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ABSTRACT

A significant number of deaths worldwide are attributed to cardiovascular dis-
eases (CVDs), accounting for approximately one-third of the total mortality in 2019,
with an estimated 18 million deaths. The prevalence of CVDs has risen due to the
increasing elderly population and improved life expectancy. Consequently, there is
an escalating demand for higher-quality healthcare services. Technological advance-
ments, particularly the use of wearable devices for remote patient monitoring, have
significantly improved the diagnosis, treatment, and monitoring of CVDs.

Atrial fibrillation (AFib), an arrhythmia associated with severe complications
and potential fatality, necessitates prolonged monitoring of heart activity for accu-
rate diagnosis and severity assessment. Remote heart monitoring, facilitated by ECG
Holter monitors, has become a popular approach in many cardiology clinics. How-
ever, in the absence of an ECG Holter monitor, other remote and widely available
technologies can prove valuable. The seismo- and gyrocardiogram signals (SCG and
GCG) provide information about the mechanical function of the heart, enabling AFib
monitoring within or outside clinical settings. SCG and GCG signals can be conve-
niently recorded using smartphones, which are affordable and ubiquitous in most
countries.

This doctoral thesis investigates the utilization of signal processing, feature en-
gineering, and supervised machine learning techniques to classify AFib using short
SCG and GCG measurements captured by smartphones. Multiple machine learn-
ing pipelines are examined, each designed to address specific objectives. The first
objective (O1) involves evaluating the performance of supervised machine learn-
ing classifiers in detecting AFib using measurements conducted by physicians in a
clinical setting. The second objective (O2) is similar to O1, but this time utilizing
measurements taken by patients themselves. The third objective (03) explores the
performance of machine learning classifiers in detecting acute decompensated heart
failure (ADHF) using the same measurements as O1, which were primarily collected
for AFib detection. Lastly, the fourth objective (O4) delves into the application of
deep neural networks for automated feature learning and classification of AFib.

These investigations have shown that AFib detection is achievable by capturing
a joint SCG and GCG recording and applying machine learning methods, yielding
satisfactory performance outcomes. The primary focus of the examined approaches
encompassed (1) feature engineering coupled with supervised classification, and (2)
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automated end-to-end feature learning and classification using deep convolutional-
recurrent neural networks.

The key finding from these studies is that SCG and GCG signals reliably capture
the heart’s beating pattern, irrespective of the operator. This allows for the detection
of irregular rhythm patterns, making this technology suitable for monitoring AFib
episodes outside of hospital settings as a remote monitoring solution for individuals
suspected to have AFib. This thesis demonstrates the potential of smartphone-based
AFib detection using built-in inertial sensors. Notably, a short recording duration
of 10 to 60 seconds yields clinically relevant results. However, it is important to
recognize that the results for ADHF did not match the state-of-the-art achievements
due to the limited availability of ADHF data combined with arrhythmias as well as
the lack of a cardiopulmonary exercise test in the measurement setting.

Finally, it is important to recognize that SCG and GCG are not intended to re-
place clinical ECG measurements or long-term ambulatory Holter ECG recordings.
Instead, within the scope of our current understanding, they should be regarded as
complementary and supplementary technologies for cardiovascular monitoring.

KEYWORDS: Atrial fibrillation, cardiovascular diseases, machine learning, signal
processing
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TIIVISTELMÄ

Sydän- ja verisuonitaudit (CVD) aiheuttavat maailmanlaajuisesti merkittävästi
kuolleisuutta ja sairastuvuutta. On arvioitu, että vuonna 2019 noin 18 miljoonaa
kuolemantapausta johtui sydän- ja verisuonisairauksista, mikä on noin kolmasosa
kaikista kuolemista maailmanlaajuisesti. Samalla kun iäkkäiden ihmisten määrä on
tasaisesti kasvanut viime vuosikymmeninä elinajanodotteen pidentyessä, vastaavasti
myös sydän- ja verisuonitautien esiintyvyys on lisääntynyt. Tämän seurauksena
myös laadukkaampien terveydenhuoltopalvelujen tarve on lisääntynyt. Samaan
aikaan sydän- ja verisuonitautien diagnosointi, hoito ja seuranta ovat hyötyneet su-
uresti teknologisesta edistyksestä, erityisesti puettavien laitteiden mahdollistamasta
potilaiden etäseurannasta.

Eteisvärinä on rytmihäiriö, joka tyypillisesti aiheuttaa komplikaatioita, jotka
voivat johtaa potilaan tilan heikkenemiseen tai jopa kuolemaan. Eteisvärinän diag-
nosointi ja vakavuuden tunnistaminen edellyttävät seurantatietoja sydämen toimin-
nasta päivien tai jopa viikkojen ajalta. Tämä on nykyään mahdollista sydämen
etäseurantamenetelmien kehittymisen myötä. EKG Holter-tutkimuslaite on suosituin
teknologia tähän tarkoitukseen. EKG Holterin avulla monet kardiologian klinikat
pystyvät seuraamaan potilaiden sydämen toimintaa useiden päivien tai jopa viikko-
jen ajan. Muidenkin etä- ja jokapaikanteknologioiden käyttö voi myös olla hyödyl-
listä, etenkin jos EKG Holteria ei ole saatavilla. Seismo- ja gyrokardiogrammisig-
naalit (SCG ja GCG) antavat tietoa sydämen mekaanisesta toiminnasta, jota voidaan
käyttää eteisvärinän seurantaan kliinisessä ympäristössä tai sen ulkopuolella. SCG
ja GCG voidaan tallentaa älypuhelimilla, jollaisia on laajalti edullisesti saatavilla
useimmissa maissa.

Tässä työssä tutkimme, kuinka signaalinkäsittelyä, piirteidensuunnittelua ja oh-
jattuja koneoppimismenetelmiä voidaan hyödyntää eteisvärinän luokittelussa äly-
puhelimilla tallennetuista lyhyistä SCG- ja GCG-mittauksista.

Tässä opinnäytetyössä on tutkittu useita koneoppimisjärjestelmiä, jotka kaikki on
suunniteltu tiettyjä tavoitteita varten. Ensimmäinen tavoite (O1) oli arvioida ohjat-
tujen koneoppimisluokittajien suorituskykyä eteisvärinän tunnistamiseksi perustuen
lääkärien kliinisessä ympäristössä suorittamiin mittauksiin. Toinen tavoite (O2) oli
muuten vastaava kuin O1, mutta tunnistus perustui potilaiden itsensä tekemiin mit-
tauksiin. Kolmantena tavoitteena (O3) tutkimme koneoppimismenetelmien tarkku-
utta akuutin dekompensoituneen sydämen vajaatoiminnan tunnistamiseksi(ADHF)
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perustuen täsmällisiin mittauksiin, jotka kerättiin ensisijaisesti eteisvärinän havait-
semiseksi. Viimeisenä tavoitteena (O4) tutkimme mahdollisuutta käyttää syviä her-
moverkkoja automatisoituun piirteidenoppimisen ja eteisvärinän tunnistamiseen.

Tutkimuksessa havaitsimme, että eteisvärinä voidaan tunnistaa tyy-
dyttävällä tarkkuudella koneoppimisen avulla perustuen lyhyeen yhteiseen
SCG- ja GCG-tallenteeseen. Ensisijaisesti tutkimuksessa käytetyt metodit keskit-
tyivät (1) käsin valittuihin piirteisiin yhdistettynä tavalliseen luokittelijaan ja
(2) automatisoituun päästä päähän -piirteiden oppimiseen ja syvään toistuvaan
konvoluutiohermoverkkoon.

Tärkeimmät löydökset näistä tutkimuksista olivat, että SCG ja GCG sig-
naalien avulla voidaan tallentaa sydämen lyöntimalli, riippumatta tallententa-
jasta. Tämä mahdollistaa epäsäännöllisten rytmien havaitsemisen tällä teknolo-
gialla etänä myös sairaalaympäristön ulkopuolella, mahdollistaen rytmihäiriöiden
havaitsemisen. Tämä opinnäytetyö demonstroi potentiaalia havaita rytmihäiriöt
käyttäen vain matkapuhelinpohjaista detektoria käyttäen niiden sisäisiä sensoreita.
Esimerkiksi jo 10-60 sekunnin tallennus antaa kliinisesti merkittäviä tuloksia. On
kuitenkin tärkeää huomata, että tulokset sydämen vajaatoiminnan havaitsemiseksi
eivät vastaa uusimpia tutkimuksen saavutuksia, johtuen datan heikosta saatavuudesta
sydämen vajaatoiminnasta ja kardiovaskulaarisen kuntotestin puuttumisestta mit-
taustilanteessa.

Lopuksi on tärkeää huomata, että SCG ja GCG eivät korvaa kli-
inisesä ympäristössä toteutettua ECG mittausta tai pitkän tähtäimen Holter ECG
tallennusta, vaan nämä tekniikat pitäisi nähdä täydentävinä rinnakkaisina keinoina
sydän ja verisuonisairausten seurannassa.

ASIASANAT: Eteisvärinä, sydän- ja verisuonisairaudet, koneoppiminen, sig-
naalinkäsittely
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Notations

Numbers and ArraysNumbers and ArraysNumbers and Arrays
𝑎 A scalar (integer or real)
𝑎𝑎𝑎 A vector
𝐴𝐴𝐴 A matrix
a A scalar random variable
aaa A vector-valued random variable
𝐼𝐼𝐼 Identity matrix with dimensionality implied by the context

IndexingIndexingIndexing
𝑎𝑖 Element 𝑖 of vector 𝑎𝑎𝑎
𝐴𝑖,𝑗 Element 𝑖, 𝑗 of matrix 𝐴𝐴𝐴

𝐴𝐴𝐴𝑖,: Row 𝑖 of matrix 𝐴𝐴𝐴

𝐴𝐴𝐴:,𝑖 Column 𝑖 of matrix 𝐴𝐴𝐴

SetsSetsSets
R The set of real numbers
𝒳 The domain (or the sample space) of an arbitrary random variable

FunctionsFunctionsFunctions
𝐿 The training loss function
𝑒𝑟𝑟 An arbitrary error function
Ω The regularization function
ℒ The likelihood function
𝑙𝑜𝑔 The logarithm function with base 10
𝑃𝑟 The probability of a random variable
111(𝑐) The indicator function which returns 1 when the condition 𝑐 is satis-

fied, and 0 otherwise
‖𝑥𝑥𝑥‖ 𝐿2 norm of vector 𝑥𝑥𝑥
X DFT of signal (or vector) 𝑥𝑥𝑥
⟨𝑎𝑎𝑎,𝑏𝑏𝑏⟩ The dot product of two vectors 𝑎𝑎𝑎 and 𝑏𝑏𝑏

𝑎𝑎𝑎 · 𝑏𝑏𝑏 The dot product of two vectors 𝑎𝑎𝑎 and 𝑏𝑏𝑏

𝑎𝑎𝑎⊙ 𝑏𝑏𝑏 Hadamard product of two vectors 𝑎𝑎𝑎 and 𝑏𝑏𝑏

xii
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1 Introduction

Cardiovascular diseases (CVDs) cause the majority of deaths worldwide annually
[1]. As defined by WHO, cardiovascular diseases are disorders that affect the heart
and blood vessels. Nearly 18 million, or 32 percent of all worldwide deaths in
2019, were attributable to CVDs [1]. The main causes of CVD-related death were
heart attacks and strokes, which contributed 85 percent of all CVD-related deaths
in 2019 [1]. A total of 6 and 11 million people are diagnosed with cardiovascular
diseases in the European Union (EU) and in Europe each year [2]. In 2015, the fi-
nancial burden of the CVDs on the EU economy was estimated as high as 210 billion
euros a year [3]. Among all the CVDs, atrial fibrillation (AFib) has caused substan-
tial morbidity and mortality worldwide [4]. Heart failure, stroke, cognitive decline,
depression, decline in quality of life, and hospitalization are among the potential out-
comes of AFib [4]. As CVDs in general, and AFib in particular, are associated with
significant health and financial burdens, it is imperative that we take immediate and
careful action to prevent, diagnose, and treat these diseases as early as possible.

Despite the substantial morbidity and mortality rates, CVDs can be prevented by
maintaining a healthy diet and a physically active lifestyle and by reducing smoking,
tobacco use, and alcohol consumption [1]. Several studies have shown that preven-
tive medicine can significantly reduce mortality rates, morbidity rates, health care
costs, and hospital admissions. The outcomes of clinical intervention can also be im-
proved by preventive medicine [5]. Prevention and management of CVDs can also
benefit from technology. In recent years, remote monitoring of health and wellness
through wearable devices has been adopted in a variety of studies and has been found
to be effective for the prevention and treatment of CVDs [6; 7]. Utilizing these de-
vices, we can continuously monitor the physical activity, heart rhythm, and blood
pressure of the users. By analyzing these data, we can gain an understanding of the
health of the cardiovascular system [8]. Furthermore, it can be used for tracking the
efficacy of interventions and treatment plans as well as for improving future treat-
ment plans. Remote cardiac monitoring, provided by digital health technologies,
improves health outcomes while reducing hospital visits, transportation costs, and
psychological burdens associated with diseases [9].

Adopting digital and remote health monitoring can lead to substantial benefits in
the case of elderly care [10]. It is known that there is a direct correlation between
the prevalence of CVDs and age [11]. CVDs are prevalent in approximately 70-
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75% of 65 years or older individuals [11]. With the increasing lifespan of humans,
the proportion of individuals over the age of 65 is growing. With such a growing
population of elderly adults, the demand for healthcare and clinical services for the
treatment of CVDs will grow even further which in turn increases healthcare costs
and burdens [11]. With the adoption of digital and mobile health [12], wearable
IoT devices [10], advanced analytical algorithms [13], and telemedicine [14], health
care systems can not only control costs but also deliver better and more frequent
preventive care that is backed by the insights extracted from the remotely collected
data.

