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ABSTRACT

The mathematical modelling and numerical simulation of clouds and climate include
numerous phenomena that are tough nuts to crack as they cover a wide range of spa-
tiotemporal scales. In many ways, time is a vital factor, for instance, predicting
the significance of a millisecond phenomenon for the future century is a major un-
dertaking. Additionally, the computational time required by numerical models is a
challenge. Luckily, we have a fine set of tools in our mathematical backpack. Here,
we explore how a detailed cloud model can be improved to simulate the interactions
with ice crystals. A new ice microphysics module is validated against a set of simi-
lar cloud models. Further on, the cloud model is shown to be an improvement over
the previous generation of cloud models as it incorporates detailed aerosol-cloud in-
teractions, which in our study is shown to impact cloud lifetime through ice nuclei
recycling and marine ice nuclei import via updrafts. Additionally, the cloud model,
which has a fine resolution in the order of meters, is harnessed to develop three dif-
ferent emulators to represent selected cloud processes in an improved detailed way.
Emulators can be called also parametrisation or a machine learning model. Further
on, created parameterisations are implemented within a global climate model, which
has a much coarser resolution in the order of 10–100 kilometres. The implemen-
tation enables more precise climate simulations by having a more detailed subgrid
scale description of cloud processes. As an adventurous side quest, we elaborate on
how the proof-of-concept emulator could be embellished by showing an optimised
way of creating the design of the simulation experiment in our applied case and we
compare our results with the proof-of-concept method used in the study where the
emulators were created.
KEYWORDS: cloud modelling, climate modelling, simulation, machine learning,
parameterisation, design of experimentation, optimisation, large-eddy simulation, ice
microphysics
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TIIVISTELMÄ

Ilmaston ja pilvien matemaattisessa mallinnuksessa ja numeerisessa simuloinnissa
on monia pähkinöitä purtavaksi, sillä niihin liittyy useassa eri avaruudellisessa ja
ajallisessa mittakaavassa tapahtuvia ilmiöitä. Aika on monella tavalla kriittinen tekijä,
koska esimerkiksi millisekunneissa tapahtuvan ilmiön merkityksen ennustaminen
kuluvan vuosisadan ilmastolle on hankalaa. Samalla myös numeeristen mallien vaa-
tima laskenta-aika on merkittävä haaste. Onneksi matemaattisesta työkalupakista
löytyy toimivia työkaluja helpottamaan työkuormaa. Tässä tutkimuksessa esitämme,
miten käyttämäämme pilvimallia voidaan parantaa, jotta sillä pystytään mallinta-
maan pilvissä tapahtuvia ilmiöitä myös jääkiteiden osalta. Osoitamme pilvimallin
toimivuuden ja näytämme sen sisältävän parannuksia edelliseen pilvimallisukupol-
veen nähden, sillä malli kykenee käsittelemään aerosoli-pilvi-vuorovaikutuksia aiem-
paa yksityiskohtaisemmin. Mallin yksityiskohtaisuuden lisäyksen ansiosta voimme
selvittää esimerkiksi, miten jääkiteet tai tuulen merestä nostattama merisuola vaikut-
tavat pilvien elinaikaan. Lisäksi resoluutioltaan metrien tai kymmenien metrien luok-
kaa oleva pilvimallimme valjastetaan luomaan valituista pilviprosesseista kolme eri-
laista emulaattoria, joita voidaan kutsua myös parametrisaatioiksi tai koneoppiviksi
malleiksi. Koska uudet parametrisaatiot perustuvat yksityiskohtaiseen pilvimalliin,
ne ovat aiemmin käytettyjä parametrisaatioita tarkempia. Uusia emulaattoreita hyö-
dynnetään karkeamman resoluution globaalissa ilmastomallissa, jonka resoluutio on
kymmenien tai jopa satojen kilometrien luokkaa. Tällainen parametrisaation toteu-
tus ilmastomallissa mahdollistaa aiempaa paremmat ilmastosimulaatiot, sillä pilvien
alihilaprosessit on kuvattu aikaisempaa tarkemmin. Lopuksi eräänlaisena sivuteh-
tävänä tutkimme, miten esiteltyä emulaattorien luomisessa käytettyä simulaatioiden
alkuarvojoukkoa voitaisiin edelleen optimoida. Saatuja optimoituja tuloksia ver-
rataan edellä luotuihin emulaattorien alkuarvojoukkoihin.
ASIASANAT: mallinnus, simulointi, parametrisaatio, koneoppiminen, suurten pyör-
teiden menetelmä, simulaatioiden alkuarvojoukon optimointi, optimointi, pilvet, il-
masto, jäämikrofysiikka
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1 Introduction

It has been said that the most interesting scientific research is at the intersection of
different branches of science. At that intersection, the most rewarding inventions
and the hardest problems are solved. Like in space exploration rocket scientists, the-
oretical physicists, astrophysicists, astrobiologists, mathematicians, psychologists,
physicians, engineers, computer scientists, etc. are needed. Similarly, to tackle one
of the largest threats, that is climate change, humankind has to face, a large variety
of experts are required.

Based on the most recent scientific research, the IPCC (Intergovernmental Panel
on Climate Change) report by Masson-Delmotte et al. (2021) provides an exten-
sive assessment of the current state of climate change, including its impacts and
potential future scenarios. It aims to inform policymakers and the public, guiding in
decision-making to mitigate climate change and adapt to its effects. The IPCC report
documents comprehensively the scientific information on global warming, radiative
forcing and the underlying uncertainties of aerosols, ice crystals and clouds affecting
climate. To answer these issues expressed by IPCC, we lay out the basis of this study.

The main objectives of this thesis:
This thesis aims to contribute to understanding the climate system by answering the
following research questions.

Q1. What mathematical tools are useful to describe the complex phenomena of
aerosol-cloud interactions that affect climate in multiple ways?

Q2. In the context of climate system models, can the uncertainty related to aerosol-
cloud interactions be decreased?

Q3. Can the climate system models be improved by implementing machine learn-
ing methods for modelling cloud processes?

This study is in itself a mix of different branches of science put to practice where
the application of mathematical tools is at the heart of all examinations (Q1). Since
the scale of the climate phenomena as a whole is immense, they cannot be accommo-
dated within the confines of a laboratory. Also, we have only one planet Earth that
is impossible to expose to controlled experiments. Though, laboratory experiments
of selected phenomena are plausible, like studying droplet freezing within a cloud
chamber. Thus, mathematically abstract numerical laboratories need to be created.
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There is a large variety of such laboratories in varying scales, like global (GCM),
regional, or zero-dimensional, that are used to do controlled numerical experiments.
These studies are needed to untangle the consequences of the uncontrolled experi-
ments that have been going on in the climate since the early days of industrialisation
(Kaper and Engler, 2013).

Climate, weather and cloud modelling is a relatively new scientific field as the
related phenomena are so complex that studying climate and weather would not exist
without modern computers. The first general circulation model that had both oceanic
and atmospheric processes was developed in the late 1960s at the NOAA Geophysi-
cal Fluid Dynamics Laboratory (National Oceanic and Atmospheric Administration).
Climate models have been developed to be more precise along with specialised mod-
els, like cloud models, ocean, and pollution advection models that have emerged to
examine the relevant phenomena.

The second research question (Q2) focuses more on the perspective of natural
sciences. Clouds, aerosols and ice crystals interact with the climate by several effects
and feedback loops that can have either a warming or cooling effect on the climate. In
climate models, the relevant interaction processes are usually highly parameterised
due to their nature of high level of detail and computational cost. Hence, the aerosol-
cloud interactions are poorly represented.

Large-eddy simulation (LES) models are a common way of studying cloud-scale
phenomena. However, these cloud-scale models often lack the details for interact-
ing with aerosols. UCLALES-SALSA is an LES cloud model that is used to model
detailed aerosol-cloud interactions. UCLALES-SALSA is the crucial cornerstone of
every modelling aspect in the studies presented here. To answer the research ques-
tion, in this study UCLALES-SALSA is improved by implementing microphysics
related to ice crystals that engage in aerosol-cloud-ice interactions.

The third research question (Q3) emerges from the fact that global climate mod-
els have coarse resolution in both spatial and temporal scales. Thus, cloud pro-
cesses, which act even in sub-meter scales, are poorly represented. Coarse-resolution
emerges from computational limitations if only traditional finite element methods
are used to solve relevant partial differential equations. Computational limitations
are emphasised if detailed cloud process descriptions would be used in long climate
predictions. To circumvent the limitations of finite element methods, in this study,
we employ machine learning methods to bridge the gap between detailed LES mod-
els and coarse GCMs. That means that we create new more accurate cloud process
parameterisations, with the leverage that detailed UCLALES-SALSA provides, to be
used in GCMs.

All these models have benefited from mathematical developments, such as more
accurate finite element methods to solve complex partial differential equations, and
increasing computational performance. However, first and foremost new mathemat-
ical tools and methods, like our novel way of implementing machine learning, are

2



Introduction

necessary as we cannot solely trust Moore’s law about ever-increasing computational
power since eventually, the law will meet the boundaries of physical reality. This in-
cludes current technologies such as massively parallel systems such as GPUs. How-
ever, transforming the existing CPU-based models into GPU architecture is not a
straightforward task. Technologies that could solve the problem, like quantum com-
puting, are not yet technically feasible. Additionally, future prospects and expenses
of novel technologies are uncertain and debatable.

In this study, we will discuss the mathematical choices that have been made to
better understand aerosol-cloud interactions within the climate system. Additionally,
the most problematic areas related to cloud modelling are addressed and what im-
provements could be made to the cloud models. We begin by giving relevant and
further elaborated background in Chapter 2 to understand the baseline of the study.
Chapter 3 focuses on Paper I and Paper II providing details on the cloud-scale
model UCLALES-SALSA and how it was improved by implementing ice micro-
physics. Chapter 4 specifies the details of a newly applied mathematical tool of
machine learning in cloud process modelling. This tool is first described in Paper
III and further on applied in Paper IV. As a side quest, in Chapter 5 we provide a
mathematical optimisation tool for a possible improvement of the created machine
learning method by giving details for an optimised design of simulation experiments.
Here we stand on the shoulders of giants, including Isaac Newton who described laws
of motion by using differential equations, which are the foundation of every climate
or cloud model.

3



2 Climate, clouds and how to model them

In this chapter, we will have an overlook of climate and clouds and how to model
them. This is done to make the study easier to understand as we are putting our study
in a larger context, sort of an extended introduction.

2.1 Climate
Weather represents the state of the atmosphere which can be described by the status
of temperature, precipitation, cloudiness and other atmospheric conditions. Weather
and climate are closely connected. Climate can be defined as statistics of weather or
as the mean state of the climate system. Following, climate change refers to changes
in the statistics of weather over time. To eliminate local variations and the random
nature of weather, the climate is typically calculated by averaging weather data over
30 years. In other words, climate is the expectation but weather is what we get (Kaper
and Engler, 2013).

Climate system consists of five components: the atmosphere, the hydrosphere
(oceans, lakes and other bodies of water), the cryosphere (ice and snow), the litho-
sphere (land surface) and the biosphere (all living things) (Kaper and Engler, 2013).
All these components are in constant interaction either directly or indirectly. The
climate system as a whole is mainly powered by solar radiation and a little by
geothermal heat. The state of the climate system evolves through its own dynam-
ics in atmospheric circulation, ocean currents and other processes in all five com-
ponents. Moreover, there are climate forcings or climate drivers, that impact the
climate system. As per the fundamental principles of thermodynamics, when the
Earth gains energy from the Sun, some of the radiation will reflect back (about 30%)
and some of the energy will be absorbed by the planet. As a warm object in cold
space, Earth will radiate heat out to space. This difference between the amount of
incoming and outgoing radiation is called the planet’s radiative forcing (RF) (NOAA
predicting climate). Currently, more heat is coming in than coming out, the climate is
warming. Climate forcings can be divided into human-induced (anthropogenic) and
natural phenomena. Human-caused forcings can be changes in atmospheric com-
position (e.g. greenhouse gas emissions) and land use (e.g. deforestation) affecting
albedo (how different surfaces reflect radiation). Natural climate forcings include
volcanic eruptions, solar output variations (e.g. sunspot cycle), cyclical changes of
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Earth’s orbit (Milankovitch cycles), changes in albedo (like cloud coverage) and os-
cillations (quasi-periodic changes in surface pressure and sea surface temperature,
e.g. El Niño) (Kaper and Engler, 2013). In conclusion, the climate system is highly
complex and consists of a wide range of spatiotemporal scales from nanometres to
thousands of kilometres and from microseconds to thousands of years therefore is
not a simple task to model mathematically.

2.1.1 Modelling climate

To model the climate and its components, one needs to have variables describing the
state of the system and the governing rules describing the evolution of the states.
State variables include, for example, air temperature, air pressure, winds, humidity,
aerosol and trace gases composition, the strength of ocean currents, rate of evapora-
tion from vegetation cover, land use and vegetation patterns. Governing laws include
laws of motion, chemical reaction laws and phase change laws, especially for water
(Kaper and Engler, 2013). Laws and states are formulated into the language of math-
ematics usually in the form of a system of differential equations and often dividing
the planet into a 3-dimensional discrete grid. The translation to mathematics is not
necessarily well executed for all the components of the climate system.

The equations resulting from this process can often be extremely complex and
may span several pages, making it nearly impossible to solve them analytically (i.e.
with exact methods). In such cases, the best approach is to use numerical methods.
This means to have a numerical solver integrating the differential equations. The
solver is usually a Finite Element Method (FEM) based on Euler, Runge-Kutta or
in this study the Leapfrog method. Instead of calculations done by hand, to help
out with the numerous computations following from using a numerical solver, the
model is written as computer software. The model is solved with desired initial and
boundary conditions on a high-performance computer. Further on, the simulation
with respect to the inputs is analysed. This approach allows for studying clouds in
different conditions.

As this process is imitating a real-world process (e.g. cloud processes) or sys-
tem (e.g. climate system) over time it is called a simulation (Banks et al., 1995).
Simulations require using models. The model represents the key characteristics or
behaviours of the selected system or process. On the other hand, the simulation
represents the evolution of the model state over time (Wikipedia, f).

In this study, we have used the global climate model ECHAM-HAMMOZ and
the cloud model UCLALES-SALSA. ECHAM-HAMMOZ can be used for exam-
ple for climate predictions. The motivation to use UCLALES-SALSA, a large-eddy
simulation (LES) model with a detailed aerosol description (SALSA), is that it can
be used to model low-level clouds (not limited to) along with aerosol-cloud interac-
tions. Following, the obtained UCLALES-SALSA simulation knowledge can used
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to improve the coarser resolution model ECHAM-HAMMOZ that has known defi-
ciencies. As UCLALES-SALSA is our primary simulation tool, Chapters 3 and 4
are dedicated to it. Here, we shortly introduce ECHAM-HAMMOZ.

2.1.2 Climate model ECHAM-HAMMOZ

ECHAM-HAMMOZ is one example of a climate model and it has been used in Pa-
per III and Paper IV. To get an idea of how complex the model is, it consists of sev-
eral hundreds of thousands of lines of code and equations that govern the model and
fill some hundreds of manual pages. The most recent version of ECHAM-HAMMOZ
model (ECHAM6.3-HAM2.3-MOZ1.0) consists of the latest versions of ECHAM6,
an atmospheric general circulation model (Stevens et al., 2013), the HAM2, that is
Hamburg Aerosol Model, an aerosol chemistry and microphysics package (Zhang
et al., 2012), and the MOZ1 (= MOZART, Model of Ozone and Related Chemical
Tracers), an atmospheric trace gas chemistry model (Rast et al., 2014). The descrip-
tion of the coupled ECHAM6–HAMMOZ model is provided in Schultz et al. (2018).

The atmospheric module ECHAM6 of the ECHAM-HAMMOZ computes winds,
heat and mass transfers, radiative effects, relative humidity and cloud formation
within each grid cell and evaluates interactions with neighbouring points. The dy-
namical part (i.e. winds, temperature, pressure) of ECHAM6 is formulated in spher-
ical harmonics and each function defined on the surface of a sphere can be written as
a sum of these spherical harmonics. The grid of ECHAM6 is a Gaussian grid where
grid points at a given latitude are equally spaced, and grid points at a given longitude
are unequally spaced. The spacing is defined by Gaussian quadrature. The horizontal
resolution (= grid size) of ECHAM-HAMMOZ is in the order of hundred kilometres
and the vertical resolution is in the order of kilometres. Like other climate models,
the resolution has been improving significantly during its development history.

The aerosol module HAM includes processes like aerosol nucleation (= forma-
tion of small particles) and computation of emissions for sea salt and mineral dust.
The MOZ1 trace gas chemistry model consists of a number of chemical reactions in
the order of hundreds for tens of species.

2.2 Clouds
Clouds are a critical component of the climate system, and various aspects of clouds
are the primary focus of interest in all the Papers I, II, III, IV. Clouds have a well-
known impact on the hydrological cycle and the atmospheric radiation balance. The
latter means that as clouds’ albedo is high (they are visibly white), they reflect a lot of
solar radiation, and as global cloud coverage is about 0.68 (Stubenrauch et al., 2013),
their cooling effect is crucial for regulating the Earth’s energy balance. Simultane-
ously, clouds have a warming effect by trapping some outgoing thermal radiation.
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Therefore, clouds can alter the temperature of the climate. Cloud properties might
also change in the warming atmosphere, and this effect, the net cloud feedback is
estimated to be positive with the estimate of 0.42 (𝑊 𝑚−2 ∘𝐶−1). Additionally, the
net cloud feedback is considered to be negative with a very low probability (IPCC,
2021). The potential role of the cloud feedback for future climate estimates can be
understood when compared with the total greenhouse gas effective radiative forcing
(ERF), which is 3.317 ± 0.278 (𝑊 𝑚−2) from 1750 to 2019 (IPCC, 2021).

ERF takes into account both the instantaneous radiative forcing (IRF), which
represents the initial change in energy balance caused by a specific driver, and the
adjustments or feedbacks that occur within the climate system in response to that
initial forcing.

