibility that a handover will be triggered. Thus, the
orchestrator predicts the user’s next handovers. The prediction is a forward propagation task.
Therefore, it is not so computationally expensive and may be executed regularly. The prediction
outputs the user’s next BS. Given this information, RL-SM performs a lookup to find the edge
servers associated with u’s next BS.

We divide the service migration procedure into two phases: (i) monitoring and (ii) assignment.

88

5.4.1 RL-SM Monitoring

The first decision of RL-SM is whether a migration is necessary or not. Migration may be necessary
because of mobility, as the service becomes more distant from the server, and the latency increases
or the servers can no longer support the application QoS requirements. The monitoring collects the
user’s predicted position in a given time window and checks whether a user is likely to connect to
another BS. If the current server can not meet QoS requirements, a migration process is triggered.

Algorithm 2 presents the RL-SM monitoring process. This algorithm focuses on making migra-
tion decisions for users in a network based on mobility predictions. It operates in a loop while the
user remains connected. Firstly, mobility prediction is performed to anticipate the user’s move-
ment. The algorithm then estimates when handovers are likely to occur based on the predicted
user trajectory. If a handover is expected in the near future, a migration decision is made. After the
migration decision, the algorithm measures the quality of QoS experienced by the user. If the QoS
falls below a predefined threshold, another migration decision is executed. This iterative process
ensures that migration decisions are made based on mobility predictions and takes into account
the QoS requirements of the user.

Algorithm 2: RL-SM Monitor [104] ©2022 IEEE
input : Mobility prediction model for each user in the network.
output: Migration decision for each user.

1 while user is connected do
2 Perform mobility prediction;
3 Estimate when handovers will be triggered based on the predicted user trajectory;
4 if handover is eminent then
5 Perform migration decision;

6 Measure QoS;
7 if QoS is below the threshold then
8 Perform migration decision;

5.4.2 RL-SM Assignment

The essential characteristic of the assignment is whether the target server can provide the latency
and computation requirements and if so, the migration can be made promptly. RL-SM assumes
that each edge server can assess the bandwidth of the link to every other edge server and uses this
available bandwidth between the edge servers to estimate the time it would take to migrate the
UE session to candidate edge servers. The bandwidth available between two servers is probed pe-
riodically, and the values are used to estimate the time to migrate a service between such servers.
RL-SM has relatively low complexity. The algorithm’s complexity is proportional to the product
of the number of UEs and the number of edge servers. As soon as RL-SM detects that a migration
is necessary, the algorithm must evaluate all available servers in the user’s future location about
the server’s resources and the time to migrate the service to that specific server.

5.4. RL-SM Service Migration System Architecture 89

Algorithm 3 shows RL-SM Assignment of an edge server to which an UE session shall be mi-
grated.This algorithm’s objective is to determine the best server for a user and perform migration
operations based on certain criteria. The input consists of the user not being provided with the
minimum requirements and a list of available servers. The algorithm aims to identify the ID of
the best server for the user and conduct the necessary migration operations. It starts by listing the
available servers and removing those that do not meet the resource requirements for the user’s
application. For each remaining available edge server, it retrieves the QoS for that server. The
algorithm then enters a loop, continuously evaluating each server. It identifies the closest server
to the user’s future location, estimates the migration time, and checks if the migration can be com-
pleted before the user’s arrival while ensuring that the server’s QoS is above a specified threshold.
If these conditions are met, the algorithm chooses the identified server as the target. In cases where
the QoS of the current connected server falls below the threshold but the identified server’s QoS
exceeds it, the algorithm also selects the identified server as the target. If none of these conditions
are met, the server is removed from the list. Finally, the algorithm performs the necessary migra-
tion operations. The overall performance of the algorithm lies in selecting the best server for the
user based on proximity, estimated migration time, and QoS requirements, ultimately facilitating
an optimal user experience.

Algorithm 3: RL-SM Assignment [104] ©2022 IEEE
input : User without minimum requirements, list of available servers.
output: ID of the best server for the user, migration operations.
Data: Minimum requirements of the service

1 List available servers;
2 Remove servers lacking resources for the UE application from list;
3 for Each available edge server do
4 Get QoS for the server;

5 while Server has not been chosen do
6 Get the closest server to the UE’s future location;
7 Estimate migration time;
8 if Migration can be done before the UE’s arrival and Server QoS is above threshold then
9 Choose this server as target;

10 else if Current connected server QoS is below threshold and Server QoS is above threshold
then

11 Choose this server as target;

12 else
13 Remove this server from list;

14 Perform migration;

The protocol for the execution of the migration algorithm is described in more detail in terms
of the sequence diagram shown in Figure 5.2. We can see the mobility predictor as an entity that
receives the current connected BS for a given user and reports to the user and their current BS.

90

Mobile User Source BS-Edge Target BS-Edge Predictor EPC

data

Edge Application
 data

Measurement
 Report

Measurement
 Report

Next BS PredictionNext BS. Prediction

Migration Decision

Migration Request

Migration Request ACk

Resouce allocation

Container/VM Data

Handover Procedure

Application Context

Resource Release

Connection to new edge location.

FIGURE 5.2: Sequence Diagram for Migration Procedure [104] ©2022 IEEE.

After the handover and a migration decision have been executed, the source edge server and the
target edge server must negotiate the migration procedure in terms of resource allocation, the

5.5. Evaluations 91

transfer of the VM or container with the service and session information. After such transfer has
been completed, the memory pages and application context that have changed since the start of
the process are sent to the target edge server. In the final stage, the resources in the source server
can be released and a ready to serve another UE, as the migrated user connects to the new server
and the process is completed.

5.5 Evaluations

We evaluate the impact of location awareness through our proposed RL-LSTM mobility predictor
on handover management and service migration performance in terms of QoS and QoE metrics,
number of ping pong handovers, throughput, latency, number of migration attempts, and number
of migration failures.

5.5.1 Experimental Details

In this thesis, we convert the time-series problem into a supervised learning problem, defining
the input as multivariant one-dimensional arrays (i.e., user timestamps, trajectories, and cyclic
features) and the output as the single sequence of visited base stations. The process through
which an LSTM learns the associations between input and output is called training, and could
be time-consuming. For this reason, to speed up the training process, we impose a limit on the
number of training epochs and employ an early stopping training method to allow the training
to end sooner if no significant accuracy improvement is made. In particular, we define ∆ as the
accuracy improvement threshold and the patience as the number of epochs that can elapse without
an accuracy improvement higher than the threshold.

We set the batch size to 200 and the initial learning rate to 0.002. The Q-learning rate α and
discount factor γ are set to 0.01 and 1, respectively, to schedule the portion of immediate reward
concerning the distant future reward of RL. We do not treat the Q-learning rate and discount factor
as hyperparameters since the goal is to optimize the neural architecture.

During the RL exploration phase, we use 10-fold cross-validation to train and validate each
user’s data on suggested NN architectures for a few epochs.

Moreover, we split the data into a training set of 70% and a testing (or evaluation) set of 30%.
10-fold cross-validation is a technique used for training and validating a model on the training set
of the data. Cross-validation allows all observations in the dataset to be trained and validated,
and prevents overfitting. In this technique, the dataset is divided into ten equal parts or "folds".
The model is then trained on nine of the folds and validated on the remaining fold. This process
is repeated ten times, with each fold used as the validation set exactly once. The results of each
validation are averaged to obtain a more reliable estimate of the model’s performance. During
this process, the model is trained on the training data (nine folds) and validated on the validation
data (one fold).

The Q-learning agent’s design process with epsilon-greedy policy involves choosing the prob-
ability of epsilon ϵ, Q-learning rate α, and discount factor γ corresponding to Bellman’s Equation.
We set ϵ = 1.0 in the initial episodes to ensure agent exploration and gradually reduce ϵ to 0.01 to
move towards the exploitation phase. α ∈ (0, 1] determines the weight given to new information

92

TL-RL-LSTM GS-LSTM RF J480.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

0.697 0.665 0.626
0.578

FIGURE 5.3: Average prediction accuracy of 100 users [104] ©2022 IEEE.

over old information, and γ ∈ (0, 1] determines the importance given to immediate rewards over
future rewards.

During each iteration t ∈ 0, 1, 2, . . . , 150, the Q-learning agent in state s ∈ S takes an action
a ⊆ A(s) and moves to the next state s′ ∈ S. In each iteration, the agent generates a reward rt ∈ R

corresponding to the action-state, and the Q-table is updated. The state-action values are updated
after each episode.

After the RL exploitation phase, we train the discovered LSTM for 200 epochs to evaluate the
performance of the chosen architecture. We impose restrictions on the learning agent’s actions
in the action space. For instance, we terminate the predefined number of iterations earlier if the
suggested LSTM achieves satisfactory prediction accuracy (e.g., 80%). Otherwise, we explore the
entire defined search space. We also require the learning agent to have a dropout layer after each
hidden layer to prevent overfitting, and we define a range of hyperparameters (e.g., number of
hidden layers, number of neurons in each hidden layer, and dropout ratio) for the agent to try.

The LSTM search space to be searched by the RL agent is defined as the number of hidden
layers as an integer value in an interval of (0, 5). The number of neurons in each hidden layer
might be chosen from a discrete list of {20, 40, 60, 80, 100, 150}. Candidate values for dropout ratio
fall down in the set of {0.1, 0.3, 0.5, 0.7, 0.9}. Besides, we use Rectified Linear Unit (ReLU) as non-
linearity functions [62] of each NN dense layer.

5.5.2 RL-LSTM Evaluation Results

We evaluate the performance of the proposed RL-LSTM algorithm in this chapter. To illustrate the
advantages of our proposed predictor, we compare the RL-LSTM mobility predictor against state-
of-the-art prediction techniques, namely: J48 predictor with non-parametric supervised learning
method for regression with decision trees, regressive RF predictor that has a random subset of
features from the training data points to create multiple decision trees, and GS-LSTM neural net-
work. J48 and RF are non-NN predictors and thus, do not require neural architecture search
schemes. RL-LSTM and GS-LSTM are two automated NN-based predictors that search for the
best neural architecture before training the individual dataset. Unlike RL, which tries to find the
best architecture while minimizing the search space, grid search is a computationally expensive

5.5. Evaluations 93

and slow algorithm since it fully trains all possible architecture combinations and then selects the
best available choice. However, RL is by nature an optimized architecture search method with
respect to naive search approaches, yet it requires a remarkable training time to discover the best
neural architecture. Thus, we implement a TL approach on top of the RL algorithm, proposing
TL-RL-LSTM predictor, to further accelerate and optimize the searching process.

FIGURE 5.4: Average prediction accuracy of 100 users with/without TL [104] ©2022
IEEE.

Figure 5.3 shows the average accuracy achieved by each of the compared algorithms on the
tested dataset. We can see that TL-RL-LSTM achieved 69.7% accuracy, 3.2% better than GS-LSTM
in average. This is because even though GS-LSTM is also able to find the optimal architecture,
it takes a very long time to converge, so we define a smaller search space. Hence, there is no
guarantee that the optimal architectures are included in the search space of GS-LSTM. Further,
TL-RL-LSTM also achieved 7.1% and 11.9% superior performance than the non-NN methods: RF
and J48. This is due to the fact that deep learning-based methods can better capture the complex
spatio-temporal dependencies.

Figure 5.4 compares the performance of our suggested RL-LSTM predictor with and without
TL. It can be observed that transferring the knowledge of a pre-trained LSTM layer (teacher-LSTM)
to a newly-suggested LSTM layer (student-LSTM) helps the RL agent to converge sooner. So that,
TL-RL-LSTM is stabilized, on average, at about the 75th episode (out of 100 episodes), while RL-
LSTM starts to stabilize around 90th episode. It can also be observed that RL-LSTM with TL
has less bouncing in prediction accuracy during the exploration time than the RL-LSTM without
TL. This indicates the benefit of transferring knowledge in accelerating the search process and
narrowing down the search space toward more optimal actions.

Transfer learning in neural architecture search involves the utilization of pre-trained networks
to accelerate the training process. Specifically, by transferring L − 1 similar layers from a pre-
trained network to another network that shares L− 1 similar layers, significant speed-up in train-
ing can be achieved. This technique not only enhances efficiency but also allows for the effective
utilization of pre-existing resources, ultimately leading to improved performance and accelerated
training in neural architecture search.

94

1-6 7-12 13-18 19-24
Daily number of BSs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

TL-RL-LSTM
GS-LSTM

RF
J48

FIGURE 5.5: Different predictors’ achieved accuracy grouped by the average number
of unique daily visited BSs per User [104] ©2022 IEEE.

Over the course of the experiments, it has been observed that the accuracy achieved by each
user depends on the number of visited base stations by each user. Users connecting to relatively
fewer base stations tend to have more accurate prediction models. Figure 5.5 displays the ac-
curacy of various predictors, organized by user mobilities. This visual representation provides
compelling evidence in favor of the reliability of our proposed regularity ratio metric, as outlined
in Section 4.6. Specifically, Figure 5.5 showcases the dependence between the frequency of visiting
locations and the prediction accuracy, reaffirming the effectiveness of our approach in capturing
and quantifying the relationship between user mobility patterns and prediction performance.

We define different levels of user mobility by estimating each user’s average number of visited
base stations per day. From right to left of Figure 5.5, groups are referred to very-high-mobility,
high-mobility, medium-mobility, and low-mobility users. The very-high-mobility group contains
19-24 daily visited base stations, the high-mobility group contains 13-18 daily visited base stations,
the medium-mobility group contains 7-12 daily visited base stations, and the low-mobility group
contains 1-6 daily visited base stations. As it is shown, for each of the defined groups, RL-designed
predictor maintains superior accuracy consistently. Further, we can see the trend of diminishing
accuracy for very-high-mobility users. That is because as the number of daily visited base sta-
tions grows, the error probability grows respectively. For the low-mobility users, the confidence
interval of the predictors overlaps to a larger extent. This is because these users contain easier
prediction scenarios. The regularity ratio of very-high-mobility users group is quite a small value
since the achieved accuracy is low and the mean number of daily base stations is relatively high.
Alternatively, the regularity ratio of low-mobility users is quite a high value since the achieved
accuracy is very high, and the mean number of daily base stations is low. The regularity ratios of
other groups of high-mobility and medium-mobility are smoother values. Overall, it can be con-
cluded that for users with medium and high mobility patterns, the proposed predictor performs
much better than others, and their prediction accuracy is more similar to the average accuracy of
total users.

5.5. Evaluations 95

RLSM Ouyang et. al. Greedy No-Migration0

20

40

60

80

100

Nu
m

be
r o

f P
in

g-
po

ng
 H

Os
 (%

)

0.46

40.78

92.53

0.0

FIGURE 5.6: Percentage of Ping-Pong handovers for different algorithms [104] ©2022
IEEE.

5.5.3 RL-HEC Evaluation Results

We evaluate the performance of the proposed RL-HEC algorithm in this chapter. For comparison
purposes, we implement three other state-of-the-art handover algorithms to test against RL-HEC.
The algorithms are the following:
(i): PRED [55] is position prediction-based handover algorithm based on the Reference Signal Re-
ceived Power, Reference Signal Received Quality and some UE parameters like moving direction
and the position inside the BS used as handoverdecision criteria.
(ii): Received Signal Strength Indication (RSSI)-based [1], a standard handover algorithm based on
signal events, meaning the events when the serving BS’s signal quality drops below a threshold,
and the events when a neighbor BS’s signal quality is a certain threshold above the serving BS’s
one. This algorithm uses signal quality in its decision, making it more sensitive to interference
and noise fluctuations.
(iii): the strongest BS algorithm Power Budget [1] uses a threshold value, i.e., a handover is made
if a neighbor BS’s signal strength becomes larger than the serving BS’s one plus a threshold. This
makes this algorithm more robust to ping-pong handovers and interference as well, but it can
cause users to stay in overloaded macrocells.

Figure 5.6 shows the percentage of ping-pong handovers made in comparison with the total
number of handovers in the simulations. Results were averaged across all 33 simulations and are
shown with a confidence interval of 95%. Note that the amounts shown are cumulative across
all 20 devices in the scenario. As previously defined, we consider a ping-pong handover as a
disconnection and reconnection to a BS within 4 seconds [83]. We can see that RL-HEC achieves a
near-zero number of ping-pong handovers, compared to the average of 40% and 92% of the PRED
and RSSI-based algorithms, respectively. PRED maintains a relatively low number of ping-pong
handovers, about 30 per user device, compared to the RSSI-based algorithm. This is because the
PRED algorithm’s predictive approach uses parameters such as moving direction and position
inside the coverage area, which is not enough to predict and avoid the occurrences of ping-pong
handovers. The RSSI-based algorithm performs a much larger number of ping-pong handovers

96

RL-HEC PRED RSSI-based PBGT0

20

40

60

80

100

Nu
m

be
r o

f H
an

do
ve

rs
 p

er
 U

se
r

16.88

31.53

84.99

0.0

FIGURE 5.7: Number of handovers for different algorithms [104] ©2022 IEEE.

RL-HEC PRED RSSI-based PBGT0

2

4

6

8

10

12

14

16

Av
er

ag
e

Th
ro

ug
hp

ut
 (m

bp
s)

12.93

8.75

0.73 0.5

FIGURE 5.8: Average network throughput for different algorithms [104] ©2022 IEEE.

because it is more sensible to signal fluctuations, especially when the coverage area of neighbor
BSs and the serving BS overlap. The Power Budget algorithm did not cause ping-pong handovers
at all in the simulations. This is because it is executed with a significant hysteresis value that only
allows a handover to happen, if the target BS’s signals strength is a threshold above the serving
one’s.

The number of ping-pong handovers for each algorithm is proportional to the total number of
handovers executed. Figure 5.7 shows the raw number of handovers with different algorithms.
RL-HEC caused about 16 handovers per node during 100 seconds of simulation, considering that,
on average, each user in the simulation passes through the coverage area of 66 BSs. However,
this does not mean that coverage areas do not overlap. RL-HEC tends to maximize the staying
time of a user in a certain BS, i.e., the time the user remains connected to it, and then performs
a handover. Both RL-HEC and Power Budget performed less than 20 handovers per node. This
is because in the decision phase of RL-HEC and Power Budget the UE often only performs a
handover when its current BS is unavailable, avoiding fluctuations. RL-HEC’s mobility prediction
makes the BS choice more reliable and connections more stable. In the Power Budget algorithm,
connections are stable because most users are bound to the BSs with the highest transmission

5.5. Evaluations 97

RLSM Ouyang et. al. Greedy No-Migration
Algorithms

0

20

40

60

80

100

120

La
te

nc
y

(m
s)

8.02

35.56

99.91

34.41

FIGURE 5.9: Average service latency for different algorithms [104] ©2022 IEEE.

power, ultimately increasing congestion levels and compromising QoS. This showcases how in
scenarios with BSs of different transmission power value, traditional handover algorithms may
fall short in performance. Each node under PRED performed on average one handover every 4
seconds. In the case of the RSSI-based algorithm, which is more sensitive to signal fluctuations, an
excessive number of handovers is performed. In our experiments, with the RSSI-based algorithm,
individual users perform one handover every 2 seconds.

Figure 5.8 shows the impact of each handover algorithm on raw user throughput. Our eval-
uation methodology for throughput consists of empirical measurements. A variable bitrate UDP
application is installed on each user device sending data from the UE to a remote host at the core of
the network and measuring the end-to-end throughput. Transmission power for the BSs is set to
46 dBm using Multiple Input Multiple Output (MIMO) transmission mode. It is important to no-
tice that users in this scenario do not have obstacles to their respective BSs, always maintaining a
clear line-of-sight. User throughput will be heavily affected if the user is not connected to the most
appropriate BS, due to factors like Signal to Noise Ratio (SINR), user movement, and interference
from neighbor BSs. We can see that RL-HEC achieves a throughput of 12.9 Mbps, compared to 8.75
Mbps for the PRED algorithm, 0.73 Mbps for the RSSI-based, and 0.5 Mbps for the Power Bud-
get algorithm. This highlights that RL-HEC choses the best BSs most frequently compared to the
other tested algorithms. PRED’s throughput comes closer to it, however, at higher costs in terms
of ping-pong handovers. The raw throughput achieved in the RSSI-based simulation is several
times lower than the one of RL-HEC, due to excessive and sub-optimal handover executions.

5.5.4 RL-SM Evaluation Results

We now evaluate the performance of the RL-SM algorithm proposed in this work. To compare
RL-SM with other works, we chose three other algorithms found in the literature:
(i): Ouyang et al. [67] to represent the state-of-the-art in our simulations proposes "Follow me at
the Edge," a baseline service migration scheme for edge-enabled networks which applies a Markov
approximation to find a near-optimal behavior.

98

RLSM Ouyang et. al. Greedy No-Migration
Algorithms

0

50

100

150

200

250

300

Nu
m

be
r o

f M
ig

ra
tio

ns
 A

tte
m

pt
ed

22.94 32.25

185.1

0.0

FIGURE 5.10: Number of service migration attempts for different algorithms [104]
©2022 IEEE.

(ii) A greedy approach, in which the network tries to always keep services in the edge server clos-
est to the user consuming them. However, this approach increases the chance of migration failures
and dramatically decreases the number of available computing resources at the network’s edge.
(iii) a No Migration approach in which services are allocated to the edge, fog, and cloud servers at
the beginning of the simulation and are not migrated for the remaining of the simulation.

RLSM Ouyang et. al. Greedy No-Migration
Algorithms

0

5

10

15

20

25

30

35

Nu
m

be
r o

f M
ig

ra
tio

n
Fa

ilu
re

s

0.0 0.0

22.93

0.0

FIGURE 5.11: Number of service migration failures for different algorithms [104]
©2022 IEEE.

In Figure 5.9, we see the average latency across all users in the network for the service being
tested. When considering the application’s latency requirements, RL-SM is the only algorithm that
meets the application requirement threshold with average latency below 10 ms. This is because,
most times, all users in the simulation are served by an edge or fog server. The same approach is
attempted by the greedy approach, lacking proper resource management, causing many migration
failures. In the simulation for the algorithm by Ouyang et al., the end-to-end latency for the

5.6. Chapter Conclusions 99

application is 35 ms on average, with an even larger average latency than the scenario where no
migration occurs. This is because, in the No-Migration approach, users remain served at the server
they are first allocated to, thus having a portion of users with low mobility remain connected to
their closest edge server.

In our scenario, the latency to reach a fog server is in the order of 10 ms, and the latency to
reach an edge server is in the order of 1 ms. The greedy algorithm has the worst performance
in terms of latency, as the many migration failures caused by the excessive number of migrations
significantly deplete network resources and performance.

The number of migrations performed by each algorithm may also influence its performance,
as shown in Figure 5.10. In the simulated scenario, RL-SM performed, on average, about 60 mi-
grations per simulation on the total, against 90, 105, and 0 for the algorithm by Ouyang et al., the
greedy algorithm, and the No-Migration algorithm, respectively. Since migrations in RL-SM are
made proactively, migrations tend to follow user movement and are more robust to signal fluctua-
tions. The algorithm by Ouyang et al. and the greedy approach make a reactive migration after the
user moves to a new area, which means that they can not reserve resources from the target servers
proactively and may have to deal with migration failures, increasing the end-to-end latency of the
applications. The No-Migration approach is configured not to perform any migrations during the
course of the simulation.

One important resource management metric is the migration failure rate. We define a migra-
tion failure when migration is requested to a server with the necessary resources to support the
applications, thus requiring another server to be chosen. Figure 5.11 shows the number of mi-
gration failures, on average, for each algorithm. The no-migration approach did not perform any
migrations, so it has no failures. The greedy strategy has the highest number of failures due to the
lack of mobility prediction and resource awareness. RL-SM did not cause any migration failures
in the course of the simulations. This is because a resource check precedes every migration deci-
sion. Thus, migrations are only made to servers that can receive the service with ease. In terms of
failures, Ouyang et al. ’s algorithm caused fewer failures than the greedy approach, as expected,
but still many more than RL-SM.

5.6 Chapter Conclusions

User mobility awareness plays an essential role in enhancing network performance. In this chap-
ter, we tackled the problem of how user mobility prediction can be used to deploy NN models
to optimize network performance such as handover management and service migration. We de-
signed an RL method to automate the architecture search for the LSTM mobility predictor with fast
convergence rate using an inter-network transfer learning approach. We validated our ideas on a
real-world large-scale anonymized dataset collected from the Orange telecommunication network
operator. Experiment results show that our predictor delivers better accuracy over state-of-the-
art mobility predictors. Moreover, we designed and implemented a novel handover algorithm
RL-HEC and service migration RL-SM scheme, that benefit from our robust RL-LSTM mobility
predictor. Simulation results show that the proposed solutions could reduce ping-pong handover
rates to almost zero while increasing measured network throughput by 1.5 times compared to

100

state-of-the-art solutions and lead to a much lower number of migration attempts and failures in
general.