Wearable Electrocardiography and ambulatory photoplethysmography are prob-
ably the most popular sensing modalities that have been tested and shown valuable
for CVDs and especially AFib detection [15]. Other alternatives for ambulatory CVD
monitoring are seismocardiography and gyrocardiography which have been success-
fully used to monitor and classify a group of CVDs [16]. The mechanical movements
or vibrations of the chest induced by the heart muscle can be recorded by triaxial ac-
celerometer and gyroscope sensors [17]. The obtained signals are called seismocar-
diogram (SCG) and gyrocardiogram (GCG) which carry rich information about the
heart functioning and in particular heart rate and heart rate variability, cardiovascular
hemodynamics, and some cardiac diseases [17; 18]. The recording of SCG and GCG
can be as simple as placing a smartphone on the chest while lying down and letting
the built-in accelerometer and gyroscope sensors of the smartphone capture the chest
movements [19]. The ubiquity of wearable sensors and smartphones in recent years
has made it possible to record SCG and GCG signals out of laboratory settings and
let the scientific community start investigating their utility in more detail [17].

As remote health monitoring and remote sensing technologies become more
widespread, advanced data analysis techniques are becoming increasingly essen-
tial [20]. With the integration of signal processing and machine learning, power-
ful tools have been developed to meet this demand [21]. Using these tools, we
have been able to successfully analyze SCG and GCG signals [17; 18]. With the
increase in dataset size in the recent past, deep learning, which is a sub-field of ma-
chine learning, has gained increasing popularity and applicability to CVD-related
data analysis [22], especially the detection of AFib [23]. In addition, as automated
feature learning is possible through deep learning, engineers are able to spend less
effort on feature engineering, which requires a lot of domain knowledge.

Since SCG and GCG signals can be recorded by smartphones outside of hospi-
tal settings, they may be suitable for remote monitoring of AFib, particularly when
an electrocardiogram (ECG) recording cannot be acquired. Although SCG and GCG
provide us with entirely different pieces of information compared with ECG, the pro-
vided data can be sufficient for the analysis and monitoring of some CVDs. Another
significant CVD that requires special attention from the scientific community and
healthcare systems is acute decompensated heart failure (ADHF) [24]. Undiagnosed
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Introduction

AFib can be one of the precursors of ADHF [24]. Tracking and monitoring ADHF
outside clinical settings can substantially improve the efficacy of the treatment plans.

1.1 Objectives and Problem Statement
Throughout the course of this study, the main objective was to investigate the feasi-
bility of using signal processing and machine learning techniques for the analysis of
SCG and GCG signals primarily for the purpose of AFib detection. We were also
interested in the investigation of the concurrent detection of AFib and ADHF utiliz-
ing SCG and GCG signals. The studied SCG and GCG signals were all gathered by
smartphones and mostly from elderly patients who were admitted to the Department
of Cardiology in Turku University Hospital [19; 25]. The results of this work can
form a basis for designing powerful algorithms for the in-time detection and moni-
toring of AFib outside hospital settings utilizing ubiquitous sensing modalities such
as smartphones. Accordingly, the objectives of this study were:

• Objective 1: classification of AFib using SCG and GCG signals via feature
engineering and supervised learning.

• Objective 2: assessing the reliability of self-measured (or patient-applied)
recording of SCG and GCG signals for the detection of AFib. Here, the term
self-measured describes a recording that is fully carried out by the patients (or
users) themselves.

• Objective 3: investigating the feasibility of concurrent detection of AFib and
ADHF using a short SCG and GCG recording.

• Objective 4: classification of AFib using SCG and GCG signals via deep
neural networks. Assessing the feasibility of automated end-to-end feature
learning and classification.

Accordingly, the objectives of the research articles and their association with the
thesis objectives are shown in Table 1.

Table 1. Association of the objectives and the research articles.

Publication Obj. 1 Obj. 2 Obj. 3 Obj. 4
I ✓
II ✓ ✓
III ✓ ✓
IV ✓
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1.2 Thesis Overview
The thesis is organized as follows. Chapter 2 describes the cardiac physiology and
cardiovascular diseases studied in this thesis work. Moreover, Chapter 2 describes
the properties of a healthy heart (Section 2.1) as well as the properties of AFib and
HF (Section 2.2). Chapter 3 briefly introduces the SCG and GCG signals. In the
same chapter, the most popular family of pre-processing and feature engineering
techniques are also presented (Sections 3.2 and 3.3). Chapter 4 introduces machine
learning-based classification techniques. First, logistic regression (Section 4.1) and
support vector machine (Section 4.2) are described. Next, tree-based classifiers (Sec-
tion 4.3) including decision tree (Subsection 4.3.1), random forest (Subsection 4.3.2),
adaptive boosting (Subsection 4.3.3), robust boosting (Subsection 4.3.4), gradient
boosted trees (Subsection 4.3.5), and extreme gradient boosting (Subsection 4.3.6)
are described. Finally, artificial neural networks (Section 4.4), convolutional neural
networks (Subsection 4.4.1), and recurrent neural networks (Subsection 4.4.2) are
described. Next, in Chapter 5, a brief overview of the original publications is pro-
vided. Lastly, in Chapter 6, the overall discussion and conclusions of this research
study are presented.

1.3 Contributions
This thesis addresses the aforementioned research objectives and makes the follow-
ing contributions:

• in-depth analysis of the use of feature engineering and supervised classifica-
tion of multidimensional SCG and GCG signals for AFib classification (pub-
lications I, II, and III)

• designing pipelines for the analysis of biosignals using conventional super-
vised machine learning classifiers (publications I, II, and III)

• presenting a modern deep learning pipeline providing an end-to-end automated
sensor fusion, feature learning, and classification for AFib detection (publica-
tion IV)

With the research studies of this thesis work, we showed how machine learning
can help with the analysis of SCG and GCG signals and in particular for the detection
of AFib. The results of this thesis work enabled a deeper understanding of SCG and
GCG analysis through the lens of machine learning. It is worth mentioning that
the presented techniques are general in the sense that they can be applied to similar
biosignals and research studies.
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2 Cardiac Physiology and Cardiovascular
Diseases

2.1 Properties of a Healthy Heart
This section is widely based on the references [26; 27]. For better readability, repet-
itive referencing of these two sources is avoided in the rest of this section.

The heart is responsible for pumping blood to the body via an orchestrated con-
traction–relaxation cycle (or a cardiac cycle). The heart muscle (or myocardium) is
composed of cardiomyocytes which are particular muscle cells designed for generat-
ing contractile force. In a healthy heart, the pumping procedure is regularly repeated
many times per minute, each time causing one cardiac cycle. There are four hollow
chambers in a healthy heart, two at the top and two at the bottom, which are referred
to as atria and ventricles, respectively (see Fig. 1). The atria are smaller chambers
that are responsible for receiving blood, while ventricles are responsible for sending
blood to the organs of the body.

As can be seen in Fig. 1, a cardiac cycle consists of two major physiological
phases, diastole, and systole. Diastole represents the phase during which blood is
flowing toward the heart and is collected by the atria. In this phase, the ventricles are
relaxed and blood is passively flowing from the left atrium into the left ventricle and
from the right atrium into the right ventricle, respectively. During diastole, the right
atrium receives oxygen-free (or venous) blood from the body through the superior
vena cava and inferior vena cava. Similarly, the left atrium receives oxygenated (or
arterial) blood from the lungs through four pulmonary veins. At the end of diastole,
the atria contract and push the blood into the ventricles through the atrioventricular
valves. Two valves are responsible for controlling the blood flow from the atria to the
ventricles. These are called Mitral and Tricuspid, which are located between the left
and right chambers of the heart, respectively. Systole represents the phase when the
left and right ventricles contract and eject blood into the aorta and pulmonary artery,
respectively. In this phase, the oxygenated blood is delivered to all the organs of the
body, while the oxygen-free blood is sent to the lungs for refinement.

A healthy normal cardiac cycle is initiated by an electrical impulse that is fired
by the sinoatrial node and causes the atria to contract. The passive blood flow from
the atria to the ventricles is boosted by the extra push which is produced by atrial
contraction. On ECG, an atrial contraction is seen as a P-wave, which is defined as a
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Figure 1. Anatomy of a healthy heart together with the demonstration of diastole and systole.
Animation created by Mariana Ruiz Villarreal, downloadable From Wikimedia Commons, the free
media repository.

response to depolarization of the atrial cardiomyocytes. When the ventricles are filled
with blood, another electrical impulse, which is originated from the atrioventricular
node, is fired. This causes the ventricles to contract and send the blood away from the
heart through the aorta and pulmonary arteries. The ventricular contraction is caused
by depolarization of the ventricular cardiomyocytes, which can be seen on the ECG
as the QRS complex. As blood pressure within the ventricles increases due to the
contraction of the ventricles, the atrioventricular valves close. Then, the ventricles
eject the blood away from the heart through the aortic and pulmonic (or semilunar)
valves. The blood starts to flow through the body. The blood ejection continues
until the end of ventricular cardiomyocytes repolarization. This is the point when the
blood pressure inside the ventricles drops below the aortic pressure. As a result, the
semilunar valves get closed, and soon after, the atrioventricular valves get opened
again. This is the beginning of the next cardiac cycle. The ventricular repolarization
can be seen on ECG with a waveform known as T-wave.
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2.2 Cardiovascular Diseases and Disorders
2.2.1 Atrial Fibrillation

AFib is the most common sustained heart arrhythmia in adults worldwide [4] and is
associated with considerable mortality and morbidity [4]. The prevalence of AFib
is approximately 1.0% in the general population and increases to 8% among people
over the age of 80. Hypertensive heart disease, metabolic syndrome, mitral valve
disease, and coronary artery disease are among the underlying causes of AFib [28].
Death, stroke, HF, cognitive decline, depression, declined quality of life, and hos-
pitalization are among the potential AFib-related outcomes that altogether impose a
substantial burden on patients and health systems [4]. There are more than 33 million
individuals worldwide who suffer from AFib [29]. The incidence and prevalence of
AFib have increased with an increase in its associated mortality. The incremental
national cost of AFib has been estimated at 26 billion dollars in the United States
alone [29].

Persistent AFib puts patients at risk of systemic embolism. As a result of fibril-
lating atria, blood clots form easily [28]. A stroke or a vascular occlusion can occur
if pieces of these clots embolize and travel through the systemic circulation. The risk
of stroke for those with non-rheumatic AFib is high, especially if they have conges-
tive HF, hypertension, diabetes mellitus, or a history of transient ischemic attacks or
strokes [28].

AFib is defined as a supraventricular tachyarrhythmia caused by randomly initi-
ated electrical impulses that cause fibrillation of the atria rather than a proper con-
traction [4]. When a healthy heart is functioning normally, a single electrical im-
pulse initiated by the SA node coordinates atrial and ventricular contractions. The
electrical impulse is transmitted through the heart’s electrical conduction system,
composed of the atrioventricular node, bundles of His, bundle branches, and Purk-
inje fibers. Electrical impulses in AFib do not originate from the SA node but are
instead generated by ectopic sites located in and around the atria. The atria do not
contract properly but instead fibrillate. There are many uncoordinated ectopic elec-
trical impulses bombarding the atrioventricular node, which only allows a fraction
of these impulses to pass through and reach the ventricles. The atrioventricular node
is unable to maintain the regular impulse generation, leading to uncoordinated and
irregularly irregular contractions of the ventricles [4]. One of the key characteristics
of AFib is the irregularity of ventricular contractions, which can be observed in a
wide variety of biosignals [25].

Clinical AFib diagnosis is done via ECG and it requires a minimum of 30 seconds
of AFib on at least one ECG lead. On ECG, AFib is characterized by the absence of
P-wave and the presence of irregularly irregular R-R intervals [4]. On SCG and GCG
signals, AFib can be seen with irregular and random motion patterns, which can be
attributed to irregular ventricular contractions and aortic openings [25]. AFib diag-
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nosis is, however, a difficult task if AFib is not the dominant heart rhythm. In detail,
there are two main variants of AFib, persistent (or symptomatic) and paroxysmal (or
asymptomatic). In the persistent case, AFib is present predominantly and manifests
itself with palpitations, chest tightness or pain, poor effort tolerance, dizziness, syn-
cope, and sleep disorder [4]. However, a significant minority of sufferers experience
none of these symptoms [28]. In the paroxysmal case, AFib is only present for a
short period, leaving the sufferers unaware because of stable hemodynamics. De-
tection of paroxysmal AFib is hardly possible through short infrequent checkups in
clinical settings. With the advent of long-term remote cardiac monitoring, the de-
tection of paroxysmal AFib has become feasible as users can frequently and even
continuously monitor the cardiac operations and in particular the cardiac rhythm al-
most anywhere [4].

2.2.2 Heart Failure

HF is a clinical cardiovascular syndrome that manifests itself with symptoms such as
breathlessness, ankle swelling, and fatigue [24]. In plain terms, HF can be regarded
as a condition where the heart muscle partially loses its power to pump blood in ei-
ther systolic, diastolic, or both [24]. There is a wide spectrum of conditions that can
cause HF including coronary artery disease (CAD) and hypertension as the two most
prevalent factors in developed countries as well as valve diseases, arrhythmias, car-
diomyopathy, congenital heart disease, endomyocardial disease, pericardial disease,
metabolic and neuromuscular diseases [24]. The symptoms and signs of HF may
be very similar to those of non-CVDs, such as anemia, pulmonary, renal, thyroid, or
hepatic diseases. These signs and symptoms are only indicative of HF in the presence
of cardiac dysfunction [24]. According to estimates, 26 million people worldwide
were diagnosed with HF in 2012, costing 108 billion dollars annually [29]. By 2030,
the total cost of direct medical treatment for HF in the United States will rise from
21 billion dollars to 53 billion dollars [29].

The European Society of Cardiology (ESC) [24] indicates that HF can be divided
into three subgroups based on the left ventricular ejection fraction (LVEF). The HF
with reduced ejection fraction (HFrEF) category is designated in the case of a signif-
icant reduction in left ventricular systolic function, e.g. LVEF less than or equal to
40%. When there is a mild reduction in left ventricular systolic function, e.g. LVEF
between 41% and 49%, HF with mildly reduced ejection fraction (HFmrEF) is des-
ignated. In addition, when the LVEF value is greater than or equal to 50% and there
is evidence of structural and/or functional cardiac abnormalities and/or elevated na-
triuretic peptides (NPs), HF with preserved ejection fraction (HFpEF) is designated.