Typically in the lower atmosphere clouds form as warm (= warmer than the envi-
ronment) and moist (= containing water vapour) air parcels rise. As these air parcels
ascend, they cool down due to the expansion of the air without heat exchange with
their surroundings (adiabatic expansion). Ultimately, they reach lifting condensation
level (LCL) where relative humidity (RH) exceeds 100% (= supersaturation). At
this stage, the excess water vapour condenses onto available aerosols acting as cloud
condensation nuclei (CCN) causing a sub-population of them to grow up to a size
of a few micrometres at the cloud base. This process is called cloud activation or
droplet activation. It should be noted that condensation occurs also at lower relative
humidities, however, in the case of cloud activation, the condensation is notably more
pronounced and vigorous. One of the most important factors of cloud formation is
the rising or falling of the air parcel and it is affected by temperature differences in
the atmosphere. That is referred to as the vertical temperature profile, which is in-
fluenced by the dynamic atmospheric behaviour ensuing from winds, solar heating
and radiative cooling (Seinfeld and Pandis, 1998; Jacobson, 2005). Clouds are also
affected directly or indirectly by surface fluxes (e.g. sensible and latent heat fluxes),
advection and subsidence. The complex relationship between aerosols and clouds,
referred to as aerosol-cloud interactions, is apparent in cloud formation.

The cloud droplets can grow by condensation or by coagulation. In condensation,
water vapour condenses on liquid cloud droplets. In coagulation, the droplets collide
with each other. Rain formation occurs when a sub-population of cloud droplets
reaches a size that is sufficiently large to initiate gravitational settling. This settling
enhances the collision rate between droplets, leading to an acceleration in droplet
growth. Cloud droplets can become smaller or even dissipate through evaporation,
which can happen for example if cloud droplets are mixed with dry air at the edge of
the cloud, or when the drizzling droplet evaporates below the cloud.

Aerosols are tiny liquid or solid particles mixed in the air. Clouds and aerosols
are strongly connected through aerosol-cloud interactions. Aerosols and cloud droplets
impact the climate system through direct and indirect effects on the radiation budget
(see Appendix 7.2.3). The direct effect means that aerosols scatter and absorb in-
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coming solar radiation (Charlson et al., 1992). The indirect effect means that some
particles can act as initial formation sites for cloud droplets (CCN) and ice crystals
(ice nuclei, IN) and thereby affect the microphysics, dynamics, radiative properties
and lifetime of clouds (Albrecht, 1989; Twomey, 1991; Stevens and Feingold, 2009).

As aerosols affect clouds, the clouds can also alter the atmospheric aerosol popu-
lation via several processes. Clouds affect atmospheric aerosol population via cloud
processing as aerosols are exposed to mixing, evaporation, condensation, coagulation
and coalescence (concerns larger droplets) that alter aerosol properties and charac-
teristics. Aqueous-phase chemical reactions change aerosol properties as specific
particles can form and aerosol populations can evolve in a moist and chemically ac-
tive environment (Ervens et al., 2008; Korhonen et al., 2008; Kulmala et al., 2013).
Due to these processes, as clouds evaporate the composition and size of the released
particles can differ distinctly from those of the original CCN population. Addition-
ally, wet scavenging removes aerosol particles including CCN within and below a
cloud, and is the most important removal mechanism of atmospheric particles. Fur-
thermore, turbulent or convective updrafts transport aerosol particles between atmo-
spheric layers and hence affect their role and radiative effects in the atmosphere. The
updraft mechanism is one of the focal points in all the papers, especially in Paper
II and Paper III.

As the interactions are complex and spatially varying, it is challenging to con-
strain the aerosol indirect effect. Satellite data presents good spatial coverage but it
suffers from several detection uncertainties (Quaas et al., 2010; Arola et al., 2022).
In addition, contrary to detailed cloud simulations and observations (Small et al.,
2009; Christensen and Stephens, 2011) global climate models are prone to predict
a higher increase in water content with increasing aerosol concentration compared
to observations, which significantly affects the predicted cloud radiative properties.
Due to these shortcomings, the aerosol indirect effect holds the single largest uncer-
tainty in present estimates of radiative forcing (Masson-Delmotte et al., 2021). This
large uncertainty in the past and present aerosol cooling narrows our understanding
of the sensitivity of the climate system to an increase in carbon dioxide, which influ-
ences future climate predictions by imposing significant uncertainties (Andreae et al.,
2005). Through the CMIP6 era (1850–2014), greenhouse gases have contributed the
most significant positive radiative forcing, while aerosols have possessed the largest
negative forcing. However, the global trend of increasing aerosol forcing has shifted
towards a decreasing trend (Bauer et al., 2022).

2.2.1 Stratocumulus clouds

Stratocumulus clouds, especially marine stratocumuli are the focal point of this study
concerning different cloud types (see Figure 1). Stratocumuli cover vast regions,
approximately one-fifth of Earth’s surface in the annual mean, 23% of the ocean
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surface and 12% of the land surface. Concerning area coverage stratocumulus is the
most dominant cloud type (Warren et al., 1986, 1988; Hahn and Warren, 2007; Wood,
2012). These two facts along with that stratocumuli are feasible to model with our
detailed cloud model UCLALES-SALSA make stratocumuli the cloud type to study
in this research. Further information about stratocumulus clouds can be found in
Wood (2012).

Figure 1. Figure credit: Valentin de Bruyn / Coton. This illustration has been created for Coton,
the cloud identification guide for mobile. Figure reprinted under CC BY 3.0 licence
(https://creativecommons.org/licenses/by/3.0/), via Wikimedia Commons.

The name stratocumulus originates from Latin, where stratus means ”layer” and
cumulus means ”heap”. Stratocumulus forms up of an ensemble of individual con-
vective elements that together compose a layered pattern (Wood, 2012). The layering
is often obtained by a strong temperature inversion of only some ten meters thick that
acts as an upper boundary. The heaping displays the convective nature of the cloud.
Stratocumuli are often low-level and shallow clouds. The dynamics of stratocumuli
are driven by convective instability (See Appendix 7.2.4) caused by cloud-top radia-
tive cooling which separates stratocumulus from stratus by definition (Wood, 2012).
Moreover, surface sensible heat flux is a much weaker source of turbulence compared
to cloud-top radiative cooling. However, over land and in cold-air outbreaks, surface
sensible heat flux can be as significant as cloud top radiative cooling (Atkinson and
Wu Zhang, 1996; Wood, 2012)). Surface latent heat flux provides the main source of
moisture in most stratocumuli (Wood, 2012).

The layer of stratocumuli can exhibit complex but recognisable mesoscale (hor-
izontal scale from five to hundreds of kilometres) structures (Wood, 2012), which
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can be classified typically to four categories: No MCC (MCC = mesoscale cellu-
lar convection), Closed MCC, Open MCC, Cellular but disorganised. To illustrate,
No MCC can resemble a ploughed field, Closed MCC seem to be like soap bubbles
squished next to each other, Open MCC can be thought of as a honeycomb and often
they are even somewhat hexagonal, Cellular but disorganised refer to a group of con-
vective cells that do not display any distinctive spatial pattern. These morphological
structures can be seen in Figure 2 along with solid stratus, clustered cumulus and sup-
pressed cumulus. The circled portion of the solid stratus resembles the structure of
No MCC. Mohrmann et al. (2021) added clustered cumulus and suppressed cumulus
to capture more cloud morphological variability in the tropics and subtropics.

Figure 2. Cloud structures, image scale about 100 kilometres (Mohrmann et al., 2021). Figure
reprinted under CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/)
with an added circle in stratus subfigure.

How to model clouds is the major subject of this study and is handled in detail in
the following chapters.

2.2.2 Mixed-phase clouds and ice microphysics

One of the focus areas of Paper I and Paper II is the role of ice crystals in clouds
as liquid-phase cloud processes are fairly well quantified but the ice microphysical
processes, especially heterogeneous ice nucleation, dynamics and radiative effects
of mixed-phase and ice clouds remain more inadequately constrained. When super-
cooled liquid droplets co-exist with ice crystals, the clouds formed are known as
mixed-phase clouds. These clouds are most frequent at temperatures between −10
to −25∘ (Filioglou et al., 2019) but can exist between −35 to 0∘ and require certain
microphysical and dynamical conditions, like supersaturation with respect to ice,
presence of ice nucleating particles along with updraft and turbulent mixing (An-
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dronache, 2017). The role of ice in clouds can be significant as for instance, it can
affect their lifetime and radiative properties. Cloud lifetime can be substantially re-
duced as a critical amount of ice can lead to cloud glaciation and dissipation (Rauber
and Tokay, 1991; Harrington et al., 1999; Avramov and Harrington, 2010).

Ice crystals can form (= nucleate) either by homogeneous or heterogeneous freez-
ing. In heterogeneous nucleation, freezing begins from the surface of the ice nucle-
ating particle (INP) and can happen at higher temperatures than homogeneous nucle-
ation (= freezing without INPs) which occurs at temperatures lower than −38∘. Het-
erogeneous nucleation can further be categorised into immersion, deposition, contact
and condensation freezing. These droplet freezing processes are not yet fully quan-
tified despite extensive research (Phillips et al., 2008; Atkinson et al., 2013; DeMott
et al., 2011; Kiselev et al., 2017; Iwata and Matsuki, 2018; Chatziparaschos et al.,
2023). However, understanding of these processes grows iteratively. For instance,
our study simulates droplet freezing processes while tracking the evolution of aerosol
distribution and cloud dynamics.

2.3 The range of spatiotemporal scales
One key point in this study is the wide range of spatiotemporal scales in climate and
cloud modelling. This challenge of scales emerges from the fact that for example
clouds contain phenomena from microphysics of nanometre scale to cloud activa-
tion on a scale of micrometres and model resolutions of large-eddy simulation (LES)
(see Chapter 3) subgrid dynamics (< 10(𝑚)) where clouds and surrounding envi-
ronments mix to global cloud model subgrid dynamics of mesoscale meteorology
of hundreds of kilometres. The objective is to model and parameterise the physi-
cal processes that span over multiple orders of magnitude and to obtain physically
representative results in a computationally feasible way.

For instance, although LES is highly detailed in terms of cloud dynamics, it
cannot provide atmospherically representative results in cases where weather sys-
tems grow larger than what is feasible to simulate with the model. For example in
Diamond et al. (2022), they showed that LES-scale modelling does not show full
response for cloud changes. Nonetheless, at least a regional atmospheric model (of
a larger length scale) is needed to obtain the effect of aerosols on atmospheric cir-
culation. Furthermore, concerning microphysics, every single particle should fun-
damentally be simulated. Yet, the solutions that are feasible, like bulk and bin mi-
crophysics schemes (see Section 3.2.2), are essentially simplifications or parameter-
isations where an ensemble of similar particles is simulated instead of every single
particle. These simplifications do not take into account that the largest droplets are
not evenly distributed in turbulent air. However, the distribution of large droplets
is accounted for to the extent permitted by the resolution of the model but is as-
sumed to be even. Also Honnert et al. (2020) show that in atmospheric boundary
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layer modelling in the resolution regime of a few hundred meters (gray zone) neither
the techniques of high-resolution atmospheric modelling (a few tens of meters res-
olution) nor meteorological models (a few kilometres resolution) are convenient to
solve turbulence structures as fundamental assumptions behind the parameterisations
are violated. However, Honnert et al. (2020) admit that model simulations in this res-
olution regime of a few hundred meters may remain highly useful. Note well that the
concern expressed by Honnert et al. (2020) does not concern our LES results where
mostly all turbulent scales are solved. This is highlighted as care must be taken to
ensure a parameterisation employed with different grid resolutions is suitable for its
use. Essentially, a higher resolution can be used with any parameterisation, how-
ever, subgrid processes need to be properly handled. For instance, the microphysical
packages in weather prediction models are altered as the resolution is changed.

The other part of the challenge is the range of temporal scales. Like in GCM, a
typical time step is 10 minutes or more which can be compared to cloud activation of
tens of seconds to minutes. In the detailed LES model, the time step is usually a few
seconds, however for example the modelled water vapour condensation is calculated
within a sub-time step process.

These discrepancies between realistic spatiotemporal scales and the limitations
of feasible modelling lead to process parameterisations that can be inadequate rep-
resentations of physical reality. Some processes or interactions might be missing
altogether, especially in coarser models like GCMs. Thus, research is needed to
further narrow down the gap between physical reality and climate system models.
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3 Cloud Modelling with
UCLALES-SALSA: methods and results

Clouds are a vital part of the climate system, as stated in Chapter 2, and since sig-
nificant uncertainties are related to aerosol-cloud interactions we wanted to develop
a state-of-the-art cloud model to quantify these interactions. In Paper I and Paper
II a detailed cloud model UCLALES-SALSA was used to examine the aerosol-cloud
interactions focusing on mixed-phase clouds, which means that interactions with ice
crystals were included in the model.

The UCLALES-SALSA is a large-eddy simulator. It is a combination of UCLALES
large-eddy simulator (Stevens et al., 1999, 2005) handling the dynamics (turbulence,
fluxes, advections, etc.) and SALSA (Kokkola et al., 2008, 2018) managing micro-
physical processes. Novel descriptions for clouds and precipitation were added to
SALSA, which was coupled with UCLALES and introduced as UCLALES-SALSA
in Tonttila et al. (2017). Moreover, the SALSA module was extended with ice mi-
crophysics in Paper I, which was further on applied to study a mixed-phase cloud
case in Paper II.

In this chapter, we dig into what major mathematical choices have been made
to make UCLALES-SALSA work. Also, some shortcomings and compromises are
discussed.

3.1 Large-eddy simulation
Large-eddy simulators (LES) have been widely used in the last two to three decades
to study planetary boundary layer (PBL, see Appendix 7.2.2) phenomena (Maronga
and Li, 2022). The idea of LES is to reduce the computational cost by parameterising
the smallest length scales as opposed to Direct Numerical Simulation (DNS) solving
all included length scales. In a LES model, the large-scale turbulence is resolved.
Large-scale means spatial scales larger than the grid spacing (i.e. spatial scales > Δ

= grid spacing). On smaller length scales (< Δ), the impact of turbulence is ac-
counted for with a subgrid-scale (SGS) turbulence closure (Maronga and Li, 2022).
The UCLALES-SALSA model implements the Smagorinsky-Lilly subgrid model
(Smagorinsky, 1963; Tonttila et al., 2017). The accuracy of the LES depends on
the subgrid model, the numerical schemes, that is how the continuous equations are
approximated and solved on a discrete grid (e.g. spectral or finite element meth-
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ods), and the grid spacing (Pope, 2000). The separation of flows into large-scale and
subgrid flows is usually executed by filtering the velocity field with a kernel 𝐺Δ(𝑥)

(Leonard, 1974). The convolution kernel excludes scales smaller than Δ (Meneveau,
2010). Here, the LES filter is applied to a spatiotemporal field 𝜑(𝑥, 𝑡). Following
Pope (2000); Saugaut (2006) the filtered field (marked with a bar), is defined as

𝜑(𝑥, 𝑡) =

∫︁ ∞

−∞

∫︁ ∞

−∞
𝜑(𝑟, 𝜏)𝐺(𝑥− 𝑟, 𝑡− 𝜏)𝑑𝜏𝑑𝑟, (1)

where 𝐺 is the filter convolution kernel. The Equation (1) can be formulated also as

𝜑 = 𝐺 ⋆ 𝜑, (2)

where ⋆ is the convolution operation. The filter kernel 𝐺 has a corresponding cutoff
length scale Δ and cutoff time scale 𝜏𝑐. The smaller scales than the cutoff lengths
are eliminated from 𝜑, and denoted by 𝜑′. For any field 𝜑 the following equation

𝜑 = 𝜑+ 𝜑′ (3)

holds showing that the larger scales are resolved and the smaller scales 𝜑′ are pa-
rameterised with the subgrid model. Hence, the choice of grid spacing (Δ) and
the subgrid model is vital as they affect the accuracy and computational cost of the
model.

In a large-eddy simulator, the domain size is usually in the order of ten kilometres
in each horizontal direction and some kilometres in the vertical direction depending
on the application. The grid resolution is from several meters to some tens of me-
ters. In UCLALES-SALSA the horizontal domain, with uniform grid squares, is
defined with doubly periodic boundary conditions, which means that the variables
and their fluxes are identical on opposing boundaries. In other words, when an ob-
ject passes the boundary, it reappears on the opposite side with the same velocity
(like topological mapping onto a torus). In flow models in general, other possible
boundary conditions are for instance solid walls and near-wall resolved turbulence
(e.g. Freire (2022)). The bounded vertical domain is spanned by a stretchable grid.
The vertical grid has a selected number (by default five) of topmost grid points acting
as a sponge layer (Rayleigh friction), which damps unrealistically reflected gravity
waves at the model top (Tonttila et al., 2017). In UCLALES-SALSA the advection
of momentum variables (i.e. mass with direction and speed) is based on a fourth-
order difference equation where time stepping is done with a leap-frog method. A
simple forward time stepping is used for scalars describing a state, like tempera-
ture. The simulation time is usually from hours to several days but can also be some
seconds or minutes. Large-eddy simulations often include a spin-up period from
the start of the simulation to allow a dynamically and thermodynamically consis-
tent state before starting the actual simulation or analysis. This includes enabling
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the turbulence to become fully developed reaching the top of the boundary layer. In
Paper I, Paper II and Paper III the spin-up period was chosen to be from one to
two hours. During the spin-up period one or several processes, like microphysical
processes can be switched off to prevent phoney effects on the cloud properties dur-
ing the initial buildup of turbulent kinetic energy and settling of the boundary layer
properties (Tonttila et al., 2017). Some processes are explicitly resolved but often
parameterisations are needed, especially in sub-grid (e.g. turbulence) processes.

3.2 Microphysics
Apart from solving the dynamics, a major part of any LES modelling of the plan-
etary boundary layer is the implemented microphysics scheme. There are several
types of microphysics schemes: bulk (Khairoutdinov and Kogan, 2000; Golaz et al.,
2005; Seifert and Beheng, 2001, 2006; Stevens et al., 2005; Savre et al., 2014), bin
(Feingold et al., 1996; Feingold and Kreidenweis, 2002; Saleeby et al., 2015; Tonttila
et al., 2017), bin-emulating bulk models where microphysical processes are parame-
terised to some level but only bulk scalars are transported within the model (Mansell
et al., 2020) or Lagrangian particle-based methods (Shima et al., 2009), where a
probabilistic microphysics was used.