Our proposed RL-LSTM trajectory predictor exhibits remarkable improvements in prediction
accuracy compared to other state-of-the-art neural networks that rely on heuristic network de-
sign or naive AutoML NAS methods. Additionally, it significantly enhances the performance of
mobility management services. However, when considering large-scale networks, our RL-LSTM
approach faces significant challenges in terms of scalability. In large-scale mobility networks, it be-
comes impractical to personalize the neural network architecture for each unique user. Therefore,
in the next chapter (Chapter 6), we introduce a system designed to manage the complexities and
computational demands associated with trajectory prediction on a large scale, while still main-
taining high prediction accuracy. By addressing the scalability issue, our aim is to ensure that our
trajectory prediction system remains effective and efficient, even in realistic scenarios involving
large-scale wireless networks, handover exchanges, and service migrations for multiple users.

101

Chapter 6

Scalable and Convergent Individual-Agent
Trajectory Prediction in Large-Scale Mo-
bility Networks

6.1 Chapter Introduction

In the previous chapter, we presented a reinforcement learning-based solution that automates the
design of neural networks for individual mobile users. However, when considering real-world
wireless network scenarios with millions of user tags, the task of searching for an optimal neural
network architecture for each individual user becomes computationally expensive in large-scale
systems. To address this challenge, in this chapter, we develop scalable solutions for personalizing
neural architectures in large-scale networks. By focusing on scalability, we can ensure that the
process of personalizing neural architectures remains feasible and practical in real-world large-
scale network environments.

In the existing literature, the majority of trajectory predictors are based on RNNs and their
variants, particularly LSTM NNs. RNN models have been widely acknowledged for their high ef-
fectiveness in predicting mobility patterns through the analysis of historical location data and the
learning of users’ moving behaviors to forecast future locations. These models have demonstrated
maturity in handling time series data. However, despite their successes, RNN-based trajectory
predictors do have a few drawbacks. They tend to exhibit slower computational speeds and lack
easy parallelization capabilities. Additionally, these models face challenges in retaining long-term
memories of sequential time series data. These limitations indicate the need to explore alternative
predictors and their performance in the field of trajectory prediction.

In this chapter, we aim to address research questions stated in Section 1.2.2 as follows.
"RQ 2.1: How can we enhance the effectiveness of capturing complex spatiotemporal mobility features

in trajectory prediction by substituting commonly used RNNs with other neural networks?".
"RQ 2.2: How can we scale NAS to personalize multiple individuals within large-scale networks?

While scaling the computations, what is the optimal tradeoff between computational resource consumption
and prediction accuracy that ensures efficient performance?".

102

Our objective is to improve the performance of personalized individual-agent trajectory pre-
diction in large-scale mobility networks. In pursuit of these goals, we introduce a novel model:
Reinforcement Convolutional Transfer Learning (RC-TL) trajectory predictor [21]1.

In response to RQ 2.1, there is a need to explore alternative neural network architectures that
can replace the commonly used RNNs in trajectory prediction. These alternatives should be ca-
pable of capturing complex spatiotemporal mobility features more efficiently. As a result, the first
contribution of this chapter is the proposal of one-dimensional convolutional neural network-
based trajectory predictors. Although CNNs are not commonly applied in learning time-series
data, such as user mobility information, they offer great potential due to their ability to encode
patterns in convolutional kernels. Additionally, CNNs support parallel learning and require min-
imal computation to perform the prediction task efficiently. To design the CNN architecture effec-
tively, we leverage our previously proposed reinforcement learning model and incorporate it into
the formation of RL-CNN predictors. This combination allows us to harness the strengths of both
CNNs and reinforcement learning to create personalized trajectory predictors that can capture
and analyze complex mobility patterns in a computationally efficient manner.

Moving on to RQ 2.2, even with the development of a more robust predictor RL-CNN, the
challenge of scaling the NAS approach to personalize multiple individual users in large-scale net-
works persists. It is evident that any attempt to reduce computations and scale RL-designed neu-
ral networks will inevitably lead to a compromise in prediction accuracy. This is because reducing
computational expenses often involves sacrificing certain computational neural layers or similar
components. Consequently, the problem extends beyond finding a scaling method for personal-
ization in large-scale networks, it also involves defining an optimal tradeoff between minimizing
computational resource usage and maximizing prediction accuracy.

To address the computational burden of training, some studies have suggested clustering users
with similar characteristics and training a single model for all users within a cluster. This approach
has proven effective in reducing computational requirements in trajectory prediction tasks. How-
ever, no previous studies have explored the potential of user clustering specifically for reducing
computational requirements in NAS. This objective serves as the second contribution of this chap-
ter. In this direction, we propose the clustering of similar-trajectory mobile users, followed by the
training of a single RL-CNN predictor per cluster. By sharing this predictor among users with sim-
ilar behavior, we aim to significantly reduce the computational overhead associated with building
the RC-TL system. This approach allows us to strike a balance between computational efficiency
and prediction accuracy, thus overcoming the limitations of scaling NAS for personalized trajec-
tory prediction in large-scale networks.

To increase the average accuracy across various users, personalizing NN tailored to different
user datasets can be an adequate approach. While this provides sufficient personalization for each
user to consider different statistical features, it cannot be scaled for a large number of users. In-
spired by these shortcomings, we design the RC-TL system taking into account clusters of users
with similar mobility features to be learned and generalized. More precisely, RC-TL clusters simi-
lar trajectory users and trains a single RL-CNN per cluster based on a few users’ data, significantly

1Partially reproduced in this chapter – Copyright ©2011 IEEE.

6.2. RC-TL Trajectory Prediction System Architecture 103

Clustering

Cluster Set 𝐶𝐶

𝑢𝑢𝑘𝑘+1 . . . 𝑢𝑢|𝑐𝑐|𝑢𝑢1 . . . 𝑢𝑢𝑘𝑘 Generic Cluster 𝑐𝑐

RL-CNN
NAS

CNN Arch.

CNN
Training

CNN
Model

2
4

3

1

User
Trajectories

Rep. user set 𝑅𝑅𝑐𝑐

FIGURE 6.1: RC-TL trajectory predictor system architecture [21] ©2022 IEEE.

saving computation resources necessary to find the optimal architecture for such users. RC-TL
provides an inter-cluster personalized yet intra-cluster generalized model.

To be more clear, RC-TL has three key features. First, it groups users with similar trajectories.
Second, it applies a single RL agent to design a high-performance CNN architecture per cluster
based on a few representative users, reducing the computation needed to train the model. Finally,
it transfers the model trained on the cluster’s set of representative users to the other members of
that cluster using transfer learning, which is a technique for reusing one task’s developed model
as the starting point for another task to avoid initializing the second task from scratch and saving
resources. By utilizing these techniques, RC-TL enables efficient and personalized individual tra-
jectory prediction with reduced computational requirements in large-scale networks. The goal of
RC-TL, is to predict in an efficient way the future trajectory for each user u in the scenario, based
on the user’s past mobility data.

6.2 RC-TL Trajectory Prediction System Architecture

The RC-TL system operates in a set of sequential steps, briefly described hereafter and detailed in
the following subsections. Figure 6.1 represents the system architecture and data flow. The circled
numbers indicate the (1) clustering, (2) RL-CNN neural architecture search and training, and (3)
TL steps of the system. The system’s input is the database containing the user trajectories, and
the system’s output is one trained CNN model for each user in the scenario. The RC-TL’s goal
is to reduce the computational resources required to provide a CNN model for each user while
keeping high prediction accuracy.

Algorithm 4 shows the overall RC-TL operation. The first step of the RC-TL architecture is
the clustering, which retrieves user mobility information from a logically centralized database

104

Algorithm 4: RC-TL Trajectory Predictor [21] ©2022 IEEE
Input: Set of clusters C
Output: Trained CNN Models

1 for each cluster c ∈ C do
2 for each user j ∈ c do
3 Compute regularity ratio ρj ← |Tj|/Dj;

4 Rc ← {k users with highest ρj};
5 RL agent searches CNN architecture using Rc;
6 Train CNN using Rc;
7 Return prediction accuracy;
8 for each user j ∈ c do
9 if user j ̸∈ Rc then

10 Load pre-trained RL-CNN;
11 user j← RL-CNN;
12 Return prediction accuracy;

13 Compute cluster’s average prediction accuracy;

14 Compute overall average prediction accuracy over all clusters;

and groups users with similar trajectories in a set of disjoint clusters according to the LCSS sim-
ilarity measure. For each cluster, this step also selects a subset of representative users who are
associated with high-quality data by evaluating their data’s coherence. The second step of the
RC-TL architecture is the RL-CNN network architecture search, which can be run in parallel for
each cluster. This step takes in input the trajectories of the cluster’s representative users and uses
an RL agent to find a set of hyper-parameters defining a CNN architecture that maximizes the
trajectory-prediction accuracy for the representative users. After the agent selects the best CNN
architecture, RC-TL trains it using the representative users’ data and obtains the model’s parame-
ters in output. The fourth and last step of the RC-TL architecture is transfer learning, which takes
into input the trained model’s parameters and uses them to build a model for each of the other
non-representative users of the cluster.

The performance of these steps is described in more details in next subsections.

6.2.1 User Trajectory Clustering and Reference Users Selection

In real-world scenarios, the number of mobile network users can be so large that training an indi-
vidual RL-CNN trajectory predictor for each user is unfeasible due to the infrastructure’s limited
computing and storage resources. For this reason, we designed RC-TL to cluster users with sim-
ilar trajectories using the LCSS algorithm [35]. Contrary to traditional Euclidean distance, the
LCSS-based distance can be computed between trajectories made of a different number of data
points (ti, bi). RC-TL computes the LCSS distance γi,j ∈ [0, 1] between every pair of trajectories
(Ti, Tj) ∈ Θ2 in the dataset, and populates a symmetric distance matrix Γ = (1− γi,j) ∈ [0, 1]n×n

6.2. RC-TL Trajectory Prediction System Architecture 105

FIGURE 6.2: Two similar trajectories recognized by LCSS similarity Matrix.

that represents how different the trajectories are to one another. At this point, the system applies
an unsupervised clustering algorithm to group the trajectories in a set C = {c1, . . . , cq} of disjoint
clusters ci ∈ Θ, ∀i ∈ {1, . . . , q}, where ci ∩ cj = ∅, ∀i, j ∈ {1, . . . , q}, i ̸= j.

Clustering algorithms are designed to determine the optimal number of clusters and their
members to minimize the average intra-cluster distance and maximize the inter-cluster distance.
In other words, a suitable clustering algorithm must be designed so that all trajectories in a cluster
have a small distance, whereas the trajectories belonging to different clusters have considerable
distance. Therefore, any clustering algorithm whose geometry is based on distances between
points, to compare pairwise the distances between locations within trajectories, can be a proper
candidate, e.g., Birch, DBSCAN, K-Means, Mean-Shift, Ward, and Optics. Our proposed RC-
TL system uses the Birch clustering algorithm, but any other clustering algorithm, such as K-
means and Ward, can be used at this step [97]. The three clustering algorithms (K-Means, Ward,
and Birch) are suggested as the design choices due to their out-performance concerning the other
clustering methods in terms of accuracy and resource utilization.

The symmetric similarity matrix (correlation matrix) produced by the LCSS algorithm is de-
picted in Figure 6.2, along with two similar trajectories from the MDC2 dataset. The level of
similarity between pairs of user trajectories is indicated by the intensity of the blue color in the
correlation matrix, with darker shades indicating higher similarity values. The correlation matrix
exhibits a notable pattern, revealing a dense blue coloration between two real-life MDC trajecto-
ries. This observation indicates their strong similarity.

For each user cluster, the system selects a set of reference users that produced highly-descriptive
mobility data, evaluated through our proposed regularity ratio metric, as presented in Section 4.6.

Users with a higher regularity ratio have visited a limited set of base stations multiple times,
meaning that it is easier for a NN to infer a periodic behavior from such users compared to users
with a low regularity ratio. The set Rc of reference users for a generic cluster c is selected as the

2https://www.idiap.ch/en/dataset/mdc

106

set of the k = |Rc| << |c| users in the cluster with the highest regularity ratios k is determined by
a grid search that optimizes prediction accuracy.

6.2.2 Reinforcement Learning for CNN Architecture Design

As mentioned earlier in Section 2.4.2 and depicted in Figure 2.2, the architecture of 1D-CNN com-
prises multiple layers with various hyperparameters, such as kernel sizes, filter numbers, and
pooling operations. These layers typically include convolutional layers, maxpool layers, flatten
layers, dense layers, and dropout layers. These hyperparameters play a crucial role in the model’s
performance and its ability to capture spatio-temporal dependencies in mobility data.

To optimize 1D-CNN hyperparameters and improve prediction accuracy while reducing train-
ing time, we employ a reinforcement learning approach to search for high-performance networks
tailored to the mobility characteristics of user data.

As the performance of RL is stated in Section 2.6, we define a search space for the RL agent to
explore. The search space consists of multiple CNNs with different hyperparameter characteris-
tics. The RL agent selects the optimal architecture from a finite and fixed state space of admissible
architectures. The state space of RL-CNN, as discussed in Chapter 5, has a comparable size to that
of RL-LSTM. This equivalence is crucial for ensuring a fair evaluation of the performance of both
RL-CNN and RL-LSTM predictors. The objective of our study in this chapter is to showcase the su-
perior performance and efficiency of CNNs for time series prediction over LSTMs. Therefore, it is
imperative to establish a comparable search space between the two models. In RL-CNN, the state
space is a subset of all the possible combinations of the values that the CNN hyper-parameters
can assume. Namely, the state-space dimensions are:

• The number of layers that make up the CNN

• The type of each layer among convolutional, max-pooling, flatten, dense, and dropout

• The number and size of different kernels applied to each convolutional layer

• The stride of each max-pooling layer

• The number of perceptrons in each dense layer

• The dropout ratio of each dropout layer.

The RL-CNN state-space can become considerably large depending on the values of the men-
tioned parameters, making it impossible to test the performance of every CNN architecture in
the space. As stated RL provides a method to search for the optimal architecture avoiding an
exhaustive grid search.

To develop RL-designed, we assume that the CNN can contain at most one flatten layer, which
divides the CNN in two subsequent sections with different purposes: feature extraction and clas-
sification. The feature extraction section can contain only convolutional and max-pooling layers,
whereas the classification section can only contain dense and dropout layers. When optimizing
the architecture of a CNN, it is important to consider the hyperparameters for both the feature

6.2. RC-TL Trajectory Prediction System Architecture 107

extraction and classification sections. These hyperparameters include the arrangement of layers,
the number of layers, and the values of each layer’s components.

As shown in Figure 2.4, at the beginning of an episode, at the beginning of an episode, the agent
can take action a from a subset A(s) of the action space, where A(s) depends on the currently
observed state s. Every action always adds one layer to the current CNN and fixes the added
layer’s type and parameter values so that the action leads the environment (i.e., the CNN) into a
new admissible state (i.e., architecture). In order to guarantee the arrival state is admissible, the
new layer’s type is constrained by a set of rules:

• First and last CNN ’s layers must be a convolutional and a dense layer, respectively

• Convolutional and max-pooling layers can be followed only by another convolutional and
max-pooling layer, or by a flatten layer

• A flatten layer can be followed only by a dense layer

• Dense layers can be followed only by other dense and dropout layers

• Dropout layers can be followed only by dense layers.

After the agent has taken action, the corresponding reward is unknown and must be computed
by training the resulting CNN with the cluster’s representative users’ data for a limited amount
of epochs (exploration training). The model’s prediction accuracy on the mobility dataset is the
reward associated with taking that action in that state. Similar to Section 5.2, the RL agent uses the
Q-learning algorithm with an ε-greedy strategy to learn the policy for selecting actions and stops
searching the state space for better CNN architectures when it has reached either a target accuracy
or a maximum number of episodes. The reward for taking each action in each state is computed
using the Bellman equation, presented in Equation 2.18.

During the initial phase of learning, the RL agent employs a strategy of random exploration
within the search space. This approach allows the agent to discover potentially promising archi-
tectures. As the learning progresses, the agent gradually adjusts its policy to prioritize actions that
lead to higher rewards, aiming to identify architectures that yield superior performance. At the
conclusion of all episodes, the RL agent chooses the CNN architecture with the highest accuracy
from among the architectures explored throughout the learning process. This selection is based
on the agent’s accumulated knowledge and experience, ultimately leading to the identification of
the highest-performing architecture.

6.2.3 Transfer Learning between Cluster Members

After building and training the RL-CNN trajectory predictor associated with the cluster c, the RC-
TL trajectory prediction could be constructed by transferring the pre-trained reference model from
the k reference users to the remaining |c| − k users in the cluster c. Let the layers of the pre-trained
reference model for cluster c be L = {l1, l2, . . . , lh}, where the layers l1 and lh represent input and
output layers, respectively. The system transfers the learned knowledge of the reference model’s
neural architecture and weights of the first h− 1 layers ω(lj), ∀j ∈ {1, . . . , h− 1}, to the remaining

108

TABLE 6.1: Fixed parameters of RC-TL System [21] ©2022 IEEE.

Parameter Values
Representative users per cluster 10%

Batch size 200
Learning rate decay 0.002

Maximum training duration 200 epochs
Early stopping patience 10 epochs

Early stopping accuracy improvement threshold 0.1
Activation function in dense hidden layer ReLU
Activation function in dense output layer SoftMax

Discount factor γ 1
Learning rate α 0.01

Early stopping threshold 80%
Exploration training duration 20 epochs

Exploration training validation 10-fold cross-validation
70% data, 30% test

Exploration training target accuracy 80%
Exploration training max episodes number 500

ε0 0.01

|c| − k users in the cluster c. RC-TL transfers the knowledge of the first h− 1 layers because the
CNN’s output layer requires a different number of classes (neurons) for each user. The h-th layer’s
number of neurons for the j-th user is determined from its mobility data, i.e., set equal to the j-th
user’s number Dj of different base stations appearing in its trajectory. In this way, the remaining
|c| − k users initialize their NN with the transferred reference model and do not require to be
trained from scratch.

6.3 Evaluations

6.3.1 Experimental Details

We test RC-TL’s performance on a large-scale real-world mobility dataset provided by Orange
S.A., France. As discussed in Section 4.4.1, the exact locations and identities of both the base
stations and users in the Orange dataset are anonymized for privacy reasons. Therefore, we for-
mulate the problem as a classification task where the objective of the predictor is to forecast the
future base station IDs.

In our experimental setup, we fix some learning parameters for CNN and RL (see Table 6.1)
and we define sets of CNN hyper-parameters as the RL search space (see Table 6.2). Each row
corresponds to one of its dimensions. We selected such parameters and search space because of
their popularity in the literature [6].

6.3. Evaluations 109

TABLE 6.2: CNN hyper-parameter search space in RC-TL System [21] ©2022 IEEE.

Parameter Values

Number of layers 4, 5, . . . , 20
Number of convolutional kernels 48, 64, 128

Convolutional kernel size 3, 6, 9
Max-pooling layer stride 10, 20, 30

Number of perceptrons in dense layer 20, 40, 60, 80, 100, 150
Dropout ratio 0.1, 0.3, 0.5, 0.7, 0.9

From Table 6.2, the number of hidden layers is chosen as an integer value within the range
of (4, 20), while the number of neurons in each hidden layer is selected from the discrete set
{20, 40, 60, 80, 100, 150}. For the convolutional layers, we consider candidate values of the number
of kernels from the set {46, 64, 128} and the kernel size from the set 10, 20, 30. To prevent overfit-
ting, we explore a range of candidate values for the dropout ratio in the set {0.1, 0.3, 0.5, 0.7, 0.9}.
Furthermore, to enhance the non-linearity of each dense layer, we adopt the ReLU activation func-
tion. This wide range of hyperparameter choices ensures that we thoroughly search the architec-
ture space to find the optimal RL-CNN model for individual user TP.

6.3.2 Evaluation Results

In this section, we perform two experiments. First, we evaluate the performance of the proposed
RL-CNN against other state-of-the-art ML approaches without clustering, meaning that each neu-
ral network is built and trained for a single individual user. In this way, we focus on studying our
proposed RL-CNN regarding the tradeoff between prediction accuracy and network build time.
The competing predictors we implemented are:

• GS-LSTM and RL-LSTM, which are LSTM-based trajectory predictors whose architecture is
determined through GS and RL, respectively.

• J48 and RF, which are non-neural decision-tree-based models.

Second, we evaluate RC-TL’s performance employing three different clustering algorithms (k-
means, Ward, and Birch [97]) against the non-clustered RL-CNN approach. In this way, we can
evaluate the impact of clustering on prediction accuracy and the computational load required
for training and study their tradeoff. Moreover, we can choose the best performing clustering
algorithm. Each predictor’s performance is evaluated and averaged on 100 random users.

The first experimental results show the impact of the neural network and neural architecture
search on prediction accuracy and build time. We firstly compare all models on an individual,
i.e., user-wise mobility prediction in which each algorithm predicts the user trajectory, and the
accuracy is given in terms of the fraction of correctly predicted data points.

Figure 6.3 shows that RL-CNN achieves similar accuracy to RL-LSTM and around 10% higher
than RF and J48. Meanwhile, RL-CNN saves 69% of the build time compared to RL-LSTM and is
comparable with the RF’s build time.

110

RL-CNN RL-LSTM GS-LSTM RF J48
Mobility Predictor

0.0

0.5
Ac

cu
ra

cy

0.687 0.696 0.665
0.606 0.578

FIGURE 6.3: Accuracy of mobility predictors trained on an individual isolated user
data [21] ©2022 IEEE.

RL-CNN RL-LSTM GS-LSTM RF J48
Mobility Predictor

0

300

600

Bu
ild

 T
im

e
(m

in
ut

es
)

56.04

176.73

625.38

51.51
0.08

FIGURE 6.4: Build time of mobility predictors trained on an individual isolated user
data [21] ©2022 IEEE.

Figure 6.4 also shows that RL reduces the build time (defined in Section 4.7.3) by 72% com-
pared to grid-search neural network architecture search, with minimal difference inaccuracy. This
behavior can be explained by the relatively short duration of the data collection for the dataset,
spanning two months during summer holidays, incurring a more significant degree of exploration
in the dataset, as users visit several new places to predict such features challenging. We expect
our solution and its accuracy to improve for datasets with a more comprehensive data collection,
as it will learn the statistical features of such data points.

We sample the learning curve over the episodes of transfer learning both in the case of applying
CNN and LSTM networks in order to compare the convergence of both algorithms. Figure 6.5
shows that the RL agent can find CNN and LSTM architectures that achieve a 69% accuracy in
both cases, even though the RL agent can converge to the best architecture for a CNN in fewer
episodes than for an LSTM. This means less computation is necessary by the transfer learning
step to find and evaluate NN architecture in order to converge to similar accuracy levels, showed
in Figure 6.3.

We also sample the individual behavior of the learning process after an architecture has been
defined. In Figure 6.6 we can see the accuracy of the NN by training epoch in both a CNN and

6.3. Evaluations 111

0 100 200 300 400 500
Episode

0.0

0.7
Ac

cu
ra

cy
RL-CNN
RL-LSTM

FIGURE 6.5: RL-designed ANNs curves for the average user in Orange dataset [21]
©2022 IEEE.

0 50 100 150 200
Epoch

0.0

0.7

Ac
cu

ra
cy CNN

Early Stopping CNN
LSTM
Early Stopping LSTM

FIGURE 6.6: Learning curves for the best CNN and LSTM models selected by the RL
agent for a random user [21] ©2022 IEEE.

an LSTM network. Moreover, Figure 6.6 shows that, between the best CNN and LSTM architec-
tures selected by the RL agent, the CNN learns faster than the LSTM, meaning that it can reach
higher accuracy on the test set in fewer epochs. This shows that in this particular case, the CNN
architecture can learn the statistical features of user mobility faster and to a better degree than
an equivalently chosen LSTM model. Thus, incurring a lower computational cost to train the ar-
chitecture and, on a larger scale, better overall scalability of the network. We can conclude that
CNNs whose architecture is searched by an RL agent achieve similar prediction accuracy to other
state-of-the-art models and can be built in a fraction of the time required by other LSTM-based
methods.

The results of the second experiment highlight the impact of clustering on the reduction of
computational resource requirements for training. Figure 6.7 shows that the clustered RC-TL sys-
tem achieves an almost identical prediction accuracy to the non-clustered RL-CNN predictor, with
the Birch algorithm providing the best accuracy among the three tested clustering algorithms. RC-
TL trains the model associated with the cluster using the data of 10% of users in the cluster with
the highest regularity (representative users). This saves 90% of computational resources compared
to training a dedicated model per user. It is worth noting that the Birch clustering algorithm de-
tects half of the clusters detected by the k-means algorithm and 25% fewer clusters than the Ward
algorithm, according to the normalized number of clusters metric (i.e., the ratio between the number
of clusters detected by the considered algorithm and the highest number of clusters detected by

112

Non-clustered
RL-CNN

K-means
RC-TL

Ward
RC-TL

Birch
RC-TL

Mobility Predictor

0

1

0.687
0.624 0.607

0.657

1.0

0.1 0.1 0.1

0.0

1.0

0.75

0.5

Prediction Accuracy
Comput. Res. Consumption
Normalized No. of Clusters

FIGURE 6.7: Performance of the non-clustered RL-CNN predictor, trained on a single
user’s data, compared with the clustered RC-TL [21] ©2022 IEEE.