Chronic HF can also be classified into compensated and decompensated [30].
An HF that is compensated appears stable, with little evidence of fluid retention or
pulmonary edema [30]. A decompensated HF is characterized by breathlessness on
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exertion, either in the acute phase or in the chronic phase [30]. Decompensated
HF may manifest as pulmonary oedema or lethargy and malaise. Decompensation
may be caused by recurrent ischaemia, arrhythmias, infections, and electrolyte im-
balances [30]. In the case of acute decompensated HF (ADHF), the symptoms of
HF are severe-enough to require unplanned hospitalization, emergency room visits,
or office visits [31]. ADHF is characterized by pulmonary and systemic congestion
due to increased left- and right-heart filling pressures [31]. The majority of ADHF
hospitalizations occur as a result of worsening chronic HF. However, approximately
15% to 20% of ADHF admissions are a result of new diagnoses of HF [31]. The
average age of hospitalized patients in the U.S. is 70 to 75, with both sexes equally
represented. Approximately half of the hospitalized patients with HF have an LVEF
less than 0.4, which indicates that their heart has moderate to severe difficulty filling
their left ventricle [31]. HF patients who are newly diagnosed are much more likely
to have pulmonary oedema or cardiogenic shock, while chronic HF patients who are
decompensating typically have weight gain, exertional dyspnea, and orthopnea [31].
In addition to coexisting valvular diseases and dilated cardiomyopathy, AFib or atrial
flutter is remarkably common in about 30%–46% Of patients with ADHF [31].

HF is diagnosed using several measurements, including an electrocardiogram,
echocardiography, and clinical examination, as well as laboratory testing for the N-
terminal pro-B type natriuretic peptide (NT-proBNP) and B-type natriuretic peptide
(BNP). According to the ESC, the recommended diagnostic procedure is the clini-
cal examination, ECG inspection, and NT-proBNP and BNP tests. If there are any
abnormalities suggesting HF, echocardiography may be required. When there is ev-
idence of abnormality in all the examinations carried out, HF is confirmed and then
the phenotype is determined based on LVEF [24].

A number of studies from several countries have shown that survival rates for
HF patients improved dramatically between 1980 and 2000, but this trend may have
plateaued since then [24]. Despite the improvements in the prognosis of HFrEF since
the first treatment trials decades ago, the quality of life and the overall prognosis of
patients remain poor [24]. These statistics indicate that it is essential to identify
risk factors and early signs of HF better and more rapidly. Furthermore, continuous
monitoring of the efficacy of the treatment interventions and the prognosis is critical
and may be enhanced by the use of modern remote monitoring technologies [24; 32].

2.2.3 Comorbid Atrial Fibrillation and Heart Failure

AFib and HF can reciprocally influence each other through a range of mechanisms,
establishing a cycle of interdependence and exacerbation [33]. HF can initiate AFib
by causing increased filling pressures, diastolic dysfunction, mitral regurgitation, and
the activation of neurohormonal pathways. These factors can cause structural and
electrical remodeling of the atria [34]. Conversely, AFib can predispose individu-
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als to HF due to the detrimental effects of rapid and irregular heart rate, diminished
atrial contraction, compromised hemodynamic performance, and neurohormonal ac-
tivation [35]. Additionally, AFib and HF share common risk factors and pathogenetic
mechanisms, including age-related changes, cardiometabolic abnormalities, and sys-
temic inflammation, which concurrently contribute to their development [36].

Patients with existing HF are likely to experience a doubled risk of death when
they develop AFib, while those with existing AFib will experience a tripled risk of
mortality when they develop HF [29]. In spite of intensive investigation, the patho-
physiological interactions between AFib and HF remain incompletely understood.
Furthermore, HFpEF has emerged as a significant disease entity in recent years, and
there is limited knowledge about its relationship to AFib, which differs from that
of HFrEF [29]. It is currently unknown what is the optimal treatment strategy for
patients with both AFib and HF, and guidelines are continually evolving [29].

The management of comorbid AFib and HF aims to achieve various key objec-
tives, including the restoration and maintenance of sinus rhythm, effective control of
ventricular rate, prevention of thromboembolic events, and optimization of HF ther-
apy [37; 38]. The selection of appropriate treatment strategies depends on individual
patient characteristics and response to medications, encompassing options such as
pharmacological or electrical cardioversion, administration of antiarrhythmic drugs,
employment of rate-control medications, utilization of anticoagulants, consideration
of catheter ablation procedures, or even surgical interventions [37; 38]. Nonethe-
less, it should be noted that the current body of evidence from randomized trials is
relatively limited in guiding the optimal management approach for AFib in patients
with coexisting HF, and some of the available therapeutic interventions may entail
potential adverse effects or demonstrate limited efficacy within this specific patient
population [37; 38]. It is worth noting that there are several unmet clinical needs
for the management of these two conditions, such as improving the accuracy and
timeliness of diagnosis, optimizing the pharmacological and device-based therapies,
enhancing patient adherence and self-care, and reducing hospitalization and mortal-
ity rates [39]. Therefore, the management of AFib in patients with HF requires a
comprehensive approach that considers the type, duration, and severity of AFib, the
underlying cause, and stage of HF, the patient’s symptoms and preferences, and the
potential benefits and risks of different therapeutic options [39].

Remote sensing has emerged as a promising technology to address these needs.
Remote sensing can enable continuous and personalized monitoring of cardiac
rhythm, blood pressure, oxygen saturation, activity level, and other relevant param-
eters for patients with AFib and HF. Remote sensing can also facilitate the timely
detection of arrhythmias, exacerbations, medication adherence, and response to ther-
apy. Despite the potential benefits, there is not enough clinical evidence that com-
prehensively proves the applicability of remote sensing technologies for a complex
disease such as HF [40]. Issues related to device accuracy, clinical validity, the ab-
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sence of standardized regulatory policies, concerns regarding patient privacy, and the
optimal use of the devices are impeding the widespread adoption of remote sensing
and wearable technologies [40].
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3 Seismocardiogram and
Gyrocardiogram Signals

This chapter briefly describes what cardio-physiological variables we can extract and
analyze by SCG and GCG signals. Moreover, we briefly describe how SCG and GCG
signals are collected, pre-processed, and analyzed. In the next three sections, first,
the general idea behind the collection of SCG and GCG signals and their applications
are provided. Next, a brief overview of noise removal and signal enhancement tech-
niques is presented. Ultimately, a few of the fundamental features that are usually
implemented for this type of data are concisely described.

3.1 Modeling Mechanical Functioning of the Heart
The electrophysiological activity of the heart as measured by ECG is the most pop-
ular and possibly the richest source of information for analyzing the functioning of
the heart. The timing, shape, and amplitude of the P, Q, R, S, and T waves all carry
vital information about the underlying fitness, potential abnormalities, or disorders
of the heart. Besides ECG, the heart can be monitored mechanically through SCG
and GCG. Similarly, we can monitor the operations of the heart audibly through a
phonocardiogram. Samples of all these signals together with the annotation of wave-
forms and fiducial points are plotted in Figure 2. It is worth mentioning that the joint
measurement of SCG and GCG is also called mechanocardiography in some of our
research articles.

The contractions and relaxations of the myocardium cause movements on the
chest wall which are recordable by motion capture sensors. These movements have
been shown to have correlations with some of the underlying mechanical functions
of the heart (see Fig. 2) [41]. By placing an accelerometer on the chest, one can cap-
ture the seismic vibrations of the chest wall [42]. The acquired signal is SCG [42].
By placing a three-dimensional accelerometer sensor on the chest, the chest vibra-
tions can be captured in all three spatial dimensions [41]. The captured vibrations in
the anteroposterior axis of the body are, though, the most known due to the clearer
correspondence of the signal waveforms and the underlying physiology of the heart
(see SCG signal in Fig. 2). In principle, SCG captures the acceleration of the chest
wall; however, one can capture the angular velocity of the chest wall as well. For
this purpose, a gyroscope sensor can be used. Similar to SCG, the acquired signal
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is GCG and has been shown to correlate with the underlying mechanical functions
of the heart [43]. Scientists have shown that in a healthy normal heart, there are
particular waveforms and fiducial points in SCG and GCG signals that are correlated
with mitral and aortic valve openings and closures, pre-ejection period, isovolumetric
contraction time, isovolumetric relaxation time, left ventricular ejection time, elec-
tromechanical delay, total systolic time, Q-wave to MO duration [44; 41; 43]. Some
of these physiological variables are marked on SCG and GCG signals in Fig. 2.

Figure 2. Concurrent demonstration of ECG, Z-axis of SCG, Y-axis of GCG, and
phonocardiogram (PCG) signals together with some of the fiducial points representing
cardio-physiological functioning of a healthy heart. The annotated conditions are mitral and aortic
valve openings (MO and AO) and closures (MC and AC), pre-ejection period (PEP), isovolumetric
contraction time (IVCT), isovolumetric relaxation time (IVRT), left ventricular ejection time (LVET),
electromechanical delay (EMD), total systolic time (TST), Q-wave to MO duration (Q-MO). Image
reproduced from [18] which is an edited version of the signals originally published in [43; 45]. The
cited works are available under the license CC-BY 4.0.

SCG and GCG signals can be recorded noninvasively and unobtrusively by the
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widespread MEMS motion sensors [16]. Nowadays, MEMS motion sensors are
widely used inside smart consumer electronic devices such as smartphones and
smartwatches for non-medical applications. However, one can utilize these devices
for recording SCG and GCG signals. A straightforward scenario can be placing a
smartphone on the chest of an individual who is lying in the supine position and
starting logging the tri-axial accelerometer and gyroscope sensor values [19]. Such
a simple scenario has been used for collecting SCG and GCG signals for the clas-
sification of AFib [19]. In this thesis work, the same smartphone-derived SCG and
GCG signals have been utilized as the data source for investigating different research
questions covering machine learning-based AFib and ADHF classification.

Figure 3 displays representative samples of smartphone SCG and GCG cardiac
waveforms. The waveforms depicted in the figure correspond to three distinct disease
groups within the analyzed dataset. These groups include (a) controls, representing
individuals without AFib or ADHF; (b) AFib cases without ADHF; and (c) cases
presenting both AFib and ADHF. Upon examination, it is evident that the control
waveform exhibits a regular rhythm with monomorphic repeating patterns in both the
rotational and translational signals. In contrast, the waveforms from the [AFib, non-
ADHF] and [AFib, ADHF] conditions demonstrate irregular rhythms and abnormal
morphological characteristics.

All types of biosignals often contain noise which ideally needs to be removed and
separated from the physiological data generation process [47; 48; 49]. Often times
the magnitude of the noise is too large that the majority of the critical information
becomes hardly accessible. Consequently, there have been decades of research and
development work behind the inventions of noise removal techniques which were
solely designed and investigated for biosignal processing [49; 48]. Likewise, SCG
and GCG signals contain noise and need to be enhanced prior to any information
extraction or any further analysis [16]. In the next section, this topic is briefly intro-
duced.

3.2 Noise Removal and Signal Enhancement
A variety of noise sources, including motion artifacts, environmental vibrations, and
sensor mechano-electronics, usually affect SCG and GCG signals [17]. Motion arti-
facts are the most problematic and prevalent source of noise. During the recording,
any movement of the user’s body, sensors, or the environment where the user is lo-
cated can cause motion artefacts [17]. These artifacts can sometimes be stronger than
the actual vibrations induced by the heart on the chest wall [17]. Therefore, noise
removal is a crucial step in the analysis of SCG and GCG signals. It is worth noting
that depending on the magnitude of the noise, some measurements might become
totally useless even if advanced noise removal techniques are applied.

Conventional band-pass filtering is the first and the most used option for remov-

14



Seismocardiogram and Gyrocardiogram Signals

40 42 44 46 48 50

-0.2

0

0.2

A
cc

el
er

at
io

n

40 42 44 46 48 50
Time in seconds

-0.02

0

0.02

A
ng

ul
ar

 v
el

oc
ity

SCG-Z

GCG-Y

(a) Control, i.e. no AFib or ADHF.
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(b) AFib without ADHF.
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(c) AFib with ADHF.

Figure 3. Example signals of the subjects in the three possible categories namely (a) Control, i.e.
no AFib or ADHF, (b) AFib without ADHF, as well as (c) AFib with ADHF. Images adopted from [46]
(©2020 IEEE).

ing motion artifacts caused by unwanted movements such as breathing [17; 16]. Nor-
malized least mean square adaptive filter was used in another study [50] to remove
motion artifacts from moving subjects. More sophisticated signal decomposition
techniques such as empirical mode decomposition [51] and ensemble empirical mode
decomposition [52] were used to decompose the signal into different intrinsic mode
functions (IMFs). These methods work by reconstructing the signal using IMFs
which contain desired physiological information while leaving out the IMFs which
mostly represent the noise. Another powerful noise removal by signal decomposition
is singular spectrum analysis [25] to discard the noisy components and subsequently
reconstruct the noise-free signal from the remaining components. When only the lo-
cation of heartbeats in time is of interest, envelope extraction [25] can be a powerful
technique to deliver a signal with spikes at each heartbeat. Once noise removal is
done, we need to characterize the input signals in order to infer the heart’s condition.
This part is usually done by feature engineering which is briefly introduced in the
next section.
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3.3 Feature Engineering
For many decades scientists have been investigating biomedical signals by comput-
ing mathematical transformations that were designed to reveal characteristics of the
target physiological phenomena [53]. The outputs of these mathematical transfor-
mations are the so-called features that are used as inputs for machine learning al-
gorithms or statistical analysis systems. The process in which effective features are
identified, computed, and investigated is called feature engineering and/or feature ex-
traction [53]. Obviously, finding the most optimal features requires a lot of domain
knowledge and experience of the problem at hand [16].