Here, we focus on bulk and bin microphysics schemes. They are the prevalent
schemes (Khain et al., 2015), and they are currently the only possible microphysics
scheme choices in UCLALES-SALSA. In this study, both bulk and bin microphysics
schemes have been employed. Typically in the bulk schemes, droplet mass is pre-
dicted along with prescribed or varying droplet number concentrations. In the bulk
scheme used in UCLALES, the cloud droplets are diagnostic and rain water mass
and rain droplet number concentrations are prognostic. The term two moment is
used when both variables are predicted, if one droplet variable is predicted (the other
is prescribed) then the term one moment is used. In bin microphysics, the droplet
size distributions are divided into bins (= sections, see Figure 3). Within each bin,
the droplet variables (mass, size, etc.) are predicted similarly to bulk microphysics.
When choosing either bin or bulk microphysics the main trade-off is the choice be-
tween computational cost and accuracy in the representation of microphysical pro-
cesses. Bin microphysics is more detailed as the shape of the size distribution is
allowed to evolve. However, better details come with a higher computational cost.
Bulk microphysics, where the shape of the size distribution is prescribed, has a lower
computational cost but loose to bin microphysics in accuracy and in sensitivity to
many microphysical processes such as the effects of aerosols on clouds (Khain et al.,
2015).

In essence, as already noted in Section 2.3, both bin and bulk schemes are pa-
rameterisations since fundamentally every individual particle should be simulated.
Additionally, by default, microphysics is ignorant of sub-grid processes. However,

15



Jaakko Ahola

sub-grid processes can be taken into consideration, like it has been done with coagu-
lation kernels (See 7.2.5). However, UCLALES-SALSA produces well the average
cloud properties, at least on the level that is obtainable from observations, for details
see Paper I and Tonttila et al. (2017); Silva et al. (2021); Calderón et al. (2022).

Figure 3. Illustration of bin microphysics (Kokkola et al., 2008). Figure reprinted under CC BY 3.0
licence (https://creativecommons.org/licenses/by/3.0/).

3.2.1 Bulk microphysics

When using bulk microphysics in UCLALES-SALSA, it shrinks back to UCLALES
model (Stevens et al., 1999, 2005). In this Seifert & Beheng bulk microphysics
(Seifert and Beheng, 2001) the cloud water mixing ratio is calculated with satura-
tion adjustment method, where the relative humidity is set back to 100 % in case
of supersaturation, the enthalpy of condensation is released and the temperature is
increased just the right amount for 100% humidity, following with condensates as
cloud droplets. The prognostic variables (See 7.2.6) are liquid water potential tem-
perature 𝜃𝑙, total water mixing ratio 𝑞𝑡 and additionally other required prognostic
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variables like rainwater mass and rain droplet number concentration. Only cloud
condensate mixing ratio 𝑞𝑐 and water-vapour mixing ratio 𝑞𝑣 are diagnostic.

The bulk microphysics does not include a description of aerosols. Instead, the
microphysical processes are governed by a prescribed cloud condensation nuclei
(CCN), which is assumed to represent the number of cloud droplets throughout the
whole cloud volume (cloud droplet number concentration, CDNC) (Tonttila et al.,
2017). The drizzle formation follows Seifert and Beheng (2001) as

𝜕𝑞𝑟
𝜕𝑡

= 𝑘𝑐𝑞
2
𝑐𝑥

2
𝑐 , (4)

where 𝑞𝑟 is the precipitation mixing ratio (for prognostic variable, see 7.2.6), 𝑞𝑐 is
the cloud condensate mixing ratio, 𝑥𝑐 = 𝑞𝑐/𝑁𝑐, where 𝑁𝑐 is the cloud condensation
nuclei (CCN) concentration and 𝑘𝑐 is a coefficient taking into account the droplet
size distribution width and non-equilibrium effects (Stevens and Seifert, 2008; Tont-
tila et al., 2017). Rain droplets can grow by coagulation, that is by colliding with
each other. The rate of coagulation is defined with coagulation kernels (See 7.2.5)
that are updated at each time step. Sedimentation of the cloud and rain droplets is
calculated based on sedimentation velocity, which depends on the diagnosed droplet
size (Tonttila et al., 2017).

3.2.2 SALSA

When the SALSA microphysics scheme is coupled to UCLALES (i.e. UCLALES-
SALSA model), condensation and evaporation of water vapour on cloud droplets,
raindrops and aerosols are explicitly resolved with analytical predictor of condensa-
tion (APC) scheme (Jacobson, 2005; Tonttila et al., 2017). As the bulk microphysics
scheme used saturation adjustment for computing the prognostic total water mixing
ratio (𝑞𝑡), with the SALSA bin microphysics cloud condensate mixing ratio (𝑞𝑐), rain-
water mixing ratio (𝑞𝑟) and the water vapour mixing ratio (𝑞𝑣) are treated as separate
prognostic variables. This enables realistic non-equilibrium conditions with respect
to water (Tonttila et al., 2017).

With the SALSA module, the aerosol size distribution is discretised into 𝑛 size
bins according to the dry particle diameter (Bergman et al., 2012). Aerosol number,
compound masses (sulphate, dust, organic carbon, sea salt, nitrate and ammonium)
and the mass of condensed water are the prognostic variables for each bin. By de-
fault, the number of bins is 10 and the bins cover a diameter range from 3 (𝑛𝑚)

to 10 (𝜇𝑚). The range is divided into subranges 1a and 2a (see Figures 3 and 4).
The division aims to reduce the number of computed tracer variables by including
only those compounds that are the atmospherically most significant in each subrange
(Kokkola et al., 2008; Tonttila et al., 2017). The particles in individual subranges are
assumed to be internally mixed. Incorporating a parallel subrange 2b enables the ex-
ternal mixing of particle populations. A typical setup is to have soluble compounds
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in subrange 2a and insoluble compounds in subrange 2b. The spacing of the size bins
is established as logarithmically equidistant within each of the subranges.

As a unique strategy, in UCLALES-SALSA cloud droplets are described based
on the dry size of the activated aerosol with identical prognostic bin quantities as for
the aerosol bins within their common size range, which is by default the 2a and 2b
bins. Following, each cloud droplet bin has a parallel aerosol bin. This approach
enables preserving the aerosol size distribution and the number concentration upon
cloud activation and droplet evaporation (Tonttila et al., 2017).

Contrary to the cloud and aerosol size bins, the precipitation size bins follow
wet drop diameter to allow realistic collection processes and surface precipitation.
The number and mass of droplets to be transferred to precipitation size bins are
determined by an autoconversion parameterisation based on a mathematically simple
log-normal distribution. By default, the threshold diameter for drizzle droplets is
50(𝜇𝑚).

With these modelling choices, the spectral resolution is quite coarse but provides
a good compromise between computational cost and model performance. However,
the bin number can be changed and in Paper II and Prank et al. (2022) it has been
increased. For instance, additional bins improve the size resolution for cloud droplets
and ice particles.

The SALSA module calls sequentially for the implemented microphysical pro-
cesses that are detailed and of key importance. These processes include for exam-
ple sedimentation, coagulation (= collision-coalescence, i.e. particles colliding) and
condensation of water vapour and aerosol precursor gases, which are implemented
following from Jacobson (2005).

To accurately model the evolution of the aerosol size distribution through cloud
processing and wet scavenging, a two-dimensional dry-wet diameter bin system
would be needed. This derives from cloud activation being dependent on dry aerosol
size distribution, whereas collision processes and sedimentation rates depend highly
on the wet particle size. Such detailed two-dimensional model frameworks exist
(Lebo and Seinfeld, 2011) but have a high computational cost in LES applications.
SALSA aims to resolve the issue of computational cost by the compromise of hav-
ing cloud droplet bins described with the dry size of the activated aerosol (i.e. CCN)
and a parallel aerosol bin with identical prognostic bin quantities. This design en-
ables the shape of the aerosol size distribution and the number concentration is con-
served upon cloud droplet activation and upon droplet evaporation. However, drizzle
droplets (rain) are tracked by wet droplet size as relevant drizzle processes depend on
wet size. By this choice, information about the aerosol size distribution is not as ac-
curate as with aerosols and cloud droplets. Nonetheless, the compromise of tracking
rain droplets by wet size is reasonable as the number concentration of rain droplets
is always much smaller than the number concentration of cloud droplets or aerosols
(Tonttila et al., 2017).
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In SALSA the cloud activation can be calculated with two different methods.
The parameterisation method based on Abdul-Razzak and Ghan (2002) is more ap-
plicable in a coarser resolution regime (several tens of meters and above). The other
method that has been used in all the Papers is the one based on resolving the wet
aerosol particle diameter. The aerosol particle is activated once the wet diameter of
the particle exceeds the critical diameter corresponding to the resolved supersatu-
ration from the host model (Tonttila et al., 2017). Here, the condensation of water
vapour onto aerosols is solved iteratively when the relative humidity is high. The crit-
ical diameter is also dependent on the chemical composition and the size of the dry
CCN. The activated particles are moved to corresponding cloud bins that by default
cover dry CCN size range from 50 (𝑛𝑚) to 10 (𝜇𝑚).

Since the spectral resolution of the aerosol bins is relatively coarse, it may cause
some undesirable discontinuities in the activation spectrum with increasing satura-
tion ratio due to the particle size discretisation (Tonttila et al., 2017). To reduce these
discontinuities in cloud activation, the distribution of the particle mass and number in
the critical aerosol size bin is adjusted by using linearly fitted slopes between the bin
centres (Korhonen et al., 2005). Evaporation and deactivation of cloud droplets are
modelled with resolved condensation, where activated aerosol particles are released
back to the aerosol bin regime (Tonttila et al., 2017).

In Paper I ice microphysics was implemented within the UCLALES-SALSA
bin microphysics scheme and further on applied in Paper II. Figure 4 shows the
new bins associated with ice microphysics. Identical size bins 2a and 2b used for
aerosols, cloud droplets and ice allow tracking of aerosol development through cloud
activation, freezing and sublimation. The new ice microphysical processes imple-
mented to UCLALES-SALSA are droplet freezing, deposition and sublimation of
water vapour, melting when 𝑇 > 0∘𝐶, coagulation between different hydrometeors,
sedimentation, and ice crystals interacting with radiation. Droplet freezing includes
immersion, homogeneous, deposition, contact and condensation freezing. Immer-
sion freezing is the focal point in both Paper I and Paper II as the other modes of
ice nucleation are not applicable to the cloud conditions being simulated. The freez-
ing rates are predicted using the stochastic freezing parameterisation that is based
on classical nucleation theory (Khvorostyanov and Curry, 2000) with additional pa-
rameters from Jeffery and Austin (1997); Khvorostyanov and Curry (2004); Li et al.
(2013). The freezing rates depend primarily on ambient conditions, the properties
of the solid insoluble substrate and ice nucleating particle (INP) concentration. The
ambient conditions include temperature and relative humidity over ice. The latter
substrate properties are described with compound-specific ice nucleation parameters
(e.g. contact angle).

In the first version of UCLALES-SALSA, (Tonttila et al., 2017) warm SALSA
microphysics was coupled to UCLALES, where particles are assumed to be spheri-
cal. In the case of warm microphysics that is a reasonable assumption. The ice crys-
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tals tend to be hexagonal or fractal shaped depending on temperature and in-cloud
processes. As the saying goes, there are no identical snowflakes. The ice crystals in
Paper I and Paper II are assumed to be spherical. However, concerning the applica-
tion of modelling stratocumulus clouds, the ice shape assumption is fairly reasonable
with the following definitions. In the UCLALES-SALSA ice microphysics descrip-
tion, ice shape is characterised by a mass-diameter parameterisation

𝑚 = 𝑎𝑚𝐷
𝑏𝑚 , (5)

where 𝐷 is the maximum particle dimension related to capacitance 𝐶 via 𝐷 = 𝜋𝐶

and 𝑎𝑚 = 44.2(𝑘𝑔 𝑚𝑏𝑚) and 𝑏𝑚 = 3. Capacitance is a measure acting as an effective
radius for non-spherical particles (used also in condensation) and defined as

𝐶 = 𝑎𝑐𝑚
𝑏𝑐 , (6)

where 𝑎𝑐 = 0.09 (𝑚 𝑘𝑔−𝑏𝑐) and 𝑏𝑐 = 1
3 . This parameterisation corresponds to

spherical particles having a low effective density (𝜌 = 84.5 (𝑘𝑔 𝑚−3)). Additionally,
the ice fall speed is described with

𝑉 = 𝑎𝑣𝐷
𝑏𝑣 , (7)

where 𝑎𝑣 = 12 (𝑚1−𝑏𝑣 𝑠−1) and 𝑏𝑣 = 0.5. This parameterisation is given in Ovchin-
nikov et al. (2014) and it represents an idealisation of dendrites as spheres of constant
and low equivalent density. It is suitable for model intercomparison but does not ac-
count for changing aspect ratio frequently happening in growing crystals (Sulia and
Harrington, 2011). We could have used a more detailed ice crystal parameterisation
but this parameterisation was used in Paper I to allow comparison of our model to
other models given in Ovchinnikov et al. (2014).

As we can see there are several parameterisations that had to be done in order
to model ice crystals within a large-eddy simulator. Although UCLALES-SALSA
has some limitations, it is still a useful modelling tool as shown in Paper I and
Paper II. Furthermore, both papers showed the INP recycling within the bound-
ary layer and Paper II also showed the importance of updrafts for importing INPs
from the surface to the cloud layer. All things considered, UCLALES-SALSA has
been shown to model the aerosol-cloud-ice-precipitation interaction well. The math-
ematical choices of ice microphysics of UCLALES-SALSA are discussed further in
Section 6.1.2.
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Figure 4. Illustration of SALSA microphysics bin scheme in Paper I. Figure reprinted under CC BY
4.0 licence without modifications (https://creativecommons.org/licenses/by/4.0/).
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4 Parameterising cloud processes:
methods and results

As already stated, clouds are one of the major features of the climate system caus-
ing uncertainties in predicting climate change. Clouds are particularly hard to model
with global climate models as their resolution is coarse compared to the fine details
of clouds (Honnert et al., 2020). Cloud droplets form when air cools and then water
vapour condenses on small particles, aerosols. Regarding stratocumulus clouds, the
cooling of air happens usually via air parcel rising (i.e. adiabatic expansion in the
updraft) or radiative cooling in cloud top. Aerosols can be of either natural or human
origin, like dust, sulphates, black carbon, and so forth. Cloud droplet number concen-
tration forming at the cloud base is determined by aerosol properties and how fast the
air parcel rises, that is updraft velocity. Updraft velocity is a component of turbulent
air flows in the planetary boundary layer (i.e. near the Earth’s surface). In general,
turbulence is caused by excessive kinetic energy in some parts of a fluid flow, where
the damping effect of the fluid’s viscosity cannot keep the fluid flow laminar. In the
atmosphere, the instability of the atmosphere is a major driving force for turbulent
air flows. The stability of the atmosphere is defined by comparing the temperature of
a rising or sinking air parcel to the environmental air temperature. An unstable atmo-
sphere favours vertical motions. The stability of the atmosphere is affected by fluxes
from the surface (heat fluxes, moisture fluxes) and changes caused by radiation at dif-
ferent altitudes. Latent heat has a greater impact on stability (i.e. temperature) than
radiation except at cloud top. Radiative cooling of clouds and advection of cooler
air masses can also destabilise the atmosphere (Seinfeld and Pandis, 1998; Jacobson,
2005).

In the current global climate models, the grid resolution is at its best tens of kilo-
metres, which is two to three orders of magnitude too low to resolve cloud structural
variability. Superparameterisations are a potential solution, where a high-resolution
model, like LES, is run within every low-resolution column but it is highly computa-
tionally expensive and therefore too heavy for climate predictions. Instead of trying
to fully resolve the cloud development with a superparameterisation, vital properties
for cloud evolution, like updraft velocity, are parameterised as accurately as possi-
ble. To get an estimate for updraft velocity, most models employ a parameterisa-
tion based on a proxy which is often the estimate of turbulent kinetic energy (Golaz
et al., 2011). Other possible means of updraft velocity parameterisation are based on
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cloud-top radiative cooling or cloud-top height, where updraft velocity is presented
as a linear function of the proxy, but the methods are not yet widely used (Zheng and
Rosenfeld, 2015; Zheng et al., 2016).

To achieve high accuracy with a low computational cost, in Paper III we repre-
sented three different updraft parameterisation methods based on supervised machine
learning where training data is obtained from detailed LES simulations. In Paper
IV we used one of the created parameterisations, Gaussian process emulator (GPE),
in the ECHAM-HAMMOZ global climate model (later on ECHAM abbreviation is
used, see also Section 2.1.2). GPE was chosen in Paper IV as a reasonable com-
promise due to its simpler implementation compared to the Random Forest based
method (LFRF) and expressive power compared to the simplest linear method (LF)
as shown in intercomparison in Paper III. Additionally, GPE was the first method
envisioned to be used. The other two methods emerged as we were writing Paper
III. Moreover, the required Gaussian process libraries were available in FORTRAN,
which is the programming language of the ECHAM model. In Paper IV , GPE
was used for predicting values of updraft velocity and rainwater formation rate. In
ECHAM, the latter directly affects precipitation. Precipitation is one of the major
cloud microphysical processes affecting cloud water content, dynamics and lifetime.
The chosen cloud processes are identified as one of the major sources of uncertainty
in the cloud radiative forcing estimates in present climate models (Donner et al.,
2016; Jing et al., 2019; Yoshioka et al., 2019; Bougiatioti et al., 2020).

Here we are examining the parameterisations from a detailed mathematical point
of view. Creating the parameterisation follows the workflow shown in Figure 5.
Parameterisation means here an emulator, a statistical model, that emulates the be-
haviour of a simulator (here: large-eddy simulator, LES) and it estimates simulation
output at untried input combinations. According to a common naming convention in
supervised machine learning, we name training input data, X, as feature vectors and
training output, y as target values. After training (i.e. fitting), we have a parameteri-
sation

𝑓(X) = y. (8)

In optimal case, the parameterisation 𝑓 has the same output as LES with a fraction
of computational cost.