TABLE 6.3: Impact of the number of representative users k on accuracy and compu-
tational requirements of RC-TL [21] ©2022 IEEE

k Accuracy Computation

5% of users 60.1% 0.05%
10% of users 65.7% 0.1%
20% of users 65.9% 0.15%

all algorithms). The number k of reference users per cluster can be heuristically chosen by test-
ing which values among 5%, 10%, and 20% of the cluster user leads to best accuracy and least
computational requirements. Table 6.3 shows the impact of the possible values of k on RC-TL’s
prediction accuracy and computational requirements. Training a single model per cluster with
the data of 10% of users in the cluster and transferring the trained model’s parameters to the other
90% of users in the cluster achieves much higher accuracy compared to training on 5% of cluster
users and saves around a third of computational requirements compared to training the model on
20% of cluster users.

As indicated earlier, the dataset used in the present work contains mobility information of only
two months for over a million users. Due to the limited size of the dataset and the huge variety in
sparsity of users’ data samples, the achieved accuracy of the suggested predictor is limited by the
available dataset’s quality. Nonetheless, we proved the superiority of RC-TL in improving accu-
racy, decreasing training time, and decreasing computational resource consumption with respect
to state-of-the-art solutions through case-studying the Orange dataset.

6.4. Chapter Conclusions 113

6.4 Chapter Conclusions

Providing a personalized mobility prediction model considerably improves the performance and
quality of mobility predictors, but an optimized design of these predictors is a costly task and
cannot be feasibly performed for each user in large-scale networks. This chapter proposes RC-TL,
an automated neural network hyper-parameter optimizer that leverages the similarities in users’
trajectories to build specialized neural networks for entire clusters of users. RC-TL decreases
resource utilization in terms of CPU time to optimize neural networks for individual users. A
Reinforcement Learning agent is used to discover the highest-performance neural architecture for
the CNN trajectory predictor within a given search space. Transfer learning is applied to specialize
a cluster’s neural network for a given user after the best architecture for their cluster is found. We
validated the proposed model on Orange’s real-world, large-scale mobility dataset. Results show
that RL-CNN improves the prediction accuracy by almost 10% on average over the state-of-the-
art approaches while its convergence is much faster than other approaches. Moreover, results of
clustering-level trajectory prediction through the RC-TL framework illustrate that the system can
save up to 90% of computational resources while losing only 3% of the average accuracy.

RC-TL demonstrates impressive capabilities in managing computational resource usage and
handling the complexity associated with training personalized reinforcement learning-designed
neural networks within large networks. However, a notable limitation of RC-TL is its exclusive
consideration of an individual user’s past location history, disregarding social interactions with
other users. Although RL-CNN is trained separately for multiple clustered users of a large multi-
agent network, it fails to account for the interdependencies and influences among different mobile
users. While this approach can be effective in certain scenarios, it may not fully capture the in-
tricate dynamics of social mobility patterns. In real networks, users influence each other’s move-
ments and adjust their behaviors based on the dynamics of a multi-agent environment. In the
subsequent chapter (Chapter 7), we explore the incorporation of social factors into collaborative
trajectory prediction models to enhance their accuracy and applicability in real-world scenarios.

115

Chapter 7

Computationally-Efficient Multi-Agent Tra-
jectory Prediction in Socio-Interactive Mo-
bility Networks

7.1 Chapter Introduction

In the previous chapter, we proposed a reinforcement learning-based NN personalization solution
for cluster-level trajectory prediction. We trained a model based on individual user characteris-
tics, and leveraging the similarities between users within the same cluster, we transferred the pre-
trained model to other cluster users. While our method is highly scalable, it lacks consideration
of interdependencies among users within a cluster. Individual prediction and taking mobile users
in isolation can be suboptimal for predicting complex motion behaviors of mobile users. This is
because mobile users are often part of a larger social network and their behaviors are influenced
by the spatio-temporal dependencies among neighboring mobile users’ paths. In this direction, in
this chapter, we extend the scope of cluster-level personalization to a social-aware collaborative
trajectory prediction model that considers the interactions among users within a cluster.

Understanding social interactions and spatio-temporal dependencies can provide valuable in-
formation for predicting complex motion behaviors of mobile users. Social interactions can also
affect the choices and behaviors of neighboring mobile users. For example, in crowded scenarios,
this information can be leveraged for a wide range of applications, including collision avoidance,
crowd management, activity recognition, and autonomous navigation. On the other hand, in
UE mobile networks with geographically distant user trajectories and base station locations, social-
aware trajectory prediction leverages social interactions and group movement patterns among
users to enhance prediction accuracy and adaptability. By considering the collective intelligence,
this approach optimizes resource allocation, enhance network performance, and improve user ex-
periences [65]. Figure 7.1a depicts an individual user in an isolated-agent crowd scenario, where
the user can take any path it wants and its future trajectory depends only on the history of its own
visited location. However, this scenario is not very realistic since humans and agents naturally
exist in multi-agent urban scenarios. On the other hand, Figure 7.1b shows interacting users in

116

(A) Isolated (B) Social

FIGURE 7.1: Comparison of mobile user trajectory prediction in single-agent isola-
tion (a) and multi-agent collaboration (b) scenarios.

a multi-agent crowd scenario, where users must consider other users’ decisions and states and
respect each other’s space to avoid collisions.

Despite the advances made in social-aware trajectory prediction using neural networks, these
methods still face several other shortcomings. One concerning issue is that these models often
either capture only local interactions within a fixed area around each agent, which can result in
the neglect of larger, more distant interactions, or they consider all agents within a scene, which
can lead to high computational costs. Thus, existing social-aware works are computationally inef-
ficient. In this chapter, we aim to propose an efficient social interaction extraction techniques.

Another challenge, similar to Chapter 6, is that the design of the neural network architecture
is typically based on human-based heuristics, which is a time-consuming and error-prone pro-
cess. However, in the domain of social-aware mobility prediction, personalizing neural network
architecture is more critical than personalizing individual users in isolated environments. This is
because social interactions and behaviors are inherently collaborative and can involve complex
dependencies among multiple users. Therefore, we aim to extend our RL-based NAS to the field
of social-aware trajectory prediction to better capture the complex user interdependencies.

Moreover, in Chapter 6, we introduced 1D-CNNS as an alternative to RNNs for trajectory pre-
diction, leveraging their ability to process data in parallel, making them more efficient. In multi-
agent mobility scenarios, accurately modeling complex social interactions is even more crucial.
Thus, in this chapter, we utilize Transformers neural networks as our trajectory predictor. Trans-
formers are built on attention mechanisms that allow them to capture long-range dependencies of
time-series data and model complex temporal relationships efficiently. The remarkable advantage
of Transformers for time-series data prediction is their ability to handle variable-length sequences
without the need for padding, enabling them to capture global context information from the entire
sequence. This let Transformers make more informed predictions, particularly when long-term
patterns significantly impact accurate forecasting.

In this chapter, we aim to address research questions stated in Section 1.2.3 as follows.

7.1. Chapter Introduction 117

FIGURE 7.2: An overview of Reinforcement Learning-designed Social Learning for
cooperative trajectory prediction.

"RQ 3.1: How can we substitute widely adopted CNNs in trajectory prediction with alternative neural
networks to improve the learning of intricate time-series mobility data more efficiently?".

"RQ 3.2: How can we decrease the computational complexity of existing social-aware methods while
preserving the overall prediction accuracy of the system?".

"RQ 3.3: How can we incorporate the personalization paradigm of NAS into multi-agent social tra-
jectory prediction, enabling it to search for high-performance neural networks specifically tailored to the
distinct mobility patterns of interactive users rather than individual users?".

Our objective is to overcome the aforementioned limitations by developing low-cost person-
alized trajectory predictors for multi-agent scenarios. Our goal is to accurately model the in-
teractions among users, taking into account their specific similarities and mobile features while
managing the computational budget. By doing so, we aim to capture the subtle influence they
have on each other’s mobility. In pursuit of these goals, we introduce a novel model: Intra-Cluster
Collaborative Learning for Social Trajectory Prediction (INTRAFORCE) system [20]1.

In response to RQ 3.1, there is a need to explore alternative neural network architectures that
can replace the commonly used RNNs or CNNs in social-aware multi-agent trajectory predic-
tion. These alternatives should be capable of capturing complex spatiotemporal mobility features
more efficiently. As a result, the first contribution of this chapter is the proposal of transformer
neural network-based trajectory predictors. Recently, attention-based neural networks, particu-
larly Transformers [86], have demonstrated significant improvements over RNNs. As described
in detail in Section 2.4.3, transformers are designed to process sequences of data and utilize a self-
attention mechanism to generate an output sequence by attending to different parts of the input

1Partially reproduced in this chapter – Copyright ©2011 IEEE.

118

sequence. This allows them to capture long-range dependencies more effectively than traditional
recurrent neural networks.

Addressing RQ 3.2, it is imperative to address the computational complexity challenges of ex-
isting social-aware methods that inefficiently capture the impact of all users on each other. Our
second contribution in this chapter focuses on mitigating this complexity. Specifically, we pro-
pose a clustering approach that groups together adjacent neighbor-trajectory users. By leveraging
the mutual dependencies among intra-cluster users who are geographically clustered and exhibit
significant influence on each other’s movements and interactions, we aim to reduce the compu-
tational burden of current social-aware trajectory prediction methods. Our objective is to achieve
this reduction in complexity while preserving the overall accuracy of the predictions.

In response to RQ 3.3, it is crucial to integrate the NAS personalization paradigm into so-
cial trajectory prediction. This integration enables the development of personalized multi-agent
predictors that are specifically designed to accommodate the distinctive mobility patterns of inter-
active users. By considering the features and interactions among multiple users instead of solely
focusing on an isolated user, the resulting predictors can better capture the complex dynamics
of social mobility. This necessity arises from the fact that the utilization of transformers in mo-
bility prediction is still relatively novel, and a notable limitation lies in the absence of efficient
automation in designing transformer neural architectures within existing works. Consequently,
the search space for well-performing transformer architectures remains relatively unexplored. In
this regard, our third contribution of this chapter involves proposing an RL mechanism where
the agent autonomously designs the neural architecture for a group of users with similar trajec-
tories in a multiple-input multiple-output social model. In Figure 7.2, we compare our proposed
approach to existing collaborative learning models depicted in Figure 2.6.

Considering the three aforementioned contributions, we introduce INTRAFORCE, an intel-
ligent multi-agent trajectory prediction system. INTRAFORCE is a system to design and train
Social-Transformers to capture joint interactions and reduce the required computation by measur-
ing user trajectory similarity and clustering users before feeding them to a social-aware trajectory
predictor to predict the joint user trajectories. For each cluster, INTRAFORCE employs a RL agent
aiming at maximizing the performance of the multi-agent model based on the mobility features of
the cluster. The goal of INTRAFORCE, is to predict the future trajectory for each user u, based on
a user’s past mobility data and intra-cluster users’ mutual influences.

7.2 INTRAFORCE Trajectory Prediction System Architecture

INTRAFORCE operates through three modules: the neighbor-trajectory user clustering, the reinforce-
ment learning architecture search for transformer neural networks, and the intra-cluster social-transformer
training modules, represented in Figure 7.3 and explained hereafter.

Algorithm 5 provides a high-level description of the workflow of INTRAFORCE. The algo-
rithm consists of three main sections that correspond to the three modules of the system. The first
section of the algorithm (lines 1 to 4) describes the operation of the clustering module. This mod-
ule clusters trajectory users based on their proximity in space using LCSS algorithm. The second
section of the algorithm (lines 5 to 25) describes the operation of the architecture search module.

7.2. INTRAFORCE Trajectory Prediction System Architecture 119

FIGURE 7.3: INTRAFORCE architecture [20] ©2022 IEEE.

This module uses a reinforcement learning algorithm to search for the optimal transformer neural
network architecture for each cluster. The algorithm highlights all stages of training the RL as a
NAS solution. The third section of the algorithm (lines 26 to 28) describes the operation of the
social-transformer module. This module trains the selected neural network architectures using a
social-pooling training algorithm. The social pool layer is able to capture the interactions among
multiple mobile users moving through a dynamic environment.

7.2.1 Neighbor-Trajectory User Clustering

Similar to Section 6.2.1, this module groups users with similar trajectories by applying a clustering
algorithm (e.g., Birch, DBSCAN, K-Means, and Ward) considering the LCSS distance [35] between
their trajectories. The advantage of adopting LCSS is its ability to measure similarity between
trajectories with different number of data points pu.

7.2.2 Reinforcement Learning for Transformer Architecture Design

As mentioned earlier in Section 2.4.3 and shown in Figure 2.3, the transformer architecture con-
sists of multiple Encoder Stacks E and Decoder Stacks D. The Encoder Stack includes a positional
encoding layer and several encoder layers responsible for converting a trajectory to an abstract
representation. The Decoder Stack is responsible for generating a predicted trajectory from the
learned abstract representations of user mobility and includes several decoding layers, dense
layers, dropout layers, and an output layer (linear for regression and softmax for classification

120

Algorithm 5: INTRAFORCE Workflow [20] ©2022 IEEE
Input: Set of trajectories Θ
Output: A Social-TF Fk for each cluster ck ∈ C
// Compute similarity matrix A = (aij) and set C of clusters containing similar trajectories

1 foreach (Ti, Tj) ∈ Θ2 // Clustering Module

2 do
3 aij ← LCSS(Ti, Tj)

4 C ← Clustering(A) ;
// Build a social transformer Fk, ∀ck ∈ C

5 foreach ck ∈ C // Architecture Search Module

6 do
7 Elect the representative user rk for cluster ck;

// Initialize RL agent Ak to optimize the Transformer architecture using data of user rk

8 Ak ← InitAgentRL(γ, α, ε, ε0)
// Initialize state-action table to zero for all states and actions

9 ∀(s, a) ∈ S× A : Q(s, a)← 0;
// Initialize exploration probability ε to maximum and empty architecture state

10 ε← 1, s← ∅;
// Optimize TF architecture up to vmax episodes

11 foreach v ∈ {1, . . . , vmax} do
// Decrease exploration every vmaxε0 episodes

12 if v mod vmaxε0 = 0 then
13 ε← ε− ε0;

// ε-greedy strategy to select next TF architecture modification

14 if RandomSample([0, 1]) ≤ ε then
15 av ← random action a ∈ A(s);

16 else
17 av ← arg maxa∈A(s) Q(s, a);

// Update state according to action av

18 s′ ← UpdateState(s, av);
// Train the transformer with data of the representative user rk for a few epochs θs. Compute

model error w and reward ρv of architecture modification (action a)

19 s′∗ ← Train(s′, rk, θs);
20 w← ComputeModelError(s′∗, rk);
21 ρv ← 1/w;

// Update state-action table

22 Q (s, av)← (1− α)Q (s, av) + α
(

ρv + γ maxa∈A(s′) Q (s′, a)
)

;
// Stop architecture search if model error w (MSE for regression, Error Rate for

classification) is below threshold η

23 if w ≤ η then
24 exit loop;

25 s← s′;
// Selects the TF architecture fk with lowest model error

26 fk ← arg maxs∈S Q(s, ·) // Social-TF Module
// Initialize the Social-TF architecture for cluster ck, with nk Encoder Stacks connected to nk

Decoder Stacks through one social pool

27 Fk ← InitSocialTF(fk);
// Train the Social-TF Fk with data from all nk users in ck for several epochs θl

28 F∗k ← Train(Fk, ck, θs);

7.2. INTRAFORCE Trajectory Prediction System Architecture 121

problems). The encoder and decoder layers consist of multi-head attention modules, add and
normalization layers, feedforward layers, dropout layers, and two residual connections. These
hyperparameters are tunable and can be optimized during the neural architecture search process.
The self-attention mechanism is a key component of the transformer architecture. The multi-head
attention layer is a type of self-attention that allows the model to capture relationships between
different segments of the input sequence. The multi-head module in the encoder and decoder lay-
ers enables parallel attention over distinct parts of the input sequence. The feedforward layer, on
the other hand, learns the non-linear mapping between the input and output. Furthermore, trans-
formers can be trained in parallel due to the self-attention mechanism, which leads to significantly
reduced training times in comparison to recurrent neural networks. In the add and norm layer,
the term add refers to the residual connection that prevents gradients from vanishing or exploding
during deep neural network training.

This chapter uses ε-greedy Q-learning RL algorithm to select an optimal Transformer architec-
ture for each cluster of users with adjacent trajectories who have maximum interactions with each
other. By using this RL algorithm, the module is able to efficiently search for the best Transformer
architecture that can accurately capture the unique mobility patterns and social interactions of
each cluster of users. As stated in Chapter 6, in RL, an agent takes an action that has an impact
on an environment, then observes the environment’s state, and finally receives a reward from the
environment. INTRAFORCE uses RL to select the optimal transformer architecture from a finite
and fixed space of admissible architectures (the state space). In INTRAFORCE, the state space is
a subset of all the possible combinations of the values of the social-aware transformer’s hyperpa-
rameters. Namely, the state-space dimensions are:

• The number of Encoder and Decoder layers

• The number of multi-head attention layers

• The number and value of Add and Norm (normalization) layers

• The number of feed forward dense layers

• The number of perceptrons in each dense layer

• The dropout ratio of each dropout layer.

Each multi-head attention layer can have different numbers of heads h and dimension of key.
Feed-forward layers can have different numbers of neurons. Normalization layers can have dif-
ferent epsilon values for the encoder. Dropout layers can have different dropout ratios. The IN-
TRAFORCE state space can become considerably large depending on the range of admissible
values for the hyperparameters (e.g., see the RL action part of Table 7.1), so INTRAFORCE uses
RL to search for the optimal architecture without performing an exhaustive grid search or a naive
heuristic or random search.

After the agent has taken an action (i.e., selecting a candidate transformer model architecture),
the reward associated to the selected architecture is unknown, and therefore, must be measured by
training the transformer generated by the RL agent with the cluster’s unique data for a few epochs

122

(exploration phase). At the end of the RL process, INTRAFORCE selects the transformer architecture
with the highest accuracy among all those explored and completes its training until convergence
(exploitation phase), over a larger number of epochs compared to the exploration epochs.

7.2.3 Intra-Cluster Social-Transformer Training

The INTRAFORCE module is responsible for predicting the trajectory of each user within a spe-
cific cluster by tuning an Encoder Stack per cluster user, pooling cluster users’ mutual information
in a Social Pool, and predicting one trajectory per cluster user using a Decoder Stack. This process
involves training multiple encoders that use the same transformer architecture to convert tra-
jectories into abstract representations, followed by pooling these representations to leverage the
collective intelligence of the group. The Decoder Stack then generates predictions based on the
intra-cluster user interactions, consisting of several decoding layers. The social pool method con-
catenates multiple neural networks to improve prediction accuracy by leveraging the collective
knowledge of the different networks.

Overall, the training process in the INTRAFORCE system is optimized to efficiently capture
multiple agents interactions while leveraging the power of transformer architecture and social
pooling. Additionally, the social pool in INTRAFORCE only considers intra-cluster users, who
share similar mobility patterns and have significant influence on each other’s movements and in-
teractions due to their geographic clustering. This approach reduces the computational costs of
the system by focusing on a subset of eligible local users to participate in each federated train-
ing round, rather than processing data from all users in the scene regardless of their interaction
patterns. By leveraging the mutual dependency of intra-cluster users, INTRAFORCE can accu-
rately learn their movements and social interactions while maintaining overall system prediction
accuracy.

7.3 Evaluations

We evaluate the performance of INTRAFORCE on the small-scale and a large-scale mobility scenar-
ios, discussed in Section 4.4, against various state-of-the-art mobility predictors. The large-scale
scenario is based on the Orange telecommunication S.A. [104] private dataset, while the small-scale
scenario is based on the ETH [68] plus UCY [47] public camera dataset.

Mobile network datasets capture the trajectories of users across larger geographical areas, often
spanning several kilometers. This characteristic of extensive coverage classifies datasets like the
orange dataset as belonging to a large-scale scenario. In contrast, computer vision image-based
crowd datasets focus on user trajectories within a smaller canvas, typically limited to a few meters.
This limited spatial scope categorizes datasets such as the ETH+UCY dataset as representative of
a small-scale scenario. By defining small-scale and large-scale scenarios, we aim to evaluate and
demonstrate the superior performance of our trajectory predictors in different spatial contexts.
This enables our predictors to be effective for both network management and crowd management
goals.

Table 7.1 shows the parameters for the Transformer and RL agent training. The RL Agent
Actions section of Table 7.1 shows the features of the search space for the hyperparameters that

7.3. Evaluations 123

TABLE 7.1: Experimental parameters for small-scale and large-scale scenarios in IN-
TRAFORCE System [20] ©2022 IEEE

Transformer Parameters

Batch size (small-scale, large-scale) 10, 200
Learning rate decay 0.002

Social Transformer training epochs θl 200
Early stopping patience (in epochs) 10

Early stopping delta (small-scale, large-scale) 0.05, 0.1
Dense layers’ activation func. (hidden, output) ReLU, SoftMax

Reinforcement Learning Parameters

Maximum RL training episodes vmax 500
Training epochs per episode θs 20

Discount factor γ, learning rate α 1, 0.01
Exploration rate decay ε0 0.1

Training target per episode (small-scale) η 0.05
Training target per episode (large-scale) η 0.1

Training validation (small-scale) 4 sets train, 1 set test
Training validation (large-scale) 10-fold, 70% train, 30% test

RL Agent Actions: Transformer Hyperparameters Space

Number of hidden layers 10, 11, . . . , 50
Number ξ of encoder and decoder layers 1, 2, 3, 4, 5

Number of heads h in a multi-head attention layer 2, 4, 6, 8
Dimension of the key for a self-attention layer 64, 128, 265

Normalization layer parameter 10−2, 10−3, 10−6

Number of perceptrons in dense layer 20, 50, 80, 100, 150
Dropout ratio in dropout layer 0.15, 0.25, 0.5, 0.75

124

RL-TF RL-CNN RL-LSTM HO-LSTM GS-LSTM RF J48
Trajectory Predictor

0.0

0.3

0.6

0.9
Ac

cu
ra

cy

FIGURE 7.4: Accuracy different trajectory predictors [20] ©2022 IEEE.

defines the Transformer’s architecture, where each row corresponds to one of the RL potential
actions.

7.3.1 Large-Scale Mobility Scenario

We compare the performance of RL-TF with those of other state-of-the-art trajectory predictors,
namely RL-CNN, RL-LSTM, HO-LSTM, GS-LSTM, RF, and J48. The first four baselines are neural-
network-based predictors, while the last two, Random Forest (RF) and J48 Decision Tree, are non-
neural predictors, which means that they do not require architecture search. RL-LSTM uses Rein-
forcement Learning to search for an optimal LSTM architecture, while HO-LSTM and GS-LSTM
use Hyperopt (HO), an AutoML hyperparameter optimizer, and Grid Search (GS) for the same
purpose. In the large-scale scenario, we perform two experiments. The first experiment compares
the performance of a RL-TF with the aforementioned predictors in terms of prediction accuracy
and build time for the individual user trajectory prediction, disregarding users’ social interac-
tion. The goal is to demonstrate the outperformance of Transformers concerning other machine
learning predictors, and the outperformance of RL regarding other hyperparameter optimization
models. The second experiment quantifies the impact of user clustering, cluster size, and the
social-transformer model on accuracy, build time, and model size.

7.3.2 Small-Scale Mobility Scenario

We compare INTRAFORCE performance with those of popular social trajectory-predicion models,
namely: Social-LSTM [3], Social-GAN [31], Sophie [74], Social-BiGAT [42], Social-Ways [4], Social-
STGCNN [60], PECNet [56], and STAR [94]. In this scenario we perform one experiment in which
we run the whole INTRAFORCE system, including user clustering, RL search for Transformer
architecture, and the social-transformer trajectory prediction with social pooling, and then collect
the Average Displacement Error (ADE) measurements.

7.3. Evaluations 125

RL-TF RL-CNN RL-LSTM HO-LSTM GS-LSTM RF J48
Trajectory Predictor

0

300

600
Av

g.
 B

ui
ld

 M
od

el
 T

im
e

(m
in

)

62.77 56.04

177.02

322.69

631.89

52.41
0.08

FIGURE 7.5: Build time of different trajectory predictors [20] ©2022 IEEE.

0 20 40 60 80 100
Episode

0.3

0.6

0.9

Ac
cu

ra
cy

RL-TF
RL-CNN
RL-LSTM

FIGURE 7.6: Accuracy convergence of the RL-designed predictors during the explo-
ration and exploitation phases [20] ©2022 IEEE.