Depending on the type of the mathematical transformation, feature extraction
techniques for signal data can be categorized into (1) time domain, (2) frequency
domain, and (3) joint time-frequency domain [53]. There is a plethora of research
studies that have investigated the utility of each of the above-mentioned categories
for the characterization of SCG signals [41; 16].

In the time domain, statistical properties, statistical model fitting, fiducial points,
heart rate variability, various measures of signal entropy, empirical mode decom-
position, singular spectrum analysis, independent component analysis, and cardiac
time intervals are among the most popular features and transformations applied to
SCG signals [16]. In the frequency domain, the Fourier transform is usually com-
puted, and from the resulting Fourier domain signal, statistical properties, power
spectral density of different frequency bands, various measures of entropy, as well
as the magnitude and phase properties are calculated [16]. It is worth mentioning
that Hilbert transform has been also used in some of the prior studies [54]. In the
time-frequency domain, short-time Fourier transform, as well as discrete and contin-
uous wavelet transform, have been used to analyze the frequency content of an input
signal in various time windows [41; 16].

Biosignals are usually non-stationary. In other words, their properties vary over
time because of the variations in the underlying physiological functioning of the
organ that is being monitored. In the field of cardiac monitoring, the heart function
can vary from one second to another due to the effects of the sympathetic nervous
system, the hemodynamic status, and disorders such as arrhythmia. In this case, it is
crucial to be able to characterize the signals in such a way that we can extract and
reveal the aforementioned non-stationary properties.

Heart rhythm contains a wealth of information concerning the heart’s fitness
and well-being. Arrhythmias, encompassing different types of rhythm disorders,
include conditions like AFib that necessitate prompt medical attention. AFib causes
irregularities in the heart rhythm which could be described by frequency and time-
frequency analysis of the signals on which heartbeats are visible. In the next para-
graphs, some of the fundamental features or transformations that are utilized to re-
veal the properties of the heart rhythm are briefly described. Please note that these
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are only a small set of all the possible mathematical transformations that we can use
to analyze heart rhythm and biosignals in general.

3.3.1 Histogram analysis

Histograms represent the approximation of the probability mass function (PMF) of
discrete signals. Once we have an approximation of the PMF, we can measure its
various features. For instance, we can measure various orders of moments including
the expected value, variance, skewness, and kurtosis. The different entropy measures
could also be computed for the obtained histogram. These features can then be used
as inputs to machine learning models.

The creation of a histogram requires defining a finite number of non-overlapping
bins over the range of the signal. Each bin refers to an interval over the range of the
signal. With more bins, the approximation becomes more accurate. However, in the
case of signals of short length, the number of bins should be selected carefully and
empirically according to the properties of the signal. Once the bin number is defined,
we count the number of signal values that fall into each interval. The histogram is
usually sketched by adjacent bar graphs each representing the calculated counts.

If we set 𝑁 to be the length of an arbitrary signal and 𝐾 to be the total number
of histogram bins, the histogram values 𝑚𝑖 should satisfy Equation 1.

𝑁 =

𝐾∑︁
𝑖=1

𝑚𝑖 (1)

3.3.2 Entropy

In physics, entropy quantifies a system’s disorder, randomness, or uncertainty. In in-
formation theory, entropy quantifies the amount of uncertainty or surprise of a system
as measured by the probabilities of each outcome of the system. For a scalar random
variable x, the probabilities of the outcomes are usually modeled by a normalized
histogram. In mathematical terms, entropy 𝐻(x) is defined as follows,

𝐻(x) = −
∑︁
𝑥∈𝒳

𝑝(𝑥) 𝑙𝑜𝑔(𝑝(𝑥)) (2)

where 𝒳 holds the set of all possible values of the random variable x. The defi-
nition presented in Equation 2 is known as Shannon entropy [55].

When it comes to signal data, Shannon entropy is unable to distinguish between
a regular and fully irregular signal whose elements are generated from the same
Bernoulli PMF. As a result, approximate entropy [56] and sample entropy [57] were
introduced.

17



Saeed Mehrang

As mentioned above, entropy is a measure of the randomness of the system or
input signal. Hence, it can be used as a feature to characterize the properties of
biosignals. For instance, using entropy we can measure the amount of randomness
of (1) a short signal segment in the time domain, (2) the frequency spectrum of a
signal, (3) the frequency spectrum of its sub-segments, or (4) each component of a
decomposed signal.

3.3.3 Convolution

At the heart of digital signal processing (DSP), there is a mathematical operation
called convolution based on which many of the systems are described [58]. It is
through convolution that we can compute the output of linear time-invariant (LTI)
systems for every given input provided that the impulse response of the LTI system
is accessible [58]. In simple terms, convolution is the operation that allows us to
combine the input signal 𝑥𝑥𝑥 and the impulse response ℎℎℎ to form a third signal 𝑦𝑦𝑦 which
is formally written as 𝑦𝑦𝑦 = 𝑥𝑥𝑥 * ℎℎℎ = ℎℎℎ * 𝑥𝑥𝑥.

We can view convolution operation from the input signal perspective as a decom-
position and synthesis operation. In detail, the input signal is first decomposed into
shifted and scaled impulses, and then, given the impulse response of the LTI sys-
tem, a shifted and scaled version of the impulse response is created corresponding
to each input impluse [58]. At last, all the shifted and scaled impulse responses are
synthesized (summed) to form the output signal [58].

In mathematical form, convolution operation can be viewed from the output sig-
nal perspective and written as follows,

𝑦𝑖 =

𝑀−1∑︁
𝑗=0

ℎ𝑗 𝑥𝑖−𝑗 , 𝑖 ∈ {0, ..., 𝑁 +𝑀 − 2} (3)

for an 𝑀 -point real-valued impulse response ℎℎℎ and an 𝑁 -point real-valued input
signal 𝑥𝑥𝑥. In this formulation, all the negative indices contain zero values. Similarly,
all the indices outside the domain of each signal contain zero values as well. As can
be seen in Equation 3, for every sample of the output signal, we need to compute
a dot product of the two vectors of both lengths 𝑀 . The first vector is the impulse
response ℎℎℎ, and the second one is a shifted and time-reversed 𝑀 -point segment from
the input signal 𝑥𝑥𝑥. This formulation is known as the convolution sum. To enable the
convolution machine to work properly in practice, we must pad the input signal 𝑥𝑥𝑥
with 𝑀 − 1 zeros on both ends. The output signal will be of length 𝑁 +𝑀 − 1.

While convolution, as such, is not directly used for feature extraction due to
its computational complexity, it is a fundamental transformation in many feature
extraction techniques.
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3.3.4 Correlation in DSP

Similar to convolution, correlation in DSP is a mathematical operation that combines
two signals to produce a third signal. This third signal is called cross-correlation if
the two input signals are different. In the case of correlating a signal with itself,
the resulting signal is referred to as autocorrelation [58]. With cross-correlation op-
eration, we are usually after determining where (or if) a signal occurs in another
signal [58].

For detecting known waveforms in random white noise, cross-correlation is the
most effective technique. Cross-correlation produces a peak that is higher above the
noise than any linear system when a similar pattern in the two signals occurs [58].
The process of using cross-correlation to detect a known waveform is commonly re-
ferred to as matched filtering [58]. Using autocorrelation, it is possible to identify pe-
riodic signals obscured by noise as well as the unrecognized fundamental frequency
of a signal [58].

Cross-correlation can be expressed in a mathematical form that looks very similar
to convolution, although it is a slightly different operation [58]. Similar to convolu-
tion, we pad the input signal with zeros on both ends. But, unlike convolution, we
do not reverse the input signal. The cross-correlation operation can be written in the
following mathematical form,

𝑦𝑖 =

𝑀−1∑︁
𝑗=0

ℎ𝑗 𝑥𝑖+𝑗 , 𝑖 ∈ {0, ..., 𝑁 +𝑀 − 2} (4)

for an 𝑀 -point real-valued signal ℎℎℎ and an 𝑁 -point real-valued signal 𝑥𝑥𝑥. In this
formulation, all the negative indices contain zero values. Similarly, all the indices
outside the domain of each signal contain zero values as well. As can be seen in
Equation 4, for every sample of the output signal, we need to compute a dot product
of the two vectors of both lengths 𝑀 . The first vector is the ℎℎℎ and the second one is
a shifted 𝑀 -point segment from the signal 𝑥𝑥𝑥.

3.3.5 Discrete Fourier Transform

The discrete Fourier transform (DFT) is one of the Fourier analysis techniques de-
vised for discrete or digital signals [58]. Using DFT, one can decompose a digital
signal into a finite set of sinusoidal waves. In detail, a discrete signal of length 𝑁 can
be decomposed into orthogonal 𝑁

2 + 1 sine and 𝑁
2 + 1 cosine waves each of which

with a different frequency and amplitude. The frequencies of these waveforms run
from zero all the way up to Nyquist frequency which is equal to half of the signal’s
sampling frequency [58]. The amplitudes of these waveforms represent how strong
each frequency component is within the signal of interest. The signal of interest is
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usually defined as a random variable that changes over time. Hence, the DFT of such
a signal results in a transformation from the time domain to the frequency domain.

From an algebraic perspective, each of those sinusoidal waves is a basis function
(vector) and with the DFT we want to project an input signal into the domain that
is spanned by those basis functions. These basis functions are shown in Equation 5
below,

𝐶𝑘,𝑖 = 𝑐𝑜𝑠(
2𝜋𝑘𝑖

𝑁
)

𝑆𝑘,𝑖 = 𝑠𝑖𝑛(
2𝜋𝑘𝑖

𝑁
)

(5)

where 𝑁 is the length of the input signal, 𝑖 is the time index running from zero
to 𝑁 − 1, and 𝑘 is the frequency index running from zero to 𝑁

2 . Here, 𝐶𝑘,𝑖 and 𝑆𝑘,𝑖

represent the cosine and sine wave samples carrying frequency component 𝑘 at time
index 𝑖.

To decompose the input signal into these basis functions, we need to calculate
the amplitude of the basis functions. This is done via measuring the dot product of
the input signal and each of the basis functions as shown in Equation 6 below,

𝑅𝑒X𝑘 =

𝑁−1∑︁
𝑖=0

𝑥𝑖 𝑐𝑜𝑠(
2𝜋𝑘𝑖

𝑁
)

𝐼𝑚X𝑘 = −
𝑁−1∑︁
𝑖=0

𝑥𝑖 𝑠𝑖𝑛(
2𝜋𝑘𝑖

𝑁
)

(6)

where 𝑅𝑒XXX and 𝐼𝑚XXX are the real part (or the amplitude of the cosine waves) and
imaginary part (or the amplitude of the sine waves) of the DFT output, respectively.
The index 𝑘 of the real part of the DFT output denotes the amplitude of the cosine
wave carrying frequency component 𝑘. Similarly, index 𝑘 of the imaginary part of
the DFT represents the amplitude of sine wave carrying frequency component 𝑘 [58].

Once the amplitudes of all basis functions are calculated, we can synthesize the
input signal 𝑥𝑥𝑥 using Equation 71.

𝑥𝑖 =

𝑁

2∑︁
𝑘=0

𝑅𝑒X𝑘 𝐶𝑘,𝑖 +

𝑁

2∑︁
𝑘=0

𝐼𝑚X𝑘 𝑆𝑘,𝑖 (7)

The illustration of the DFT output using 𝑅𝑒XXX and 𝐼𝑚XXX is called rectangular no-
tation in the literature. It is worth knowing that there is an equivalently important

1This synthesis equation is not entirely correct. The 𝑅𝑒XXX and 𝐼𝑚XXX need to be scaled by scaling
factors that are left out here. Please see [58] for more information.
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alternative to rectangular notation which is called polar notation. From trigonome-
try, we know that 𝑎 cos(𝑥) + 𝑏 sin(𝑥) = 𝑐 cos(𝑥+ 𝜃). In polar notation, the goal
is to utilize this conversion to display the DFT synthesis represented in Equation 7
in terms of two new variables 𝑐 (or magnitude) and 𝜃 (or phase angle). With polar
notation, we can visualize and understand the DFT output more easily than the rect-
angular notation. To change from rectangular to polar notation we can follow the
transformation presented in Equation 8 [58].

𝑀𝑎𝑔X𝑘 = (𝑅𝑒X2
𝑘 + 𝐼𝑚X2

𝑘)
1

2

𝑃ℎ𝑎𝑠𝑒X𝑘 = arctan

(︂
𝐼𝑚X𝑘

𝑅𝑒X𝑘

)︂ (8)

where 𝑀𝑎𝑔XXX denotes the magnitude of the DFT and 𝑃ℎ𝑎𝑠𝑒XXX denotes the phase
angle [58].

Using DFT, we can create the frequency spectrum of a signal by turning the DFT
output into polar notation and inspecting the magnitude of the DFT. The frequency
components that are present in the input signal are usually pronounced with peaks
extending above the amplitude of the noise [58].

Convolution is used to analyze systems in the time domain. Similar analyses can
be performed in the frequency domain via DFT. We know that every input signal can
be decomposed using DFT into cosine waves with a specific amplitude and phase.
The same procedure can be done on the output signal of a system. By doing so, you
can completely describe any linear system based on how cosine waves flow through
it. Such a description of a system is called the system’s frequency response [58]. A
system’s frequency response is determined by the Fourier Transform of its impulse
response. The convolution operation in the time domain is a computationally inten-
sive transformation. Convolution in the time domain is replaced with multiplication
in the frequency domain [58] and likewise, deconvolution is replaced with simple
division [58]. Such a property allows us to study LTI systems more easily in the
frequency domain rather than the time domain, especially in favor of computational
complexity. Thanks to a technique called Fast Fourier Transform (FFT) that imple-
ments DFT in a substantially efficient manner, the transition from the time domain
to the frequency domain can save us both time and computation [58].