4.1 Filtering ECHAM to create source data
This section covers how a large set of low marine clouds is filtered from climate
model simulation data. This part of the workflow is labelled (A), 1. and (B) in
Figure 5. Here we show how original raw data (A) is filtered (1.) to create a clean
sample set (B).

The Initial ECHAM data was generated from one one-year ECHAM-HAMMOZ
(ECHAM6.3-HAM2.3-MOZ1.0) AMIP (Atmospheric Model Intercomparison Project)
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Figure 5. The workflow laid out for creating a cloud process parameterisation. Lettered
(blue-coloured) boxes refer to data that can be input or output for a process. Numbered
(green-coloured) boxes refer to processes. * means that usually (C) forms up the feature vectors (=
training input data) and (E) are the target values (= training output data) but some variables in (E)
can be used as features also.

type run. Filtering of the source data is given as a pseudocode in Algorithm 1. First,
any marine column without sea ice is included in the set (lines 1-7). Next all low
cloud columns are identified (lines 8-14). Here low-level cloud is defined as a column
where there is more than 0.01 (g kg−1) cloud liquid water below 700 hPa pressure
level. Fog columns are eliminated by excluding all columns that have cloud water in
the first level above ground (lines 15-21). From the remaining columns, the lowest
cloud layer is identified, and the Liquid Water Path (LWP) inside that lowest cloud
is calculated (lines 22-25). Here, the low cloud is defined as the lowest continuous
layer with one or more cloudy ECHAM levels below 700 hPa. Finally, a column is
accepted as input data if more than half of the total column WP (= LWP+ IWP, WP
= Water Path, IWP = Ice Water Path) is inside the lower cloud layer, which means that
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there would be no cloud above the low cloud. Such layered clouds were discarded
as they affect radiative flux. Additionally, we planned that there would be no ice in
the low cloud, which is defined so that IWP is less than 10% of the LWP in the low
cloud region (lines 26-27). The boundary layer height was defined as the difference
between sea level pressure and pressure at the detected cloud top (line 30). Addi-
tional limitations could be set in order to avoid clearly improper LES initial values,
for example, thresholds for low cloud LWP, and temperature and humidity inversion,
but we did not see a clear need for this.

Only low altitude and stratiform clouds are included since LES is capable of
modelling them with detail and global models have known issues in modelling them.
Additionally, the more convective clouds and cloud systems, like high or thick clouds,
would require a larger simulation area and a more complicated simulation setup.
Both requirements would increase the computational cost of the LES model and thus
make the execution of simulation ensembles impractical.

Columns that do not have clouds but could potentially generate clouds would
require a longer simulation time. An extended duration of simulation would con-
tradict our objective of simulating the cloud evolution within an ECHAM time step.
In addition, this would be problematic since the initial cloud state would differ ex-
cessively from the end state. The excessive difference in cloud states would mean
that the initial state and end state would not be usable together as machine learning
training data.

As the source data is cleaned with the Algorithm 1, we select appropriate vari-
ables that can be used to describe a cloud state and therefore can be used to initialise
a cloud simulation. These variables and how they are calculated are shown in Table
1. The variables 𝐿𝑊𝑃 and 𝐻𝑃𝐵𝐿 are calculated in the Algorithm 1.
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Algorithm 1 Filtering Source data (ECHAM)

1: while 𝑝 ∈ COLUMNS do
2: if 𝑝 is not above land then
3: if 𝑝 is not above sea ice then
4: 𝑝 ∈ 𝑆𝐶 {𝑝 belongs to a group of columns where columns above land and

sea ice are excluded}
5: end if
6: end if
7: end while
8: while 𝑝 ∈ 𝑆𝐶 do
9: if pressure level < 700hPa then

10: if cloud liquid water content > 0.01kg m−3 then
11: 𝑝 ∈ 𝐶𝐶 {Identify 𝑝 as a cloudy column (𝐶𝐶)}
12: end if
13: end if
14: end while
15: while 𝑝 ∈ 𝐶𝐶 do
16: if lowest level contains cloud water then
17: Exclude point p
18: else
19: 𝑝 ∈ NFCC {𝑝 is a non-foggy and cloudy column}
20: end if
21: end while
22: while 𝑝 ∈ NFCC do
23: Calculate total column water path (TC-WP)
24: Identify lowest cloud layer (LCL)
25: Calculate the liquid water path within lowest cloud layer (LCL-LWP)
26: Calculate the ice water path within lowest cloud layer (LCL-IWP)
27: if LCL-LWP > 0.5× TC-LWP then
28: if LCL-IWP < 0.1× LCL-LWP then
29: 𝑝 ∈ FILTERED {accept p as a column for Filtered data}
30: Define boundary layer height (PBLH) as the difference between sea level

pressure and pressure at detected cloud top
31: end if
32: end if
33: end while
34: Separate FILTERED data between night and daytime
35: return FILTERED NIGHT and FILTERED DAY
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Variable
name

Unit Variable explanation
Way of retrieving from
ECHAM

SB
SAL-
SA

D
A
Y

Pha-
se

Δ𝑞𝑡 𝑔 𝑘𝑔−1
jump in total water
mass mixing ratio at
the boundary layer top

difference of max and
min values of the total
water within two lev-
els from the cloud top

1,2

𝜃𝐿 𝐾
liquid water potential
temperature in the
boundary layer

the minimum value of
potential temperature
(the same levels as for
Δ𝑞𝑡)

1,2

Δ𝜃𝐿 𝐾
inversion strength of
liquid water potential
temperature

difference of max and
min values of potential
temperature (the same
levels as for Δ𝑞𝑡)

1,2

𝐿𝑊𝑃 𝑔 𝑚−2 liquid water path for
the cloud

integrated from the
surface up to the cloud
top

1

𝐻𝑃𝐵𝐿 ℎ𝑃𝑎

planetary boundary
layer height is de-
scribed as a pressure
difference from the
surface

pressure difference
from the surface up to
the cloud top

1,2

𝐶𝐷𝑁𝐶 𝑚𝑔−1 cloud droplet number
concentration

averaged over the
cloud

1 1,2

𝑟𝑒𝑓𝑓 𝑛𝑚
effective dry radius of
accumulation mode

calculated based on
values from the lowest
level

1 2

𝑁𝐴𝑖𝑡 𝑚𝑔−1
aerosol number con-
centration in the
Aitken mode

concentration from the
lowest level

1 2

𝑁𝑎𝑐𝑐 𝑚𝑔−1
aerosol number con-
centration in the accu-
mulation mode

concentration from the
lowest level

1 2

𝑁𝑐𝑜𝑎 𝑚𝑔−1
aerosol number con-
centration in the
coarse mode

concentration from the
lowest level

1 2

cos𝜇 -
cosine of solar zenith
angle

as is 1 2

𝐶𝐿𝑊𝑚𝑎𝑥 𝑔 𝑘𝑔−1 maximum cloud liquid
water mixing ratio

From ECHAM stan-
dard output vphyscis
stream, calculated in-
side pbl

1

Table 1. Variables to represent a cloud state and used to initialise the cloud simulations. SB refers to
microphysical variables specific only to Seifert & Beheng -microphysics scheme (blue colour), SALSA refers
to microphysical variables specific only to a more detailed SALSA microphysics scheme (orange colour).
DAY means if the cloud simulation is to be run as a daytime simulation when cos𝜇 variable is needed (yellow
colour). Phase refers either to the first design version (1) that was discarded later or the design version (2)
used in Paper III and Paper IV. The green colour shows the variable that was used only in Phase I.
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4.2 Sampling source data to create a set of initial states
for LES runs

Once adequate source data (= sample set) is acquired, a representative subset of the
source data is sampled. These subsets are called designs, which are used to initialise
the LES simulations.

As a rule of thumb, the number of simulations (= samples in the design) needs
to be at least 10 times the number of input parameters (Loeppky et al., 2009). For
SB sets we used 500 simulations each. For SALSA sets we used 135 and 150 sim-
ulations, for nighttime and daytime simulations, respectively. The lower number of
simulations in SALSA sets is chosen since the computational cost increases approx-
imately 16-fold with SALSA microphysics.

All possible design features are listed with a description in Table 1. Selected
design features for each design are listed in Table 2 along with the number of design
features. There are several methods of creating a design which are explained in the
following.

Design
Number of design
features 𝑝

design features

LHS 6
Δ𝑞𝑡, 𝜃𝐿,Δ𝜃𝐿, 𝐻𝑃𝐵𝐿,
𝐶𝐷𝑁𝐶,𝐶𝐿𝑊𝑚𝑎𝑥

SB night 6
Δ𝑞𝑡, 𝜃𝐿,Δ𝜃𝐿, 𝐻𝑃𝐵𝐿,
𝐶𝐷𝑁𝐶,𝐿𝑊𝑃

SB day 7
Δ𝑞𝑡, 𝜃𝐿,Δ𝜃𝐿, 𝐻𝑃𝐵𝐿,
𝐶𝐷𝑁𝐶,𝐿𝑊𝑃, cos𝜇

SALSA night 9
Δ𝑞𝑡, 𝜃𝐿,Δ𝜃𝐿, 𝐻𝑃𝐵𝐿,
𝐿𝑊𝑃, 𝑟𝑒𝑓𝑓 ,
𝑁𝐴𝑖𝑡, 𝑁𝑎𝑐𝑐, 𝑁𝑐𝑜𝑎

SALSA day 10

Δ𝑞𝑡, 𝜃𝐿,Δ𝜃𝐿, 𝐻𝑃𝐵𝐿,
𝐿𝑊𝑃, 𝑟𝑒𝑓𝑓 ,
𝑁𝐴𝑖𝑡, 𝑁𝑎𝑐𝑐, 𝑁𝑐𝑜𝑎,
cos𝜇

Table 2. The design features and the number of them for each design. The explanation of design
features is given in Table 1.

4.2.1 Sampling method: Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a statistical method where a near-random sam-
ple is generated from a multidimensional distribution (McKay et al., 1979a). Within
statistical sampling, a Latin square is defined as a square grid where there is only
one sample position in each row and each column. If we want to generalise this
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concept to an arbitrary number of dimensions we call this a Latin hypercube, where
each sample is the only one in that specific axis-aligned hyperplane (= non-collaps-
ing). Independence is one of the main advantages of LHS. When creating a sample
set, first the number of samples is needed. For each sample point, the dimensional
coordinates must be recorded. It is like having 𝑁 rooks (= number of samples) on a
chessboard without threatening each other. LHS makes sure that the samples repre-
sent the real variability.

Following Atangana (2018), in formal terms, LHS is a sample with size 𝑁 from
the 𝑋 variables 𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑝. The range of each variable is partitioned into 𝑁
non-overlapping intervals (= bins) based on the sample size with equal probability
1/𝑁 . One value from each interval is chosen randomly according to the probability
density in the interval. As follows, the 𝑁 values from 𝑥1 are paired randomly with
the 𝑁 values of 𝑥2. Then these 𝑁 pairs are coupled with the 𝑁 values of 𝑥3 to build
𝑁𝑝-triplets until a set of 𝑁𝑝-tuples is completely built. The set 𝑁𝑝-tuples is the
Latin hypercube sample. For a sample size 𝑁 and 𝑝 variables, there exist (𝑁 !)𝑝−1

possible interval combinations for an LHS.

4.2.2 Creating a design with LHS

In Phase I, we used LHS to sample design features Δ𝑞𝑡, 𝜃𝐿,Δ𝜃𝐿, 𝐻𝑃𝐵𝐿 and
𝐶𝐿𝑊𝑚𝑎𝑥 to describe the meteorological state of the cloud and 𝐶𝐷𝑁𝐶 to describe
the microphysical state using Seifert & Beheng -microphysics scheme. These design
features are listed also in Table 1, marked with 1 in the column Phase I. These design
features are used to infer further parameters that are needed to describe the initial
state of the cloud simulation. However, LHS does not inherently make sure that
the interconnected design features are physically realistic. For example, the chosen
sample points should not end up representing negative concentrations. For LHS
designs, physical feasibility is ensured by filtering sample points with the following
constraints.

First, we needed to make sure that the humidity jump at the boundary layer (Δ𝑞𝑡)
was strong enough but not greater than the total water mixing ratio in the boundary
layer (𝑞𝑡), which would lead to impossible negative concentrations, that is

1 (𝑔 𝑘𝑔−1) < Δ𝑞𝑡 < 𝑞𝑡, (9)

where 𝑞𝑡 is deduced from other design features.
Second, the constraint for the temperature jump,

1 (𝐾) < Δ𝜃𝐿 < 15 (𝐾), (10)

depicts a typical temperature jump seen in stratocumuli. Both constraints (9) and
(10) enable a distinct enough planetary boundary layer that allows the existence of a
stable cloud for the planned simulation period. The existence of a planetary boundary
layer is essential for turbulent low-level clouds (e.g. marine stratocumuli).
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Third, the planetary boundary layer height is to be lower than 3 kilometres as
stratocumuli rarely extend beyond that and usually are lower than 2 (𝑘𝑚) in height
(World Meteorological Organization Cloud Atlas). Additionally, there should be
more than one cloud-free layer as fog should not be included, that is

30 + 50 (𝑚) < 𝐻𝑃𝐵𝐿 < 3000 (𝑚)

𝐶𝐵 > 30 (𝑚).
(11)

Fourth, a constraint makes sure that there is initially a cloud. Formally, the max-
imum cloud water content is limited by

𝐶𝐿𝑊𝑚𝑎𝑥 > 0.1(𝑔/𝑘𝑔). (12)

Nonetheless, using LHS turned out to be impractical as the constraints removed
too many of the points and we could only use a fraction of the filtered source data
(= low feasibility ratio). This was mostly due to the fact that moisture and tempera-
ture are interdependent physical variables (i.e. warmer air can hold more moisture)
and therefore cannot be independently selected using LHS.

4.2.3 Sampling method: Binary space partitioning

To tackle the issues with LHS, we changed the design concept to use a simple strat-
ified sampling method based on binary space partitioning (BSP) trees (Fuchs et al.,
1980; Tóth, 2005).

The idea for BSP is to partition the space along a hyperplane into two half-spaces,
and then both of these half-spaces are further recursively divided into half-spaces
until every subproblem contains only a trivial fraction of the input objects. The input
set consists of pairwise interior disjoint objects in R𝑝, 𝑝 ∈ N.

The partition algorithm is similar to a binary tree. All the inputs of a recursive
call of the BSP equates to a node. The root of the tree refers to the initial input
set. The two children of a non-leaf node refer to the inputs of its two subproblems.
The data structure of a BSP tree is as follows. Every leaf holds a maximum of one
full-dimensional object which is the input of the corresponding subproblem. Every
non-leaf node holds the splitting hyperplane and the (lower-dimensional) objects of
the related subproblem that exist on the splitting hyperplane.

It is a custom that the non-leaf nodes stash only 𝑑-dimensional fragments of
𝑑-dimensional objects lying on the splitting hyperplane in R𝑝, 0 ≤ 𝑑 ≤ 𝑝. For
example, if a splitting hyperplane ℎ bisects an input segment 𝑠 then the point ℎ∩ 𝑠 is
never stored, which means that optimally, the partition hyperplanes do not split the
input objects (Tóth, 2005), however with our implementation algorithm this is not a
concern. Algorithm description of BSP is given in Algorithm 2.
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Algorithm 2 Binary Space Partitioning based sampling
1: Set initial partition as the whole collection
2: while number of partitions less than the desired amount do
3: Create a list of randomly permuted input dimensions
4: for each dimension in the permuted list do
5: for each partition do
6: if number of partitions less than the desired amount then
7: Subdivide the partition into two, using the median along the current

dimension
8: end if
9: end for

10: end for
11: end while
12: Uniformly sample a point in each partition and add to the design
13: return Subsampled design with a given number of points

4.2.4 Creating a design with BSP

As we discarded LHS and used BSP to create a design, we also incorporated 𝐿𝑊𝑃
as a feature and removed𝐶𝐿𝑊𝑚𝑎𝑥 from features. The change of features was imple-
mented since 𝐿𝑊𝑃 contains all the cloud water in ECHAM cloud profiles and using
LHS-based design yielded unrealistic cloud profiles too frequently. In this second
phase, we created four different design sets. Two design sets had detailed SALSA
microphysics schemes where microphysical design features were 𝑟𝑒𝑓𝑓 , 𝑁𝐴𝑖𝑡, 𝑁𝑎𝑐𝑐 and 𝑁𝑐𝑜𝑎.
Two design sets had Seifert & Beheng -microphysics, which was already used in the
LHS design. Each microphysics scheme is split into nighttime and daytime design
sets (i.e. two design sets for each microphysics scheme). With daytime simulations,
an additional design feature cos𝜇 (cosine of solar zenith angle) was implemented to
incorporate solar radiation in the design. The splitting into daytime and nighttime
design sets was applied to improve the cloud process parameterisation. Since cos𝜇
gets real number values during daytime but daytime and nighttime differ from each
other in a binary way (i.e. non-differentiable, not smooth), the splitting improves the
accuracy of the machine learning models.

4.3 LES runs

Now that we have a design, it is used to initialise the LES runs (Figure 5 process 3.).
Then domain mean statistics are collected from the LESs raw data. The surface area
of the LES domain is 10× 10× (𝑘𝑚2). The domain height varies depending on the
simulation case from 200 (𝑚) to 3000 (𝑚). The resolution is greater than or equal to
50× 50× 10 (𝑚3). The vertical resolution depends on the domain height. We used
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UCLALES-SALSA as the LES (see Section 3), which is written in FORTRAN. The
simulations were run on a Cray supercomputer with 100 CPU cores (= 4 nodes, 3
of which are used in full and 16 cores from one node) assigned for each simulation.
Details about the supercomputer are given in Table 3. The total computational cost
of all the LES runs is approximately 517 000 CPU hours as each set takes 3-14 days
in real time on a supercomputer, see Table 4 for more details.

Available compute nodes 168
Cores Intel 14-cores Haswell
Cores per node 28
Peak performance per compute node (GF) 1030.4 GF
Total peak performance (TF) 173.10 TF
Memory peak per compute node (GB) 128 GB
Total system compute memory (TB) 21.0 TB
Interconnect topology Dragonfly

Table 3. Details about the used Cray supercomputer. GF means billion (109) and TF means trillion
(1012) floating point operations per second.