7.3.3 Large-Scale Evaluation Results

The results of the large-scale experiment (Orange dataset) show that using RL to search the Trans-
former’s neural architecture leads to a higher prediction accuracy and a faster build model time
compared to other trajectory prediction approaches. Furthermore, training one single social-
transformer with a cluster’s users data reduces the average training time and model size com-
pared to training one separate model for each individual user.

We compare RL-TF with three NN predictors whose architectures are optimized by differ-
ent NAS mechanisms and two none-neural predictors. Figure 7.4 shows that RL-TF achieves the
highest mean accuracy (77%), which is 10% higher than the other reinforced models (RL-LSTM
and RL-CNN) and almost 20% higher than non-neural models (RF and J48). We note that achiev-
ing higher prediction accuracy over the Orange dataset is limited by the restricted dataset size (63
days) and the huge diversity in users’ data sample distributions. The accomplished accuracy of
77% is the average accuracy over 100 random users with acutely variable data quality and period-
icity.

Figure 7.5 shows that RL-TF requires slightly above one hour of build time, which is similar
to RL-CNN and RF. Although Transformers have larger architectures than CNNs and LSTMs, the
Transformers’ attention mechanism considerably reduces the build time. The RL-TF build time
is similar to that of RF, which does not require architecture search but only training. RL-LSTM

126

2 5 10
Cluster Size

0

15

30

45

60

Tr
an

in
g

Ti
m

e
(m

in
) INTRAFORCE

RL-TF

FIGURE 7.7: Average build time of individual RL-TF versus social INTRAFORCE
trajectory prediction models [20] ©2022 IEEE.

2 5 10
Cluster Size

0

2

4

6

8

M
od

el
 S

ize

1e4
INTRAFORCE
RL-TF

FIGURE 7.8: Average model size of individual RL-TF versus social INTRAFORCE
trajectory prediction models [20] ©2022 IEEE.

and HO-LSTM require long build times due to the sequential nature of LSTMs, and the extensive
training of HO exploration.

Figure 7.6 shows that the RL agent converges to a higher prediction accuracy in a shorter time
with Transformer neural network, compared to LSTM and CNN.

Figure 7.7 and Figure 7.8 show the build time and the total model size needed by one social
model for a cluster of users is lower than training an independent model for each user. As the
number of users in a cluster increases, the difference in terms of build time and model size between
training a separate model for each individual user (RL-TF) and training a single social-model per
cluster of users (INTRAFORCE) dramatically increases. Moreover, we note that as the number of
users in a cluster increases, social predictors achieve up to 5% higher accuracy, from 0.73 to 0.78,
compared to individual predictors. We note that, The user clustering process within the social
INTRAFORCE model is performed over the same set of 100 random users used in the individual
RL-TF model.

7.4. Chapter Conclusions 127

7.3.4 Small-Scale Evaluation Results

According to the results of the small-scale experiment on the ETH and UCY datasets, using RL
to search the neural architecture of Transformers leads to a lower training loss and subsequently
a lower distance error between the predicted and actual trajectories. As shown in Table 7.2, IN-
TRAFORCE outperformed several state-of-the-art social trajectory predictors, achieving the low-
est average displacement error (ADE) of 0.22. These results demonstrate the effectiveness of IN-
TRAFORCE’s approach to trajectory prediction through the use of RL-based neural architecture
search and the social pool method.

TABLE 7.2: ADE [m] of different social trajectory predictors for the small-scale sce-
nario (ETH+UCY datasets) [20] ©2022 IEEE

Work ETH Hotel Univ Zara1 Zara2 Mean

Social-LSTM 1.09 0.79 0.67 0.47 0.56 0.72
Social-GAN 0.81 0.72 0.60 0.34 0.42 0.58

SoPhie 0.70 0.76 0.54 0.30 0.38 0.54
Social-BiGAT 0.69 0.49 0.55 0.30 0.36 0.48
Social-Ways 0.39 0.39 0.55 0.44 0.51 0.46

Social-STGCNN 0.64 0.49 0.44 0.34 0.30 0.44
PECNet 0.54 0.18 0.35 0.22 0.17 0.29

STAR 0.36 0.17 0.31 0.26 0.22 0.26
INTRAFORCE 0.31 0.24 0.22 0.14 0.23 0.22

7.4 Chapter Conclusions

We presented INTRAFORCE, a system to build a trajectory predictor that learns the social in-
teraction within clusters of similar mobile users. INTRAFORCE uses Reinforcement Learning
to build a Social-Transformer architecture based on the intra-cluster user mobility features. We
evaluate INTRAFORCE on small and large scale scenarios, based on the ETH+UCY and the Or-
ange datasets, respectively. In the small-scale scenario, INTRAFORCE achieves an ADE of 0.22,
which corresponds to a lower positioning error compared to several state-of-the-art models. In the
large-scale scenario, we show that Reinforced Transformers outperform LSTM- and CNN-based
predictors by achieving up to +10% accuracy and up to −70% training time, and outperforms
non-neural models based on RF and J48 of up to +20% accuracy. Our experiments show that
increasing the number of users in a cluster leads to slightly higher accuracy, while considerably
decreasing the time needed to build and train the trajectory predictors, as well as the number of
training parameters.

Despite its significant advancements in accuracy improvement, reduction of mean squared
error, and remarkable decrease in computational complexity, INTRAFORCE faces certain limita-
tions. One such limitation is its centralized training approach, which involves collecting data and

128

may raise concerns regarding privacy issues and potential network bottlenecks when transmit-
ting large amounts of data from users to servers. To address these limitations, the subsequent two
chapters (Chapter 8 and Chapter 9) will focus on the development of multi-agent group intelli-
gence using decentralized and distributed learning methods. These methods aim to enhance the
scalability and privacy of the system by enabling agents to learn locally and communicate with
each other in a distributed manner, thereby eliminating the need for a centralized server.

129

Chapter 8

Network-Adaptive Multi-Agent Trajectory
Prediction in Distributed Mobility Networks

8.1 Chapter Introduction

In the previous chapter, we introduced a centralized social-aware trajectory predictor that utilizes
personalized RL-designed Transformer neural architectures for each cluster, capturing the mobil-
ity features and intra-cluster interactions in trajectory prediction. Despite these advances, con-
cerns about privacy and communication network limitations persist, particularly with regard to
uploading large, private datasets to a centralized server and then performing collaborative learn-
ing. In this direction, in this chapter, we propose a distributed social-aware trajectory prediction.

The AI research community has introduced Federated Learning (FL) as a distributed ML
framework [57]. FL provides a promising approach to overcome the limitations of centralized
learning, allowing for more scalable and privacy-preserving multi-agent systems. In FL, the learn-
ing process is decentralized and takes place on the devices of individual users, which are con-
nected to a central server. This approach allows users to keep their data private and avoid the
need to transmit large datasets to a central location. Instead, the central server aggregates and
processes the locally computed updates, while preserving the privacy of individual users’ data.
As described in Section 2.9, in an FL scenario, each client in the set of participants trains a local
model using its local dataset and transmits the trained model’s weights to a centralized server that
aggregates them into a global model. After aggregation, the server redistributes the global model
to the clients to retrain it and reduce the generalization error. A single back-and-forth training
and weight exchange between FL clients and the central server is defined as a training round. The
process of retraining and aggregation is repeated for r consecutive training rounds until the global
model converges.

FL-based trajectory prediction ensures that the confidential location data of mobile users re-
mains on their devices, as the central server of the mobile operator only has access to base sta-
tions (macro mobility or large-scale dataset) and not the specific user geodetic coordinates (micro-
mobility or small-scale dataset). Network providers seek to leverage prediction for different scales

130

of mobility. With access limited to base station information, the operators can only predict macro-
mobility patterns. However, for accurate small-scale trajectory prediction, micro-mobility trajec-
tories are necessary, which are sensitive and local users are hesitant to share with operators. In
this context, FL offers a solution. Local users train models on their micro-mobility data and share
only the trained model with the operator. This allows the operator to perform predictions without
accessing the raw data, preserving user privacy while enabling effective mobility prediction for
network optimization purposes [65].

Although the existing FL works have been successful in prediction tasks, they suffer from two
main issues: (1) neural architecture inflexibility, and (2) ineligible client handling. In FL, neural
architecture is inflexible because all clients share the same NN to execute a task, which might not
fit the features of each user mobility dataset, computational resource availability, and the wireless
network’s communication conditions. For example, a model might be too large for some clients
with reduced computation and communication resources, and too small for others with complex
datasets.

Moreover, in FL, the aggregation server must collect the local models from all participating
clients to compute a global model, which incurs computation delays due to local model training
and communication delays due to model transmission. This method’s limitation is that even if
a single participating client is ineligible meaning that it has reduced computational or commu-
nication resources (defined as a straggler), the whole federated global model training process is
slowed down. Likewise, the participation of ineligible low-quality data clients in federated train-
ing reduces the overall global accuracy and increases the whole system’s computational resource
consumption.

The objective of this chapter is to address the aforementioned limitations by seamlessly in-
tegrating the FL paradigm with RL-based personalization algorithms. This integration aims to
achieve a high-performance decentralized collaborative system design while optimizing various
objectives such as local users’ computational budget, available throughput of wireless links, and
the desired prediction accuracy set by the system through the RL-designed NAS. Furthermore,
we introduce an intelligent model in this chapter specifically designed to filter eligible users as
participants in federated training. The purpose of this model is to prevent the wastage of valuable
bandwidth and resources by excluding users who may not contribute significantly to the training
process.

In this chapter, we aim to address research questions stated in Section 1.2.4 as follows.
"RQ 4.1: How can we develop a methodology to assess the quality of local user datasets, allowing this

information to be conveyed to the central server in FL without giving access to the raw data?".
"RQ 4.2: How can we optimize computational resource utilization and reduce communication over-

head in FL by strategically selecting a subset of eligible local users to participate in each federated training
round?".

"RQ 4.3: How can we design an efficient multi-objective NAS algorithm for an FL setting that optimizes
accuracy, training time, and transmission time, considering varying network throughput and federated
participants’ datasets?".

8.1. Chapter Introduction 131

In pursuit of these goals, we introduce a novel model: Network-adaptive Federated Learning
for Reinforced Mobility Prediction (FedForce) system [18]1.

In response to RQ 4.1, facing the challenge in FL where the aggregating server does not have
direct access to users’ data, it is essential to invent a solution that can estimate the characteristics of
local users’ data and relay this information to the FL server without compromising data privacy.
This requirement becomes crucial in developing an intelligent participant selection algorithm. By
providing the server with an understanding of the data distribution across local users, it becomes
possible to assess the eligibility of each participant and make informed selections accordingly.

As a result, the first contribution of this chapter is the proposal of a regularity ration metric in
time and frequency domains. As described in detail in Section 4.6, we define the time domain reg-
ularity ratio for the j-th user ρt

j as the ratio between the number of data samples in the data signal
and the number of unique visited locations. While we define the frequency domain regularity ratio
for the j-th user ρ

f
j = Sj/Fj as the ratio between SNR of the data signal and dominant Frequency

present. If both regularity ratios ρt
j and ρ

f
j meet a predefined threshold that we have set for data

quality and periodicity, then the users are selected eligible. To determine the eligibility of users,
both regularity ratios ρt

j and ρ
f
j are compared against a predefined threshold that we have estab-

lished to assess data quality and periodicity. If both ratios exceed or meet this threshold, the users
are considered eligible for participation.

In response to RQ 4.2, with the locally computed regularity ratio metrics from all local users
that are transmitted to the server, we aim to minimize computational resource usage and commu-
nication overhead in FL. This will be achieved by selecting a subset of eligible local users for each
federated training round based on a sorted list of eligibilities.

In response to RQ 4.3, there is a need for robust a NAS algorithm to personalize the neural net-
work architecture in a manner that not only accommodates the unique characteristics of clients’
mobility datasets, thereby increases the accuracy of the prediction task, but also considers the
available computational and communication resources. Previously, in a centralized prediction set-
ting, resources were abundant and there was no communication involved between the server and
local users for the training phase. Thus, the objective of a NAS algorithm was solely focused on de-
signing the highest-accuracy neural architecture tailored to each dataset. However, in distributed
machine learning, where resources are constrained by IoT devices and wireless channels, factors
such as resource availability and communication throughput become critical considerations. In
this direction, the second contribution of this chapter focuses on proposing a multi-objective RL-
based neural architecture search algorithm. This algorithm aims to optimize accuracy, training
time, and transmission time for the proposed NN architecture, taking into account federated par-
ticipants’ datasets and varying network throughput. By achieving an optimal trade-off among
these factors, the algorithm ensures the design of a federated NN architecture that fits the char-
acteristics of clients’ mobility datasets and utilizes available computational and communication
resources effectively. This contribution is realized through FedForce, a RL-based system that au-
tomates the design process of the federated NN architecture.

1Partially reproduced in this chapter – Copyright ©2011 IEEE.

132

To be more clear, FedForce gathers regularity ratios and information regarding the computa-
tional resource availability of all system clients to let the server qualify users and chooses a set of
eligible users to be engaged through the FL training phase. In FedForce, the RL agent is respon-
sible for constructing a transformer neural network that optimizes the prediction accuracy while
minimizing training time, model size, and transmission time. However, this optimization task is
NP-hard since the agent must select the architecture from an enormous search space. This search
space is even larger than that of RC-TL and INTRAFORCE trajectory predictors, which only fo-
cus on optimizing the NN’s accuracy. In contrast, FedForce must optimize multiple objectives
simultaneously, including accuracy, computational cost, and communication cost. RL makes the
problem treatable by reducing the computations required to find the optimal solution compared
to hyperparameter grid search.

Assuming that the mobility dataset contains a set of Independent and Identically Distributed
(IID) users, FedForce distributes the RL-optimized NN among the FL participants to start train-
ing rounds. In the context of federated learning, IID means that each participant’s data samples
are independent and drawn from the same distribution. This assumption is important for en-
suring that the model can generalize well across all participants’ data. In FedForce, the set of
user trajectories can be partitioned into a set of disjoint clusters C = {ci ⊆ Θ|i = 1, . . . , q}, with
ci ∩ cj = ∅, ∀i, j ∈ {1, . . . , q}, i ̸= j, where each cluster contains IID trajectories. FedForce operates
on each cluster independently, thus, an instance of the proposed method runs in parallel for each
trajectory cluster. FedForce’s goal is to predict the future trajectory for each user u, based on the
user’s past mobility data and other users’ mobility information through the group intelligence
provided in a distributed ML way.

8.2 FedForce Trajectory Prediction System Architecture

FedForce’s workflow is divided into four phases, as shown in Figure 8.1 and detailed in Algorithm
6. These phases include: (1) local client eligibility estimation, (2) federated head client selection
and RL-TF optimization, (3) federated participants selection and FL training, and (4) pre-trained
model migration to silent clients.

The first section of the Algorithm 6 (lines 1 and 2) describes how eligible clients are estimated
using our proposed regularity ratio metric. The second section (lines 3 to 19) describes how a
head client is selected from a cluster of IID users and is responsible to train multiple RL agents
for designing throughput-adaptive high-performance transformer neural architectures. Each RL
agent optimizes the NAS problem from multiple perspectives of model accuracy, train time, trans-
mission time over wireless channel, and model size. The third section of the algorithm (lines 20 to
23) describes how federated training is conducted among a set of eligible users. The server after
receiving the optimized throughput-adaptive models from the RL agent, distributes them among
all FL participants. Finally, the fourth section of the algorithm (lines 24 to 26) explains how the
pre-trained network-adaptive models can be migrated to every user in the system including strag-
glers. This gives a decent opportunity of performing prediction tasks to every single user within
the network.

8.2. FedForce Trajectory Prediction System Architecture 133

Algorithm 6: FedForce Algorithm [18] ©2023 IEEE
Input: Set of trajectories Θ
Output: A federated-TF NN Fk for each FL participant k and each silent user uj

// 1. Client Eligibility Estimation Phase:

1 foreach Tj ∈ Θ do
// Users compute regularity ratio locally and send to server

2 ρj ← |Tj|/Dj;
// 2. Head Selection and RL-TF Optimization Phase:
// Build throughput-adaptive global TF Fk

3 hk ← arg maxj∈{1,...,n} ρj;
// Initialize RL agent Ak to optimize the Transformer architecture using data of user hk

4 Ak ← InitAgentRL(γ, α, ε, ε0)
// Initialize state-action table to zero for all states and actions

5 ∀(s, a) ∈ S× A : Q(s, a)← 0;
// Initialize exploration probability ε to maximum and empty architecture state

6 ε← 1, s← ∅;
// Optimize one TF architecture per throughput class, up to vmax episodes

7 foreach B ∈ [Blow, Bmid, Bhigh] do
8 foreach t ∈ {1, . . . , tmax} do

// Decrease exploration every tmaxε0 episodes

9 if t mod tmaxε0 = 0 then
10 ε← ε− ε0;

// ε-greedy strategy to select next TF architecture modification

11 at ← ε-GreedyAction(ε);
// Update state according to action at

12 s′ ← UpdateState(s, at);
// Train the transformer with data of the user hk for a few epochs θs and save model loss,

training time, and size.

13 s′∗ ← Train(s′, hk, θs);
14 Lt, It, Mt ← Evaluate(s′∗, hk);
15 Xt ← (Lt, Mt, Mt/B);
16 rt ← −Ct = −βXt

// Update state-action table

17 Q (s, at)← (1− α)Q (s, at) + α
(

rt + γ maxa∈A(s′) Q (s′, a)
)

;

18 s← s′;

19 H(B)← s
// 3. Participants Selection and FL Training Phase:
// Select k users with largest ρj

20 K ← arg maxK′⊆{ρ1,...,ρn},|K′|=k ∑ρ∈K′ ρ;
// Server distributes architectures H(Blow), H(Bmid), H(Bhigh) to users ∈ K

21 foreach r ∈ R do
22 FLStep(K);

// every p FL rounds

23 if r mod p = 0 then
// 4. Model Migration Phase: Server distributes the throughput-adaptive models

W(Blow), W(Bmid), W(Bhigh) to all users

24 foreach j ∈ {1, . . . , n} do
// User uj determines its throughput interval and uses the associated model

25 B← MeasureThroughput(uj);
26 Wj ←W(B);

134

FIGURE 8.1: FedForce architecture and workflow [18] ©2023 IEEE.

8.2.1 Local Client Eligibility Estimation

During this phase, all users compute the regularity ratio metric, as proposed in Section 4.6, on
their local data. The FL server collects users’ regularity ratios and information regarding their
computational resource capacity to estimate their data quality and periodicity letting only eligible
clients participate in the training phase. This is an effective way to filter out the stragglers, who
have inconsistent or poor-quality data or small computational resource available, from participat-
ing in the training phase. This approach helps save computational costs and training time, as only
users with high-quality and consistent data are selected, ensuring better training outcomes. More-
over, since only the eligible users participate in the training phase, this reduces the communication
overhead, thereby making the FL process more efficient.

8.2.2 Federated Head Client Selection and RL-TF Optimization

During this phase, the FL server chooses the user with the highest regularity ratio who has suf-
ficient computational resources as the head client. The server asks the head client to train the RL
agent and then, collects the optimized NN architecture and the trained weights.

At the head client side, the RL agent uses the ε-greedy Q-learning policy to design an optimal
TF architecture that will be transferred to the server and distributed among FL participants.

In FedForce, the action space is the set of all possible combinations of the distributed multi-
agent TF architecture’s hyperparameter values. As stated in Chapter 7, TFs are composed of
Encoder and Decoder stacks and characterized by a large set of hyperparameters named as the

8.2. FedForce Trajectory Prediction System Architecture 135

number, characteristics, and sequence of multi-head attention layers, add and norm layers, feed-
forward layers, and dropout layers. The FedForce action space can become remarkably large
relative to the input range of the hyperparameters (see the RL Agent Actions section of Table 8.1).

At the beginning of each episode in FedForce, the RL agent proposes a TF architecture as its
action, and the unknown reward associated with the selected architecture is evaluated by training
the suggested TF on the selected head client’s data for a few epochs. Once the exploration phase ends,
the RL agent enters the exploitation phase, where it selects the TF architecture with the highest
accuracy among all those explored. Similar to RC-TL and INTRAFORCE, the RL agent trains
on the chosen architecture until the model converges over a larger number of epochs than the
exploration phase. However, the RL algorithm in FedForce differs from the ones used in RC-
TL and INTRAFORCE, as discussed in Chapter 6 and Chapter 7, as it has to optimize multiple
objectives simultaneously in its cost function. We assume that on each RL episode t, the NN
architecture proposed by the agent has a model size of Mt [bit] ∈ N, and achieves a loss Lt ∈
R, which is defined as Sparse Classification Cross Entropy for classification and Mean Square
Error for regression. We assume that during each episode t, each user holds an average wireless
communication throughput Bt [bit/s] with the centralized server. We define the time needed to
train a NN at episode t as It [s] ∈ R, and the time needed to transfer a NN model between client
and server as Yt = Mt/Bt [s] ∈ R. Finally, we define the performance vector Xt = (Lt, It, Yt)⊺ ∈ R3×1

as the vector whose components represent one system performance metric.
In FedForce, the RL agent’s goal is to design a transformer NN architecture that jointly mini-

mizes three objectives of model loss, training time, and model size (i.e., model transmission time),
based on the information about the current communication throughput and the mobility dataset.
We feed three throughput intervals to the RL agent to consider variable network conditions be-
tween clients and server. The RL agent is responsible to design three NN architectures per each
of the throughput intervals so that if a mobile user changes its location during the FL training
rounds, it still can access to a proper model.

Different applications have different requirements: (1) Autonomous driving applications re-
quire high prediction accuracy and ultra-low latency; (2) latency-sensitive network applications
require faster prediction at the cost of a suboptimal accuracy; (3) traffic management services tol-
erate prediction delays but require the highest accuracy. Since it is not guaranteed that there is
a single solution that minimizes all components of the performance vector simultaneously, the
application must specify the optimizer parameters to achieve the desired tradeoff between model
accuracy and training and transfer time.

We convert the aforementioned multi-objective optimization problem into a single-objective
optimization problem by defining the RL’s cost function Ct = βXt at episode t as a linear com-
bination of the prediction loss, training time, and transmission time regulated by the application
coefficient β = (β1, β2, β3) ∈ [0, 1]1×3 where, ∥β∥1 = ∑3

i=1 |βi| = β1 + β2 + β3 = 1. The larger
the i-th coefficient component βi is in the cost function Ct = β1Lt + β2 It + β3Yt, the higher the
optimization algorithm prioritizes the related variable. At each episode t, the RL agent uses a
reward function rt = −Ct, to evaluate the performance of the candidate NN architecture and up-
dates its Q-table using the Bellman equation (Equation 8.1), where γ ∈ [(]0, 1) is the discount factor
that regulates the relevance of recent rewards, s′ is the resulting state from the action selected
by the agent, and R(s′) is the action space from state s′. We define the cumulative reward r∗t as

136

r∗t = ∑T′
k=0 γkrt+k, where T′ is the number of episodes used to compute the cumulative reward.

As the number of episodes increases, the Q-table’s content corresponding to the optimal policy π
tends to Qπ(st, at) = E[r∗t |st, at]. The RL agent selects the best NN architecture by searching the
state s∗ corresponding to the maximum value of the Q-table (i.e., the expected cumulative reward),
as shown in Equation 8.2.

Qt+1 (s, a) = (1− α)Qt (s, a) + α

(
rt + γ max

a′∈R(s′)
Qt
(
s′, a′

))
(8.1)

s∗ =

(
arg max

(s,a)∈S×R(s)
Qπ(s, a)

)
1

(8.2)

8.2.3 Efficient Participant Selection and Federated Training

During this phase, the FL central server receives the regularity ratio of each local user, which
is a numerical value that can be transmitted efficiently without violating privacy. The server
then sorts the ratios in descending order and selects a subset of k users with the highest ratios,
so that k << |n|, and sufficient computational resources to participate in the federated train-
ing rounds. The server distributes the RL-personalized throughput-adaptive NN architectures to
these selected users to initialize their local models. Each local user then selects and adapts the best
neural architecture based on their available uplink throughput and starts training. After train-
ing, users only share their trained weights with the server, rather than transmitting heavy and
private data. At the end of each training round r, the server collects the trained weights from all
clients and aggregates them into a global model per throughput interval. The server then returns
the updated model to the selected k local clients to continue local training until convergence is
achieved.

Since mobile users are free to move within the defined urban scenario, the server distributes
all three global models to every FL participant on each communication round r, so that they could
choose the appropriate architecture based on their distance from the server and the signal strength
they receive defining their throughput. We note that the value of k is determined by a grid search
that optimizes the tradeoff between prediction accuracy and computational resource consump-
tion.