Many of the feature engineering techniques that are implemented for character-
izing digital signals, and in particular biosignals, are derived from one or more of the
core features or transformations that were described in this chapter. Interested read-
ers are encouraged to see the authors’ original publications reprinted in this thesis
for more information about each feature type used for the analysis of SCG and GCG
signals throughout the author’s study.
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4 Supervised Classification Algorithms

In supervised learning, a classification model describes the mathematical function
that approximates a mapping between the label 𝑦 and the input 𝑥𝑥𝑥. As an example,
we consider a linear parametric model, where the prediction 𝑦 is computed as the dot
product of model parameters 𝜃𝜃𝜃 and input feature vector 𝑥𝑥𝑥, i.e. 𝑦 = ⟨𝜃𝜃𝜃,𝑥𝑥𝑥⟩. Depending
on the task and the classification model, the prediction value may have different in-
terpretations. For instance, in a logistic regression classifier, the output is always the
probability of the positive class. In an artificial neural network classifier, the output
of the model can be an unnormalized activation of a perceptron. The parameters of
the model 𝜃𝜃𝜃 are learned through a training process which may require some form of
iterative numerical optimization. For a parametric machine learning algorithm [59],
the training process involves finding the values of 𝜃𝜃𝜃 that best fit the training data.
In this case, to train the model, we need to define a loss function 𝐿(𝜃𝜃𝜃), which mea-
sures how well the model fits the training data. The function 𝐿 usually quantifies the
training error or the goodness of fit. Optionally, the loss function may contain some
additional terms for regularization – or model complexity penalty.

In contrast to parametric machine learning algorithms, a nonparametric machine
learning algorithm does not rely on strong assumptions about the form of the map-
ping function [59]. By making no assumptions, the algorithm is generally able to
learn any form of mapping function from the training data. The mapping function
these algorithms provide is, however, dependent on the input data [59]. In other
words, by changing the input data, the mapping function may completely change.

In the following sections, supervised classification techniques that were used
throughout this thesis work are concisely described. The techniques are logistic re-
gression, support vector machine, random forest, robust boosting, extreme gradient
boosting, and artificial neural networks.

4.1 Logistic Regression
Logistic regression is a specific type of generalized linear model that is designed to
model a dependent variable that takes a finite set of categorical values [60]. Logistic
regression is primarily designed for the estimation of a mapping between a set of
independent variables and a binary dependent variable – binary logistic regression
– which can be used to perform binary classification. There exists a multinomial
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logistic regression implementation as well that enables the prediction of a dependent
variable that takes more than two possible discrete outcomes [60].

The binary logistic regression algorithm differs from ordinary least square regres-
sion in a way that instead of finding a direct mapping from the independent variables
to the dependent variable, it tries to estimate a linear mapping to the logarithm of
the odds (or log-odds) of the dependent variable [60]. In other words, the algorithm
relies on regressing the log-odds of the dependent categorical variable onto the in-
dependent variables. The role of the log-odds in the context of logistic regression
is to simply formulate the problem as a linear regression task. For a training set
X = {𝑥𝑥𝑥(𝑖), 𝑦(𝑖)}, 𝑦(𝑖) ∈ {0, 1}, 𝑥𝑥𝑥(𝑖) ∈ R𝑑, and 𝑖 ∈ {1, ..., 𝑁}, the binary logistic
regression can be written in the mathematical form of the Equation 9.

ln
𝑃𝑟(𝑦 = 1)

𝑃𝑟(𝑦 = 0)
= ln

𝑝

1− 𝑝
= 𝛽𝛽𝛽 · 𝑥𝑥𝑥 (9)

where 𝑝 = 𝑃𝑟(𝑦 = 1) represents the probability of success for the response vari-
able 𝑦 that follows a Bernoulli distribution, 𝑥𝑥𝑥 is the d-dimensional vector of indepen-
dent variables, 𝛽𝛽𝛽 is the vector of regression coefficients. The term ln 𝑝

1−𝑝 represents
the log-odds of the outcome probability. By reordering this equation, we arrive at
Equation 10,

𝑝(𝑥𝑥𝑥) =
1

1 + 𝑒−𝛽𝛽𝛽·𝑥𝑥𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝛽𝛽𝛽 · 𝑥𝑥𝑥) (10)

Unlike linear least square regression, the coefficients of the logistic regression
model are not calculated by closed-form expressions. The unknown regression co-
efficient vector 𝛽𝛽𝛽 can be jointly found through an optimization task that aims to
maximize the likelihood function ℒ(𝛽𝛽𝛽 | X) which is expressed in the mathematical
form of Equation 11. Equivalently, the optimization can be done by minimizing the
negative logarithm of the likelihood function (a.k.a. negative log-likelihood) [61]. In
the case of binary logistic regression, negative log-likelihood is equivalent to binary
cross-entropy loss function 𝐿(X) which is expressed in the mathematical form of
Equation 12 [61].

ℒ(𝛽𝛽𝛽 | X) =
𝑁∏︁
𝑖=1

𝑦(𝑖)
𝑝(𝑥𝑥𝑥(𝑖))

(1− 𝑦(𝑖))
(1−𝑝(𝑥𝑥𝑥(𝑖)))

(11)

𝐿(X) = − lnℒ(𝛽𝛽𝛽 | X)

= −
𝑁∑︁
𝑖=1

𝑦(𝑖) ln
(︁
𝑝(𝑥𝑥𝑥(𝑖))

)︁
+ (1− 𝑦(𝑖)) ln

(︁
1− 𝑝(𝑥𝑥𝑥(𝑖))

)︁ (12)

The binary cross-entropy loss function is then minimized with respect to the
parameters 𝛽𝛽𝛽 through a numerical optimization method such as gradient descent [61]
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or coordinate descent [62]. Since this loss function is convex and differentiable, a
globally optimal solution can be found at the location of the global extremum.

For a response variable y that follows a multinomial distribution with 𝐾 possible
outcomes or classes (a.k.a multi-class classification), the logistic regression classifier
can be formulated with 𝐾 − 1 independent binary logistic regression models [61].
This is the standard one-vs-all decomposition of a multi-class classification problem
to several binary classification problems. In this case, the binary logistic regression
model at Equation 9 can be generalized to a set of 𝐾 − 1 independent binary logistic
regression models as stated in the system of equations 13.

ln
𝑃𝑟(𝑦 = 1)

𝑃𝑟(𝑦 = 𝐾)
= 𝐵𝐵𝐵1,: · 𝑥𝑥𝑥

ln
𝑃𝑟(𝑦 = 2)

𝑃𝑟(𝑦 = 𝐾)
= 𝐵𝐵𝐵2,: · 𝑥𝑥𝑥

...

ln
𝑃𝑟(𝑦 = 𝐾 − 1)

𝑃𝑟(𝑦 = 𝐾)
= 𝐵𝐵𝐵𝐾−1,: · 𝑥𝑥𝑥

(13)

where 𝐵𝐵𝐵 is the regression coefficient matrix with 𝐾 − 1 rows. The coefficient
vector 𝐵𝐵𝐵1,: refers to the first row of the coefficient matrix 𝐵𝐵𝐵. This formulation can
be simplified and solved for 𝑃𝑟(𝑦 = 𝐾) as shown in Equation 14.

𝑃𝑟(𝑦 = 𝐾) = 1−
𝐾−1∑︁
𝑚=1

𝑃𝑟(𝑦 = 𝑚)

= 1−
𝐾−1∑︁
𝑚=1

𝑃𝑟(𝑦 = 𝐾)𝑒𝐵𝐵𝐵𝑚,:·𝑥𝑥𝑥

=
1

1 +
∑︀𝐾−1

𝑚=1 𝑒
𝐵𝐵𝐵𝑚,:·𝑥𝑥𝑥

(14)

Once the value of 𝑃𝑟(𝑦 = 𝐾) is calculated, we can derive the other probabilities
as shown in the system of equations 15.
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𝑃𝑟(𝑦 = 1) =
𝑒𝐵𝐵𝐵1,:·𝑥𝑥𝑥

1 +
∑︀𝐾−1

𝑚=1 𝑒
𝐵𝐵𝐵𝑚,:·𝑥𝑥𝑥

𝑃𝑟(𝑦 = 2) =
𝑒𝐵𝐵𝐵2,:·𝑥𝑥𝑥

1 +
∑︀𝐾−1

𝑚=1 𝑒
𝐵𝐵𝐵𝑚,:·𝑥𝑥𝑥

...

𝑃 𝑟(𝑦 = 𝐾 − 1) =
𝑒𝐵𝐵𝐵𝐾−1,:·𝑥𝑥𝑥

1 +
∑︀𝐾−1

𝑚=1 𝑒
𝐵𝐵𝐵𝑚,:·𝑥𝑥𝑥

(15)

It is worth noting that logistic regression can easily overfit to training data [61].
As a result, a regularization term is usually added to its loss function. Elastic-net [63],
L1-norm [61], and L2-norm [61] are among the most popular regularization tech-
niques.

4.2 Support Vector Machine
A binary support vector machine (SVM) is a classification technique that is designed
for finding a decision boundary between two sets of samples in which the decision
boundary is farthest away from the samples in each set [64; 61]. The SVM attends to
this problem by defining a margin value 𝑟 which is the smallest distance between the
decision boundary and any of the positive and negative samples that are located on
either side of the boundary [61]. The optimal decision boundary is the one that max-
imizes 𝑟 [64; 61]. To identify such an optimal decision boundary, it is sufficient to
consider only a small subset of samples in the dataset that are located near the bound-
ary between the two classes. These samples are called the support vectors [61]. To
find the optimal decision boundary, the SVM classifier has to solve an optimization
problem that seeks the maximum value of 𝑟 [61].

For a binary SVM and training set X = {𝑥𝑥𝑥(𝑖), 𝑦(𝑖)}, 𝑦(𝑖) ∈ {−1, 1}, 𝑥𝑥𝑥(𝑖) ∈ R𝑑,
and 𝑖 ∈ {1, ..., 𝑁}, suppose that there exists a decision boundary or an algebraic hy-
perplane that perfectly separates the positive and negative samples [65]. This hyper-
plane is of the form 𝑤𝑤𝑤 ·𝜑(𝑥𝑥𝑥)+ 𝑏 = 0 where 𝑤𝑤𝑤 is the normal vector, 𝑏 is the intercept,
|𝑏|
‖𝑤𝑤𝑤‖ is the perpendicular distance from the hyperplane to the origin, and ‖𝑤𝑤𝑤‖ is the
Euclidean norm of 𝑤, and 𝜑(𝑥𝑥𝑥) denotes a feature-space transformation [65]. In the
case of a linear SVM, 𝜑(𝑥𝑥𝑥) simply represents the identity function. Given this for-
mulation, there exists a hyperplane 𝐻1 of the form 𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥) + 𝑏 = +1, which passes
through the support vectors in the positive class and is located at 𝑑 distance from the
decision boundary. The hyperplane 𝐻1 is the lower bound of the subspace of positive
class samples that is spanned by the inequality 𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥) + 𝑏 ≥ +1 for 𝑦(𝑖) = +1.
Similarly, there exists another hyperplane 𝐻2 of the form 𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥) + 𝑏 = −1 which
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passes through the support vectors in the negative class and is located at 𝑑 distance
from the decision boundary. The hyperplane 𝐻2 is the upper bound of the subspace
of negative class samples that is spanned by the inequality 𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥) + 𝑏 ≤ −1 for
𝑦(𝑖) = −1 which spans the subspace of the negative class samples [65]. We can
combine these two inequalities into a compact form as in Equation 16, which forms
a constraint to the aforementioned optimization problem that the SVM classifier has
to solve when searching for the optimal values of 𝑤𝑤𝑤 and 𝑏 which are the parameters
of the decision boundary.

𝑦(𝑖)(𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥) + 𝑏)− 1 ≥ 0 ∀𝑖 (16)

By definition, the optimal decision boundary has to be located precisely in the
middle of the two parallel hyperplanes 𝐻1 and 𝐻2. On the other hand, we know
that the distances of these two hyperplanes from the origin are 1−𝑏

‖𝑤𝑤𝑤‖ and −1−𝑏
‖𝑤𝑤𝑤‖ , re-

spectively. By subtracting these two distance values we arrive at the margin value
𝑟 = 2

‖𝑤𝑤𝑤‖ . The main objective of the SVM classifier is to maximize 𝑟 which naturally
translates to minimization of ‖𝑤𝑤𝑤‖, or for mathematical convenience, minimization
of the quadratic term in 17 [65].

1

2
‖𝑤𝑤𝑤‖2 (17)

To minimize the quadratic term in 17 given the constraint in 16, SVM uses a pri-
mal Lagrangian of the form presented in Equation 18 which shows the loss function
we would like to minimize.

𝐿(𝑤𝑤𝑤, 𝑏,𝑎𝑎𝑎) =
1

2
‖𝑤𝑤𝑤‖2 −

𝑁∑︁
𝑖=1

𝑎𝑖𝑦
(𝑖)(𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥(𝑖)) + 𝑏) +

𝑁∑︁
𝑖=1

𝑎𝑖 (18)

Here vector 𝑎𝑎𝑎 represents Lagrange multipliers [64]. Since the loss function it-
self is convex quadratic and the linear constraints also form a convex set, the whole
Lagrangian is a convex quadratic programming problem [65] which is guaranteed to
have a global minimum with respect to𝑤𝑤𝑤 and 𝑏. By taking the partial derivatives with
respect to𝑤𝑤𝑤 and 𝑏 and setting them to zero, and eliminating them from 𝐿(𝑤𝑤𝑤, 𝑏,𝑎𝑎𝑎), the
dual representation of Lagrangian �̃�(𝑎𝑎𝑎) appears in Equation 19 which is a function
of Lagrange multipliers.