LES run
CPU cost
(h)

Post-
processing
CPU cost
(h)

Number
of simu-
lations

Total cost
per simu-
lation (h)

SB night 45 079 10 500 90
SB day 48 357 9 500 97
SALSA night 199 730 3 135 1 480
SALSA day 224 239 4 150 1 495
Total time 517 405 26 1 285 3 161

Table 4. The computational cost of LES runs and postprocessing of the LES outputs in CPU
hours.

4.4 Creating parameterisations

Here, we present three parameterisations that were used to estimate cloud-base up-
draft velocity.
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4.4.1 Linear Fit for updraft velocity

First, we create a simple Linear Fit (LF) for updraft velocity. In Zheng et al. (2016)
updraft velocity is parameterised as

𝑊𝑏 = −0.44× 𝐶𝑇𝑅𝐶 + 22.30± 13, (13)

where 𝑊𝑏 (updraft velocity at cloud base) and 𝐶𝑇𝑅𝐶 (Cloud Top Radiative Cool-
ing) have units of cm s−1 and W m−2, respectively. Here, negative 𝐶𝑇𝑅𝐶 values
indicate cooling. In Zheng et al. (2016) the parameterisation is based on data from
meteorological observations. In a similar way, we created a parameterisation where
feature vector 𝐶𝑇𝑅𝐶𝐿𝐸𝑆 and target values 𝑊𝐿𝐸𝑆 originate from LESs output data.
Hence, we have linear regression, a simple approximation, for updraft velocity 𝑊𝐿𝐹

(compare with (8)):
𝑓𝑊𝐿𝐹

(𝐶𝑇𝑅𝐶𝐿𝐸𝑆) =𝑊𝐿𝐸𝑆 . (14)

Updraft velocity is affected by solar radiation, as stated in the beginning of Sec-
tion 4, and Zheng et al. (2016) state that they found a statistically significant re-
lationship between cloud-top radiative cooling and updraft velocity at cloud base.
Additionally, marine stratocumuli often occur in areas, where surface sensible heat
flux is low compared to how radiative cooling alters the temperature profile (Wood,
2012). These points lead us to conclude that this parameterisation has a justifiable
physical basis.

4.4.2 Linear Fit improved with Random Forest (LFRF) for up-
draft velocity

The second parameterisation, LFRF, is based on the approximation error correction
method, which was introduced in Lipponen et al. (2013, 2018). The idea of the
method is to have a physics-based model that provides an estimate, and the estimate
is corrected based on selected parameters. In Lipponen et al. (2018) they showed that
this way of integrating the physics model into the prediction is more accurate than
direct machine learning prediction with the selected parameters. Here, the physics-
based model is the Linear Fit (LF, Section 4.4.1).

LFRF predicts the approximation error, that is the difference between the LF up-
draft velocity and the LES updraft velocity. Hence, the target value y (see Equations
(13) and (14)) is defined as

y =𝑊𝐿𝐸𝑆 −𝑊𝐿𝐹 . (15)

The features are the design features augmented with𝐶𝑇𝑅𝐶 values from LES output.
The error prediction is then used to correct the predictions of LF.

The training of the parameterisation (i.e. fitting) is executed with Random Forest
regression model (Breiman, 2001) and the implementation is based on the Scikit-
learn machine learning package written in Python (Pedregosa et al., 2011). Each
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tree in a Random Forest is built from a sample drawn with replacement (i.e. boot-
strapping) from the training set. When each node is split during the construction of
a tree, the best split is found either from all input features or a random subset of
features (Pedregosa et al., 2011; Breiman, 2001). A Random Forest regressor is an
ensemble of binary regression trees and can be considered as a piecewise-defined
constant function. Random Forests can learn nonlinear functions and are to some
extent tolerant to overfitting (Hastie et al., 2008).

Formally, Random Forests for regression are created by growing trees depending
on a random vector Θ such that the tree predictor ℎ(𝑥,Θ) intakes numerical values.
The output values are numerical and the training set is assumed to be independently
drawn from the distribution of the random vector 𝑌,𝑋 . The mean-squared generali-
sation error for any numerical predictor ℎ(𝑥) is

𝐸𝑋,𝑌 (𝑌 − ℎ(𝑋))2 (16)

The Random Forest predictor is formed by taking the average over 𝑘 of the trees
{ℎ(𝑥,Θ𝑘)} (Breiman, 2001).

4.4.3 Gaussian process emulator for any LES output

The third method, the Gaussian process emulator (GPE) we used was the Gaussian
Process (GP) emulator (O’Hagan, 1978; O’Hagan, 2006; Rasmussen and Williams,
2006), which was actually our initial idea for creating a parameterisation. GP is a
stochastic process (random function) so that every finite collection of those random
variables has a multivariate normal distribution. Gaussian distribution has mean and
variance, GP on the other hand has a mean function and covariance function, and thus
the GP can be thought of as a generalisation of Gaussian probability distributions to
functions. An arbitrary smooth function 𝑓 can be estimated with GP as

𝑓(x) ∼ GP
(︀
𝑚(x), 𝑘(x,x′)

)︀
, (17)

where 𝑚(x) is mean function, 𝑘(x,x′) covariance function (= kernel). Any smooth
function can be modelled with GP. A GP emulator correctly reproduces the model
output at training data points. The benefit of the GP emulator is that it also provides
uncertainty (variance) of the prediction. However, this feature was not applied in
Paper III nor in Paper IV. Thus, the GP emulator is more than an approximation,
since it makes a full probabilistic prediction of what the simulator would output.
Along with the LF method, which is a simple machine learning method as it is based
on linear regression, GPE is implemented here as a pure machine learning method
and can be used to emulate any of the LESs outputs. A pure machine learning method
means that it does not include any known dependency but it learns the input-output
relationship based on only the training data. It is worth noting that GPE could also
be implemented so that it includes a known dependency by introducing it through a
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prior mean function similar to the LFRF setup. Random Forest could also be used
as a pure machine learning method but according to Lipponen et al. (2013, 2018)
incorporating a dependency improves the method.

We used GPE to parameterise updraft velocity in Paper III and in Paper IV pa-
rameterisation of precipitation formation was included as well. The implementation
of GPE in Paper III is based on the Skicit-learn machine learning package writ-
ten in Python (Pedregosa et al., 2011) which has a theoretical foundation provided
in the Algorithm 2.1 in Rasmussen and Williams (2006). On the other hand, the
implementation of GPE in Paper IV is written in FORTRAN and is based on the
GPF library (GitHub:ots22/gpf) but has the same theoretical base (Rasmussen and
Williams, 2006) as the Python implementation.

4.5 Parameterisation creation conclusions
In Paper III we obtained promising results, especially with LFRF and GPE. Our
LFRF results are also in line with Lipponen et al. (2013, 2018) where they show that
incorporating a dependency (i.e. improving a rough empirical model with Random
Forest) improved the results compared to a pure Random Forest learning method.
The improvement by the Random Forest shows that the LF does not adequately cap-
ture the relationship and further modelling of the errors is required. This is typical
in statistical modelling and Random Forest is only one potential approach to address
the issue.

Results with SB microphysics were slightly better than with SALSA. One possi-
ble reason for this is that a more detailed microphysics scheme increases the degrees
of freedom and concurrently the internal variability of the model. The variability
is also harder to obtain as the number of simulations was lower due to the higher
computational cost.

Considering the differences between GPE and LFRF, it should be noted that GPE
is a pure machine learning method that does not incorporate any physical dependen-
cies, while LFRF entails a linear approximation of updraft velocity as a function of
cloud top radiative cooling. The GPE as implemented here does not include any spe-
cific prior mean function and performs similarly to the LFRF. This is because it is
also trying to represent all relationships in the model and not a single relationship like
the LF. When extrapolating outside of the range of the training input data, the GPE
prediction reduces to the mean of the training outputs. If GPE were used with a prior
mean function similar to LFRF, it would reduce to the mean of the prior function.
Here, LFRF reduces to the linear approximation of updraft velocity, which is still
a physics-based estimation rather than the mean of training output with GPE. Fur-
thermore, since LFRF can be considered as a piecewise-defined constant function, it
allows for the possibility of outperforming GPE in certain subsets of inputs. This is
particularly true when the subset is small and sharp-edged. Instead of a piecewise-
defined function, GPE makes predictions based on the whole training point domain
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and requires the predicted function to be smooth as irregularities can cause GPE to
go grievously amiss. Compared to LFRF, GPE is a more general method as it can
be used to emulate any process for which LES has an output. However, a parameter-
isation based on a pure Random Forest without any embedded dependencies could
also be easily developed from the LES training data. Similarly, Linear Fit improved
with the Gaussian Process Emulator or an autoconversion (= cloud droplets to rain
droplets) dependency could be embedded along with the Random Forest. Thus, there
are many possibilities and it is a matter of preference and scope of the study which
method will be chosen. Like in Paper IV GPE was used to parameterise both updraft
velocity and precipitation formation in ECHAM.

When applying the parameterisation in a coarser model in Paper IV, it should
be noted that the LES domain size (10 × 10 (𝑘𝑚2)) did not overlap with the grid
size of the coarser model ECHAM (100 × 100 (𝑘𝑚)), which mean that such an
area nor our simulation time of 3.5 hours does not fully support accounting for the
organisation of clouds. However, Prank et al. (2022) state as the size of open cells
exceeds 10 (𝑘𝑚) the domain allowed to simulate the transition process with sufficient
accuracy. Similarly, when applying the precipitation formation emulator in Paper
IV, there was an issue as the emulator provided a single vertically integrated value for
each column but clouds span several model levels in ECHAM. However, the vertical
mismatch was resolved by dividing the emulated column precipitation into cloudy
levels based on the autoconversion rate calculation of ECHAM (Khairoutdinov and
Kogan, 2000). In addition, there were time dimension problems, as the end state of
each LES run should represent the design, that is the initial state of each LES run, but
the state might drift notably during the LES simulation time of 3.5 hours. Nudging
toward the initial state was used to prevent excessive drifting.

It is notable that using model data (here, ECHAM) to generate the parameteri-
sation training data limits the parameterisation to the physics of the source model,
which means using limited processes and conditions. There are studies where ma-
chine learning parameterisations are developed based on observations (Rodriguez-
Galiano et al., 2012; Schneider et al., 2017) but it should be noted that in that case
several simultaneous metrics of the cloud meteorological and microphysical state
would be needed. During the initial phases of our study, we explored this possibility
but noticed that at that time there was a limited number of good quality global ob-
servations (i.e. satellite observations) that included both meteorological and aerosol
states. Moreover, the parameterisations that would be used within a coarser model
(i.e. global/larger model) should only use those input variables that are available in
the coarser model.
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5 Finding the optimal design: methods
and results

Due to the inherent nature of research, there is always room for improvement. Al-
though we obtained good and promising results in Paper III, being a proof-of-
concept, there are many aspects to make it better. One of these is the method to
select the representative sample for initialising the simulations (i.e. design of exper-
imentation, or in short: design).

The sampling method (Binary Space Partition, BSP see Section 4.2.3) used in
Paper III and Paper IV has room for improvement as the points are chosen stochas-
tically from each partition and therefore no optimisation is used to select a design.
The benefit of BSP is that it is simple, representative, inherently incorporates phys-
ical constraints as samples are from realistic data, and for example, outliers are not
over-represented. However, the sample might not be well spread out while keeping
it representative. Here, we show how we could improve the design by making it
more spread out and possibly more importantly avoiding too similar sample points.
This is done while accounting for the inherent physical constraints and maintaining
the design representative and comprehensive. In this application, the constraint de-
scribes the interdependence between temperature and moisture. Improved designs
are achieved following the methods described in Huang et al. (2021) which is our
main literature resource for improving the results. To ease the analysis and intercom-
parison of design creation methods, the methods of Huang et al. (2021) are given in
good detail in Sections 5.5.2, 5.2 and 5.3. The new designs are compared with the
BSP.

In deterministic computer experiments, specific software is run on computers as
simulations to examine the input/output relationship of complex for example phys-
ical, economical, or engineering models (Mak et al., 2018). However, these simu-
lations are often highly time-consuming and computationally expensive. A way to
circumvent this is to develop a computationally inexpensive surrogate model that
mimics the behaviour of the expensive computer simulations (Santner et al., 2018;
Huang et al., 2021). As the input/output relationship is presumed to be complex,
it is vital that the design covers the input space (comprehensive) as well as mim-
ics the densities of design features (representative). Often a space-filling design is
used to build the experimental design, in which the design points are selected in a
well-spread manner across the entire design region 𝒳 ⊆ R𝑝 (Huang et al., 2021).

The optimal design is formulated as a mathematical optimisation problem. There
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are several metrics that can be chosen as the objective function for the optimisation
problem. Minimax and maximin are the two favoured space-filling measures rec-
ommended by Johnson et al. (1990). A minimax design intends to minimise the
maximum distance from any point in 𝒳 to the nearest design point, while a maximin
design maximises the minimum distance between any two design points. Minimax
would reduce the number of outlier samples and therefore favour more frequent val-
ues, which would be suitable for our application. However, we use a mapping from
hypercube to the set of realistic values, which makes evenly distributed maximin de-
sign convenient for our case. Our numerical results in Section 5.5 also prove this.
In addition, the maximin measure is frequently employed in the literature due to its
computational feasibility. Yet, maximin designs are often collapsing, which means
that certain design points share the same value in one-dimensional projections. Latin
hypercube designs (LHD, see also Section 4.2.2) are built to entail a good projec-
tion of each design feature (McKay et al., 1979b) which has also been improved by
incorporating it with other space-filling criteria like maximin (Morris and Mitchell,
1995). However, maximin LHDs can only provide good one-dimensional projections
and full-dimensional space-fillings (Huang et al., 2021). The maximum projection
(MaxPro) designs (Joseph et al., 2015b), on the contrary, are able to attain good
space-filling properties on projections to all subsets of design features (Huang et al.,
2021).

According to Huang et al. (2021), space-filling design literature often focus on
bounded rectangular region 𝒳 =

∏︀𝑝
𝑑=1[𝑎𝑑, 𝑏𝑑] ⊆ R𝑝. However, in many real-world

applications, such as in our cloud simulation case, there is a need to deal with non-
rectangular bounded design space:

𝒳 =

{︂
𝑥 ∈

𝑝∏︁
𝑑=1

[𝑎𝑑, 𝑏𝑑] : 𝑔𝑘(𝑥) ≤ 0 ∀𝑘 = 1, . . . ,𝐾

}︂
, (18)

where {𝑔𝑘(𝑥) ≤ 0}𝐾𝑘=1 are arbitrary 𝐾 inequality constraints (Huang et al., 2021).
In Huang et al. (2021) they cite that there are two main approaches shown in the

literature for generating space-filling design in non-rectangular design space. First is
to directly use general purpose constrained optimisation techniques (Trosset, 1999;
Stinstra et al., 2003; Kang, 2019). However, this method can be computationally
expensive and can be limited by the type of constraints and design properties (e.g.
projections) it can process. The second method is to have a two-step process.

• Candidate generation: construct a large set of uniformly distributed candidates
in 𝒳 .

• Design construction: select points from the set of candidates with a chosen
criterion.

This approach is flexible as it allows choosing both space-filling and non-collaps-
ing properties in the designs. The way of producing good quality candidate points is
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essential and the main challenge of this approach.
In the literature, there are a number of methods discussed for generating can-

didate points following Huang et al. (2021). One of those is acceptance/rejection
sampling on a large set of uniformly distributed points in [0, 1]𝑝, such as a regular
grid of points covering the whole 𝑝-dimensional space (Pratola et al., 2017), Latin
hypercube samples (Wu et al., 2019) as we did earlier, and quasi-random points
(Joseph, 2016). However, with a low feasibility ratio, acceptance/rejection sampling
is a highly inefficient method. One way to improve is to iterate between accep-
tance/rejection sampling and candidate augmentation (Draguljić et al., 2012). The
multi-step acceptance/rejection can be executed with the help of Simulated Anneal-
ing (Kirkpatrick et al., 1983) and a sequence of shrinking regions (Bect et al., 2017).
This method is further developed by employing the probabilistic constraint, which
leads to the Sequentially Constrained Monte Carlo (SCMC, Golchi and Loeppky
(2015)), which is one of the methods used in this study. SCMC has the same weak-
ness as Monte Carlo sampling where samples are often repeated or are too close to
each other. If the samples are initially evenly distributed, fewer samples are required
to cover the whole space. Having fewer samples but of good quality means that con-
straint functions are evaluated fewer times, which is valuable when the constraints
are computationally expensive. Having complicated and expensive constraints is not
a rarity in climate/cloud modelling, which applies to our case too. Minimum energy
design (MinED) is a recently developed deterministic sampling method aimed to
simulate well-spaced samples for any given distribution (Joseph et al., 2015a, 2019).
The MinED is equivalent to the maximin design when the target distribution is uni-
form. By combining the probabilistic constraints from SCMC to MinED, Huang
et al. (2021) proposed constrained minimum energy design (CoMinED) to create
good-quality design candidate samples in arbitrarily constrained space.

5.1 Design construction
Following Huang et al. (2021), the definitive goal is to construct an 𝑛-point design
𝒟𝑛 = {𝑥𝑖 ∈ 𝒳}𝑛𝑖=1 in 𝒳 holding a good design property. We collect a finite set of
𝑁(𝑁 ≥ 𝑛) candidate points 𝒞𝑁 = {𝑦𝑗 ∈ 𝒳}𝑁𝑗=1 from the candidate generation step
(either adaptive SCMC or CoMinED) that are approximately uniformly distributed
in 𝒳 . Subsequently, here the next step is to find the 𝑛 samples from the candidate set
that maximise a convenient design criterion 𝜓. Thus, we formally solve

arg max
𝒟𝑛⊆𝒞𝑁

𝜓(𝒟𝑛). (19)

If we want to have a maximin design, we define

𝜓(𝒟𝑛) = min
𝑥𝑖,𝑥𝑗∈𝒟𝑛:𝑖̸=𝑗

‖𝑥𝑖 − 𝑥𝑗‖2, (20)
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where ‖·‖2 is the Euclidean distance. There are multiple ways to solve (19), however,
many of them are computationally expensive. Kennard and Stone (1969) proposed
an alternative way of solving (19) by using a one-point-at-a-time greedy algorithm.
The idea of the greedy algorithm is that, as we have a 𝑚-point design 𝒟𝑚(𝑚 < 𝑛),
we generate the (𝑚+ 1)-th point by

𝑥𝑚+1 = arg max
𝑥∈𝒞𝒩∖𝒟𝑚

𝜓(𝒟𝑚 ∪ {𝑥}). (21)

5.2 Adaptive Sequentially Constrained Monte Carlo
Following Huang et al. (2021), to improve Markov Chain Monte Carlo sampling
from a sequence of shrinking regions, the hard constraint 𝑔(𝑥) ≤ 0 is relaxed with
a probabilistic constraint, which leads to the Sequentially Constrained Monte Carlo
(SCMC).