8.2.4 Pre-trained Model Migration to Silent Clients

During this phase, the server periodically, every p rounds out of total training rounds, transfers all
three trained throughput-adaptive global models to every n− k system user, including ineligible
users who were not participating in training who we call them silent users. FedForce system
oscillates between phases 3 and 4 every p rounds to let silent users catch up with the trained
global models. We note that the value of p is determined through a grid search that optimizes the
tradeoff between prediction accuracy and communication overhead.

During this phase, the server transfers all three trained throughput-adaptive global models to
every n− k system user, including those who were not eligible to participate in training, known
as silent users. This process occurs periodically every p rounds, meaning that FedForce system

8.3. Evaluations 137

switches between phases 3 and 4 every p rounds to ensure that silent users have access to the
trained global models. This approach enables silent users to catch up with the latest model up-
dates, which ultimately improves prediction accuracy and system performance. The value of p
is determined through a grid search that optimizes the balance between prediction accuracy and
communication overhead.

8.3 Evaluations

We evaluate FedForce’s performance on the small-scale and a large-scale mobility scenarios, as dis-
cussed in Section 4.4, against various state-of-the-art mobility predictors. The large-scale scenario
is based on the Orange telecommunication S.A. [104] private dataset, while the small-scale scenario
is based on the ETH [68] plus UCY [47] public camera dataset.

As discussed in Section 4.7.1, we model the average wireless channel throughput Bt between
clients and the server at each time slot t as a uniform distribution from 10 Mbit/s to 100 Mbit/s,
formally Bt = U ([10, 100]), ∀t ∈ N. We categorize the throughput values into three intervals:
low throughput, from 10 Mbit/s to 40 Mbit/s, medium throughput, from 40 Mbit/s to 70 Mbit/s,
and high throughput, from 70 Mbit/s to 100 Mbit/s. While we have chosen three intervals for
simplicity, FedForce can be extended to accommodate more throughput intervals if necessary.

The third section of Table 8.1 (RL Agent Actions) shows the search space of hyperparame-
ters that form the TF architecture in the decentralized learning FedForce System, where each row
corresponds to one of the RL’s potential actions.

8.3.1 Large-Scale Mobility Scenario

In the large-scale scenario, to evaluate the FedForce performance in predicting the future base sta-
tion IDs for each user (defined as a classification task), we quantify the impact of RR-based fed-
erated client selection and multi-objective optimized RL-TF, within the FedForce system, with
respect to the classical FL algorithm and centralized ML trajectory predictor, on various metrics
of accuracy, train and transmission time (model size), resource consumption, and communication
overhead.

8.3.2 Small-Scale Mobility Scenario

In the small-scale scenario, to evaluate the FedForce performance in predicting users’ future loca-
tion coordinates (defined as a regression task), we compare it with group intelligence-based trajec-
tory predictors (either social-based central predictors or federated-based distributed predictors),
namely: Social-LSTM [3], Social-GAN [31], Sophie [74], Social-Ways [4], Social-STGCNN [60],
STAR [94], INTRAFORCE [20], and ATPFL [87] in terms of average displacement error.

8.3.3 Large-Scale Evaluation Results

The results of the large-scale experiment (Orange dataset), Figures 8.2 to 8.7, show that using RL to
search the TF’s architecture leads to a higher prediction accuracy and a faster neural architecture

138

TABLE 8.1: Experimental parameters for small-scale and large-scale scenarios in Fed-
Force System [18] ©2023 IEEE

Fixed Federated Learning and Transformer Parameters

FL training rounds 100
Clients’ training epochs 100

Batch size (small-scale, large-scale) 10, 200
Learning rate decay 0.002

Early stopping patience (in epochs) 10
Early stopping threshold (small-scale, large-scale) 0.05, 0.1

Dense layers’ activation func. (hidden, output) ReLU, SoftMax

Fixed RL Parameters

Maximum RL training episodes vmax 500
Training epochs per episode (exploration) θs 20

Training epochs after exploitation θl 200
Discount factor γ, learning rate α 1, 0.01

Exploration rate decay ε0 0.1
Training target per episode (small-scale) η 0.05
Training target per episode (large-scale) η 0.1
Cost function C coefficient β = (β1, β2, β3) (1/3, 1/3, 1/3)

Exploration training validation (small-scale) 4 sets train, 1 set test
Exploration training validation (large-scale) 10-fold, 70% train, 30% test

RL Agent Actions: Transformer Hyperparameters Space

Maximum mumber of hidden layers 10, 15, . . . , 50
Number of encoder and decoder layers 1, 2, 3, 4, 5

Number of heads in a multi-head attention layer 2, 4, 6, 8
Dimension of the key for a self-attention layer 64, 128, 265

Normalization layer parameter 10−2, 10−3, 10−6

Number of perceptrons in dense layer 20, 50, 80, 100, 150
Dropout ratio in dropout layer 0.15, 0.25, 0.5, 0.75

Mobile Networking Parameters

Number of users 100

8.3. Evaluations 139

20 40 60 80 100
Communication Rounds

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

Centralized
FedForce (RL)
ATP-FL (AutoML)
Classic FL

FIGURE 8.2: Accuracy convergence over federated training rounds of FedForce for
the large-scale scenario (Orange dataset) [18] ©2023 IEEE.

0 20 40 60 80
Communication Round

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

bp
s)

1 = 2 = 3 = 1/3

FIGURE 8.3: Time-varying wireless network bandwidth of FedForce for the large-
scale scenario (Orange dataset).

search and train time compared to centralized TP approaches. Furthermore, FedForce achieves a
better tradeoff over prediction accuracy, training and transmission time, resource consumption,
and communication overhead compared to the classical FL used in other TP works.

In particular, Figure 8.2 presents a comparison of the convergence rates of accuracy in FedForce
with respect to classical FL (without NAS), ATPFL (which uses AutoML NAS to design high-
accuracy NNs), and centralized ML. The plot also includes 95% confidence intervals to provide
a statistical measure of the variability in the results. We can observe that FedForce can converge
to a similar average accuracy compared to the centralized model although experiencing a small
delay in reaching the plateau. Moreover, we observe that FedForce achieves 10% higher prediction
accuracy than the classical FL model and 7% higher than ATPFL.

140

0 20 40 60 80 100
Communication Rounds

200

400
Tt

ai
n+

Tr
an

sm
iss

io
n

Ti
m

e
(s

ec
)

Classic FL
 Mob-FL
 FedForce

FIGURE 8.4: Train plus transmission time of FedForce over varying network
throughput for the large-scale scenario (Orange dataset) [18] ©2023 IEEE.

Wireless channels are subject to a variety of environmental factors that can affect their perfor-
mance and characteristics over time. These factors include interference from other devices, phys-
ical obstructions, distance between devices, and variations in temperature and humidity. As a re-
sult, the wireless channel’s performance can vary significantly over time, leading to fluctuations in
channel throughput. This is illustrated in Figure 8.3, which shows the wireless channel through-
put modeled through a uniform random distribution over the FL communication rounds. The
fluctuations in channel throughput depicted in the figure demonstrate the importance of adaptive
transmission protocols and dynamic resource allocation schemes, such as those employed in Fed-
Force, that can adapt to the varying characteristics of wireless channels to improve overall system
performance.

For fair comparisons, Figure 8.4 compares FedForce’s training plus transmission time to clas-
sical FL (without resource management) and MOB-FL (which manages computational resource
usage). Figure 8.4 shows that the overall latency of training plus transmission time for FedForce is
almost 50% less than MOB-FL and 70% less than the classical FL over a time-varying wireless net-
work bandwidth presented in Figure 8.3. The training and transmission time for classical FL and
Mob-FL is 265 seconds and 182 seconds, respectively, whereas for FedForce is only 97 seconds.

In Figure 8.5 and Figure 8.6, FF and FL stand for FedForce and Classical-FL, respectively. Fig-
ure 8.5 shows the impact of the number of federated participants (denoted as k) on the tradeoff
between resource consumption and accuracy. FedForce achieves comparable performance to clas-
sical FL, which uses 100% of the system users (k = 100) for training, even with the smallest num-
ber of participants (i.e., k = 10), thanks to the use of RL in designing high-performance neural
networks. In contrast, the global accuracy remarkably decreases in classical FL with k = 30, not
only due to the absence of NAS but also because the k = 30 users are chosen randomly, while in
FedForce, eligible users are selected based on estimated local data qualities through our proposed
regularity ratio metric.

Figure 8.6 shows the impact of the number of global model migrations (denoted as p), from

8.3. Evaluations 141

10 (FF) 20 (FF) 30 (FF) 100 (FF) 100 (FL) 30 (FL)
Number of Federated Participants k

0.0

0.5

1.0

0.69 0.74 0.77 0.81
0.68

0.59

0.1
0.2

0.3

1.0 1.0

0.3

Average Accuracy
Resource Consumption

FIGURE 8.5: Choice of number of federated participants k in the FedForce system for
the large-scale scenario (Orange dataset) [18] ©2023 IEEE.

1 (FF) 10 (FF) 25 (FF) 50 (FF) 100 (FF)
Index of Migration Round p

0.0

0.5

1.0

0.8 0.76 0.73
0.66

0.59

1.0

0.1
0.04 0.02 0.01

Average Accuracy
Communication Overhead

FIGURE 8.6: Choice of number of migration rounds p in the FedForce system for the
large-scale scenario (Orange dataset) [18] ©2023 IEEE.

k federated participants to n− k, silent users, on the tradeoff between communication overhead
and accuracy. We observe as the frequency of migrating the trained global models increases (from
right to left), the system’s communication overhead also increases. Consequently, since all users
receive more frequent model updates, the overall system accuracy increases as well. We can see
that FedForce achieves an average prediction accuracy of 76% by choosing k = 30 federated users,
and migrating global models to silent users at every p = 10 rounds (meaning to have total of 10
migrations through 100 training rounds).

FedForce can save up to 80% of computational resources by choice of k = 20 and up to 96% of

142

FIGURE 8.7: Q table of RL, adopting Q-learning policy, with normalized Q(s, a) val-
ues, corresponding to the FedForce cost function Ct [18] ©2023 IEEE.

communication overheads by choice of p = 25 (total of 4 migrations) with an acceptable accuracy
drop to 72% and 73%, respectively.

Figure 8.7 pictures the Q(s, a) table computed through Q-learning policy over RL. Each small
square shows a normalized Q value corresponding to the accumulated reward of a certain state-
action. In this heat map, the color density corresponds to the Q-value or, more precisely, the
cumulative reward associated with a specific action taken at a particular state. A higher density
color indicates a higher Q-value, which indicates a more favorable or rewarding outcome for the
corresponding action in the given state. For this particular RL example, we observe that the NN
architecture corresponding to the Q(s7, a11) (RL agent’s 11th action when RL system has been in
7th state) achieves the maximum reward or utility function. We note that, FedForce performance
shown in Figures 8.2, 8.4, 8.5, and 8.6), are accomplished through the neural architecture choice of
RL agent as stated in Figure 8.7.

8.3.4 Small-Scale Evaluation Results

Table 8.2 shows the results of the small-scale experiment (ETH+UCY datasets), in which FedForce
achieves the lowest ADE (0.20m) compared to several state-of-the-art centralized social trajectory
predictors and ATPFL [87] distributed social trajectory predictor. s ATPFL is the only work re-
ported in the literature that employs the popular ETH+UCY social-interactive mobility datasets
for the trajectory forecasting through federated learning. Aditionally, it can be observed that the
weighted FedAvg algorithm performs better than the normal FedAvg algorithm in reducing dis-
placement error.

8.4 Chapter Conclusions

In this chapter, we proposed FedForce, a federated mobility and trajectory predictor that uses
RL to design a transformer architecture based on the unique mobility features, the computational
resource availability, and the wireless network throughput. FedForce engages only a small group

8.4. Chapter Conclusions 143

TABLE 8.2: ADE [m] of different social and federated trajectory predictors for the
small-scale scenario (ETH+UCY datasets) [18] ©2023 IEEE.

Trajectory Predictor NN NAS FL ADE

Social-LSTM [3] LSTM - - 0.72
Social-GAN [31] GAN - - 0.58

SoPhie [74] GAN - - 0.54
Social-Ways [4] GAN - - 0.46

Social-STGCNN [60] GCNN - - 0.44
ATPFL [87] GNN-RNN Auto-ML FedAvg 0.30
STAR [94] Transformer - - 0.26
FedForce Transformer RL FedAvg 0.26

INTRAFORCE [20] Transformer RL - 0.22
FedForce Transformer RL Weighted FedAvg 0.20

of users who posses high quality of data and training capacity to participate in federated rounds
to guarantee efficiency in computational and communication costs.

We evaluated FedForce on two different datasets and showed that FedForce converges to the
same accuracy as the centralized training model, while the classical FL is up to 10% less accurate
and takes 50% more training and transmission time. Moreover, FedForce achieves an ADE of
0.20m, which is lower than the best-performing TP baseline. FedForce also can save up to 80% of
computational resources and 96% of communication overhead without remarkably reducing the
mean accuracy.

While FedForce has demonstrated robustness as a trajectory predictor, ensuring privacy, low
communication overhead, manageable resource usage, and high prediction accuracy, it operates
under the assumption that all local clients exhibit cooperative behaviors and employ a single neu-
ral network, designed by the head client, for all federated clients. However, in reality, even within
a group of IID mobile users as considered in FedForce, there can be competition among users,
distinct mobility features, and diverse desires. It is important to note that federated participants,
despite having IID datasets, may possess different mobility characteristics. In the context of a
distributed multi-agent scenario, it is probable that different users have distinct desires and, as
a result, require their own personalized neural architectures to enhance their performance and
efficiency. Therefore, in the next Chapter 9, we aim to model distributed mobile users in a non-
cooperative simultaneous game where the combination of multiple choices over local users will
be strategically chosen to ensure that no harm is done to anyone in terms of increasing the average
prediction loss or reducing the average prediction accuracy.

145

Chapter 9

Strategically-Robust Multi-Agent Trajec-
tory Prediction in Non-Cooperative Mo-
bility Networks

9.1 Chapter Introduction

In the previous chapter, we introduced a decentralized social-aware trajectory prediction using
federated learning. We personalized the model for each cluster of IID users based on user mobil-
ity features, computational resources, and network throughput. Our approach considered coop-
erative behavior within the collaborative clusters by sharing pre-trained federated models with
all the cluster mates. However, we did not perform inter-cluster non-cooperative social learning,
where users with different data features and conflicting objectives would participate in a collab-
orative training. Therefore, in this chapter, we aim to address the non-cooperative dynamics of a
multi-agent scenario by incorporating multi-RL game-theoretic trajectory prediction.

Despite advancements in social-aware trajectory prediction, there remains a major challenge
in ignoring non-cooperative neural network requirements. Existing social-aware predictors face
limitations in handling non-cooperative social behaviors. These predictors are mainly centralized
models where decision-making power is taken away from individuals and given to a centralized
unit to make cooperative decisions by aggregating everyone’s data through a single neural ar-
chitecture model, as discussed in Chapter 7. In reality, humans may behave differently due to
their personal goals, making it challenging for mobility predictors to accurately forecast their fu-
ture actions [73]. In a non-cooperative setting, local users must have individualized architectures
that suit their unique data characteristics but does not degrade other local users’ performance. A
specific NN architecture may be well-suited to capturing the unique data characteristics of one
user, while severely degrading the prediction performance of other users due to incompatibility
with their data features. Mobile users may have different mobility characteristics and objectives,
which need to be considered when designing multiple competing personalized neural network
architectures. Furthermore, heuristic models struggle to capture complex interactions, leading to
unreliable predictions. Thus, personalizing NN architectures becomes a crucial non-cooperative

146

FIGURE 9.1: An overview of Multi-Agent Reinforcement Learning-designed Social
Learning for non-cooperative trajectory prediction.

task in accurately predicting the joint trajectories of multiple users in a multi-agent setting. Al-
though there are few federated learning-based decentralized trajectory predictors in literature, as
discussed in Chapter 8, classical FL’s limitations include the inability to personalize NN architec-
tures as local users must have identical architectures to enable matrix summation. Therefore, the
issue of neural architecture inflexibility arises in FL. Hence, a research gap remains in address-
ing social-aware, non-cooperative, and non-centralized trajectory prediction models. Thus, we
propose a novel distributed NAS approach using multiple RLs to handle both intra-cluster re-
quirements, where the model can be shared among cooperative users, and inter-cluster dynamics,
where RLs compete to perform non-cooperative social trajectory prediction.

In this chapter, we aim to address the research question stated in Section 1.2.5 as follows.
"RQ 5: How can we create a resilient multi-agent trajectory predictor empowered by NAS that ef-

fectively captures the dynamics of cooperative and non-cooperative user behaviors with high accuracy and
efficiency?".

Our objective is to address the aforementioned limitations by developing a system that trains
social transformers to predict the joint trajectories of multiple competing users. To achieve this, we
aim to personalize the neural network architecture of each user based on their unique interests,
while also taking into account the strategies employed by other users. This approach ensures
that the desires and actions of one user do not negatively impact the models of other players,
fostering a harmonious and cooperative environment. In pursuit of these goals, we introduce a
novel model: Game-Theoretic Trajectory Prediction through Distributed Reinforcement Learning
(GTP-Force) system [19]1.

1Partially reproduced in this chapter – Copyright ©2011 IEEE.

9.2. GTP-Force Trajectory Prediction System Architecture 147

In response to RQ 5, there is a pressing need to develop a multi-agent trajectory prediction
model capable of accurately capturing the dynamics of both cooperative and non-cooperative user
behaviors. To address this requirement, our first contribution in this chapter focuses on clustering
users with similar trajectories into distinct clusters. Subsequently, we consider the users within
each cluster (intra-cluster) as cooperative users, enabling them to share a single neural network.
Conversely, the inter-cluster users are treated as non-cooperative, and each group is assigned a
separate neural architecture. To facilitate this approach, we introduce a game among the inter-
cluster users, where they actively compete with one another.

In this direction, it is essential to incorporate RL-based NAS into the system in order to select an
optimal combination of competing neural networks. This integration aims to optimize individual
players’ decision-making while simultaneously enhancing the overall strategy of the system.

Consequently, the second contribution of this work involves proposing multi-RL non-cooperative
learning, where dedicated RL agents are assigned to design the best neural architectures for com-
peting users within a multi-agent scenario. As depicted in Figure 9.1, contrasting the approach
in Figure 7.2, the computing users from different clusters have their own exclusive RL agents to
design their respective neural architectures. When multiple RL agents design multiple neural net-
works, and these networks are subsequently merged into a social pool, the models can impact
the training of other users. The non-cooperative game framework aids in identifying the most
effective combination of multiple neural networks for inter-cluster players.

To begin, GTP-Force clusters mobile users with similar trajectories resulting in inter-cluster
users with distinct trajectories and competing mobility features. These inter-cluster users are then
modeled as players in a non-cooperative game, with strategic choices made to ensure that no
negative impact is placed on any individual user’s decision.

To personalize the transformer’s NN architectures for each non-cooperative player, GTP-Force
employs an RL agent that is tailored to the specific mobility data features of the player, represen-
tative of the cluster of similar trajectories. This allows intra-cluster users with similar mobility
features to be modeled using a shared NN, while inter-cluster users with different mobility fea-
tures are treated as competitive players in a non-cooperative game.

To be more clear, the decentralized nature of GTP-Force allows users to keep their raw data
locally, increasing privacy while decreasing communication overhead. By combining distributed
reinforcement learning and game theory, GTP-Force addresses the challenge of non-cooperative
behaviors in trajectory prediction, while maintaining privacy and reducing communication costs.

After the set of potentially highest-performance RL-designed NN architectures of each player
is transferred to the centralized server, a social pooling layer is added to form a social-aware
trajectory predictor that captures the interactions of multiple interactive players, similar to the
centralized social-aware INTRAFORCE predictor presented in Chapter 7. GTP-Force’s centralized
server then trains different-architecture social predictors by combining users’ different decisions
(RL-designed neural architectures) to form a payoff matrix for a non-cooperative game.

By combining individualized NN architectures and a payoff matrix, GTP-Force offers a de-
centralized approach to social-aware trajectory prediction, allowing users to keep their raw data
locally and increasing privacy while decreasing communication overhead. The goal of GTP-Force,
is to predict the future trajectory for each user u, based on a user’s past mobility data and inter-
cluster users’ mutual influences in a non-cooperative environment.

148

FIGURE 9.2: GTP-Force Architecture [19] ©2023 IEEE.

9.2 GTP-Force Trajectory Prediction System Architecture

GTP-Force workflow is divided into four phases: (1) the game player selection, (2) the distributed
reinforced transformer training, (3) the social interaction payoff computing, (4) and the inter-cluster non-
cooperative TP training, which are illustrated in Figure 9.2 and elaborated on below. Figure 9.2
shows a social trajectory predictor that trains on data from multiple non-cooperative players and
jointly predicts multiple trajectories that are influenced by each other’s mobility. Each player is
selected from a distinct cluster that has unique mobility data features. It can be observed that an
RL agent is used to design the transofrmer’s encoder (E) and decoder (D) architectures for each of
the contesting inter-cluster players. Figure 9.3 illustrates the generic architecture of a transformer,
denoted as TF(E,D), for an individual user. In contrast, Figure 9.2 shows how multiple TF(E,D)s
of different individuals are merged through a social pool unit to form a social-aware trajectory
predictor. The RL design of each player’s encoder and decoder architecture must also satisfy
the Nash Equilibrium of a non-cooperative game being played. This means that an RL-designed
transformer for a player can only be chosen if it does not degrade the prediction output of other
players in a multi-agent scenario.

Algorithm 7 details the GTP-Force system’s workflow. The first section of the algorithm (lines
1 to 5) describes how competitive clients are chosen to be the players of the non-cooperative game.

9.2. GTP-Force Trajectory Prediction System Architecture 149

Algorithm 7: GTP-Force Workflow [19] ©2023 IEEE
Input: Set of trajectories Θ
Output: A social-TF F∗k with a combination of RL-designed NNs from Nash equilibrium
// Clustering similar trajectory users sij

1 foreach (Ti, Tj) ∈ Θ2 do
2 C ← Clustering(sij) ;

// Build a social transformer Fk, ∀ck ∈ C

3 foreach ck ∈ C // 1. Game Player Selection

4 do
5 Elect the representative user pk for cluster ck based on Regularity Ratio;

// 2. Distributed RL-TF Training
// Initialize RL agent Ak to optimize the TF architecture using data of player pk

6 Ak ← InitAgentRL(γ, α, ε, ε0)
// Initialize state-action table to zero for all states and actions

7 ∀(s, a) ∈ S× A : Q(s, a)← 0;
// Initialize exploration probability ε to maximum and empty architecture state

8 ε← 1, s← ∅;
// Optimize TF architecture up to vmax episodes

9 foreach v ∈ {1, . . . , vmax} do
// Decrease exploration every vmaxε0 episodes

10 if v mod vmaxε0 = 0 then
11 ε← ε− ε0;

// ε-greedy to select next TF architecture

12 if RandomSample([0, 1]) ≤ ε then
13 av ← random action a ∈ A(s);

14 else
15 av ← arg maxa∈A(s) Q(s, a);

// Update state according to action av

16 s′ ← UpdateState(s, av);
// Train the TF with data of the representative user pk for a few epochs θs. Compute model

error w and reward ρv of architecture modification (action a)

17 s′∗ ← Train(s′, rk, θs);
18 w← ComputeModelError(s′∗, rk);
19 ρv ← 1/w;

// Update state-action table

20 Q (s, av)← (1− α)Q (s, av) + α
(

ρv + γ maxa∈A(s′) Q (s′, a)
)

;

21 s← s′;
// Select m trained NN weights with lowest loss

22 Wk ← arg maxW ′⊆{w1,...,wm} Q(s, ·) ;
// 3. Social Interaction Payoff Computing

23 foreach σ ∈ {1, . . . , mk} do
// Train the Social-TF architecture with k Encoder Stacks connected to k Decoder Stacks through

one social pool for k players

24 Fk ← Train(fk, ck, θs);
// Form the Payoff Matrix A from strategy σk and prediction accuracy Fk

25 A← (σk, Fk), ∀k ∈ K;
// 4. Non-Cooperative Trajectory Prediction
// Compute Nash Equilibria through finding the best response of player j ∈ K

26 bj(σ−j)← arg maxσj∈Σ uj(σj, σ−j) ;
27 F∗k ← σ∗ = (σ∗1 , σ∗2 , . . . , σ∗k);

150

FIGURE 9.3: Transformer’s Encoder-Decoder TF(E,D) block for an individual
user [20] ©2022 IEEE.