�̃�(𝑎𝑎𝑎) =

𝑁∑︁
𝑖=1

𝑎𝑖 −
1

2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑎𝑖𝑎𝑗𝑦
(𝑖)𝑦(𝑗)𝜑(𝑥𝑥𝑥(𝑖)) · 𝜑(𝑥𝑥𝑥(𝑗)) (19)

subject to the Karush-Kuhn-Tucker conditions [61; 65]. Equation 19 shows that
the solution to the optimization problem solely depends on the pair-wise dot product
of the samples or pair-wise dot product of some transformation 𝜑 of the samples in
the training set.
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At the end, for every data point, either 𝑎𝑖 = 0 or 𝑦(𝑖)(𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥(𝑖)) + 𝑏) = 1. The
dual representation of Lagrangian facilitates finding the support vectors which are the
only ones having non-zero 𝑎𝑖 coefficients. By finding the positive and negative class
support vectors we can find the hyperplanes 𝐻1 and 𝐻2 and accordingly the decision
boundary which is located right in the middle of these two. The dual representation
given in 19 has another property that facilitates the use of kernel trick. By defini-
tion, there exists a family of high-dimensional transformations 𝜑 : 𝑅𝑑 → 𝑅𝑧 for
𝑧 ≫ 𝑑 that are computationally expensive and in some cases intractable when they
are directly applied to input vector 𝑥𝑥𝑥. However, the dot product ⟨𝜑(𝑥𝑥𝑥(𝑖)), 𝜑(𝑥𝑥𝑥(𝑗))⟩ is
computationally tractable and attainable without directly computing the transforma-
tion 𝜑 [61]. Two of the function kernels that are widely used in the context of SVM
classifiers are homogeneous polynomial and Gaussian radial basis function [65].

The formulation of SVM classifier optimization given in Equation 18 has as-
sumed that the positive and negative samples are perfectly separable and no sample
is located inside the margin area or among the opposite class samples. In order
to enable the SVM classifier on tasks where there exist positive and negative sam-
ples on the wrong side of the decision boundary, we have to relax the hard margin
constraint [64; 61]. To this end, we can add a slack parameter 𝜉𝜉𝜉 to the formula-
tion of positive and negative class subspaces to widen their spans. The resulting
modified subspace formulations are 𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥(𝑖)) + 𝑏 ≥ +1 − 𝜉𝑖 for 𝑦(𝑖) = +1 and
𝑤𝑤𝑤 · 𝜑(𝑥𝑥𝑥(𝑖)) + 𝑏 ≤ −1 + 𝜉𝑖 for 𝑦(𝑖) = −1 and 𝜉𝑖 ≥ 0, ∀𝑖. Given the addition of
slack parameter 𝜉𝑖, the Lagrangian in Equation 19 changes to the new formulation
represented in Equation 20.

𝐿(𝑤𝑤𝑤, 𝑏,𝑎𝑎𝑎) =
1

2
‖𝑤𝑤𝑤‖2+𝑐

𝑁∑︁
𝑖=1

𝜉𝑖−
𝑁∑︁
𝑖=1

𝑎𝑖{𝑦(𝑖)(𝑤𝑤𝑤·𝜑(𝑥𝑥𝑥(𝑖))+𝑏)−1+𝜉𝑖}−
𝑁∑︁
𝑖=1

𝜇𝑖𝜉𝑖 (20)

where the 𝜇𝑖 are the multipliers introduced to enforce the positivity of the 𝜉𝑖. In
addition, 𝑐 is a user-defined parameter designed to control the penalty of errors with
higher values enforcing a larger penalty.

For multi-class classification with 𝐾 possible classes, we can follow the one-vs-
all strategy as in the logistic regression classifier. Alternatively, one can construct
𝐾(𝐾 − 1)/2 one-versus-one pairwise classifiers that are organized into a directed
acyclic graph (interested readers can refer to the scikit-learn implementation of one-
versus-one SVM) [61; 66]. Then, to classify a test point one has to find out which
class has the highest number of votes among all the pairwise classifiers [61].

4.3 Tree-based Classifiers
In this section, the descriptions of tree-based classifiers, namely decision tree, ran-
dom forest, robust boosting, and extreme gradient boosting are provided.
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4.3.1 Decision Tree

The tree-based classification and regression methods build tree-like structures for
determining the target variable class based on a set of input features [67]. The funda-
mental component of all tree-based techniques is a classifier that is called a decision
tree [67]. The most well-known and used decision tree algorithm is the classification
and regression trees (CART) algorithm [67]. There are other decision tree variants
such as ID3 [68] and C4.5 [69]; however, we only focus on CART as it has been the
only decision tree variant utilized in this thesis work.

The CART is a binary decision tree in which at every node the data is partitioned
into two parts based on a yes/no question. During the training process, the first or
root node of the tree is built by searching for the feature that can best partition the
data. Once the root node is formed and the data have been partitioned, there are two
child branches below the root node. For every child branch, the same search process
is repeated to find the next best feature. To determine what feature is the best, Gini
index impurity [67] is computed at each node for all the features that have not been
yet used in the previous nodes of the same branch. For a 𝐾 class classification
problem, the Gini index can be calculated using Equation 21.

𝐼𝐺(𝑝) = 1−
𝐾∑︁
𝑖=1

𝑝2𝑖 , 𝑖 ∈ {1, ...,𝐾} (21)

where 𝑝𝑖 represents the fraction of items labeled into class 𝑖. For each branch, the
tree growth is terminated according to some pre-defined conditions. The maximum
depth of the tree, the minimum Gini index, and the minimum number of samples that
ended up in a node are some of the widely used termination conditions [67; 70]. The
nodes of the tree of which no child branch is created are called leaf nodes. At each
leaf node, the probabilities of belonging to each of the available classes are calculated
during the training process and stored [67]. In a leaf node, probabilities are simply
the fraction of the samples of the same class [67]. During the test and inference
process, the leaf at which an input observation will end up is picked and classified
based on the stored class probabilities. The class with the highest probability is
chosen as the final prediction.

4.3.2 Random Forest

A random forest classifier constructs many independent decision tree classifiers
which can be created in parallel [71]. In a random forest, the final prediction proba-
bilities are calculated by averaging the predicted probabilities of all individual deci-
sion trees per each target class. Mathematically, for a 𝐾 class classification problem,
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a random forest classifier can be represented by Equation 22.

𝑦𝑖 =
1

𝐾

𝑇∑︁
𝑡=1

𝑔𝑡(𝑥𝑥𝑥
(𝑖)), 𝑔𝑡 ∈ 𝒢 (22)

where 𝑦𝑖 is the prediction probability of class 𝑖, 𝑇 stands for the total number of
decision trees, and 𝑔 is a function in the functional space 𝒢, and 𝒢 is the set of all
possible decision trees.

Random forest was primarily designed to mitigate the decision tree overfitting
issue. In an ensemble of decision trees, i.e. weak learners, a concept known as
bootstrap aggregation or bagging is implemented via the random forest. Bagging
signifies that the trees of the forest are each trained on a bootstrapped sample from the
training set, all of which vote for the final prediction of an input observation 𝑥𝑥𝑥. It has
been shown that the overall variance of the ensemble is reduced in comparison with
each of the decision trees [71]. As a regularization, injecting different randomness
into the tree formation and training process has been effective for improving the
performance [71]. Performing random splits at each node of the trees as well as
using only a random subset of available input features are two of these regularization
techniques [71].

4.3.3 Adaptive Boosting

In principle, adaptive boosting (AdaBoost) works by fitting weak learners (or base
learners), i.e. models that do slightly better than random guesses, to repeatedly mod-
ified versions of data [72]. Based on a weighted majority vote, all predictions will
be combined [72]. The weak learners in AdaBoost are a special type of decision tree
that is called decision stump. Unlike trees in a random forest, decision stumps have
only one root node and two leaf nodes. AdaBoost deploys a forest of such stumps,
but unlike random forest, the trees are created sequentially. To be precise, throughout
this document, the term AdaBoost refers to the AdaBoost.M1 or discrete AdaBoost
algorithm [72].

For a binary AdaBoost classifier, suppose we have a training set X = {𝑥𝑥𝑥(𝑖), 𝑦(𝑖)},
𝑦(𝑖) ∈ {−1, 1}, 𝑥𝑥𝑥(𝑖) ∈ R𝑑, and 𝑖 ∈ {1, ..., 𝑁}. In an adaptive boosting framework,
the first step in the training process is to produce a decision stump using the feature
that delivers the lowest weighted average of the Gini index (see Equation 21) over
the two leaf nodes in the stump. For each so-called boosting iteration, each train-
ing sample is modified by a set of weights 𝑤1, 𝑤2, ..., 𝑤𝑁 . We initially give equal
weight to all samples for the first stump, i.e. 𝑤𝑖 = 1

𝑁 . The sample weights are
modified with each successive iteration, and the learning algorithm is then applied to
the reweighted data. As the training examples are reweighted, those that were incor-
rectly predicted by the last decision stump are increased in weight. On the contrary,

29



Saeed Mehrang

the weights for the correctly predicted examples are decreased. With each iteration,
difficult examples receive greater influence [72]. Thus, the next weak learner in the
sequence is forced to concentrate on examples that the previous one has missed. The
weak learners themselves are also weighted by a coefficient 𝛼 that correlates with
the predictive power of the stump measured over the training set.

Generally, boosting fits an additive model to the data in a forward stagewise
fashion [72]. In the case of AdaBoost with a total of 𝑀 decision stumps, the decision
function of an additive model can be of the form

𝑐(𝑥𝑥𝑥) = sgn

(︃
𝑀∑︁

𝑚=1

𝛼𝑚𝑔𝑚(𝑥𝑥𝑥)

)︃
, 𝑚 = 1, ...,𝑀 (23)

The objective of an AdaBoost algorithm during the training phase is to find opti-
mal values of 𝛼𝑚 as well as optimal decision stumps 𝑔𝑚(𝑥𝑥𝑥) such that an exponential
loss function 𝐿(𝑦, 𝑐(𝑥𝑥𝑥)) = exp[−𝑦𝑐(𝑥𝑥𝑥)] is minimized. This objective can be written
in the following form

(𝛼𝑚, 𝑔𝑚) = argmin
𝛼,𝐺

𝑁∑︁
𝑖=1

exp
[︁
−𝑦(𝑖)(𝑐𝑚−1(𝑥𝑥𝑥

(𝑖)) +
𝛼

2
𝑔(𝑥𝑥𝑥(𝑖)))

]︁
= argmin

𝛼,𝐺

𝑁∑︁
𝑖=1

𝑤𝑖,𝑚 exp
[︁
−𝑦(𝑖)

𝛼

2
𝑔(𝑥𝑥𝑥(𝑖)))

]︁ (24)

where 𝑤𝑖,𝑚 is the weighting coefficient of the input observation 𝑖 at the formation
of decision stump 𝑚. The optimal function 𝑔𝑚 is the one that minimizes the sum of
weight values of the misclassified examples as shown in Equation 25.

𝑔𝑚 = argmin
𝐺

𝑁∑︁
𝑖=1

𝑤𝑖,𝑚 111(𝑦(𝑖) ̸= 𝑔(𝑥𝑥𝑥(𝑖))) (25)

Consequently, the optimal value of the decision stump influence coefficient 𝛼𝑚

is calculated via Equation 26.

𝛼𝑚 = ln
(1− 𝑒𝑟𝑟𝑚)

𝑒𝑟𝑟𝑚
(26)

such that the weighted error rate 𝑒𝑟𝑟𝑚 is calculated using Equation 27.

𝑒𝑟𝑟𝑚 =

∑︀𝑁
𝑖=1𝑤𝑖 111(𝑦

(𝑖) ̸= 𝑔𝑚(𝑥𝑥𝑥(𝑖)))∑︀𝑁
𝑖=1𝑤𝑖

(27)

A stump’s influence on the final classification is measured by its corresponding
value of 𝛼. A decision stump that does well, or has no misclassifications, has an error
rate of 0 and a relatively high value of 𝛼.
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The approximation for the ensemble model is then updated at iteration 𝑚 via

𝑐𝑚(𝑥𝑥𝑥) = 𝑐𝑚−1(𝑥𝑥𝑥) +
𝛼

2
𝑔𝑚(𝑥𝑥𝑥) (28)

The sample weights at iteration 𝑚 + 1 can be updated for every data point once
the influence coefficient for each stump has been measured at the end of iteration 𝑚.
This is done via the following formula

𝑤𝑖,𝑚+1 = 𝑤𝑖,𝑚 exp
[︁
𝛼𝑚 111(𝑦(𝑖) ̸= 𝑔𝑚(𝑥𝑥𝑥(𝑖)))

]︁
, 𝑖 = 1, ..., 𝑛 (29)

where 𝑔𝑚(𝑥𝑥𝑥(𝑖)) is the predicted class of the last decision stump for input sample
𝑥𝑥𝑥(𝑖). Once all values of 𝑤𝑖 are calculated, they are usually normalized so that they
sum to one. If an observation is misclassified by 𝑔𝑚, the weights of that observation
are scaled by a factor exp(𝛼𝑚), increasing their relative influence for the construction
of the next decision stump 𝑔𝑚+1.

For multi-class classification, there are different variants of the AdaBoost clas-
sifier. Stagewise additive modeling using a multi-class exponential loss function
(SAMME) [73] is the implementation that has been widely used and is implemented
in Scikit-Learn library [66]. The AdaBoost-SAMME implementation for a multi-
class classification requires subtle changes to the binary AdaBoost. Interested read-
ers are encouraged to read the original paper [73] for more information on SAMME
algorithm implementation.

4.3.4 Robust Boosting

Despite the unprecedented performance of AdaBoost, it was shown that the Ad-
aBoost classifier is over-sensitive to label noise. The performance of AdaBoost
was found to rapidly decrease after the training set was contaminated with label
noise [74]. At every iteration of the AdaBoost algorithm, weights are increased for
misclassified observations. These weights can become very large in some iterations.
When this occurs, the boosting algorithm sometimes focuses on a few misclassified
observations and ignores the rest of the training observations. As a result, the av-
erage classification accuracy is compromised [74]. This issue is pronounced when
there is label noise in the training dataset. To overcome this issue, other variants of
AdaBoost such as LogitBoost were proposed [75]. The weights placed on any exam-
ple by LogitBoost are bounded, unlike Adaboost, which places unbounded weights
on mislabeled examples [75]. This decreases the penalty for mislabeled examples
and increases the algorithm’s tolerance for noise [74]. All of AdaBoost’s and Log-
itBoost’s potential loss functions are convex [76] allowing us to calculate the loss
function’s minimum efficiently [74]. Random label noise, however, can still cause
issues to a boosting algorithm that uses a convex loss function [77]. The problem is
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caused by the inability of the optimization algorithm in AdaBoost to ignore the train-
ing examples that have label noise. These examples cannot be classified correctly
because their ground truth labels were chosen mistakenly. Putting too much focus
on these examples results is compromising the overall classification power [77].