The relaxed constraint is formulated according to Golchi and Loeppky (2015)
with the probit function

𝜌𝜏 (𝑥) = Φ(−𝜏𝑔(𝑥)), (22)

where Φ is the standard normal cumulative distribution function and 𝜏 ≥ 0 is the
parameter that handles the rigidity of the constraint. When the constraint is met, the
function 𝜌𝜏 assigns a value for 𝑥 close to 1 and close to 0 when the constraint is not
met. With the limit we have

lim
𝜏→∞

𝜌𝜏 (𝑥) = lim
𝜏→∞

Φ(−𝜏𝑔(𝑥)) = 1(𝑔(𝑥) ≤ 0). (23)

The previous limit (23) can be generalised to multiple inequality constraints
{𝑔𝑘(𝑥) ≤ 0}𝐾𝑘=1} by

𝜌𝜏 (𝑥) =

𝐾∏︁
𝑘=1

Φ(−𝜏𝑔𝑘(𝑥)). (24)

The previous Expression (24) sets up the Sequentially Constrained Monte Carlo
(SCMC) that replaces the sequence of indicator functions {1𝒳𝑡

}𝑇𝑡=0 in the subset sim-
ulation by the sequence of probabilistic constraint functions {𝜌𝜏𝑡}𝑇𝑡=0 defined in (24)
with and increasing sequence 0 < 𝜏0 < 𝜏1 < . . . < 𝜏𝑇 , where 𝜏𝑇 is a large constant,
for example 106. First, the SCMC algorithm in Golchi and Loeppky (2015) provided
a pre-fixed normal distribution proposal for the Markov kernel of the MCMC step.
In Huang et al. (2021) they state that in this way picking the scale of the normal pro-
posal is challenging for a high-dimensional problem with the small feasible region.
Hence, Huang et al. (2021) improved the SCMC method by allowing adaptation of
the Markov kernel. The scale (standard deviation) of the normal proposal is adjusted
at each iteration (Algorithm 3). According to Huang et al. (2021) the adaptive kernel
shows robust performance for the majority of the benchmark problems. Algorithm 3
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shows the details of the adaptive SCMC algorithm given in Huang et al. (2021) for
generating a large number of uniformly distributed samples from any design space
𝒳 with any number of constraints. Before defining the algorithm, let us formulate
the design space

𝒳 = {𝑥 ∈ [0, 1]𝑝 : 𝑔𝑘(𝑥) ≤ 0 ∀𝑘 = 1, . . . ,𝐾}. (25)

Algorithm 3 Adaptive Sequentially Constrained Monte Carlo (SCMC) (Huang et al.,
2021)

Input: {𝑔𝑘(𝑥) ≤ 0}𝐾𝑘=1 defines the design space𝒳 (Equation 25), and the increasing
sequence of rigidity parameters 0 = 𝜏0 < 𝜏1 < . . . < 𝜏𝑇 .

1: Simulate the initial 𝑀 samples {𝑥(0)𝑚 }𝑀𝑚=1 from [0, 1]𝑝.
2: for 𝑡 = 1, . . . , 𝑇 do
3: Weighting: compute the importance weights 𝑤

(𝑡)
𝑚 =

𝜌𝜏𝑡(𝑥
(𝑡−1)
𝑚 )/𝜌𝜏𝑡−1(𝑥

(𝑡−1)
𝑚 ), for all 𝑚 = 1, . . . ,𝑀 , where 𝜌𝜏 (·) is de-

fined in Equation (24). Normalise the weights by w
(𝑡)
𝑚 = 𝑤

(𝑡)
𝑚 /

∑︀𝑀
𝑖=1𝑤

(𝑡)
𝑖 for

all 𝑚 = 1, . . . ,𝑀 .
4: Resample: draw 𝑀 independent samples {𝑦(0)𝑚 }𝑀𝑚=1 from

∑︀𝑀
𝑚=1w

(𝑡)
𝑚 𝛿

𝑥
(𝑡−1)
𝑚

,
where 𝛿𝑥 is the Dirac measure for any 𝑥 ∈ 𝒳 .

5: Sampling: for 𝑚 = 1, . . . ,𝑀 draw 𝑥
(0)
𝑚 ∼ 𝐾𝜎(𝑡)(𝑦𝑡𝑚, ·), where 𝐾𝜎(𝑡)(𝑦𝑡𝑚, ·)

is a Markov kernel with target distribution 𝜌𝜏𝑡 , and adaptive scale 𝜎(𝑡) is 75th
percentile (=𝑄3) of {min𝑗 ̸=𝑚 ‖𝑥(𝑡−1)

𝑚 − 𝑥(𝑡−1)
𝑗 ‖}𝑀𝑚=1.

6: end for
Output: all particles {𝑥(𝑡)𝑚 }𝑀𝑚=1

𝑇
𝑡=1 that are in 𝒳 .

The adaptive SCMC algorithm is defined in the Algorithm 3, where 𝑄3 means
the 75th percentile of the distribution. The definitions of Dirac measure and Markov
kernel are detailed in Appendices 7.1.3 and 7.1.6, respectively.

5.3 Constrained Minimum Energy Design
In this section, we explain how the Constrained Minimum Energy Design (CoMinED)
algorithm provides a design. Following Joseph et al. (2015a), let us first define the
minimum energy design (MinED). Here, the analogy is to have a physical system of
electrically charged particles inside a box to motivate the proposed design, which is
called minimum energy design.

According to the analogy, the particles have an explicit charge that is vital for
mimicking the underlying distributions. If the charge of particles is of the same sign,
they will repel each other and occupy positions inside the box in a way that minimises
the total potential energy. Concerning the application, the box is the experimental
region, each position taken by the charged particles is a design point and the charge
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represents the experimental response (= observed or measured quantity). Therefore,
all the positions occupied by the particles form the experimental design. As the
design is obtained by minimising the potential energy, it is called minimum energy
design.

The analogy of the repulsion principle requires all the particles to have the same
sign of the charge. Without loss of generality, the particle charge is assumed to be
positive. Let us define the potential energy 𝐸𝑖,𝑗 between 𝑖th and 𝑗th particle:

𝐸𝑖,𝑗 ∝
𝑞(𝑥𝑖)𝑞(𝑥𝑗)

‖𝑥𝑖 − 𝑥𝑗‖2
, (26)

where 𝑞(𝑥𝑖) is the charge of the particle at 𝑖th design point 𝑥𝑖. The charge of the
particles 𝑞(·) can be chosen according to the objective (Joseph et al., 2015a). The
different choices of charge of the particles are discussed further in (Joseph et al.,
2015a). Equation (26) can be directly compared with Coulomb’s law which states
the magnitude of the electrostatic force of attraction or repulsion between two point
charges, and the proportionality is defined with Coulomb’s constant (Wikipedia, b).

Here, following Joseph et al. (2015a) and Huang et al. (2021) the formal defini-
tion of MinED is described in Definition 5.3.1.

Definition 5.3.1 (Minimum Energy Design, Joseph et al. (2015a)). Let us have 𝜋 as
the target probability density function. We define that an 𝑛-point minimum energy
design of 𝜋 is the optimal solution of

arg min
𝒟𝑛∈D𝑛

∑︁
𝑥𝑖,𝑥𝑗∈𝒟𝑛

𝑖̸=𝑗

𝑞(𝑥𝑖)𝑞(𝑥𝑗)

‖𝑥𝑖 − 𝑥𝑗‖2
, (27)

where D𝑛 = {{𝑥𝑖}𝑛𝑖=1 : 𝑥𝑖 ∈ R𝑝} is the set of all unordered 𝑛-tuple in R𝑝 and
𝑞(·) = 1/𝜋1/(2𝑝)(·) is the charge function.

In MinED, with the given proposed charge function, the limiting distribution of
the design points converges to 𝜋.

Yet, the optimisation problem (27) is hard to solve and numerically unstable. To
bypass the problem, Joseph et al. (2019) noticed that (27) is related to

arg min
𝒟𝑛∈D𝑛

[︃ ∑︁
𝑥𝑖,𝑥𝑗∈𝒟𝑛

𝑖̸=𝑗

(︁ 𝑞(𝑥𝑖)𝑞(𝑥𝑗)
‖𝑥𝑖 − 𝑥𝑗‖2

)︁𝑘
]︃1/𝑘

, (28)

for 𝑘 > 0. As 𝑘 →∞, the optimisation problem converges to

arg min
𝒟𝑛∈D𝑛

max
𝑥𝑖,𝑥𝑗∈𝒟𝑛

𝑖̸=𝑗

𝑞(𝑥𝑖)𝑞(𝑥𝑗)

‖𝑥𝑖 − 𝑥𝑗‖2
. (29)
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If we substitute 𝑞(·) = 1/𝜋(1/2𝑝)(·) into (29) and apply logarithmic function, we get

arg max
𝒟𝑛∈D𝑛

min
𝑥𝑖,𝑥𝑗∈𝒟𝑛

𝑖̸=𝑗

1

2𝑝
log 𝛾(𝑥𝑖) +

1

2𝑝
log 𝛾(𝑥𝑗) + log ‖𝑥𝑖 − 𝑥𝑗‖2. (30)

It follows from the objective function of (30) that the chosen design points try to
be as far as possible while focused in the high-density regions (Huang et al., 2021),
which is valuable for creating a parameterisation.

Following Huang et al. (2021), we have an unnormalised probability density
function 𝛾 proportional to 𝜋 in some non-rectangular bounded space 𝒳 = {𝑥 ∈
[0, 1]𝑝 : 𝑔𝑘 ≤ 0∀𝑘 = 1, . . .𝐾}, and we have a generalised distance

‖𝑢‖𝑠 =
(︂
1

𝑝

𝑝∑︁
𝑙=1

|𝑢𝑙|𝑠
)︂1/𝑠

(Joseph et al., 2019). (31)

Thus, we want to create the relevant Minimum Energy Design and the optimisation
problem is

arg max
𝒟𝑛∈D𝒳

𝑛

min
𝑥𝑖,𝑥𝑗∈𝒟𝑛

𝑖̸=𝑗

1

2𝑝
log 𝛾(𝑥𝑖) +

1

2𝑝
log 𝛾(𝑥𝑗) + log ‖𝑥𝑖 − 𝑥𝑗‖𝑠, (32)

where D𝒳
𝑛 = {{𝑥𝑖}𝑛𝑖=1 : 𝑥𝑖 ∈ 𝒳} is the set of all unordered 𝑛-tuple in 𝒳 . As

constrained optimisation problem is often difficult to solve, especially in the case of
nonlinear constraints, Huang et al. (2021) simplified the optimisation problem (32)
by introducing the probabilistic relaxation 𝜌𝜏 defined in (24) for the inequality con-
straints {𝑔𝑘}𝐾𝑘=1, which leads to the constrained minimum energy design (CoMinED)
described in the Definition 5.3.2.

Definition 5.3.2 (Constrained Minimum Energy Design). Let us have the 𝛾 ∝ 𝜋 as
the target unnormalised probability density function. An 𝑛-point minimum energy
design of 𝜋 in an arbitrary non-rectangular bounded space 𝒳 = {𝑥 ∈ [0, 1]𝑝 :

𝑔𝑘(𝑥) ≤ ∀𝑘 = 1, . . . ,𝐾} is

arg max
𝒟𝑛∈D𝑢

𝑛

min
𝑥𝑖,𝑥𝑗∈𝒟𝑛

𝑖̸=𝑗

1

2𝑝
log

∼
𝛾𝜏 (𝑥𝑖) +

1

2𝑝
log

∼
𝛾𝜏 (𝑥𝑗) + log ‖𝑥𝑖 − 𝑥𝑗‖𝑠, (33)

where ‖ · ‖𝑠 is the distance measure defined in (31), and

∼
𝛾𝜏 = 𝛾(·)𝜌𝜏 (·) = 𝛾(·)

𝐾∏︁
𝑘=1

Φ(−𝜏𝑔𝑘(·)), (34)

where 𝜏 controls the rigidity of the constraints (Huang et al., 2021).
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To point out, as 𝜏 → ∞, (33) converges to (32). In practice, the parameter
𝜏 = 106 is sufficient to reach the limit numerically if the constraints are properly
scaled (Huang et al., 2021).

According to Huang et al. (2021), Joseph et al. (2015a) and Joseph et al. (2019)
solving MinED optimisation directly using nonlinear programming solver is difficult
and computationally expensive. To circumvent this, the proposal is to first generate
the design from a set of candidate samples, and second, apply Simulated Annealing
(see. Appendix 7.1.7) on 𝜏 by starting with a lighter problem and slowly increasing
the rigidity of the constraints (applied also in the SCMC). Let us have a 𝑇 step – Sim-
ulated Annealing, and we will define the increasing sequence of rigidity parameters
0 < 𝜏0 < 𝜏1 < . . . < 𝜏𝑇 = 106. At each step, the 𝑛-point intermediate CoMinED
is generated as follows. Let us have 𝜏𝑡 as the rigidity parameter, 𝒞𝑡 = {𝑦𝑡𝑗}𝑁𝑡

𝑗=1 as
the candidate samples, and 𝒟𝑡 = {𝑥𝑡𝑖}𝑛𝑖=1 ⊆ 𝒞𝑡 as the CoMinED at the 𝑡-th step.
To construct 𝒟𝑡+1 in a process called adaptive lattice grid refinement (ALGR), first
the candidate samples are augmented to 𝒞𝑡+1 by including the linear combinations
of nearby points in 𝒟𝑡, and then the one-point-at-a-time greedy algorithm (21) is
applied to solve (33) with 𝜏𝑡+1 as the rigidity parameter. Details of the CoMinED
algorithm are given in Algorithm 4.

5.4 Applying the CoMinED and the adaptive SCMC to
modelling cloud processes

As previously stated, the adaptive SCMC and the CoMinED are represented in hyper-
cubeℋ = [0, 1]𝑝 and the constraints are of format {𝑔𝑘(𝑥) ≤ 0}𝐾𝑘=1. In combination,
the design space 𝒳 is defined in Equation (25).

Concerning our application, we can scale values from the hypercube values to
representative cloud state values or the other way around. While scaling the values,
the individual variable density distribution can be reproduced according to the source
data. We have close to 5.9 million samples (𝒪(106)) from ECHAM as source data
(see Section 4.1) and the range of single design feature does not span more than three
orders of magnitude (= 𝒪(103), see e.g. Figure 10 in Section 5.5.2). Since we have
a mapping from a uniform distribution (a basis of adaptive SCMC and CoMinED) to
realistic ECHAM values, we would have at least three significant digits, which is a
good numerical accuracy concerning the application.

To scale hypercube values to representative cloud parameters or in the opposite
direction, we used the following algorithmic approach. For each design feature 𝑑 =
1, . . . , 𝑝 (see Tables 1, 2) we can define the value 𝑥 within the hypercube as

𝑥 ∈ ℋ𝑑 = [0, 1] ⊆ ℋ𝑝, (38)

and similarly the realistic cloud state value 𝜉 as

𝜉 ∈ ℛ𝑑 = [𝑎𝑑, 𝑏𝑑] ⊆ ℛ𝑝 ⊆ R𝑝. (39)

44



Finding the optimal design: methods and results

Algorithm 4 𝑛-point Constrained Minimum Energy Design (Huang et al., 2021)

Input: {𝑔𝑘(𝑥) ≤ 0}𝐾𝑘=1 defining the design space 𝒳 (Equation 25), the increasing
sequence of rigidity parameter 0 = 𝜏0 < 𝜏1 < . . . < 𝜏𝑇 , and the number of
nearest neighbours 𝒬 suggested for candidate augmentation.

1: Initialisation: as the initial set of candidate sample 𝒞1 generate 𝑁1 > 𝑛 (prime
number) lattice points {𝑦(1)𝑗 }𝑁1

𝑗=1 from [0, 1]𝑝.
2: for 𝑡 = 1, . . . , 𝑇 do
3: Construction: solve (33) with 𝜏 = 𝜏𝑡 with one-point-at-a-time greedy

algorithm (21) to get the CoMinED 𝒟𝑡 = {𝑥𝑡𝑖}𝑛𝑖=1, namely, with
{𝑥𝑡1, . . . , 𝑥𝑡𝑚}, 𝑥𝑡𝑚+1 is given by

𝑥𝑡𝑚+1 = arg max
𝑥∈𝒞𝑡∖{𝑥𝑡

𝑙}
𝑚
𝑙=1

min
𝑖=1,...,𝑚

1

2𝑝

𝐾∑︁
𝑘=1

log Φ(−𝜏𝑔𝑘(𝑥))

+
1

2𝑝

𝐾∑︁
𝑘=1

log Φ(−𝜏𝑡𝑔𝑘(𝑥𝑖)) + log ‖𝑥𝑖 − 𝑥𝑗‖𝑠.
(35)

4: if 𝑡 < 𝑇 then
5: Augmentation: expand the set of candidate samples 𝒞𝑡+1 = 𝒞𝑡 ∪

∼
𝒞𝑡 where

∼
𝒞𝑡 is the set of linear combinations of nearby points in 𝒟𝑡. The

∼
𝒞𝑡 is con-

structed in the following.
6: for 𝑖 = 1, . . . , 𝑛 do
7: find the 𝒬 nearest neighbours of 𝑥𝑡𝑖 in 𝒟𝑡.
8: for each nearest neighbour

∼
𝑥𝑖,𝑞(𝑞 = 1, . . . ,𝒬), compute the mid-point

∼
𝑦
(𝑚)

𝑖,𝑞 = 𝑥𝑖 +
1

2
(
∼
𝑥𝑖,𝑞 − 𝑥𝑖) =

𝑥𝑖 +
∼
𝑥𝑖,𝑞

2
, (36)

9: and the reflection mid-point

∼
𝑦
(𝑟)

𝑖,𝑞 = 𝑥𝑖 −
1

2
(
∼
𝑥𝑖,𝑞 − 𝑥𝑖) =

3𝑥𝑖 −
∼
𝑥𝑖,𝑞

2
. (37)

10: Update
∼
𝒞𝑡 =

∼
𝒞𝑡 ∪ {∼𝑦(𝑚)

𝑖,𝑞 ,
∼
𝑦
(𝑟)

𝑖,𝑞 }.
11: end for
12: Remove repeated points in

∼
𝒞𝑡, keep points in

∼
𝒞𝑡 that do not exist in 𝒞𝑡.