In this direction, the algorithm forms disjoint clusters of similar-trajectory users. Afterward, the
algorithm assumes that intra-cluster users show cooperative behavior, while, inter-cluster users
are each others’ contestants with non-cooperative attitude. Therefore, from each cluster one user
is chosen as the player of that cluster. The second section of the algorithm (lines 6 to 22) describes
how players train locally the RL-designed transformers tailored to their unique characteristics of
their clusters. For each player, the RL agent provides a list of top high-performance transformer
neural networks. The third section of the algorithm (lines 23 to 25) describes how social interaction
among players is extracted for different combinations of their strategies (transformers) to form the
payoff matrix. Finally, the fourth section of the algorithm (lines 25 to 27) explains how the non-
cooperative game can be efficiently played by satisfying the Nash Equilibrium. In this section, the
algorithm aims to discover the optimal combination of diverse players’ neural architecture choices
for training a social predictor. The goal is to ensure that no player’s architecture significantly
hampers the performance of other players. Once the optimal strategy profile has been identified,
the joint trajectory prediction can be performed.

9.2.1 Game Player Selection

We assume that the n users in the system can be classified into k clusters of users with similar
trajectories, where k << n. Users are partitioned into distinct clusters C = ci ⊆ Θ|i = 1, . . . , q,
where ci ∩ cj = ∅ for all i, j ∈ 1, . . . , q, i ̸= j. Users within a cluster have comparable mobility
features and can be modeled using a single TF NN model. In contrast, inter-cluster users have
distinct mobility features and are treated as competitors, each with their own preferences and

9.2. GTP-Force Trajectory Prediction System Architecture 151

desirable strategies. To model the non-cooperative game among inter-cluster users, we select one
player from each cluster. The chosen player user of cluster ck is denoted as pk.

For selecting a player from each cluster, we prioritize those with the most reliable and periodic
data quality. This guarantees that the users that are chosen to play in the game can design the
best NN for the entire cluster. However, since GTP-Force is a distributed system and the central
server lacks access to local users’ raw data, local users themselves can calculate their regularity
ratios in both the time and frequency domains using our proposed regularity ratio, as presented in
Section 4.6. This metric allows local users to estimate the quality and periodicity of their own data
and only transmit regularity ratio values to the centralized server. In turn, this enables the central
server to select a player from each cluster with the most reliable estimated data. The acceptable
threshold of regularity ratios in both domains is set empirically based on the specific dataset being
used. By combining information from both domains, we can achieve a decent estimation of the
quality and periodicity of the local user data. The central server selects a user as the player for the
game only if their regularity ratios meet the threshold criteria in both time and frequency domains.

Limiting the engagement to only one player per cluster of similar users has two major benefits:
First, it reduces the computational and communication overheads associated with personalizing
the neural network architecture for each user, and secondly, it simplifies the complexity of the
game and facilitates the identification of the Nash equilibrium. As the number of players and pos-
sible decisions increase, the size of the payoff matrix grows exponentially, making it more chal-
lenging to identify a dominant strategy and Nash equilibrium. By limiting the engagement to one
player per cluster, the model personalization and strategic decision-making can scale effectively
in large-scale non-cooperative networks.

After the non-cooperative training phase, GTP-Force efficiently distributes the pre-trained
models to all users of each cluster from their respective cluster player users. This approach ensures
that every user in the system can perform prediction tasks effectively, without compromising the
accuracy or computational complexity of the model. This method is more efficient than using
pruning algorithms to manage the complexity of computations, as it eliminates the need for com-
plex pruning techniques and enables individual users to benefit from the same high-performing
models.

9.2.2 Distributed Reinforced Transformer Training

During the personalized transformer architecture training phase, each player in GTP-Force trains
an RL agent on their local data to personalize the transformer NN architecture based on their
unique mobility features, or in other words, intra-cluster features. Meanwhile, inter-cluster users
play in a non-cooperative game.

GTP-Force uses ε-greedy Q-learning policy for each RL agent to design a list of m optimal
transformer NN architectures. These architectures are then transferred to the server to be played
in a non-cooperative game so that the best NN per user can be chosen through Nash.

The action space for each RL agent, which personalizes each player, is the hyperparameters of
the transformers, as presented in Figure 9.3. The action space for the GT agent is the set of all pos-
sible combinations of multiple players’ different transformer architectures, which is interpreted as
different strategies of the game.

152

During the exploration phase, at each episode of local RL, the agent proposes a transformer
NN architecture, and the unknown reward associated with the selected architecture is evaluated
by training the suggested transformer on the player’s data. On each RL episode t, the NN ar-
chitecture proposed by the agent achieves a loss Lt ∈ R, which is defined as Sparse Classification
Cross-Entropy for classification and Mean Square Error for regression. The RL agent uses a reward
function rt = −Lt at each episode t to evaluate the performance of the candidate NN architecture
and updates its Q-table, similar to the equation shown in Chapter 8.

Finally, the RL agent completes its training on the chosen architecture until the model con-
verges over the exploitation phase. At the end, each RL agent selects the m best NN architectures
by searching the m states s∗ corresponding to the m maximum values of the Q-table shown in
Equation 8.2.

The goal of GTP-Force is training multiple RL agents on multiple decentralized players to
design multiple transformer NN architectures in a non-cooperative multi-agent environment that
minimize the model losses based on the features of different players. This approach allows for
personalized model training while still ensuring scalability and efficient decision-making.

9.2.3 Inter-Cluster Social Interaction Payoff Computing

At this point, each player’s trained RL agent sends a list of its m best NNs’ trained weights as
the its m possible decisions or strategies to the central server for the game. The central server
contains a social-pool module where multiple users transformer NN encoders and decoders can
be aggregated forming a social model. Therefore the joint predicted trajectories can show the
output of each players decision given other players’ strategies. We can model the social trajectory
prediction through a simultaneous non-cooperative game where the goal of GTP-Force is to find
the best combination of NNs for different conflicting players so that the interest of each player is
optimized while taking into account other users strategies.

In a classic non-cooperative simultaneous game, each player chooses their strategy indepen-
dently of the other players, and there is no communication or coordination between players. Mul-
tiple players make decisions simultaneously, without knowing the decisions made by the other
players. Let K = {p1, . . . , pk} be the set of players, where each player pj ∈ K can select a strategy
σj ∈ Σ among m = |Σ| possible strategies. The payoff for each player depends on the combina-
tion of strategies chosen by all players. The game’s outcomes for each player can be represented
by a payoff matrix A ∈ Rmk×k with entries aσ1,...,σk ,j, where σ1, . . . , σk ∈ Σ. Each row of matrix A
represents one of the mk possible combinations of strategies for all players [65]. The entry a1,...,k,j
represents the payoff for player j when the players choose the strategies σ1, . . . , σk. The matrix A
can be constructed as follows:

A =

 a1,...,1,1 a1,...,1,2 . . . a1,...,1,m
...

...
. . .

...
am,...,m,1 am,...,m,2 . . . am,...,m,m

 (9.1)

9.3. Evaluations 153

9.2.4 Non-Cooperative Mobility User Training

During this phase, the central server sends the completed payoff matrix to all players. Each ele-
ment of the matrix contains k joint predictions for k players, revealing the impact of each player’s
decision strategy (chosen NN architecture) on others in terms of social TP accuracy.

In the analysis of the non-cooperative simultaneous game, the concept of Nash equilibrium
is of utmost importance for determining the best strategy (in our case, best combination of NN
architectures) for multiple players.

The Nash equilibrium signifies a set of strategies in which no player is motivated to alter their
strategy, provided they are aware of the strategies of the other players. Nash equilibrium is not
necessarily the combination that yields the maximum total or expected payoff, but rather a set of
strategies that is rational, stable, and self-enforcing, given the strategies chosen by other players.
As the players act independently and may not have knowledge of other players’ strategies, it may
not always be possible to select the optimal solution.

A strategy profile σ∗ = (σ∗1 , σ∗2 , . . . , σ∗k) is a Nash equilibrium if, for each player j ∈ K, their
strategy σ∗j is the best response bj to the strategies of the other players, i.e., ∀σ ∈ Σk : uj(σ

∗) ≥
uj(σ). In this context, uj denotes the utility function of player j, which represents the player’s
preference over the possible outcomes. In other words, player j’s strategy σ∗j is a best response to
the strategies (σ∗1 σ∗2 . . . , σ∗j−1σ∗j+1 . . . , σ∗k) chosen by the other players. To find the best response of
player j, bj, in a non-cooperative game, we use the following formula:

bj(σ−j) = arg max
σj∈Σ

uj(σj, σ−j), (9.2)

where σ−j denotes the strategies of all other players in the game. To determine whether a given
strategy profile is a Nash equilibrium, we can find the best response of each player to the strate-
gies of the other players, using the formula for the best response given above, substituting σ−j
with (σ∗1 , σ∗2 , . . . , σ∗j−1, σ∗j+1, . . . , σ∗k). If each player’s chosen strategy is the best response to the
strategies of the other players in the given strategy profile, then the strategy profile is a Nash
equilibrium [65].

Given that players’ RL agents are rational and using the Nash equilibrium to personalize their
NNs, GTP-Force proceeds to evaluate the performance of the social-aware TP by selecting the best
combination of decisions in a multi-agent scenario.

9.3 Evaluations

We evaluate the performance of GTP-Force against several existing mobility prediction models in
two distinct scenarios. The first scenario involves a small moving area for users, while the second
scenario deals with a larger moving area, commonly referred to as the small-scale and large-scale
mobility scenarios, respectively. As discussed in Section 4.4, the large-scale scenario is based on
the Orange telecommunication S.A. [104] private dataset, while the small-scale scenario is based
on the ETH [68] plus UCY [47] public camera dataset.

154

The constant parameters used to train the Social TP model, TF predictor, and RL agent used
through GTP-Force are shown in the first two sections of Table 9.1. Additionally, the third section
of Table 9.1 displays the search space of hyperparameters that form the TF architecture, with each
row corresponding to one of the RL’s potential actions.

After clustering similar trajectory users and reducing the number of players in the non-cooperative
game, we are able to solve the Nash equilibrium using a brute force approach. However, it should
be noted that finding Nash equilibrium is a computationally challenging task and the brute force
approach may not be practical for large games involving many players. In such scenarios, we
consider using more advanced algorithms or heuristics, such as the Lemke-Howson algorithm or
support enumeration algorithm, which can offer more efficient solutions for finding Nash equilib-
rium.

9.3.1 Large-scale Mobility Scenario

For evaluating the GTP-Force performance in predicting future base station IDs in the large-scale
scenario, we conduct two experiments. In the first experiment, we compare the prediction ac-
curacy and build time for individual user TP of RL-TF with several other trajectory predictors,
including NN-based predictors RL-CNN, RL-LSTM, HO-LSTM, and GS-LSTM, as well as non-
NN predictors J48 Decision Tree, and XGBoost and RF ensemble models. RL-LSTM uses RL to
optimize LSTM architecture, while HO-LSTM and GS-LSTM use Hyperopt and Grid Search, re-
spectively. The aim of this experiment is to demonstrate that TFs and RL outperform other ML
predictors and hyperparameter optimization models.

In the second experiment, we evaluate the performance of the non-cooperative strategic GTP-
Force, using GT and RL on TF NNs, as a social-aware TP model in terms of accuracy and model
size performance metrics, in comparison to individual RL-designed TF (RL-TF), classical GT with
TF NNs without RL personalization (GT-TF), and the classical social-aware model with TF NNs
without strategic GT and RL personalization (Social-TF).

9.3.2 Small-Scale Mobility Scenario

To assess the performance of GTP-Force in predicting future location coordinates of users in the
small-scale scenario, we compared it with several group intelligence-based social trajectory pre-
dictors. These include Social-LSTM [3], Social-GAN [31], Sophie [74], Social-Ways [4], Social-
STGCNN [60], STAR [94], INTRAFORCE [20], and ATPFL [87], based on their average displace-
ment error.

9.3.3 Large-Scale Evaluation Results

The results obtained from the large-scale experiment conducted (Orange dataset) reveal that uti-
lizing RL to explore the NN architecture of the TF, and GT to model the decision-making of non-
cooperative multi-agent NN designs leads to superior prediction accuracy, expedited model build-
ing time, and reduced training parameter size compared to other trajectory prediction methods.

In Figure 9.4, we compare the Kernel Density Estimation (KDE) of accuracy between RL-TF
and other predictors. KDE is a non-parametric method used to estimate the probability density

9.3. Evaluations 155

TABLE 9.1: Experimental parameters of GTP-Force for small-scale and large-scale
scenarios) [19] ©2023 IEEE

Transformer Parameters

Batch size (small-scale, large-scale) 10, 200
Learning rate decay 0.002

Social Transformer training epochs θl 200
Early stopping patience (in epochs) 10

Early stopping threshold (small-scale, large-scale) 0.05, 0.1
Dense layers’ activation func. (hidden, output) ReLU, SoftMax

Reinforcement Learning Parameters

Maximum RL training episodes vmax 500
Training epochs per episode θs 20

Discount factor γ, learning rate α 1, 0.01
Exploration rate decay ε0 0.1

Training target per episode (small-scale) η 0.05
Training target per episode (large-scale) η 0.1

Exploration training validation (small-scale) 4 sets train, 1 set test
Exploration training validation (large-scale) 10-fold x-validation, 70% train, 30% test

RL Agent Actions: Transformer Hyperparameters Space

Number of hidden layers 10, 11, . . . , 50
Number ξ of encoder and decoder layers 1, 2, 3, 4, 5

Number of heads h in a multi-head attention layer 2, 4, 6, 8
Dimension of the key for a self-attention layer 64, 128, 265

Normalization layer parameter 10−2, 10−3, 10−6

Number of perceptrons in dense layer 20, 50, 80, 100, 150
Dropout ratio in dropout layer 0.15, 0.25, 0.5, 0.75

156

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0.5

1.0

1.5

2.0
Ke

rn
el

 D
en

sit
y

Es
tim

at
io

n
RL-TF
RL-CNN
RL-LSTM
HO-LSTM
GS-LSTM
XGBoost
RF
J48

FIGURE 9.4: Accuracy KDE of different trajectory predictors trained on an individual
user data for the large-scale scenario (Orange dataset) [19] ©2023 IEEE.

RL-TF RL-CNN RL-LSTM HO-LSTM GS-LSTM XGBoost RF J48
Trajectory Predictor

0.0

0.3

0.6

0.9

Ac
cu

ra
cy

FIGURE 9.5: Accuracy of different trajectory predictors trained on an individual user
data for the large-scale scenario (Orange dataset) [18, 19] ©2023 IEEE.

function of a random variable. It can be observed that the distribution of user prediction accuracy
for RL-TF is skewed towards higher values, indicating that it is better at predicting user trajectories
with greater precision.

We observe that in Figure 9.5 RL-TF archives mean accuracy of (75%), which is 10% greater
than the other reinforced models (RL-LSTM and RL-CNN) and almost 20% higher than non-NN
models (XGBoost, RF, and J48). Achieving a higher prediction accuracy over the Orange dataset is
restricted by the limited dataset size (63 days) and the significant diversity in users’ data sample
distributions. The obtained accuracy of 75% is the average accuracy over 100 random users with
highly variable data quality and periodicity.

In Figure 9.6, it is evident that RL-TF demands slightly more than one hour of build time,
which is comparable to RL-CNN and RF. Despite having larger architectures than CNNs and
LSTMs, TFs’ attention mechanism notably diminishes the build time. Furthermore, the RL-TF
build time is analogous to that of RF, which does not necessitate architecture exploration but only
training. However, RL-LSTM and HO-LSTM involve extended build times due to the sequential
nature of LSTMs and the extensive training of HO exploration.

In Figures 9.7a and b, we demonstrate the impact of tuning the number of dense layers and TF

9.3. Evaluations 157

RL-TF RL-CNN RL-LSTM HO-LSTMGS-LSTM XGBoost RF J48
Trajectory Predictor

0

300

600
Av

g.
 B

ui
ld

 M
od

el
 T

im
e

(m
in

)

62.77 56.04

177.02

322.69

631.89

0.07
52.41

0.08

FIGURE 9.6: Build time of different trajectory predictors trained on individual user
data for the large-scale scenario (Orange dataset) [18, 19] ©2023 IEEE.

10 20 30 40 50
Number of Dense Layers

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

User1
User2
User3
User4

(A)

1 2 3 4 5
Number of Encoder Blocks

0.6

0.7

0.8
Ac

cu
ra

cy

User1
User2
User3
User4

(B)

FIGURE 9.7: Dense layer (a) and encoder (b) hyperparameters studying for RL-TF.

encoder block hyperparameters on the prediction accuracy of four random users. This provides
an insight into how the RL agent explores various hyperparameters to discover high-performance
NN architectures. Of particular interest is the observation in Figure 9.7a, which indicates that as
the number of dense layers increases up to a certain point, the accuracy also increases. However,
after this point, the accuracy either stays constant or decreases. This illustrates that overfitting
occurs when the model learns to fit the noise in the training data, rather than the underlying
patterns. As a result, the model exhibits poor generalization performance on new, unseen data.
Due to the heavy computational requirements of TF encoders, the RL agent attempts up to five
encoder blocks, as illustrated in Figure 9.7b. This figure reveals that as the number of encoder
blocks increases, the accuracy also increases, taking into account that the computational demands
also rise considerably.

To have fair evaluations, we compare the average accuracy of GTP-Force, which employs non-
cooperative GT in social TP via RL-designed TFs, with respect to RL-designed Social-TF, Game-
theoretic Social-TF without RL personalization, and Social-TF without RL personalization or non-
cooperative GT modeling, as shown in Figure 9.8. It can be observed that GTP-Force achieves
an average accuracy of 80%. This represents a 5% improvement over the RL-based TF predictor,

158

GTP-Force RL+ Social-TF GT+ Social-TF Social-TF
Trajectory Predictor

0.3

0.6

0.9

Ac
cu

ra
cy

FIGURE 9.8: Accuracy of GTP-Force with respect to RL-based TF, GT-based TF with-
out RL, and social-TF in the large-scale scenario (Orange dataset) [19] ©2023 IEEE.

2U-1C 5U-2C 10U-3C
User Size (U) - Cluster Size (C)

0

2

4

6

8

M
od

el
 S

ize

1e4
GTP-Force
Classical GT + Social-TF

FIGURE 9.9: Model size of the GTP-Force with respect to the classical GT for the
social-TF trajectory prediction in the large-scale scenario (Orange dataset) [19] ©2023

IEEE.

a 10% improvement over the classical GT-based TF predictor without RL personalization, and a
15% improvement over the simple Social-TF without RL or GT.

Figure 9.9 compares the average model size of GTP-Force, an RL- and cluster-based game
theoretic approach, with that of the classical GT approach for social-aware transformer-based
trajectory prediction across various numbers of users. The model size difference gap between
GTP-Force and the classical GT approach increase as the number of users, and subsequently the
number of clusters, rises. Despite the expected increase in complexity due to the use of RL, GTP-
Force clusters similar users and selects a small number of players from each cluster for the game,
resulting in a smaller neural model size than the classical approach that is played and trained
among a greater number of players whose neural architectures are not even optimized.

9.3. Evaluations 159

TABLE 9.2: ADE [m] of different social trajectory predictors for the small-scale sce-
nario (ETH+UCY datasets) [19] ©2023 IEEE

Work ETH Hotel Univ Zara1 Zara2 Mean

Social-LSTM 1.09 0.79 0.67 0.47 0.56 0.72
Social-GAN 0.81 0.72 0.60 0.34 0.42 0.58

SoPhie 0.70 0.76 0.54 0.30 0.38 0.54
Social-BiGAT 0.69 0.49 0.55 0.30 0.36 0.48
Social-Ways 0.39 0.39 0.55 0.44 0.51 0.46

Social-STGCNN 0.64 0.49 0.44 0.34 0.30 0.44
PECNet 0.54 0.18 0.35 0.22 0.17 0.29

STAR 0.36 0.17 0.31 0.26 0.22 0.26
INTRAFORCE 0.31 0.24 0.22 0.14 0.23 0.22

GTP-Force 0.27 0.17 0.21 0.16 0.18 0.19

6 7.5 9 10.5 12
x-axis (m)

-1

0.5

2

y-
ax

is
(m

)

LSTM Prediction
Ground Truth
TF Prediction
Observation

FIGURE 9.10: Predicted trajectories by TF and LSTM versus the ground-truth trajec-
tory [19] ©2023 IEEE.

9 10.5 12
x-axis (m)

-1

-0.25

0.5

y-
ax

is
(m

)

RL-TF Predictions
Ground Truth

FIGURE 9.11: Various RL-designed TF predictions versus the ground-truth path in
the small-scale scenario (ETH+UCY datasets) [19] ©2023 IEEE.

9.3.4 Small-Scale Evaluation Results

Table 9.2 shows the results of the small-scale experiment (ETH+UCY datasets), in which GTP-
Force achieves the lowest ADE (0.19m) compared to several state-of-the-art social trajectory pre-
dictors.

160

Figure 9.10 displays several predicted trajectory points by both TF and LSTM, as compared to
the ground-truth trajectory. We can observe that the optimal RL-designed TF path more closely
resembles the ground-truth path than the optimal RL-designed LSTM path.

Figure 9.11 depicts various RL-designed TF predictions, corresponding to different TF NNs,
as compared to the ground-truth path. We can discern that RL agent’s different random actions
(proposed TF NNs) result in different prediction accuracies. Moreover, in this figure, we show
that how we sort each player’s m best actions based on their deviation from the ground-truth path
to define its decision choices for the game.

9.4 Chapter Conclusions

We introduce GTP-Force, a novel system for constructing a highly accurate trajectory predictor
that captures the social interactions among multiple mobile users. Utilizing Reinforcement Learn-
ing, GTP-Force designs the high-performance Transformer architecture based on the intra-cluster
user mobility features. Subsequently, GTP-Force applies a non-cooperative game theory to deter-
mine the optimal combination of inter-cluster neural network architectures in the dynamic multi-
agent environment.

Our evaluation of GTP-Force is conducted on both small and large-scale scenarios, utilizing
the ETH+UCY and Orange datasets, respectively. In the small-scale scenario, the proposed GTP-
Force attains an ADE of 0.19m, which corresponds to a lower positioning error when compared to
several state-of-the-art models. In a large-scale scenario, our study demonstrates that Reinforced
Transformers outperform both of the best baselines, LSTM- and CNN-based predictors, by achiev-
ing up to 10% higher accuracy and reducing training time by up to 70%. Our trajectory predictor,
based on the Reinforced Transformer in game theory, achieves 80% average accuracy, 5% higher
than RL-designed Social-TF, 10% higher than game theoric Social-TF (without RL personalization),
and 15% higher than the simple Social-TF (without RL and GT). Our experiments show that by
increasing the number of users in the system and subsequently in each cluster of similar behavior
mobile users, GT-Force significantly reduces the number of training parameters compared to the
classical game theoretic Social-TF so that the model size gap between GTP-Force and the classical
GT approach widens, with GTP-Force consistently achieving a smaller model size for trajectory
prediction.This result suggests that our proposed approach is highly scalable and efficient, making
it suitable for large-scale scenarios while maintaining high prediction accuracy.

161

Chapter 10

Conclusions

10.1 summary

The increasing prevalence of mobile devices and the Internet of Things has led to the widespread
availability of mobility and location data. This data provides numerous benefits, including the
ability to predict human, vehicle, and robot trajectories. These predictions have a wide range of
applications, such as in intelligent transportation, urban planning, rescue and emergency situa-
tions, autonomous vehicle driving, collision avoidance, and improving the quality of service for
modern wireless network services like handover management and service migration.

Trajectory prediction involves forecasting the path an individual or a group may take at a
specific time and location, based on their previous behavior and mutual interactions within the
complex urban environment. Mobility and location data, such as GPS data, sensor data, IoT de-
vices’ data, social platforms location tags, WiFi access point data, and visited base station data,
provide valuable inputs for trajectory prediction models. Machine learning and deep learning
algorithms can then analyze and process this data to make accurate predictions. The power of
mobility and location data can provide valuable insights into human behavior, which can be used
to improve critical services’ planning and decision-making.

In this thesis, we have developed advanced trajectory prediction models and decision-making
algorithms for various urban environment scenarios, including isolated, multi-agent, centralized,
distributed, cooperative, and strategic scenarios, using state-of-the-art machine learning and deep
learning techniques. The primary aim of these predictors is to reduce the loss and mean squared
error of trajectory predictions while simultaneously minimizing the model size, number of train-
ing parameters, training time, and transmission time through reinforcement learning. Addition-
ally, by clustering users with similar trajectories and tailoring the models to their intra-cluster
unique data, and by considering the available wireless network bandwidth, we can improve pre-
diction accuracy in specific regions while minimizing the computational load on the prediction
system.