AdaBoost has another weakness. Several experiments have revealed that the test
error of the generated strong classifier continues to decline for many boosting itera-
tions even after the training error converges to zero [74]. This suggests that we need
to discover the criterion AdaBoost optimizes which leads to improved predictive
power on the test set even after the training error converges to zero [74].

To overcome the above-mentioned shortcomings, robust boosting (RobustBoost)
has been proposed which, first of all, does not assign all the weights to the misclassi-
fied observations [74] which improves the average classification accuracy. Second of
all, in RobustBoost the optimization is done via a potential function that is not convex
and changes as a consequence of boosting [74]. In other words, RobustBoost does
not minimize the training error similarly as AdaBoost or LogitBoost does. In con-
trast, it maximizes the proportion of observations with the margin of classification 𝑟

above a certain threshold 𝜃.
The RobustBoost algorithm is motivated by the theory of large margins [74].

SVM classifier which was described in Section 4.2 is another popular classification
technique that lends its power to maximizing the decision margin. Recalling that the
decision function of an additive model is 𝑐(𝑥𝑥𝑥) defined in Equation 23, the unnormal-
ized margin of an input observation is defined to be the product of the classification
function and the predicted label [74] as shown in Equation 30.

𝑟(𝑥𝑥𝑥, 𝑦) = 𝑦 𝑐(𝑥𝑥𝑥) (30)

It is worth noting that the classification function 𝑐(𝑥𝑥𝑥) is a linear combination of
weak learners 𝑔𝑚(𝑥𝑥𝑥). Naturally, observations with positive margin 𝑟(𝑥𝑥𝑥, 𝑦) > 0 are
classified correctly, while those with negative margin 𝑟(𝑥𝑥𝑥, 𝑦) < 0 are misclassified.
The goal of the classification algorithm is to produce as many positive margins as
possible [72]. In addition, it is best not to hugely penalize the classifier for those
observations that are delivering a large negative margin [74].

Given the definition of the margin 𝑟(𝑥𝑥𝑥, 𝑦), there exists an indicator function
111[𝑟(𝑥𝑥𝑥, 𝑦) < 0] such that it holds value 1 if a sample is misclassified and 0 other-
wise [74]. This indicator function is called the error step function [74]. The goal of
the RobustBoost training algorithm is to minimize the total training error 𝐸X over
the training set X which can be expressed as

𝐸X[𝑐(𝑥𝑥𝑥) ̸= 𝑦] =
1

𝑁

𝑁∑︁
𝑖=1

111[𝑟(𝑥𝑥𝑥(𝑖), 𝑦(𝑖)) < 0] (31)
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With this formulation, the training data are linearly separable if there is a linear
classifier with a training error of zero.

If we define a normalized margin function via the expression below

𝑟(𝑥𝑥𝑥, 𝑦) =
𝑦 sgn(

∑︀
𝑚 𝛼𝑚𝑔𝑚(𝑥𝑥𝑥))∑︀

𝑚 | 𝛼𝑚 |
(32)

we can define the generalization error 𝐸𝐷[𝑟(𝑥𝑥𝑥) ≤ 0] [74] as the probability that
𝑐(𝑥𝑥𝑥) ̸= 𝑦 when (𝑥𝑥𝑥, 𝑦) is generated by the underlying true population distribution
𝐷 [74]. Given this definition and according to the margin theory, large positive
margins on training examples can lead to small generalization error [74]. In other
words, to minimize the generalization error, one should find a linear classifier 𝑐(𝑥𝑥𝑥)
that minimizes the number of training examples in which 𝑟(𝑥𝑥𝑥) ≤ 𝜃 for a large value
of 𝜃 [74]. The rest of the training data has a margin greater than 𝜃. Therefore, we need
an algorithm that finds a coefficient vector 𝛼𝛼𝛼 such that 𝑟(𝑥𝑥𝑥) > 𝜃 for most but not all
of the training observations [74]. Hence, instead of minimizing the number of errors
on the training set, we redefine the goal of the boosting algorithm to minimize the
number of observations whose normalized margin is smaller than a positive threshold
value 𝜃 [74]. Suppose we have a training set X = {𝑥𝑥𝑥(𝑖), 𝑦(𝑖)}, 𝑦(𝑖) ∈ {−1, 1},
𝑥𝑥𝑥(𝑖) ∈ R𝑑, and 𝑖 ∈ {1, ..., 𝑁}.

Given the definition of the error step function, we can define a potential func-
tion Φ(𝑟), which is a decreasing function of the margin 𝑟(𝑥𝑥𝑥, 𝑦), which is an upper
bound for the error step function, i.e. Φ(𝑟) ≥ 111[𝑟(𝑥𝑥𝑥, 𝑦) ≤ 0] [74]. In contrast to
the error step function, the potential function Φ(𝑟) is selected such that it is differen-
tiable over all values of the margin. Since the potential function Φ(𝑟) sets an upper
bound on the classification error, reducing Φ(𝑟) is a good heuristic for decreasing the
classification error in boosting setups. For the sake of completeness, the exponential
loss function in AdaBoost can be regarded as equivalent to the potential function in
RobustBoost [74].

Gradient descent can be used to minimize the potential function Φ(𝑟). Utilizing
the chain rule, we obtain a simple expression for the derivative w.r.t. 𝛼𝑚 at every
boosting iteration 𝑚. Denoting 𝑟(𝑥𝑥𝑥(𝑖), 𝑦(𝑖)) by 𝑟𝑖 we get

𝜕

𝜕𝛼𝑚

1

𝑁

𝑁∑︁
𝑖=1

Φ(𝑟𝑖) =
1

𝑁

𝑁∑︁
𝑖=1

𝜕𝑟

𝜕𝛼𝑚

𝜕Φ(𝑟)

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑟𝑖

=
1

𝑁

𝑁∑︁
𝑖=1

𝑦(𝑖)𝑔𝑚(𝑥𝑥𝑥(𝑖))
𝜕Φ(𝑟)

𝜕𝑟

⃒⃒⃒⃒
⃒
𝑟=𝑟𝑖

= − 1

𝑁

𝑁∑︁
𝑖=1

𝑦(𝑖)𝑔𝑚(𝑥𝑥𝑥(𝑖))𝑤(𝑟𝑖)

(33)
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𝜕Φ(𝑟)

𝜕𝑟
= −𝑤(𝑟) (34)

Based on Equation 33, the derivative of the potential function w.r.t. 𝛼𝑚 is equal
to the correlation between ground truth labels and the classifier predictions weighted
by the coefficient −𝑤(𝑟𝑖). The weighting coefficient is simply equal to the minus
derivative of the potential with respect to the margin as shown in Equation 34. Such
a formulation allows us to flexibly control the contribution of each training observa-
tion on the value of the potential function. If the goal is to ignore the training obser-
vations with excessively large margins, we can choose a potential function such that
its partial derivative with respect to the margin 𝑟 decreases as the magnitude of the
margin grows beyond the threshold defined by 𝜃.

As mentioned before, the RobustBoost algorithm aims at indirectly minimizing
the training error via the potential function. RobustBoost training is based on time
evolution denoted by the parameter 𝑡 and not the training error. At every step of the
algorithm, RobustBoost searches for a positive step in time Δ𝑡 and a positive change
in the average margin of the training data Δ𝑟. The parameter 𝑡 (0 ≤ 𝑡 ≤ 1) controls
the progress of the training process and its termination. The potential function Φ(𝑟, 𝑡)

is then defined as

Φ(𝑟, 𝑡) = 1− 𝑒𝑟𝑟(𝑠(𝑟, 𝑡)) (35)

where the error function 𝑒𝑟𝑟 is defined as

𝑒𝑟𝑟(𝑎) =
1√
𝜋

∫︁ 𝑎

−∞
exp
(︀
−𝑥2

)︀
𝑑𝑥 (36)

and the function 𝑠(𝑟, 𝑡) performs scaling and translation utilizing the hyper-
parameters of the algorithm and the time variable 𝑡. The optimal values of Δ𝑟 and
Δ𝑡 are found via an optimization process. Please refer to the original publication for
more details on the function 𝑠(𝑟, 𝑡) as well as the hyper-parameters [74].

Taking the partial derivative of Φ(𝑟, 𝑡) with respect to the margin 𝑟 we should
get a bell-shaped curve which nicely satisfies the property of dampening the effect
of training observations with excessively large margins.

For multi-class classification, one can follow the one-vs-all approach as in logis-
tic regression.

4.3.5 Gradient-Boosted Trees

A gradient-boosted trees algorithm is a machine learning technique that is used for
both classification and regression tasks. It works by combining many weak learners,
i.e. regression trees, into a stronger predictor [78; 72]. Similar to other boosting
methods, the main idea behind the gradient boosting algorithm is to create weak
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learners sequentially in a way that in each step the new learners try to compensate
for the errors of the previous learners [72]. The weak learners are always regression
trees for both regression and classification tasks in gradient boosted trees because the
algorithm is designed to optimize the pseudo-residuals of predictions iteratively [78].
Since gradient boosting is a form of gradient descent in function space [79; 80], the
gradients of the loss with respect to the candidate weak learner functions relate di-
rectly to the pseudo-residuals of the whole ensemble model. This means that by
moving toward the opposite direction of the gradients returned by the gradient boost-
ing algorithm, the algorithm is reducing the pseudo-residuals of the ensemble model;
consequently, achieving a better fit [79; 80]. This is the central property and the main
reason behind the success of the gradient boosting algorithm.

In each iteration of gradient boosting, a new weak learner is formed greedily very
much similar to the random forest, and then altered in such a way that it reduces the
pseudo-residuals of the predictions made by the previously formed weak learners.
The alterations happen at the leaf nodes of the regression trees and are controlled
by the gradients of the loss function. The loss function can be any arbitrary dif-
ferentiable function 𝐿(𝑦, 𝑔(𝑥𝑥𝑥)) that allows characterizing the prediction error of the
classification model.

In a gradient boosting framework, the goal is to optimize the classification er-
ror iteratively. Similar to the logistic regression classifier, the gradient-boosted trees
algorithm works with log-odds of the predicted probabilities. In other words, the out-
put at each regression tree leaf is expressed in terms of log-odds. Subsequently, the
loss function measures the classification error in terms of the log-odds, very much
similar to logistic regression. In the context of gradient-boosted trees, the negative
of the loss function gradients with respect to the latest ensemble model represents
the pseudo-residuals [78]. Naturally, to minimize the pseudo-residuals, the learner
needs to move toward the opposite direction of the gradients for each training obser-
vation [78]. This is done via sliding the predicted log-odds of each regression tree
leaf node toward the opposite direction of the gradients [72]. It is worth noting that
when regression trees are used as base learners, the input observations are grouped
into disjoint regions. As a result, the optimization of the ensemble model cannot
be done per each observation, but rather, per each disjoint region. This is the main
reason for calling this method a stochastic gradient boosting [78]. This process is
described in the following paragraphs.

For a training set X = {𝑥𝑥𝑥(𝑖), 𝑦(𝑖)}, 𝑦(𝑖) ∈ {0, 1}, 𝑥𝑥𝑥(𝑖) ∈ R𝑑, and 𝑖 ∈ {1, ..., 𝑁},
the classifier first needs a differentiable loss function 𝐿(𝑦(𝑖), 𝑔(𝑥𝑥𝑥(𝑖))). In the first
iteration 𝑚 = 0, the gradient boosted trees algorithm makes a rough estimate of
the log-odds value 𝛾 that minimizes the binary cross-entropy loss function 𝐿(𝑦(𝑖), 𝛾)

which was introduced in Equation 12. In mathematical form, this can be expressed
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as

𝑔0(𝑥𝑥𝑥) = 𝛾 = argmin
𝛾

𝑁∑︁
𝑖=1

𝐿(𝑦(𝑖), 𝛾) (37)

where function 𝑔𝑚 refers to the output value of the ensemble model at itera-
tion 𝑚. The optimal value of 𝛾 at the very first iteration 𝑚 = 0 can be obtained
by a closed-form solution by taking the derivative of the binary cross-entropy loss
function with respect to 𝛾. The optimal value of 𝛾 here turns out to be the ratio
of the number of positive class observations over the negative class observations in
the training set. The value of 𝛾 is then used as the initial output of the ensemble
model which is then used to measure the pseudo-residuals of the classification per
each training observation. The pseudo-residuals 𝑦(𝑖)𝑚 at each iteration 𝑚 are simply
the negative of the loss function gradients with respect to the current model 𝑔𝑚−1

expressed as

𝑦(𝑖)𝑚 = −

[︃
𝜕𝐿(𝑦(𝑖), 𝑔(𝑥𝑥𝑥(𝑖)))

𝜕𝑔(𝑥𝑥𝑥(𝑖))

]︃
𝑔(𝑥𝑥𝑥)=𝑔𝑚−1(𝑥𝑥𝑥)

(38)

In the next iterations 𝑚 ≥ 1, regression trees are formed one after another. The
created weak learners are forced to predict the pseudo-residuals of the ensemble
model at the previous iteration. At the end of each iteration, new pseudo-residuals
are obtained per training observation. At this point, the training algorithm aims at
tweaking the output of each leaf node 𝛾𝑗,𝑚 indexed by 𝑗 = 0, ..., 𝐽 such that the
average loss for all samples 𝑥𝑥𝑥(𝑖) that ended up in the leaf node is decreased and
likewise the average amount of pseudo-residuals. If each leaf node is represented by
𝑅𝑗,𝑚, then this process can be expressed as

𝛾𝑗,𝑚 = argmin
𝛾

∑︁
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝐿(𝑦(𝑖), 𝑔𝑚−1 + 𝛾) (39)

where 𝑔𝑚−1(𝑥𝑥𝑥
(𝑖)) is the output of the whole ensemble model at the previous iter-

ation for the input sample 𝑥𝑥𝑥(𝑖). In other words, the optimal value of 𝛾𝑗,𝑚 at leaf node
𝑅𝑗 at iteration 𝑚 is the one that minimizes the given summation in Equation 39. The
optimal value of 𝛾𝑗,𝑚 can be approximated by a closed form solution via obtaining
the second order Taylor expansion of the function 𝐿(𝑦(𝑖), 𝑔𝑚−1 + 𝛾) near the point
𝑔𝑚−1(𝑥𝑥𝑥

(𝑖)) [81; 72] as shown in Equation 40.