13: end if
14: end for
Output: feasible candidate samples {𝑦 ∈ 𝒞𝑇 : 𝑦 ∈ 𝒳}, and the CoMinED: 𝒟𝑇 .
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Let us create a lookup table 𝒯𝑑 for each design feature 𝑑. First, the samples are
sorted in an ascending order

𝒯𝑑 = {𝑟0 ≤ 𝑟1 ≤ · · · ≤ 𝑟𝑖 ≤ · · · ≤ 𝑟𝑀}, (40)

where 𝑖 is the index of the sample and 𝑀 is the total number of samples. To reduce
the number of identical values in source data, an ordinal number is appended to the
decimal part. We tested that in practice, adding the ordinal number does not impact
the numerical results.

Scaling values from [0, 1] to realistic cloud state values goes according to Algo-
rithm 5. In the Algorithm 5 the 𝑅 is a function that rounds the input to the closest

Algorithm 5 Scaling hypercube values (ℋ𝑑) to representative cloud state values (ℛ𝑑)

Input: value 𝑥 ∈ ℋ𝑑 = [0, 1].
1: 𝑀 is the length of the lookup table 𝒯𝑑.
2: For hypercube value 𝑥 the corresponding cloud parameter value is 𝜉 and the index

of the lookup table is 𝑖.
3: 𝑖← 𝑅(𝑥 · 𝜆).
4: 𝜉 ← 𝑖:th value of lookup table 𝒯𝑑.

Output: a representative cloud parameter value 𝜉 ∈ [𝑎𝑑, 𝑏𝑑] = ℛ𝑑 ⊆ R.

integer, and 𝜆 is the total number of samples (close to 5.9 million). It would be pos-
sible to develop a more accurate method to find the realistic value 𝜉 that corresponds
with 𝑥 but this method of finding the arithmetic middle point is fast and accurate
enough as 𝑀 is large, in the order of millions. One other solution would be to fit a
relevant function between the indexes and their corresponding realistic values. The
Algorithm 5 represents a function 𝑓𝑑, which in theory is a bijection due to the added
ordinal numbers. However, due to the limitations of computers representing float
numbers, there exist identical values, making it monotonically increasing.

𝑓𝑑 : ℋ𝑑 → ℛ𝑑. (41)

However, we want every value within [0, 1] to correspond to one index value 𝑖, which
leads to one realistic value 𝜉. Taking into account the limitations of computers, let
us define an inverse function

𝑓−1
𝑑 : ℛ𝑑 → ℋ𝑑. (42)

in the Algorithm 6. From the Algorithm 6 follows that if there are several identical
values, the index values are given at the upper end. As determined by test results,
having the index values at the lower end does not impact the numerical results. Al-
though, the function (41) is not a perfect bijection, the practical implications follow-
ing our inverse function are negligible as we have an extensive number of samples

46



Finding the optimal design: methods and results

Algorithm 6 Scaling representative cloud parameter values (ℛ𝑑) to hypercube values
(ℋ𝑑)

Input: a cloud parameter value 𝜉 ∈ [𝑎𝑑, 𝑏𝑑] = ℛ𝑑 ⊆ R.
1: 𝑀 is the length of the lookup table 𝒯𝑑.
2: With binary search algorithm (see Appendix 7.1.1) find the lower index (𝑖 − 1)

and the upper index (𝑖+1) from the lookup table 𝒯𝑑, for which 𝑟𝑖−1 ≤ 𝑟𝑖 < 𝑟𝑖+1.

3: 𝑥← ((𝑖−1)+(𝑖+1))/2
𝑀 = 𝑖

𝑀 .
Output: value 𝑥 ∈ ℋ𝑑 = [0, 1].

(close to six million), which gives us sufficient numerical accuracy. If we want to
create a practically perfect bijection, the source data should be carefully sampled and
stored in a suitable data format to prevent identical values.

Algorithm 5 is needed to get the designs obtained with both adaptive SCMC and
CoMinED algorithms (Algorithms 3 and 4, respectively) as the constraint function
𝑔1 is defined in Equation 43.

𝑞𝑡 ← solve rw lwp(𝜃𝐿,LWP, 𝐻PBL)

𝑞𝑡 −Δ𝑞𝑡 ≥ 1

𝑔1(𝑥) = Δ𝑞𝑡 − 𝑞𝑡 + 1 ≤ 0,

(43)

where solve rw lwp is an iterative method to find the 𝑞𝑡 (total water in planetary
boundary layer) based on 𝜃𝐿,LWP, 𝐻PBL, and 𝑔1 is the format of the constraint that
the adaptive SCMC and CoMinED require.

With Algorithms 5 and 6, and constraint function (43) we have all we need to
apply adaptive SCMC and CoMinED to our application of emulation of cloud pro-
cesses. With Algorithm 6 it is possible to scale new BSP results along with the BSP
results in Paper III to hypercube and also to get the value of the optimisation objec-
tive function (i.e. optimisation measure) for those designs in order for comparing all
the results.

5.5 Numerical design results
Here, we create designs for four different sets (SB night, SB day, SALSA night,
SALSA day) with BSP, adaptive SCMC and CoMinED methods by using both max-
imin and MaxPro optimisation measures. Maximin measure is defined with Equa-
tions (19) and (20). MaxPro measure (Joseph et al., 2015b) is given as

arg min
𝒟𝑛⊆𝒞𝑁

𝜓(𝒟𝑛) =

{︃
1(︀
𝑛
2

)︀ 𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

1∏︀𝑝
𝑙=1(𝑥𝑖𝑙 − 𝑥𝑗𝑙)2

}︃(1/𝑝)

. (44)

47



Jaakko Ahola

Regarding Maxpro measure, for any 𝑙, if 𝑥𝑖𝑙 = 𝑥𝑗𝑙 for 𝑖 ̸= 𝑗, then 𝜓(𝒟) = ∞.
Consequently, the Maxpro design minimising 𝜓(𝒟) must have 𝑛 distinct levels for
each feature. Since the denominator in Equation 44 has products of squared distances
from all the features, any two design points cannot get close to each other in any of
the projections. Hence, the design minimising 𝜓(𝒟) tends to maximise its projection
capability in all subspaces of features (Joseph et al., 2015b).

SB (Seifert & Beheng) and SALSA refer to the used cloud microphysics scheme
(see Section 3.2). SB and SALSA have different numbers of design features. Night
or day indicates whether the cloud evolution is simulated when the Sun is either
below or above the horizon. Daytime simulations use an additional design feature of
cosine of solar zenith angle. Design variables are elaborated in Chapter 4.

5.5.1 Setup for design creation

We created the BSP, adaptive SCMC and CoMinED designs with 53, 101, 199, 307,
401 and 499 design points. The design creation algorithms are not limited to only
prime numbers. The main idea of selecting these design points is to have enough
data points to draw conclusions and to cover the original design points 135, 150,
and 500 shown in Paper III. Thus, BSP designs are recreated as the purpose is to
compare these different design creation methods. The designs from Paper III are
shown along with these new designs as a reference. As in Huang et al. (2021), in
all the numerical results CoMinED is run with 𝑠 = 2 for the distance measure (31),
namely the Euclidean distance. Likewise, let 𝑁1 be the number of the initial candi-
date samples to be largest prime number that is less than the product of the number
of CoMinED points 𝑛 and the number of neighbours to be considered for candidate
augmentation 𝒬. For SB design results, the 𝒬 parameter was set to 19. For SALSA
results, the parameter 𝒬 was set to 23. The choice is based on Huang et al. (2021)
where they suggest that 𝒬 is any number between 2𝑝 + 1 and 3𝑝 + 1 depending on
the available computational resources. We set 𝑇 = 8 and the set of rigidity parame-
ters {𝜏𝑡}8𝑡=0 = {0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, 106} similarly as in Huang et al. (2021) as
these parameters show stable performance on both CoMinED and adaptive SCMC.
Additionally, the set of rigidity parameters shows robust performance for dimensions
from 2 to 13 (Huang et al., 2021), which is applicable to our case.

The number of samples per iteration in adaptive SCMC is the same as in Huang
et al. (2021), which is

𝑀 = max{𝑛𝒬, ⌈ 𝑁𝑇

𝑇 + 1
⌉}, (45)

so that 𝑀 is larger than the number of initial samples of CoMinED (𝑁1 < 𝑛𝑄)
and the total number of adaptive SCMC samples 𝑀(𝑇 + 1) is larger than the total
CoMinED samples 𝑁𝑇 . This choice made in Huang et al. (2021) puts CoMinED in
a slightly disadvantageous position compared to SCMC and their intention was to
highlight the effectiveness of CoMinED over adaptive SCMC. Although this is not
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our objective since the constraint evaluations of both algorithms cannot be set equal,
this choice keeps both methods reasonably well comparable.

As previously stated, the objective of Huang et al. (2021) study was to show the
superior attributes of CoMinED compared to adaptive SCMC. However, the aim of
this study is to find an improved design compared to BSP, and the simplest approach
was to use the same hyperparameters as in Huang et al. (2021). Furthermore, there
is no indication that the hyperparameters would be ineffective or nonfunctional.

The adaptive SCMC is iterated only once to enable a more meaningful compari-
son with the BSP method which is also a stochastic method. In Huang et al. (2021)
they use 50 iterations for adaptive SCMC but we obtained good results already with
one iteration (see Section 5.5.2). This can be seen with the six designs for each set
that create a clear pattern. Additionally, 50 repetitions would require quite a high
computational cost (several days with a high number of design points) due to the
complexity of our constraint function. CoMinED is a deterministic algorithm using
an initial candidate of lattice points and the one-point-at-a-time greedy algorithm for
design construction (Huang et al., 2021), therefore single iteration is sufficient.

5.5.2 Design comparison results

Figure 6 shows the results of the maximin measure relative to the highest measure of
all the designs. The maximin measure can be interpreted so that for each number of
design points the higher the measure the better the result, as the target is to maximise
the minimum distance. As the number of design points increases, the minimum
distance is smaller but still, the higher measure is better since maximin tries to fill
the whole space (= space-filling design). The maximin measure might not be the best
choice considering that we want to develop a cloud emulator with the known density
function as source data. However, as we apply the maximin with a function from
hyperspace to realistic values (Algorithms 6 and 6), maximin ensures good coverage
of the hyperspace, which leads the focus on the densest (i.e. vital) subspaces of the
source data.

The feasibility ratio, namely the percentage of total samples that are feasible,
is 0.6420 for all design sets as the constraint is independent of the microphysical
scheme and solar zenith angle.

The CoMinED and adaptive SCMC display significant improvements compared
to the non-optimised BSP results. The CoMinED and adaptive SCMC present almost
equally good results. The stochastic character of SCMC might be the most important
reason why neither CoMinED nor adaptive SCMC is consistently the best method.
However, with a small number of design points the adaptive SCMC is the best choice
in all sets except with SB night (Figure 6a). As the number of design points gets
larger the difference between CoMinED and adaptive SCMC becomes smaller, and
the difference is a bit larger with SB microphysics (Figure 6a and 6b) in favour for
CoMinED. The CoMinED and adaptive SCMC also show an exponential decrease
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of maximin measure as the number of design points increases. Adaptive SCMC
results would probably improve with additional iterations. Yet, our main objective
is to find alternatives for BSP. Thus, the chosen number of iterations is sufficient to
draw the conclusion that both SCMC and CoMinED are improvements over BSP. In
contrast, the BSP results show the expected random behaviour. However, BSP results
might have identical measures within a design set since for research and repeatability
purposes the BSP was set up to use a specific random seed number, which leads to
having partitions that different designs share and therefore share the same measures.
This can be seen with BSP for example in Figure 6d with design points 401 and 499.
This same notion applies to Figures 7, 8 and 9.

Figure 7 illustrates the results of how designs are valued with MaxPro measure
(Equation (44)). Again, both adaptive SCMC and CoMinED are optimised against
the measure, and BSP design is only evaluated using the measure without any opti-
misation. With MaxPro, the better the design, the smaller the value. In addition, as
the number of design points increases the MaxPro measure increases. Figure 7 tells
more or less the same story as with maximin measure (Figure 6), namely that both
CoMinED and adaptive SCMC are an improvement over BSP. However, in some
cases BSP result is close to the other methods, for example in Figure 7b with 53
design points. Also, BSP results seem to be even more irregular with MaxPro than
with the maximin measure. It is noteworthy to see that the MaxPro measure does
not exist for Paper III (BSP) with SB Day. This is because the MaxPro measure is
numerically unstable as design points with features too close to each other will yield
to not-a-number value (NaN). Here, CoMinED and adaptive SCMC results are more
consistently closer to each other than in maximin results (Figure 6).

Figures 8 and 9 show fill distance results for both maximin and MaxPro design.
Fill distance is the largest distance of any point in 𝒳 to the closest feasible samples.
It is another metric to assess how well the algorithm explores the feasible region
completely (Huang et al., 2021). The smaller the fill distance the better. Similarly,
as in (Huang et al., 2021), the fill distance is approximated numerically with feasible
samples from acceptance/rejection sampling on a large set (214 = 16384) of Sobol
points in unit hypercube (See Appendix 7.1.8). The number of Sobol points was
chosen to be slightly above 104, which is the number used in Huang et al. (2021).
Also, the Python function that we used (SciPy Sobol) was numerically more stable
when using exponents of 2 to generate the Sobol points. These fill distance results
seem to be quite irregular, however, adaptive SCMC seems to be performing well
and holds the lowest (i.e. best) fill distance value in most of the cases, which is even
more evident when considering MaxPro in Figure 9. With SALSA microphysics
both maximin and MaxPro fill distances tend to be higher which probably relates
most to the higher number of design features. Fill distances seem to be gradually
increasing as the number of design points increases, which is clearer with maximin.

Figures 10 and 11 show the individual design feature distributions. Here, the
idea is to see whether the design creation algorithms reproduce the distributions of
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the source data. In both figures, all distributions are from the SB day set except for
those design features that are SALSA specific (sub-figures g, h, i, j). The number of
design points in all sub-figures is 499 except Paper III results with 500 design points
with SB day and 150 with SALSA day. Paper III results are shown as a side-note
since the focus is on method intercomparison where the number of sample points
can be set equal. We can observe from Figures 10 and 11 that the designs closely
replicate the original distributions (i.e. source data from ECHAM-HAMMOZ, see
Chapter 4.1). However, there are higher peaks in the original distribution associated
with the distributions of aerosol variables (sub-figures f, g, h, i, j). Also, 𝐻PBL is not
reproduced in the same way as in the original data. However, the source data shows
a known numerical characteristic with 𝐻PBL and it is better if it is not reproduced
exactly. The numerical characteristic is caused by grid vertical layers in ECHAM that
cause the high peaks in 𝐻PBL distribution. In reality, stratocumulus clouds present a
much smoother distribution of cloud top heights. In Paper III noise was added to
the 𝐻PBL to enable the desired smother distribution. Maximin distributions (Figure
10) do not show significant differences over MaxPro distributions (Figure 11).
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Figure 6. Maximin measures for all designs (Adaptive SCMC, CoMinED, BSP, Paper III (BSP)) in
all simulation sets (SB Night, SB Day, SALSA Night, SALSA Day). Adaptive SCMC and CoMinED
are optimised against the maximin measure. BSP results (both new and the ones from Paper III)
are only measured with the maximin measure (i.e. the BSP designs are not optimised). Measure is
calculated in hypercube [0, 1]𝑝 where 𝑝 is the dimension of the set.
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Figure 7. MaxPro measures for all designs (Adaptive SCMC, CoMinED, BSP, Paper III (BSP)) in
all simulation sets (SB Night, SB Day, SALSA Night, SALSA Day). Adaptive SCMC and CoMinED
are optimised against the MaxPro measure. BSP results (both new and the ones from Paper III)
are only measured with the MaxPro measure (i.e. the BSP designs are not optimised). Measure is
calculated in hypercube [0, 1]𝑝 where 𝑝 is the dimension of the set. Paper III (BSP) with SB Day (b)
is not shown as it yields NaN value.
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Figure 8. Fill distances for all designs (Adaptive SCMC, CoMinED, BSP, Paper III (BSP)) in all
simulation sets (SB Night, SB Day, SALSA Night, SALSA Day). Fill distance is the largest distance
of any point in 𝒳 to the closest feasible samples. Adaptive SCMC and CoMinED are optimised
against the maximin measure. Fill distance is calculated in hypercube [0, 1]𝑝 where 𝑝 is the
dimension of the set.
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Figure 9. Fill distances for all designs (Adaptive SCMC, CoMinED, BSP, Paper III (BSP)) in all
simulation sets (SB Night, SB Day, SALSA Night, SALSA Day). Fill distance is the largest distance
of any point in 𝒳 to the closest feasible samples. Adaptive SCMC and CoMinED are optimised
against the MaxPro measure. Fill distance is calculated in hypercube [0, 1]𝑝 where 𝑝 is the
dimension of the set.
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Figure 10. Design feature distribution for designs measured with maximin measure and created
with adaptive SCMC, CoMinED, BSP (both new results and those from Paper III) and Filtered
ECHAM (source data). The number of design points in all sub-figures is 499 except Paper
III results with 500 design points with SB day and 150 with SALSA day. All distributions are from
the SB day set except for those design features that are SALSA specific (sub-figures g, h, i, j).
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Figure 11. Design feature distribution for designs measured with MaxPro measure and created
with adaptive SCMC, CoMinED, BSP (both new results and those from Paper III) and Filtered
ECHAM (source data). The number of design points in all sub-figures is 499 except Paper
III results with 500 design points with SB day and 150 with SALSA day. All distributions are from
the SB day set except for those design features that are SALSA specific (sub-figures g, h, i, j).
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6 Conclusions

This thesis aims to answer the following research questions:

Q1. What mathematical tools are useful to describe the complex phenomena of
aerosol-cloud interactions that affect climate in multiple ways?