Furthermore, we have also introduced strategic games to model inter-cluster dynamics, where
users possess distinct preferences and mobility characteristics. Through the analysis of game-
theoretic solutions, we can gain insights into how user behavior impacts overall mobility patterns

162

and develop strategies to enhance the efficiency of predictive systems.
To evaluate the performance of our trajectory predictors, we conducted experiments on two

distinct datasets: small-scale (image dataset) and the large-scale (mobile network dataset) mobility
scenarios. For the large-scale scenario, we used a private dataset from Orange telecommunication
S.A. [104], where users can move over a wide area spanning several kilometers. Therefore, GPS
coordinates of a user within a small area are not relevant for trajectory prediction, and the trajec-
tories are defined as a sequence of visited cellular base stations over time, making the prediction
task a classification task. For the small-scale scenario, we used the ETH [68] plus UCY [47] public
camera dataset, where users move within a small area of a few tens of meters. In this case, the
information about the base station a user is connected to is not relevant for trajectory prediction
and does not contribute to improving the task. Therefore, we only considered the small-scale
user position coordinates in the trajectories, which made the prediction task a regression task.
Through these experiments, we demonstrated the effectiveness of our trajectory predictors and
decision-making algorithms in various scenarios with respect to several state-of-the-art mobility
and trajectory predictors.

To demonstrate the advantages of our advanced trajectory prediction algorithms, we have
conducted extensive testing on real-life network applications, including handover management
and service migration in multiple-input and multiple-output (MIMO) systems. By accurately pre-
dicting the trajectories of mobile devices, we can optimize the handover process between base
stations, reducing latency and enhancing the overall user experience. Additionally, our trajectory
prediction algorithms can assist in service migration, ensuring seamless and uninterrupted con-
nectivity for mobile users as they move between different locations. Our research has shown that
the use of advanced trajectory prediction algorithms can significantly improve the efficiency and
performance of real-life network applications, providing a more reliable and seamless experience
for mobile users.

In the following two sections, we will reiterate the significant contributions of our work in op-
timizing performance metrics and highlight our achievements and conclude this thesis by high-
lighting potential research directions for future studies.

10.2 Contributions

In this section, we will provide a summary of the contributions made in this thesis by revisiting
the research questions we designed and the proposed systems and methods to address them.

10.2.1 Trajectory Prediction-Driven Handover Management and Service Migration in
Multi-Access Edge Computing Environments

In Chapter 5, we introduce three high-performance models: RL-LSTM, RL-HEC, and RL-SM.
These models encompass an automated trajectory predictor, a proactive handover management
model, and an anticipatory service migration model, respectively.

In this chapter, we responded to research questions RQ 1.1 and RQ 1.2 as follows:

10.2. Contributions 163

• RQ 1.1: What strategies can be implemented to enhance the dependability of existing neural archi-
tecture search techniques in trajectory prediction, while maintaining an optimal trade-off between
neural network accuracy and convergence rate?

We proposed a reinforcement learning method for personalizing the architecture search for
LSTM networks with high prediction accuracy and a fast convergence rate. Our reinforce-
ment learning method offers a more efficient solution to the non-convex, non-linear NP-hard
neural architecture search problem compared to existing AutoML approaches. We validated
our proposed RL-LSTM approach using a large-scale real-world anonymized dataset col-
lected from the Orange telecommunication network operator. Through extensive exper-
imentation, we have demonstrated that our proposed RL-LSTM trajectory predictor sur-
passes various state-of-the-art neural network predictors and neural architecture search meth-
ods in terms of performance, training time, and accuracy.

• RQ 1.2: How can we establish a resilient proactive handover mechanism that ensures high-quality
service and uninterrupted network connectivity for applications such as service migration, leveraging
the capabilities of high-performance neural networks?

Leveraging our proposed high-performance RL-LSTM mobility predictor, we have devised
a proactive handover management and service migration algorithm tailored for MEC sce-
narios in modern wireless networks. Our experimental results demonstrate that our novel
proactive handover algorithm and service migration scheme, which leverages mobility pre-
diction, outperforms state-of-the-art handover management algorithms. Our simulation re-
sults show that the proposed solutions can effectively reduce ping-pong handover rates to
almost zero while increasing the measured network throughput by 1.5 times compared to
existing solutions. This leads to a significantly lower number of migration attempts and
failures over service migration applications, improving the quality of service.

For more comprehensive insights and detailed information, we recommend reading our jour-
nal paper [104], which extensively examines the subject matter.

10.2.2 Large-Scale Individual-Agent Trajectory Prediction

In Chapter 6 we proposed RC-TL, an automated neural network design trajectory prediction sys-
tem for large-scale network scenarios to guarantee scalability.

In this chapter, we responded to research questions RQ 2.1 and RQ 2.2 as follows:

• RQ 2.1: What alternative neural network architectures can be employed to replace conventional
RNNs in trajectory prediction, allowing for more effective capturing of complex spatiotemporal mo-
bility features?

We proposed a 1D-CNN-based trajectory predictor as an alternative to the widely used
LSTMs. The choice of 1D-CNNs offers distinct advantages, including enhanced speed and
robustness.

• RQ 2.2: How can we efficiently scale neural architecture search to personalize trajectory prediction for
multiple individuals within large-scale networks, taking into account the challenges arising from the

164

heterogeneity of users’ data? What is the optimal balance between computational resource utilization
and prediction accuracy in this context?

Providing a personalized mobility prediction model considerably improves the performance
and quality of mobility predictors, but an optimized design of these predictors is a costly
task and cannot be feasibly performed for each user in a network. In this direction, we
proposed a CNN-based trajectory predictor, called RC-TL, which leverages the similarities
in users’ trajectories to build specialized neural networks for entire clusters of users, thus
decreasing the resource utilization in terms of CPU time to optimize neural networks for in-
dividual users. A Reinforcement Learning agent is used to discover the highest-performance
neural architecture for the CNN trajectory predictor within a given search space. Transfer
learning is applied to specialize a cluster’s neural network for a given user after the best
architecture for their cluster is found. We validated the proposed model on Orange’s real-
world, large-scale mobility dataset. Results show that RL-CNN improves the prediction
accuracy by almost 10% on average over the state-of-the-art approaches while its conver-
gence is much faster than other approaches. Moreover, results of clustering-level trajectory
prediction through the RC-TL framework illustrate that the system can save up to 90% of
computational resources while losing only 3% of the average accuracy.

For more comprehensive insights and detailed information, we recommend reading our RC-
TL paper [21], which extensively examines the subject matter.

10.2.3 Social-aware Multi-Agent Trajectory Prediction

In Chapter 7 we presented INTRAFORCE, a system to build a trajectory predictor that learns the
social interaction within clusters of similar mobile users.

In this chapter, we responded to research questions RQ 3.1 to RQ 3.3 as follows:

• RQ 3.1: What alternative neural network architectures can be employed to replace conventional
CNNs in trajectory prediction, allowing for more effective learning of complex time-series mobility
data?

We proposed a transformer-based trajectory predictor as an effective alternative to CNNs,
leveraging the advancements in time-series analysis. While CNNs excel in image process-
ing, transformers have emerged as specialized models for time-series data. Therefore, we
expanded the utilization of transformers from neural language processing to trajectory pre-
diction.

• RQ 3.2: How can we effectively reduce the computational complexity of existing social-aware methods
while preserving the overall accuracy of the system’s trajectory predictions?

• RQ 3.3: How can we integrate the personalization paradigm of neural architecture search into multi-
agent social trajectory prediction, enabling the search for high-performance neural networks tailored
to the unique mobility patterns of interactive users, rather than focusing solely on individuals?

We proposed a multi-agent transformer-based trajectory predictor, called INTRAFORCE,
which uses Reinforcement Learning to build a Social-Transformer architecture based on the

10.2. Contributions 165

intra-cluster user mobility features. INTRAFORCE is evaluated on small and large-scale
scenarios, based on the ETH+UCY and the Orange datasets, respectively. In the small-scale
scenario, INTRAFORCE achieves an average displacement error of 0.22, which corresponds
to a lower positioning error compared to several state-of-the-art models. In the large-scale
scenario, we show that Reinforced Transformers outperform LSTM- and CNN-based pre-
dictors by achieving up to +10% accuracy and up to −70% training time, and outperform
non-neural models based on RF and J48 of up to +20% accuracy. Our experiments show that
increasing the number of users in a cluster leads to slightly higher accuracy, while consid-
erably decreasing the time needed to build and train the trajectory predictors, as well as the
number of training parameters.

For more comprehensive insights and detailed information, we recommend reading our IN-
TRAFORCE paper [20], which extensively examines the subject matter.

10.2.4 Distributrd Multi-Agent Trajectory Prediction

In Chapter 8, we proposed FedForce, a distributed trajectory predictor based on a federated learn-
ing paradigm for decentralized multi-agent scenarios.

In this chapter, we responded to research questions 4.1 to 4.3 as follows:

• RQ 4.1: What methodology can be developed to estimate the quality of local user datasets, allowing
the reporting of summarized information to the central server in federated learning, without compro-
mising the privacy of raw data, in order to provide the server with a general understanding of the
potential of local users’ datasets?

We proposed a quality-estimator method that selectively involves a small group of users
who possess high-quality data and robust training capacity in FL training rounds. Our pro-
posed quality estimator metric analyzes mobility data in both the time and frequency do-
mains. This metric generates a numerical value indicating the reliability of a user’s data.
Our solution offers a significant advantage as each local user can compute this metric on
their data and only transmit the metric value to the central server, eliminating the need to
transmit the actual data to increase privacy.

• RQ 4.2: How can we optimize computational resource usage and minimize communication overhead
in federated learning by devising a selection mechanism that chooses a subset of eligible local users
to participate in each federated training round, while still maintaining representative and diverse
dataset contributions?

• RQ 4.3: How can we design an efficient multi-objective neural architecture search algorithm for feder-
ated learning, aiming to develop high-performance models that concurrently optimize accuracy, train-
ing time, and transmission time, considering the varying network throughput and diverse datasets of
federated participants, in order to achieve an optimal trade-off among these factors?

We proposed a transformer-based distributed trajectory predictor, called FedForce, which
uses reinforcement learning to design the predictor’s neural architecture based on the unique

166

mobility features, the computational resource availability, and the wireless network through-
put. In this direction, we manipulate the reward function of the RL algorithm to incorporate
a multi-objective cost function containing accuracy, training time, transmission time, and
model size. This approach enables us to optimize such crucial factors simultaneously. We
evaluated FedForce on two different datasets and showed that FedForce outperforms LSTM-
and CNN-based trajectory predictors by 10% better accuracy and up to 70% lower training
time. FedForce also outperforms non-NN models (e.g., RF, J48) by up to 20% better accuracy.
We further show that FedForce converges to the same accuracy as the centralized training
model, while the classical FL is up to 10% less accurate and takes 50% more training and
transmission time. Moreover, FedForce achieves an ADE of 0.20m, which is lower than the
best-performing TP baseline. FedForce also can save up to 80% of computational resources
and 96% of communication overhead without remarkably reducing the mean accuracy.

For more comprehensive insights and detailed information, we recommend reading our Fed-
Force paper [18], which extensively examines the subject matter.

10.2.5 Non-Cooperative Multi-Agent Trajectory Prediction

In Chapter 9 we introduce GTP-Force, a novel system for constructing a highly accurate trajectory
predictor that captures the social interactions among multiple non-cooperative mobile users.

In this section, we responded to the research question 5 as follows:

• RQ 5: How can we create a robust multi-agent trajectory prediction system empowered by neural
architecture search, capable of accurately and efficiently capturing the dynamics of both cooperative
and non-cooperative user behaviors?

We proposed a transformer-based non-cooperative trajectory predictor, called GTP-Force,
which uses reinforcement learning to design the high-performance Transformer architecture
based on the intra-cluster user mobility features. Subsequently, GTP-Force applies a non-
cooperative game theory to determine the optimal combination of inter-cluster neural net-
work architectures in the dynamic multi-agent environment. Our evaluation of GTP-Force
is conducted on both small and large-scale scenarios, utilizing the ETH+UCY and Orange
datasets, respectively. In the small-scale scenario, the proposed GTP-Force attains an ADE of
0.19, which corresponds to a lower positioning error when compared to several state-of-the-
art models. In a large-scale scenario, our study demonstrates that Reinforced Transformers
outperform both of the best baselines, LSTM- and CNN-based predictors, by achieving up
to 10% higher accuracy and reducing training time by up to 70%. Furthermore, our pro-
posed approach exceeds the performance of non-neural models based on XGBoost, RF, and
J48 by up to 20% in terms of accuracy. Our trajectory predictor, based on the Reinforced
Transformer in game theory, achieves 80% average accuracy, 5% higher than individual RL-
TF, 10% higher than GT-TF without RL personalization, and 15% higher than cooperative
social-TF without RL personalization. Our experiments show that by increasing the number
of users in the system and subsequently in each cluster of similar behavior mobile users, GT-
Force significantly reduces the number of training parameters compared to the case where

10.3. Future Work 167

multiple RL-TFs are individually trained. This result suggests that our proposed approach is
highly scalable and efficient, making it suitable for large-scale scenarios while maintaining
high prediction accuracy.

For more comprehensive insights and detailed information, we recommend reading our GTP-
Force paper [19], which extensively examines the subject matter.

10.3 Future Work

The potential applications of trajectory prediction are vast, and future research can explore new
directions and innovative approaches for enhancing the accuracy and efficiency of these models.
By addressing the challenges and opportunities presented by trajectory prediction, we can im-
prove our understanding of human mobility patterns and develop more efficient and effective
systems for intelligent transportation, modern wireless networks, and other critical areas. While
our work has significantly improved the accuracy and efficiency of trajectory prediction models
in various aspects, including personalized, multi-agent, distributed, Privacy-preserving, and non-
cooperative scenarios, there is still significant room for improvement and further research. This
section will outline potential future directions for trajectory prediction research, building upon
our work and addressing remaining challenges in this field as follows.

• Isolated-Agent Trajectory Prediction:

- Context-Aware Prediction: It is required to enhance trajectory prediction models by incorpo-
rating contextual information, such as weather conditions, road conditions, and traffic patterns.
By considering these factors, individuals can anticipate changes in their surroundings and adapt
their trajectories accordingly.

• Multi-Agent Social-Aware Trajectory Prediction:

- Hybrid Models: It is required to explore the combination of rule-based models and data-
driven approaches to enhance multi-agent trajectory prediction. Rule-based models can capture
common social behaviors and conventions, while data-driven approaches can adapt to specific
contexts and individual agent characteristics.

- Real-Time Adaptation: It is required to enhance multi-agent trajectory prediction models
with real-time adaptation capabilities. Agents should be able to quickly update their predictions
based on observed changes in the environment or the behaviors of other agents, ensuring dynamic
and responsive navigation in complex social settings.

• Multi-Agent Federated Trajectory Prediction:

- Resource-Constrained Environments: It is required to optimize federated learning algorithms
for resource-constrained environments, such as edge devices or autonomous vehicles with limited
computational capabilities. For instance, efficient model compression and parameter quantization
will be crucial for effective distributed trajectory prediction.

168

- Robustness and Security: It is required to address challenges related to robustness and secu-
rity in federated learning-based trajectory prediction. Design mechanisms to detect and mitigate
adversarial attacks, ensure data integrity and prevent model poisoning, maintaining reliability
and trustworthiness.

• Multi-Agent Non-Cooperative Trajectory Prediction:

- Incentive Design: It is required to investigate incentive mechanisms and design strategies to
encourage cooperative behavior among non-cooperative agents. By aligning individual interests
with collective goals, trajectory prediction systems can promote more cooperative and socially
beneficial behaviors, leading to improved overall traffic flow and efficiency.

169

Bibliography

[1] 3GPP. “Evolved universal terrestrial radio access (e-utra); radio resource835control (rrc);
protocol specification, 3GPP TS 36.331 V9.4.0 (2010-09),” in: Evolved Universal Terrestrial Ra-
dio Access (E-UTRA);Radio Resource837Control (RRC);Protocol specification(Release 9) (2011).

[2] Nadine Akkari and Nikos Dimitriou. “Mobility management solutions for 5G networks:
Architecture and services”. In: Computer Networks 169 (2020), p. 107082.

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei,
and Silvio Savarese. “Social LSTM: Human Trajectory Prediction in Crowded Spaces”. In:
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[4] Javad Amirian, Jean-Bernard Hayet, and Julien Pettré. “Social ways: Learning multi-modal
distributions of pedestrian trajectories with gans”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops. 2019, pp. 0–0.

[5] Mohammad Bahram, Andreas Lawitzky, Jasper Friedrichs, Michael Aeberhard, and Dirk
Wollherr. “A game-theoretic approach to replanning-aware interactive scene prediction
and planning”. In: IEEE Transactions on Vehicular Technology 65.6 (2015), pp. 3981–3992.

[6] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. “Designing neural network
architectures using reinforcement learning”. In: arXiv preprint arXiv:1611.02167 (2016).

[7] Stuart J Barnes. “Location-based services: the state of the art”. In: E-Service 2.3 (2003),
pp. 59–70.

[8] C. Barrios, Y. Motai, and D. Huston. “Trajectory Estimations Using Smartphones”. In: IEEE
Transactions on Industrial Electronics 62.12 (Dec. 2015), pp. 7901–7910. ISSN: 0278-0046. DOI:
10.1109/TIE.2015.2478415.

[9] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimization.”
In: Journal of machine learning research 13.2 (2012).

[10] Guangshuo Chen, Aline Carneiro Viana, Marco Fiore, and Carlos Sarraute. “Complete tra-
jectory reconstruction from sparse mobile phone data”. In: EPJ Data Science 8.1 (2019), p. 30.

[11] Yan-Ying Chen, An-Jung Cheng, and Winston H Hsu. “Travel recommendation by mining
people attributes and travel group types from community-contributed photos”. In: IEEE
Transactions on Multimedia 15.6 (2013), pp. 1283–1295.

https://doi.org/10.1109/TIE.2015.2478415

170 Bibliography

[12] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. “Client selection in federated learning: Conver-
gence analysis and power-of-choice selection strategies”. In: arXiv preprint arXiv:2010.01243
(2020).

[13] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. “Empirical Eval-
uation of Gated Recurrent Neural Networks on Sequence Modeling”. In: CoRR abs/1412.3555
(2014). arXiv: 1412.3555.

[14] Henggang Cui, Vladan Radosavljevic, Fang-Chieh Chou, Tsung-Han Lin, Thi Nguyen,
Tzu-Kuo Huang, Jeff Schneider, and Nemanja Djuric. “Multimodal trajectory predictions
for autonomous driving using deep convolutional networks”. In: 2019 International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2019, pp. 2090–2096.

[15] Thomas D’Roza and George Bilchev. “An overview of location-based services”. In: BT Tech-
nology Journal 21.1 (2003), pp. 20–27.

[16] Nachiket Deo, Akshay Rangesh, and Mohan M. Trivedi. “How would surround vehi-
cles move? A Unified Framework for Maneuver Classification and Motion Prediction”.
In: CoRR abs/1801.06523 (2018). arXiv: 1801.06523.

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. “Neural architecture search: A
survey”. In: The Journal of Machine Learning Research 20.1 (2019), pp. 1997–2017.

[18] Negar Emami, Antonio Di Maio, and Torsten Braun. “FedForce: Network-adaptive Feder-
ated Learning for Reinforced Mobility Prediction”. In: Accepted in International conference on
Local Computer Networks (LCN 2023). IEEE. 2023.

[19] Negar Emami, Antonio Di Maio, and Torsten Braun. “GTP-Force: Game-Theoretic Trajec-
tory Prediction through Distributed Reinforcement Learning”. In: Accepted in International
conference on Mobile Ad-Hoc and Smart Systems (MASS 2023). IEEE. 2023.

[20] Negar Emami, Antonio Di Maio, and Torsten Braun. “INTRAFORCE: Intra-Cluster Re-
inforced Social Transformer for Trajectory Prediction”. In: 2022 18th International Confer-
ence on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE. 2022,
pp. 333–338.

[21] Negar Emami, Lucas Pacheco, Antonio Di Maio, and Torsten Braun. “RC-TL: Reinforce-
ment Convolutional Transfer Learning for Large-scale Trajectory Prediction”. In: NOMS
2022-2022 IEEE/IFIP Network Operations and Management Symposium. IEEE. 2022, pp. 1–9.

[22] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. “Personalized federated learning:
A meta-learning approach”. In: arXiv preprint arXiv:2002.07948 (2020).

[23] Jie Feng, Can Rong, Funing Sun, Diansheng Guo, and Yong Li. “PMF: A privacy-preserving
human mobility prediction framework via federated learning”. In: Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies 4.1 (2020), pp. 1–21.

[24] Stefano Ferretti, Vittorio Ghini, and Fabio Panzieri. “A survey on handover management
in mobility architectures”. In: Computer Networks 94 (2016), pp. 390–413.

[25] Ray J Frank, Neil Davey, and Stephen P Hunt. “Time series prediction and neural net-
works”. In: Journal of intelligent and robotic systems 31 (2001), pp. 91–103.

https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1801.06523

Bibliography 171

[26] Zhipeng Gao, Jie Meng, Qian Wang, and Yang Yang. “Service migration for deadline-
varying user-generated data in mobile edge-clouds”. In: IEEE World Congress on Services,
SERVICES 2018 (2018), pp. 53–54. DOI: 10.1109/SERVICES.2018.00039.

[27] Philipp Geiger and Christoph-Nikolas Straehle. “Learning game-theoretic models of mul-
tiagent trajectories using implicit layers”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 35. 6. 2021, pp. 4950–4958.

[28] Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. “Transformer net-
works for trajectory forecasting”. In: 2020 25th International Conference on Pattern Recognition
(ICPR). IEEE. 2021, pp. 10335–10342.

[29] Fanyu Gong, Ziwei Sun, Xiaodong Xu, Zhao Sun, and Xiaosheng Tang. “Cross-tier han-
dover decision optimization with stochastic based analytical results for 5G heterogeneous
ultra-dense networks”. In: 2018 IEEE International Conference on Communications Workshops.
IEEE. 2018, pp. 1–6.

[30] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. “Understanding individ-
ual human mobility patterns”. In: nature 453.7196 (2008), pp. 779–782.

[31] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. “Social gan:
Socially acceptable trajectories with generative adversarial networks”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, pp. 2255–2264.

[32] Emre Gures, Ibraheem Shayea, Abdulraqeb Alhammadi, Mustafa Ergen, and Hafizal Mo-
hamad. “A comprehensive survey on mobility management in 5G heterogeneous networks:
Architectures, challenges and solutions”. In: IEEE Access 8 (2020), pp. 195883–195913.

[33] Dirk Helbing, Lubos Buzna, Anders Johansson, and Torsten Werner. “Self-organized pedes-
trian crowd dynamics: Experiments, simulations, and design solutions”. In: Transportation
science 39.1 (2005), pp. 1–24.

[34] Dirk Helbing and Peter Molnar. “Social force model for pedestrian dynamics”. In: Physical
review E 51.5 (1995), p. 4282.

[35] Daniel S Hirschberg. “Algorithms for the longest common subsequence problem”. In: Jour-
nal of the ACM (JACM) 24.4 (1977), pp. 664–675.

[36] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Comput.
9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.1997.9.8.1735.

[37] A. Houenou, P. Bonnifait, V. Cherfaoui, and W. Yao. “Vehicle trajectory prediction based
on motion model and maneuver recognition”. In: 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Nov. 2013, pp. 4363–4369. DOI: 10.1109/IROS.2013.6696982.

[38] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young. “Mobile edge
computing—A key technology towards 5G”. In: ETSI white paper 11.11 (2015), pp. 1–16.

https://doi.org/10.1109/SERVICES.2018.00039
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/IROS.2013.6696982

172 Bibliography

[39] Haifeng Jing, Yafei Zhang, Jiehan Zhou, Weishan Zhang, Xin Liu, Guizhi Min, and Zhan-
min Zhang. “Lstm-based service migration for pervasive cloud computing”. In: 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing and Com-
munications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). IEEE. 2018, pp. 1835–1840.

[40] Hadi S Jomaa, Josif Grabocka, and Lars Schmidt-Thieme. “Hyp-rl: Hyperparameter opti-
mization by reinforcement learning”. In: arXiv preprint arXiv:1906.11527 (2019).

[41] Mostafa Karimzadeh, Ryan Aebi, Allan M. de Souza, Zhongliang Zhao, Torsten Braun,
Susana Sargento, and Leandro Villas. “Reinforcement Learning-designed LSTM for Trajec-
tory and Traffic Flow Prediction”. In: 2021 IEEE Wireless Communications and Networking
Conference (WCNC). 2021, pp. 1–6. DOI: 10.1109/WCNC49053.2021.9417511.

[42] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, Hamid Rezatofighi,
and Silvio Savarese. “Social-Bigat: Multimodal trajectory forecasting using bicycle-gan and
graph attention networks”. In: Advances in Neural Information Processing Systems 32 (2019).

[43] Matt Kusner, Jacob Gardner, Roman Garnett, and Kilian Weinberger. “Differentially pri-
vate Bayesian optimization”. In: International conference on machine learning. PMLR. 2015,
pp. 918–927.

[44] Billy Pik Lik Lau, Sumudu Hasala Marakkalage, Yuren Zhou, Naveed Ul Hassan, Chau
Yuen, Meng Zhang, and U-Xuan Tan. “A survey of data fusion in smart city applications”.
In: Information Fusion 52 (2019), pp. 357–374.