Q2. In the context of climate system models, can the uncertainty related to aerosol-
cloud interactions be decreased?

Q3. Can the climate system models be improved by implementing machine learn-
ing methods for modelling cloud processes?

To answer the first broad question (Q1) we have explored a variety of tools such
as a global climate model ECHAM, cloud-scale model UCLALES-SALSA, several
machine learning methods to improve cloud process description and methods to up-
grade choosing a design for computational experimentation. All those tools in their
specific regimes are highly useful in studying climate. Yet, they are not perfect or
comprehensive.

To resolve the second research question (Q2), in this study we have explored sev-
eral methods that improve aerosol-cloud-interaction description in cloud and climate
models. In Paper I and Paper II we have upgraded the cloud model UCLALES-
SALSA by integrating ice crystals and cold microphysics to facilitate the simulations
of both completely glaciated and mixed-phase clouds in addition to warm clouds. In
Paper IV we improved the detail of processes related to aerosol-cloud interactions
in a climate model by employing novel parameterisations.

To deal with the research question (Q3), in Paper III and Paper IV we have
used UCLALES-SALSA to run numerous simulations in creating computationally
faster and more accurate cloud process parameterisations for a global climate model
by using machine learning methods. The chosen cloud processes to be improved
were updraft velocity and warm rain formation which have been pointed as one of
the major sources of uncertainty in the cloud radiative forcing estimates in present
climate models (Donner et al., 2016; Jing et al., 2019; Yoshioka et al., 2019; Bougia-
tioti et al., 2020). We have also examined ways to improve the design of experi-
mentation, which could be used to further upgrade the aforementioned parameterisa-
tions. Nevertheless, the created parameterisation shows favourable results. To sum
up, we have developed the UCLALES-SALSA cloud model (Chapter 3), applied
UCLALES-SALSA for a cloud process parameterisation creation case (Chapter 4)
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and explored how an ensemble of cloud simulations could be initialised optimally
(Chapter 5).

Climate system modelling requires a large variety of mathematical tools. The
main mathematical tools used in this study are mathematical modelling, numerical
simulation, machine learning and optimisation. Mathematical modelling is incorpo-
rated within the UCLALES-SALSA cloud model, where physical phenomena are
translated into the language of mathematics which is mainly differential equations
that are further implemented into software. Further on, the UCLALES-SALSA cloud
model software is utilised to run an ensemble of different cloud simulations with
varying initial aerosol concentrations and meteorological conditions. Next, machine
learning methods are used to create parameterisations based on the initial conditions
and simulation output data to provide a realistic representation of cloud properties
in larger-scale models. Optimisation is carried out when finding the optimal initial
conditions for the simulations. Overall this study provides several improved mathe-
matical tools to study cloud processes in a wide range of spatiotemporal scales.

With these tools, in Paper I we showed for example how the lifetime of a mixed-
phase cloud is extended when employing a more detailed aerosol-cloud-ice interac-
tion scheme compared to a simpler ice nucleation. In Paper II we showed how
updraughts transport marine ice nucleating particles up to the cloud and maintain the
cloud. In Paper III we created a more accurate updraft velocity parameterisation.
In Paper IV aforementioned updraft velocity parameterisation, along with parame-
terisation for rainwater formation, was applied in the global climate model ECHAM
with small but statistically significant results by improving the cloud description in
the subgrid scale.

6.1 Discussion
In this section, we discuss certain aspects of climate modelling from a bird’s-eye
view.

6.1.1 Scale dilemma

One of the biggest challenges of climate or cloud modelling is the combination of
a wide range of spatiotemporal scales and limited computational power. This is a
dilemma. Usually, more accurate details require more dimensions or higher resolu-
tion in the model, which then leads to a higher computational cost. Would there be
a way to have more accurate details with less computational time? Are there some
ingenious ways to overcome the scale issues? In this study, compared to previous
methods based on turbulent kinetic energy, we have provided a more precise updraft
velocity parameterisation, which requires initially large amount of computational
time but once the parameterisation is created it can be further applied with negligi-
ble additional computational time compared. Thus, machine learning methods could
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provide more accurate details while having decent computational cost.
Another method to enhance the level of detail without excessive computational

time is to use fixed irregular grid sizes where applicable, which is plausible in UCLALES-
SALSA. Also in UCLALES-SALSA the vertical resolution changes according to
altitude in a simplistic fashion. The idea is to have a smaller grid size (i.e. better
resolution) where relevant phenomena occur. Some kind of intelligent adaptable res-
olution could be one possibility to overcome the scale issues. However, a grid size
and shape based on a single phenomenon would most likely lead to complications
due to interactions and different length scales. The grid could be adapted for example
according to the studied phenomena or geographical region. Different grid solutions
exist, like horizontal grids separated into varying sizes of triangles, and for example,
global numerical weather prediction model ICON uses an unstructured icosahedral
grid instead of a standard structured orthogonal grid used in LES models (Dipankar
et al., 2015). These grid solutions tend to be fixed before running the simulation as
a dynamically adapting grid would increase computational complexity, yet in some
specific cases dynamic grid might be worth exploring.

More detailed cloud/climate simulations can also be achieved as the computa-
tional power increases as technology improves. However, this might not be a lasting
solution as eventually, Moore’s law of increasing CPU power will meet the bound-
aries of physical reality. Admitting, there is quantum computing and massive par-
allelisation, like GPUs that will provide future possibilities. More detailed climate
simulations are needed to predict future climate conditions and hence guide decision-
making.

6.1.2 Ice microphysics

The necessity of detail is clear with ice crystals since they come in various shapes
and sizes, and it is said that there does not exist identical snowflakes. Fundamen-
tally, ice crystals are mostly hexagonal or fractal shaped depending on temperature
and whether the crystal has gone through cloud processing. In this study, they are
represented with spherical algorithms to simplify calculations by using some circum-
vent solutions like low effective densities. These𝑚−𝐷−𝑣 parameterisations do not
hold any major issues, as any particle can be described as a spherical object consider-
ing relevant shape factors when employing fall speed, effective cross-sectional area
(coagulation processes) and surface area (condensation processes). Although, the
simulation results represent observational clouds on average, simulating and study-
ing ice crystals and their interactions as realistically as possible could reveal inter-
esting yet unknown outlier events such as tipping points. Additionally, as another
solution Predicted Particle Properties (P3) microphysics scheme has been developed
to allow free size and shape evolution of ice particles without categorising them into
hail, graupel, etc. (Milbrandt et al., 2021). Still, P3 offers smooth shapes for ice
crystals, not fractals.
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From a more philosophical perspective, weather phenomena, including ice nu-
cleation, are inherently chaotic. Chaos means that a small change in initial condi-
tions can lead to a much larger, diverging end result of several orders of magnitude.
The chaotic behaviour leads to a question. Do we have the mathematics or simply
enough prognostic variables or even dimensions to describe cloud processes or ice
nucleation, since even ice nucleation is not yet fully understood on a molecular level
(Kiselev et al., 2017). Potentially, there could be a need for a sort of unifying mathe-
matical theory that crosses over several orders of spatiotemporal magnitude. It could
be that we are missing one or several dimensions to fully describe ice nucleation.
However, adding more dimensions leads to challenges with computational time.
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7 Appendices

7.1 Mathematics
7.1.1 Binary search algorithm

Bisect algorithm divides the ordered list {𝑟0 < 𝑟1 < · · · < 𝑟𝑖 < · · · < 𝑟𝑚} recur-
sively in two parts according to the search value 𝑟𝑖. The recursion continues until
it finds the indexes 𝑖 − 1 and 𝑖 + 1, where 𝑟𝑖−1 < 𝑟𝑖 < 𝑟𝑖+1 (Wikipedia, a; Louis
F. Williams, 1976).

7.1.2 Indicator function

Indicator function of characteristic function of a subset of a set is a function that
maps all elements of the subset to one and rest of the elements to zero. The indicator
function of a subset 𝐴 of a set 𝑋 is a function

1𝐴 : 𝑋 ↦→ {0, 1} (46)

defined as

1𝐴(𝑥) :=

{︃
0, 𝑥 /∈ 𝐴
1, 𝑥 ∈ 𝐴.

(47)

7.1.3 Dirac measure

A Dirac measure 𝛿𝑥 assigns a size to a set based on whether it contains a fixed
element 𝑥 or not. Dirac measure is defined on a set 𝑋 (with any 𝜎-algebra of subset
of 𝑋) with given 𝑥 ∈ 𝑋 and any measurable set 𝐴 ⊆ 𝑋 by

𝛿𝑥 = 1𝐴(𝑥) =

{︃
0, 𝑥 /∈ 𝐴
1, 𝑥 ∈ 𝐴,

(48)

where 1𝐴 is the indicator function of 𝐴.

7.1.4 Hyperplane

In geometry, a hyperplane is defined as subspace of dimension 𝑛 − 1 within an 𝑛-
dimensional space. For example, 3-dimensional space has hyperplanes that are 2-
dimensional planes.
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A hyperplane of an 𝑛-dimensional affine space is a flat subset with dimension
𝑛 − 1 and it separates the space into two half spaces. A hyperplane of an projective
space does not hold this feature (Wikipedia, c).

7.1.5 Latin Hypercube

Within statistical sampling, a Latin square is a square grid where selected sample
positions are so that there is only one sample for each row and for each column. It is
like towers positioned on a chess board that threaten all squares but not each other. A
Latin hypercube is the same idea but generalised to 𝑛-dimensions where each sample
is unique in each axis-aligned hyperplane holding it.

7.1.6 Markov kernel

In probability theory, a Markov kernel is a map (Wikipedia, d):
Let (𝑋,𝒜) and (𝑌,ℬ) be measurable spaces. Let (𝑋,𝒜) be the source and (𝑌,ℬ)

the target. A Markov kernel is a map 𝜅 : ℬ ×𝑋 → [0, 1] having properties:

1 For every (fixed) 𝐵 ∈ ℬ, the map 𝑥→ 𝜅(𝐵, 𝑥) is 𝒜-measurable.

2 For every (fixed) 𝑥 ∈ 𝒳 , the map 𝐵 → 𝜅(𝐵, 𝑥) is a probability measure on
(𝑌,ℬ).

7.1.7 Simulated annealing

Simulated annealing (SA) is a probabilistic technique for finding the approximate
global optimum of a given function (Wikipedia, e). Formally it is defined as a meta-
heuristic to approximate global optimisation in a large search space for an optimi-
sation problem. For large numbers of local optima, SA can find the global optima
(Simulated Annealing). Simulated Annealing is a common choice with optimisation
problems having a discrete search space.

The name of the algorithm comes from annealing in metallurgy. Annealing is a
technique, where heating and controlled cooling of a material are utilised to alter the
physical properties of a metal.

7.1.8 Sobol sequence

Sobol points or sequence is a method for generating low-discrepancy quasi-random
numbers, that is sort of points in a unit hypercube that spread randomly but somewhat
evenly (Sobol, 1967; Joe and Kuo, 2008). In this study, Sobol points are implemented
with Python’s SciPy library.
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7.2 Physics

7.2.1 ECHAM

An atmospheric general circulation model developed at the Max Planck Institute for
Meteorology (MPIM). The climate model ECHAM has been developed from the
ECMWF operational forecast model (therefore the two first letters of its name: EC)
and an extensive parameterisation package developed at Hamburg (therefore the last
three letters HAM).

7.2.2 Planetary boundary layer

Planetary boundary layer (PBL) known also as the atmospheric boundary layer or
peplosphere, is the lowest part of the atmosphere, and it is in direct influence with
the planetary surface. Above the PBL is the free troposphere.

7.2.3 Radiation budget

The components of the radiation budget are the energy entering, reflected and emitted
by the climate system. A budget that is out of balance can cause the temperature of
the climate system to increase or decrease.

7.2.4 Stability of atmosphere

The stability of the atmosphere is based on the density difference of a rising or sink-
ing air parcel compared to the environmental air density. The density of air is affected
by atmospheric pressure, temperature and humidity. Turbulence is caused the stabil-
ity as for example unstable atmosphere favours vertical motions. The stability of the
atmosphere is affected by fluxes from the surface (heat fluxes, moisture fluxes) and
changes caused by radiation at different altitudes.

7.2.5 Coagulation kernel

Coagulation kernels are mathematical functions that describe the rate at which hy-
drometeors (=cloud droplets/ ice crystals) and aerosols collide and merge with each
other to form larger particles through a process called coagulation.

Coagulation kernels typically depend on several factors, such as the size and
composition of the cloud particles, their relative velocities, and the atmospheric con-
ditions, such as temperature and humidity.

64



Appendices

7.2.6 Prognostic and diagnostic variables

In a mathematical model, prognostic variables evolve independently over space and
time and their future behaviour can be predicted through numerical simulations.
Typically, prognostic variables represent physical properties like temperature, wind
speed, atmospheric pressure, and humidity. In contrast, diagnostic variables are de-
rived from prognostic variables at particular times and locations, and they do not
evolve independently. Prognostic variables can be used as inputs for models and
often diagnostic variables represent outputs of the model, like precipitation, cloud
cover and atmospheric stability.
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R. Yu, and B. Zhou, editors. Climate Change 2021: The Physical Science Basis. Cambridge
University Press, Cambridge, United Kingdom and New York, NY, USA, 2021. doi: 10.1017/97
81009157896.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics, 21(2):239–245,
2021/09/20/ 1979a. ISSN 00401706. doi: 10.2307/1268522. URL https://doi.org/10
.2307/1268522. Full publication date: May, 1979.

M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics, 21, 1979b.

C. Meneveau. Turbulence: Subgrid-Scale Modeling. Scholarpedia, 5(1):9489, 2010. doi: 10.4249/sc
holarpedia.9489. revision #153312.

J. A. Milbrandt, H. Morrison, D. T. D. II, and M. Paukert. A triple-moment representation of ice in the
predicted particle properties (p3) microphysics scheme. Journal of the Atmospheric Sciences, 78
(2):439 – 458, 2021. doi: 10.1175/JAS-D-20-0084.1. URL https://journals.ametsoc
.org/view/journals/atsc/78/2/jas-d-20-0084.1.xml.

J. Mohrmann, R. Wood, T. Yuan, H. Song, R. Eastman, and L. Oreopoulos. Identifying meteorologi-
cal influences on marine low-cloud mesoscale morphology using satellite classifications. Atmo-
spheric Chemistry and Physics, 21(12):9629–9642, 2021. doi: 10.5194/acp-21-9629-2021. URL
https://acp.copernicus.org/articles/21/9629/2021/.

M. D. Morris and T. J. Mitchell. Exploratory designs for computational experiments. J. Stat. Plann.
Inference, 43, 1995. doi: 10.1016/0378-3758(94)00035-T. URL https://doi.org/10.1
016/0378-3758(94)00035-T.

National Oceanic and Atmospheric Administration. The first climate model. https://celebrat
ing200years.noaa.gov/breakthroughs/climate_model/welcome.html,
2022. Accessed: 2022-10-26.

NOAA predicting climate. Predicting climate: Climate forcing, national oceanic and atmospheric ad-
ministration (noaa). https://www.climate.gov/maps-data/climate-data-pri
mer/predicting-climate/climate-forcing, 2023. Last accessed 2023-09-22.

A. O’Hagan. Curve fitting and optimal design for prediction. Journal of the Royal Statistical Society:
Series B (Methodological), 40(1):1–24, 1978. doi: 10.1111/j.2517-6161.1978.tb01643.x.

71

https://doi.org/10.1080/01621459.2017.1409123
https://doi.org/10.1080/01621459.2017.1409123
https://journals.ametsoc.org/view/journals/atsc/77/10/jasD190268.xml
https://journals.ametsoc.org/view/journals/atsc/77/10/jasD190268.xml
https://doi.org/10.1007/s10546-021-00656-8
https://doi.org/10.1007/s10546-021-00656-8
https://doi.org/10.2307/1268522
https://doi.org/10.2307/1268522
https://journals.ametsoc.org/view/journals/atsc/78/2/jas-d-20-0084.1.xml
https://journals.ametsoc.org/view/journals/atsc/78/2/jas-d-20-0084.1.xml
https://acp.copernicus.org/articles/21/9629/2021/
https://doi.org/10.1016/0378-3758(94)00035-T
https://doi.org/10.1016/0378-3758(94)00035-T
https://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html
https://celebrating200years.noaa.gov/breakthroughs/climate_model/welcome.html
https://www.climate.gov/maps-data/climate-data-primer/predicting-climate/climate-forcing
https://www.climate.gov/maps-data/climate-data-primer/predicting-climate/climate-forcing


Jaakko Ahola

M. Ovchinnikov, A. S. Ackerman, A. Avramov, A. Cheng, J. Fan, A. M. Fridlind, S. Ghan, J. Harring-
ton, C. Hoose, A. Korolev, G. M. McFarquhar, H. Morrison, M. Paukert, J. Savre, B. J. Shipway,
M. D. Shupe, A. Solomon, and K. Sulia. Intercomparison of large-eddy simulations of arctic
mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst.,
6(1):223–248, 2014. doi: 10.1002/2013MS000282.

A. O’Hagan. Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering & System
Safety, 91(10):1290–1300, 2006. ISSN 0951-8320. doi: 10.1016/j.ress.2005.11.025. The Fourth
International Conference on Sensitivity Analysis of Model Output (SAMO 2004).

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

V. T. J. Phillips, P. J. DeMott, and C. Andronache. An empirical parameterization of heterogeneous ice
nucleation for multiple chemical species of aerosol. Journal of the Atmospheric Sciences, 65(9):
2757–2783, 2008. doi: 10.1175/2007JAS2546.1.

S. Pope. Turbulent flows. Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511
840531. URL https://doi.org/10.1017/CBO9780511840531.

M. Prank, J. Tonttila, J. Ahola, H. Kokkola, T. Kühn, S. Romakkaniemi, and T. Raatikainen. Impacts
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