[45] Stephanie Lefevre, Dizan Vasquez, and Christian Laugier. “A survey on motion prediction
and risk assessment for intelligent vehicles”. In: Robomech Journal 1.1 (), pp. 1–14.

[46] Florin Leon and Marius Gavrilescu. “A review of tracking and trajectory prediction meth-
ods for autonomous driving”. In: Mathematics 9.6 (2021), p. 660.

[47] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. “Crowds by Example”. In: Com-
puter Graphics Forum 26.3 (2007), pp. 655–664. DOI: https : / / doi . org / 10 . 1111 / j . 1467 -
8659.2007.01089.x. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-
8659 . 2007 . 01089 . x. URL: https : / / onlinelibrary. wiley. com / doi / abs / 10 . 1111 / j . 1467 -
8659.2007.01089.x.

[48] Chunlin Li, Lei Zhu, Weigang Li, and Youlong Luo. “Joint edge caching and dynamic ser-
vice migration in SDN based mobile edge computing”. In: Journal of Network and Computer
Applications 177.July 2020 (2021), p. 102966. ISSN: 10958592. DOI: 10.1016/j.jnca.2020.102966.
URL: https://doi.org/10.1016/j.jnca.2020.102966.

[49] Zezu Liang, Yuan Liu, Tat Ming Lok, and Kaibin Huang. “Multi-Cell Mobile Edge Com-
puting: Joint Service Migration and Resource Allocation”. In: IEEE Transactions on Wire-
less Communications 20.9 (2021), pp. 5898–5912. ISSN: 15582248. DOI: 10.1109/TWC.2021.
3070974. arXiv: 2102.03036.

[50] Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. “A survey on
deep learning for human mobility”. In: ACM Computing Surveys (CSUR) 55.1 (2021), pp. 1–
44.

https://doi.org/10.1109/WCNC49053.2021.9417511
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01089.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2007.01089.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01089.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2007.01089.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.1016/j.jnca.2020.102966
https://doi.org/10.1016/j.jnca.2020.102966
https://doi.org/10.1109/TWC.2021.3070974
https://doi.org/10.1109/TWC.2021.3070974
https://arxiv.org/abs/2102.03036

Bibliography 173

[51] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. “Effective approaches to
attention-based neural machine translation”. In: arXiv preprint arXiv:1508.04025 (2015).

[52] R. Ma, J. Cao, D. Feng, H. Li, and S. He. “FTGPHA: Fixed-Trajectory Group Pre-Handover
Authentication Mechanism for Mobile Relays in 5G High-Speed Rail Networks”. In: IEEE
Transactions on Vehicular Technology 69.2 (2020), pp. 2126–2140. DOI: 10 . 1109 / TVT. 2019 .
2960313.

[53] Wei-Chiu Ma, De-An Huang, Namhoon Lee, and Kris M Kitani. “Forecasting interactive
dynamics of pedestrians with fictitious play”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2017, pp. 774–782.

[54] Nathalie Majcherczyk, Nishan Srishankar, and Carlo Pinciroli. “Flow-fl: Data-driven fed-
erated learning for spatio-temporal predictions in multi-robot systems”. In: 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE. 2021, pp. 8836–8842.

[55] Mahmoud Mandour, Fayez Gebali, Ashraf D Elbayoumy, Gamal M Abdel Hamid, and
Amr Abdelaziz. “Handover Optimization and User Mobility Prediction in LTE Femtocells
Network”. In: 2019 IEEE International Conference on Consumer Electronics (ICCE). IEEE. 2019,
pp. 1–6.

[56] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli,
Jitendra Malik, and Adrien Gaidon. “It is not the journey but the destination: Endpoint
conditioned trajectory prediction”. In: European Conference on Computer Vision. Springer.
2020, pp. 759–776.

[57] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y
Arcas. “Communication-efficient learning of deep networks from decentralized data”. In:
Artificial intelligence and statistics. PMLR. 2017, pp. 1273–1282.

[58] Larry R Medsker and LC Jain. “Recurrent neural networks”. In: Design and Applications 5
(2001), pp. 64–67.

[59] Abdelrahim Mohamed, Oluwakayode Onireti, Seyed Amir Hoseinitabatabaei, Muham-
mad Imran, Ali Imran, and Rahim Tafazolli. “Mobility prediction for handover manage-
ment in cellular networks with control/data separation”. In: 2015 IEEE International Con-
ference on Communications (ICC). IEEE. 2015, pp. 3939–3944.

[60] Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. “Social-
stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory
prediction”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2020, pp. 14424–14432.

[61] Brendan Tran Morris and Mohan Manubhai Trivedi. “A survey of vision-based trajectory
learning and analysis for surveillance”. In: IEEE transactions on circuits and systems for video
technology 18.8 (2008), pp. 1114–1127.

[62] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted Boltzmann
Machines”. In: Proceedings of the 27th International Conference on International Conference on
Machine Learning. Haifa, Israel, 2010, pp. 807–814. ISBN: 978-1-60558-907-7.

https://doi.org/10.1109/TVT.2019.2960313
https://doi.org/10.1109/TVT.2019.2960313

174 Bibliography

[63] Van-Linh Nguyen, Po-Ching Lin, and Ren-Hung Hwang. “Enhancing misbehavior detec-
tion in 5G vehicle-to-vehicle communications”. In: IEEE Transactions on Vehicular Technology
69.9 (2020), pp. 9417–9430.

[64] Nishant Nikhil and Brendan Tran Morris. “Convolutional neural network for trajectory
prediction”. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
2018, pp. 0–0.

[65] OpenAI. “ChatGPT Language Model”. In: ChatGPT-3. 2023. URL: https ://openai .com/
chatgpt.

[66] Tao Ouyang, Zhi Zhou, and Xu Chen. “Follow Me at the Edge: Mobility-Aware Dynamic
Service Placement for Mobile Edge Computing”. In: IEEE Journal on Selected Areas in Com-
munications 36.10 (2018), pp. 2333–2345. ISSN: 15580008. DOI: 10.1109/JSAC.2018.2869954.
arXiv: 1809.05239.

[67] Tao Ouyang, Zhi Zhou, and Xu Chen. “Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing”. In: IEEE Journal on Selected Areas in Com-
munications 36.10 (2018), pp. 2333–2345.

[68] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. “You’ll never walk
alone: Modeling social behavior for multi-target tracking”. In: 2009 IEEE 12th international
conference on computer vision. IEEE. 2009, pp. 261–268.

[69] D. J. Phillips, T. A. Wheeler, and M. J. Kochenderfer. “Generalizable intention prediction
of human drivers at intersections”. In: 2017 IEEE Intelligent Vehicles Symposium (IV). June
2017, pp. 1665–1670. DOI: 10.1109/IVS.2017.7995948.

[70] Derek J Phillips, Tim A Wheeler, and Mykel J Kochenderfer. “Generalizable intention pre-
diction of human drivers at intersections”. In: 2017 IEEE intelligent vehicles symposium (IV).
IEEE. 2017, pp. 1665–1670.

[71] Carole G Prevost, Andre Desbiens, and Eric Gagnon. “Extended Kalman filter for state
estimation and trajectory prediction of a moving object detected by an unmanned aerial
vehicle”. In: 2007 American control conference. IEEE. 2007, pp. 1805–1810.

[72] Shaojie Qiao, Dayong Shen, Xiaoteng Wang, Nan Han, and William Zhu. “A self-adaptive
parameter selection trajectory prediction approach via hidden Markov models”. In: IEEE
Transactions on Intelligent Transportation Systems 16.1 (2014), pp. 284–296.

[73] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M Gavrila, and
Kai O Arras. “Human motion trajectory prediction: A survey”. In: The International Journal
of Robotics Research 39.8 (2020), pp. 895–935.

[74] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, Hamid Rezatofighi, and
Silvio Savarese. “Sophie: An attentive gan for predicting paths compliant to social and
physical constraints”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2019, pp. 1349–1358.

https://openai.com/chatgpt
https://openai.com/chatgpt
https://doi.org/10.1109/JSAC.2018.2869954
https://arxiv.org/abs/1809.05239
https://doi.org/10.1109/IVS.2017.7995948

Bibliography 175

[75] Muhammad Saleem, Sagheer Abbas, Taher M Ghazal, Muhammad Adnan Khan, Nizar
Sahawneh, and Munir Ahmad. “Smart cities: Fusion-based intelligent traffic congestion
control system for vehicular networks using machine learning techniques”. In: Egyptian
Informatics Journal 23.3 (2022), pp. 417–426.

[76] J. Schlechtriemen, F. Wirthmueller, A. Wedel, G. Breuel, and K. Kuhnert. “When will it
change the lane? A probabilistic regression approach for rarely occurring events”. In: 2015
IEEE Intelligent Vehicles Symposium (IV). June 2015, pp. 1373–1379. DOI: 10.1109/IVS.2015.
7225907.

[77] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. “Tak-
ing the human out of the loop: A review of Bayesian optimization”. In: Proceedings of the
IEEE 104.1 (2015), pp. 148–175.

[78] Ibraheem Shayea, Mustafa Ergen, Marwan Hadri Azmi, Sultan Aldirmaz Çolak, Rosdiadee
Nordin, and Yousef Ibrahim Daradkeh. “Key challenges, drivers and solutions for mobility
management in 5G networks: A survey”. In: IEEE Access 8 (2020), pp. 172534–172552.

[79] Aditya Shrivastava, Jai Prakash V Verma, Swati Jain, and Sanjay Garg. “A deep learning
based approach for trajectory estimation using geographically clustered data”. In: SN Ap-
plied Sciences 3.6 (2021), pp. 1–17.

[80] Xiang Sun and Nirwan Ansari. “EdgeIoT: Mobile edge computing for the Internet of Things”.
In: IEEE Communications Magazine 54.12 (2016), pp. 22–29.

[81] Cynthia Sung, Dan Feldman, and Daniela Rus. “Trajectory clustering for motion predic-
tion”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE. 2012,
pp. 1547–1552.

[82] Canh T Dinh, Nguyen Tran, and Josh Nguyen. “Personalized federated learning with moreau
envelopes”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 21394–21405.

[83] Luca Tartarini, Marcelo Antonio Marotta, Eduardo Cerqueira, Juergen Rochol, Cristiano
Bonato Both, Mario Gerla, and Paolo Bellavista. “Software-defined handover decision en-
gine for heterogeneous cloud radio access networks”. In: Computer Communications 115
(2018), pp. 21–34.

[84] Ranjeet Singh Tomar, Shekhar Verma, and Geetam Singh Tomar. “SVM based trajectory
predictions of lane changing vehicles”. In: 2011 International Conference on Computational
Intelligence and Communication Networks. IEEE. 2011, pp. 716–721.

[85] Javad Akbari Torkestani. “Mobility prediction in mobile wireless networks”. In: Journal of
Network and Computer Applications 35.5 (2012), pp. 1633–1645.

[86] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In: Advances in neural in-
formation processing systems 30 (2017).

[87] Chunnan Wang, Xiang Chen, Junzhe Wang, and Hongzhi Wang. “ATPFL: Automatic Tra-
jectory Prediction Model Design Under Federated Learning Framework”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 6563–6572.

https://doi.org/10.1109/IVS.2015.7225907
https://doi.org/10.1109/IVS.2015.7225907

176 Bibliography

[88] Shangguang Wang, Jinliang Xu, Ning Zhang, and Yujiong Liu. “A survey on service mi-
gration in mobile edge computing”. In: IEEE Access 6 (2018), pp. 23511–23528.

[89] Jürgen Wiest, Matthias Höffken, Ulrich Kreßel, and Klaus Dietmayer. “Probabilistic trajec-
tory prediction with Gaussian mixture models”. In: 2012 IEEE Intelligent Vehicles Sympo-
sium. IEEE. 2012, pp. 141–146.

[90] Bowen Xie, Yuxuan Sun, Sheng Zhou, Zhisheng Niu, Yang Xu, Jingran Chen, and Deniz
Gündüz. “MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected Vehi-
cles”. In: arXiv preprint arXiv:2212.03519 (2022).

[91] G. Xie, H. Gao, L. Qian, B. Huang, K. Li, and J. Wang. “Vehicle Trajectory Prediction by Inte-
grating Physics- and Maneuver-Based Approaches Using Interactive Multiple Models”. In:
IEEE Transactions on Industrial Electronics 65.7 (July 2018), pp. 5999–6008. ISSN: 0278-0046.
DOI: 10.1109/TIE.2017.2782236.

[92] Rui Xu and Donald Wunsch. “Survey of clustering algorithms”. In: IEEE Transactions on
neural networks 16.3 (2005), pp. 645–678.

[93] Xiaodong Xu, Xiaoxuan Tang, Zhao Sun, Xiaofeng Tao, and Ping Zhang. “Delay-Oriented
Cross-Tier Handover Optimization in Ultra-Dense Heterogeneous Networks”. In: IEEE Ac-
cess 7 (2019), pp. 21769–21776. ISSN: 21693536. DOI: 10.1109/ACCESS.2019.2898430.

[94] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. “Spatio-temporal graph trans-
former networks for pedestrian trajectory prediction”. In: European Conference on Computer
Vision. Springer. 2020, pp. 507–523.

[95] Xiang Yu, Maolin Guan, Mingxia Liao, and Xia Fan. “Pre-Migration of Vehicle to Network
Services Based on Priority in Mobile Edge Computing”. In: IEEE Access 7 (2019), pp. 3722–
3730. ISSN: 21693536. DOI: 10.1109/ACCESS.2018.2888478.

[96] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. “A review of recurrent neu-
ral networks: LSTM cells and network architectures”. In: Neural computation 31.7 (2019),
pp. 1235–1270.

[97] Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. “A review of moving
object trajectory clustering algorithms”. In: Artificial Intelligence Review 47.1 (2017), pp. 123–
144.

[98] Simone Zamboni, Zekarias Tilahun Kefato, Sarunas Girdzijauskas, Noren Christoffer, and
Laura Dal Col. “Pedestrian Trajectory Prediction with Convolutional Neural Networks”.
In: arXiv preprint arXiv:2010.05796 (2020).

[99] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. “Deep learning in mobile and wireless
networking: A survey”. In: IEEE Communications surveys & tutorials 21.3 (2019), pp. 2224–
2287.

[100] Weishan Zhang, Pengcheng Duan, Laurence T. Yang, Feng Xia, Zhongwei Li, Qinghua Lu,
Wenjuan Gong, and Su Yang. “Resource requests prediction in the cloud computing en-
vironment with a deep belief network”. In: Software - Practice and Experience 47.3 (2017),
pp. 473–488. ISSN: 1097024X. DOI: 10.1002/spe.2426.

https://doi.org/10.1109/TIE.2017.2782236
https://doi.org/10.1109/ACCESS.2019.2898430
https://doi.org/10.1109/ACCESS.2018.2888478
https://doi.org/10.1002/spe.2426

Bibliography 177

[101] Weishan Zhang, Shouchao Tan, Qinghua Lu, Xin Liu, and Wenjuan Gong. “A genetic-
algorithm-based approach for task migration in pervasive clouds”. In: International Journal
of Distributed Sensor Networks 11.8 (2015), p. 463230.

[102] Weishan Zhang, Shouchao Tan, Feng Xia, Xiufeng Chen, Zhongwei Li, Qinghua Lu, and
Su Yang. “A survey on decision making for task migration in mobile cloud environments”.
In: Personal and Ubiquitous Computing 20.3 (2016), pp. 295–309.

[103] Wenjing Zhang, Yuan Liu, Tingting Liu, and Chenyang Yang. “Trajectory prediction with
recurrent neural networks for predictive resource allocation”. In: 2018 14th IEEE Interna-
tional Conference on Signal Processing (ICSP). IEEE. 2018, pp. 634–639.

[104] Zhongliang Zhao, Negar Emami, Hugo Santos, Lucas Pacheco, Mostafa Karimzadeh, Torsten
Braun, Arnaud Braud, Benoit Radier, and Philippe Tamagnan. “Reinforced-LSTM Trajec-
tory Prediction-driven Dynamic Service Migration: A Case Study”. In: IEEE Transactions on
Network Science and Engineering (2022).

[105] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement learning”. In:
arXiv preprint arXiv:1611.01578 (2016).

179

List of publications

• Zhao, Z., N. Emami, H. Santos, L. Pacheco, M. Karimzadeh, T. Braun, A. Braud, B. Radier,
and P. Tamagnan (2022). Reinforced-lstm trajectory prediction-driven dynamic service mi-
gration: A case study. IEEE Transactions on Network Science and Engineering 9 (4), 2786–2802.

DOI: 10.1109/TNSE.2022.3169786.

• Emami, N., L. Pacheco, A. Di Maio, and T. Braun (2022). Rc-tl: Reinforcement convolu-
tional transfer learning for large-scale trajectory prediction. In NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium, pp. 1–9. IEEE.

DOI: 10.1109/NOMS54207.2022.9789883 .

• Emami, N., A. Di Maio, and T. Braun (2022). Intraforce: Intra-cluster reinforced social trans-
former for trajectory prediction. In 2022 18th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob), pp. 333–338. IEEE.

DOI: 10.1109/WiMob55322.2022.9941547.

• Emami, N., A. Di Maio, and T. Braun (2023). Fedforce: Network-adaptive federated learning
for reinforced mobility prediction. Accepted in International conference on Local Computer
Networks (LCN 2023). IEEE.

DOI: 10.48350/179855.

• Emami, N., A. Di Maio, and T. Braun (2023). GTP-Force: Game-Theoretic Trajectory Predic-
tion through Distributed Reinforcement Learning. Accepted in International Conference on
Mobile Ad-Hoc and Smart Systems (MASS 2023). IEEE.

DOI: 10.48350/182255.

10.1109/TNSE.2022.3169786
10.1109/NOMS54207.2022.9789883
10.1109/WiMob55322.2022.9941547

Declaration of consent

on the basis of Article 18 of the PromR Phil.-nat. 19

Name/First Name:

Registration Number:

Study program:

Bachelor Master Dissertation

Title of the thesis:

Supervisor:

I declare herewith that this thesis is my own work and that I have not used any sources other than

those stated. I have indicated the adoption of quotations as well as thoughts taken from other authors

as such in the thesis. I am aware that the Senate pursuant to Article 36 paragraph 1 litera r of the

University Act of September 5th, 1996 and Article 69 of the University Statute of June 7th, 2011 is

authorized to revoke the doctoral degree awarded on the basis of this thesis.

For the purposes of evaluation and verification of compliance with the declaration of originality and the

regulations governing plagiarism, I hereby grant the University of Bern the right to process my

personal data and to perform the acts of use this requires, in particular, to reproduce the written thesis

and to store it permanently in a database, and to use said database, or to make said database

available, to enable comparison with theses submitted by others.

Signature

Place/Date

Emami Negar

19-124-122

Computer Science

Deep Learning Techniques for Mobility Prediction and Management in

Mobile Networks

Prof. Dr. Torsten Braun

Bern, 25.07.2023

Negar Emami
Digitally signed by Negar Emami
Date: 2023.07.25 16:28:12
+02'00'

	1
	Abstract
	Acknowledgements
	Introduction
	Overview
	Problem Statement
	Reliable and Computationally-Light Trajectory Prediction Gap in Mobility Management Techniques of Modern Wireless Networks
	Scalable and Convergent Individual-Agent Trajectory Prediction Gap in Centralized Large-Scale Mobility Networks
	Computationally-Efficient Multi-Agent Trajectory Prediction Gap in Centralized Social-Interactive Mobility Networks
	Communication- and Computation-Adaptive Multi-Agent Trajectory Prediction Gap in Distributed Mobility Networks
	Strategically Robust Multi-Agent Trajectory Prediction Gap in Non-Cooperative Mobility Networks

	Thesis Contributions
	Reinforced Deep Learning for Personalized and Computationally-Light Trajectory Prediction and Proactive Mobility Management
	Clustered Transfer Learning for Large-Scale Trajectory Prediction
	Intra-Cluster Collaborative Learning for Social Trajectory Prediction
	Network-Adaptive Federated Learning for Distributed Trajectory Prediction
	Inter-Cluster Game-Theoretic Learning for Non-Cooperative Trajectory Prediction

	Thesis Outline

	Theoretical Background
	Chapter Introduction
	Mobility Prediction Definition
	Mobility Management Definition
	Handover Management Definition
	Service Migration Definition

	Supervised Machine Learning
	LSTM Neural Networks
	1D-CNN Neural Networks
	Transformer Neural Networks

	Unsupervised Machine Learning
	Clustering

	Reinforcement Learning
	Transfer Learning
	Collaborative Learning
	Federated Learning
	Game Theory
	Chapter Conclusions

	Related Works
	Chapter Introduction
	Mobility Datasets
	Mobility Management in Wireless Networks
	Handover Optimization
	Service Migration

	Mobility Prediction
	Isolated-Agent Trajectory Prediction Models
	Social-aware Multi-Agent Trajectory Prediction Models
	Decentralized Multi-Agent Trajectory Prediction Models
	Strategic Multi-Agent Trajectory Prediction Models

	Chapter Conclusions

	Overview of Mobility Scenarios, Datasets, and Evaluation Metrics
	Chapter Introduction
	Mobility Prediction Scenario
	Mobility Prediction as a Classification Task
	Mobility Prediction as a Regression Task

	Mobility Management Scenarios
	Handover Management
	Service Migration

	Datasets
	Orange Dataset
	ETH+UCY Dataset

	Data Preparation and Feature Extraction
	Data Quality and Periodicity Estimation
	Time Domain Signal Processing
	Frequency Domain Signal Processing

	Evaluation Methodology
	Mobility Prediction Experimental Setup
	Mobility Management Experimental Setup
	Mobility Prediction Evaluation Metrics
	Mobility Management Evaluation Metrics

	Chapter Conclusions

	Reliable and Computationally-Light Trajectory Prediction for Wireless Network Mobility Management
	Chapter Introduction
	RL-LSTM Trajectory Prediction System Architecture
	Reinforcement Learning for LSTM Architecture Design
	Transfer Learning for Expedition of the RL Process

	RL-HEC Handover Management System Architecture
	Measurement Phase
	Decision Phase
	Execution Phase

	RL-SM Service Migration System Architecture
	RL-SM Monitoring
	RL-SM Assignment

	Evaluations
	Experimental Details
	RL-LSTM Evaluation Results
	RL-HEC Evaluation Results
	RL-SM Evaluation Results

	Chapter Conclusions

	Scalable and Convergent Individual-Agent Trajectory Prediction in Large-Scale Mobility Networks
	Chapter Introduction
	RC-TL Trajectory Prediction System Architecture
	User Trajectory Clustering and Reference Users Selection
	Reinforcement Learning for CNN Architecture Design
	Transfer Learning between Cluster Members

	Evaluations
	Experimental Details
	Evaluation Results

	Chapter Conclusions

	Computationally-Efficient Multi-Agent Trajectory Prediction in Socio-Interactive Mobility Networks
	Chapter Introduction
	INTRAFORCE Trajectory Prediction System Architecture
	Neighbor-Trajectory User Clustering
	Reinforcement Learning for Transformer Architecture Design
	Intra-Cluster Social-Transformer Training

	Evaluations
	Large-Scale Mobility Scenario
	Small-Scale Mobility Scenario
	Large-Scale Evaluation Results
	Small-Scale Evaluation Results

	Chapter Conclusions

	Network-Adaptive Multi-Agent Trajectory Prediction in Distributed Mobility Networks
	Chapter Introduction
	FedForce Trajectory Prediction System Architecture
	Local Client Eligibility Estimation
	Federated Head Client Selection and RL-TF Optimization
	Efficient Participant Selection and Federated Training
	Pre-trained Model Migration to Silent Clients

	Evaluations
	Large-Scale Mobility Scenario
	Small-Scale Mobility Scenario
	Large-Scale Evaluation Results
	Small-Scale Evaluation Results

	Chapter Conclusions

	Strategically-Robust Multi-Agent Trajectory Prediction in Non-Cooperative Mobility Networks
	Chapter Introduction
	GTP-Force Trajectory Prediction System Architecture
	Game Player Selection
	Distributed Reinforced Transformer Training
	Inter-Cluster Social Interaction Payoff Computing
	Non-Cooperative Mobility User Training

	Evaluations
	Large-scale Mobility Scenario
	Small-Scale Mobility Scenario
	Large-Scale Evaluation Results
	Small-Scale Evaluation Results

	Chapter Conclusions

	Conclusions
	summary
	Contributions
	Trajectory Prediction-Driven Handover Management and Service Migration in Multi-Access Edge Computing Environments
	Large-Scale Individual-Agent Trajectory Prediction
	Social-aware Multi-Agent Trajectory Prediction
	Distributrd Multi-Agent Trajectory Prediction
	Non-Cooperative Multi-Agent Trajectory Prediction

	Future Work

	Bibliography
	List of publications