36



Supervised Classification Algorithms

𝐿(𝑦(𝑖), 𝑔𝑚−1 + 𝛾) ≈ 𝐿(𝑦(𝑖), 𝑔𝑚−1) +
𝜕𝐿(𝑦(𝑖), 𝑔𝑚−1)𝛾

𝜕𝑔𝑚−1
+

1

2

𝜕2𝐿(𝑦(𝑖), 𝑔𝑚−1)𝛾
2

𝜕𝑔2𝑚−1

(40)

where the first order and the second order partial derivative of the loss with re-
spect to the latest predictions of the model 𝑔𝑚−1 are used for approximation [81; 72].
Next, by taking the derivative with respect to 𝛾 and setting the derivative to zero we
can solve for the optimal value of 𝛾 [75]. The optimal value of 𝛾 is the one that
when it is summed up with the available ensemble model, the pseudo-residuals of
the predictions are decreased the most. This can be expressed mathematically via

𝛾𝑗,𝑚 = −

∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕𝐿

𝜕𝑔𝑚−1∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕2𝐿

𝜕𝑔2𝑚−1

(41)

Once the optimal 𝛾 is identified, it is plugged into Equation 42 which updates the
output of the ensemble model. This can be expressed in mathematical form as

𝑔𝑚(𝑥𝑥𝑥(𝑖)) = 𝑔𝑚−1(𝑥𝑥𝑥
(𝑖)) + 𝜈

𝐽𝑚∑︁
𝑗=1

𝛾𝑚111(𝑥𝑥𝑥
(𝑖) ∈ 𝑅𝑗,𝑚) (42)

where 𝜈 represents the learning rate and the indicator vector 111(𝑥𝑥𝑥(𝑖) ∈ 𝑅𝑗,𝑚)

controls how the updates are applied to the inputs depending on the leaf node(s) they
ended up in [72].

For a response variable 𝑦 that follows a multinomial distribution with 𝐾 possible
classes, 𝐾 trees are built at iteration 𝑚, one per each class [72]. Subsequently, the
probability that 𝑥𝑥𝑥(𝑖) belongs to class 𝑘 ∈ 1, ...,𝐾 is modeled as a softmax of the
𝑔𝑚,𝑘(𝑥𝑥𝑥

(𝑖)) values as shown in Equation 43.

𝑝𝑘(𝑥𝑥𝑥
(𝑖)) =

exp
(︀
𝑔𝑚,𝑘(𝑥𝑥𝑥

(𝑖))
)︀∑︀𝐾

𝑙=1 exp
(︀
𝑔𝑚,𝑙(𝑥𝑥𝑥(𝑖))

)︀ (43)

Naturally, a multinomial cross-entropy loss is chosen as the loss function [72].
Accordingly, since we have 𝐾 trees built at each iteration 𝑚, we need to calculate 𝐾
pseudo-residuals as shown in Equation 44.
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𝑦𝑖,𝑚,𝑘 = −
[︂
𝜕𝐿(𝑦(𝑖), 𝑔1(𝑥𝑥𝑥

(𝑖))), ..., 𝑔𝐾(𝑥𝑥𝑥(𝑖)))

𝜕𝑔𝑘(𝑥𝑥𝑥(𝑖))

]︂
𝑔(𝑥𝑥𝑥)=𝑔𝑚−1(𝑥𝑥𝑥)

= 𝑟𝑖,𝑘 − 𝑝𝑘(𝑥𝑥𝑥
(𝑖))

(44)

where 𝑟𝑖,𝑘 = 1 if 𝑦(𝑖) = 𝑘 and 𝑟𝑖,𝑘 = 0 otherwise. Therefore, applying the
gradient descent to each of the 𝐾 trees exclusively with respect to the loss value of
class 𝑘.

4.3.6 Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an improvement to gradient-boosted trees
with the additional regularization term to the loss function and the significantly scal-
able training algorithm [82]. Very much similar to gradient boosted trees, XGBoost
is an additive ensemble model that builds decision tree models (CART) greedily
and then alters the outputs of each tree at leaf nodes by utilizing gradients of the
loss function. Each tree targets to predict the residuals of the model by altering the
leaf node output values toward the opposite direction (negation) of the loss function
gradients [82]. The decision trees in XGBoost are, however, formed differently. In-
stead of using the Gini index to determine the best splits, XGBoost uses a quality
score and a gain score [81; 82]. Another difference between XGBoost and gradient-
boosted trees is in how XGBoost handles boosting for a large amount of data [82].
In particular, datasets that do not fit into the random-access memory of a single com-
puter are handled efficiently. Moreover, XGBoost training can be parallelized and
distributed; hence, accelerating the training process [82]. Lastly, similar to gradient-
boosted trees, XGBoost works with log-odds of the predictions.

The training algorithm in XGBoost tries to iteratively add weak learners to a
model that was initialized with a global prediction probability 𝑔0(𝑥𝑥𝑥). Suppose we
have a training set X = {𝑥𝑥𝑥(𝑖), 𝑦(𝑖)}, 𝑦(𝑖) ∈ {0, 1}, 𝑥𝑥𝑥(𝑖) ∈ R𝑑, and 𝑖 ∈ {1, ..., 𝑁}.
For a binary classification problem, 𝑔0(𝑥𝑥𝑥) can be either set to the average probability
of observing the positive class or simply to 0.5. In XGBoost, the objective is to
find the optimal value of 𝛾 that minimizes the regularized loss function. This can be
expressed as follows

𝛾𝑗,𝑚 = argmin
𝛾

∑︁
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝐿(𝑦(𝑖), 𝑔𝑚−1 + 𝛾) + Ω(𝛾) (45)

where 𝑅𝑗,𝑚 represents the set of data points that have landed in the node 𝑗 of the
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decision tree at iteration 𝑚. The regularization term Ω(𝛾) is defined as follows

Ω(𝛾) = 𝛿𝑇 +
1

2

𝑇∑︁
𝑗=1

𝛾2𝑗 (46)

Similar to gradient boosting, the second-order Taylor expansion of this objective
can be used to quickly find the optimal values of 𝛾𝑗,𝑚. Simplifying and reordering the
second-order approximation results in a new loss function that depends only on the
first and the second partial derivatives of the loss function 𝐿 and the regularization
parameter 𝜆 [82]. This approximated objective can be expressed as

𝛾𝑗,𝑚 = −

∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕𝐿

𝜕𝑔𝑚−1∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕2𝐿

𝜕𝑔2𝑚−1

+ 𝜆

(47)

where the first-order and the second-order partial derivatives of the loss with
respect to the latest predictions of the model 𝑔𝑚−1 are used for approximation [82].
The regularization parameter 𝜆 is the L2-norm penalty coefficient of the output values
𝛾𝑗 for a tree with 𝑇 number of leaf nodes. Accordingly, the quality score function
which helps quantify the quality of the tree structure 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑞) can be computed
by

𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑞) = −1

2

𝑇∑︁
𝑗=1

(︃∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕𝐿

𝜕𝑔𝑚−1

)︃2

∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕2𝐿

𝜕𝑔2𝑚−1

+ 𝜆

+ 𝛿𝑇 (48)

Practically, it is impossible to enumerate every possible tree structure 𝑞. Instead,
a greedy algorithm is used, which adds branches iteratively to the tree starting from
a single leaf and finding the best split by computing a gain score 𝐺𝑎𝑖𝑛(𝑠) for 𝑙

possible candidate splits 𝑠 ∈ {𝑠1, 𝑠2, ..., 𝑠𝑙}. To this end, one approximate quality
score is measured per each left �̃�𝐿 and right �̃�𝑅 nodes for a candidate split and then
compared with the quality score of the parent node �̃�. Hence, the process of split
finding needs to compute �̃�𝑃 , �̃�𝐿, �̃�𝑅 and then combine these into 𝐺𝑎𝑖𝑛(𝑠). In
mathematical form, these can be expressed as

�̃�𝑗,𝑚 =

(︃∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕𝐿

𝜕𝑔𝑚−1

)︃2

∑︀
𝑥𝑥𝑥(𝑖)∈𝑅𝑗,𝑚

𝜕2𝐿

𝜕𝑔2𝑚−1

+ 𝜆

⃒⃒⃒⃒
⃒
𝑗∈{𝐿,𝑅,𝑃}

(49)
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𝐺𝑎𝑖𝑛(𝑠) =
1

2

[︁
�̃�𝐿 + �̃�𝑅 − �̃�𝑃

]︁
− 𝛿 (50)

Unlike the conventional decision trees which use a greedy split finding, candi-
date splits in XGBoost are found via an approximate greedy algorithm [82]. This
technique relies on measuring statistics over buckets of input features formed ac-
cording to the quantiles they fall into [82]. If the input dataset is too large to fit into
the memory, XGBoost approximates the quantiles by approximating the statistics of
the probability distribution of each input feature [82]. XGBoost makes the quan-
tile formation more intelligent by weighting the input observations by a coefficient
such that the observations that have not been confidently classified fall into separate
bins [82]. The authors of XGBoost call this technique a weighted quantile sketch.
This technique helps create more powerful trees and therefore faster convergence as
well as better generalization [82].

Similar to other ensemble techniques such as random forest or gradient-boosted
trees, the regression trees’ depth and number of samples in each leaf node can be
limited to build smaller trees and therefore hinder overfitting. In addition, XGBoost
adopts an additional pruning technique that shrinks the decision trees after they are
built by dropping the leaf nodes that have a gain score less than the user-defined
regularization parameter 𝛿 [82].

The detailed description of parallel and out-of-core computation techniques of
XGBoost can be found in the original publication [82]. Similarly, the description
of the Sparsity-aware Split Finding technique which is solely designed to handle
missing data during training can be found in the original publication [82].

For a response variable 𝑦 that follows a multinomial distribution with 𝐾 possible
classes, 𝐾 trees are built at iteration 𝑚, one per each class. The procedure is the
same as what has been described for gradient boosting.

4.4 Artificial Neural Networks
Artificial neural networks (ANNs) are a family of machine learning models that are
widely used for both regression and classification tasks by forming a series of nested
linear and nonlinear transformations over the data [83]. Inside an ANN, there can
be many perceptrons [84] or nodes that are grouped into layers. These layers of
nodes can each perform any arbitrary linear transformation that is followed by any
arbitrary non-linear transformation as long as they are differentiable over their input
domain [83]. In supervised classification context, the goal of an ANN is to approx-
imate a function 𝑓* that maps input vectors 𝑥𝑥𝑥 to output vectors 𝑦𝑦𝑦 given a set of
parameters 𝜃𝜃𝜃. The approximated mapping 𝑦𝑦𝑦 = 𝑓(𝑥𝑥𝑥,𝜃𝜃𝜃) is refined iteratively via a
numerical optimization algorithm [83]. The layered structure of an ANN can be rep-
resented by a chain of functions, each function symbolizing the transformations that
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happen by each layer. As an example, for a 3-layer ANN, the chain of functions in
Equation 51 symbolically shows how the input is transformed and passed from layer
1 all the way to layer 3.

𝑦𝑦𝑦 = 𝑓(𝑥𝑥𝑥) = 𝑓 (3)(𝑓 (2)(𝑓 (1)(𝑥𝑥𝑥))) (51)

During the training process of an ANN, for each input vector,𝑥𝑥𝑥(𝑖) the output layer
must produce a vector 𝑦𝑦𝑦(𝑖) close to the ground truth vector 𝑦𝑦𝑦(𝑖) [83]. The parameters
of the layers of an ANN are usually randomly initialized and then updated iteratively
by an optimization algorithm such as stochastic gradient descent (SGD) [83]. At the
heart of the SGD algorithm, is the chain rule that allows measuring the magnitude
and direction of the updates of the parameters through the nested composition of
ANN layers [83]. In other words, the chain rule enables backpropagation of the error
which is obtained at the output layer all the way to the hidden layers. Assuming that
we want to find the gradients of the differentiable loss function 𝐿(𝑦𝑦𝑦,𝑦𝑦𝑦) with respect
to a scalar learnable parameter 𝜃 in the very first layer of the network, the chain rule
can be represented symbolically via Equation 52.

𝜕𝑓

𝜕𝜃
=

𝜕𝑓 (3)

𝜕𝑓 (2)

𝜕𝑓 (2)

𝜕𝑓 (1)

𝜕𝑓 (1)

𝜕𝜃
(52)

The total number of layers or the sequential transformations determines the depth
of the network. During the learning process, the training data do not specify what
every layer should do, so the learning algorithm must determine how to utilize them
the best to implement an approximation of 𝑓* [83]. Since the training data does
not demonstrate the desired output for each of these layers, they are referred to as
hidden layers [83]. In addition to the depth, an ANN has a width property which
is determined by the dimensionality of its hidden layers. Hidden layers are usually
vector-valued where each element is a node and can be compared to a biological
neuron [83].

For an ANN that only has two hidden layers, with any arbitrary number of nodes
in the first layer and an activation function in the second layer, the mathematical
transformation of the input vector 𝑥𝑥𝑥 can be expressed via

𝑓 (1)(𝑥𝑥𝑥;𝑊𝑊𝑊,𝑏𝑏𝑏) =𝑊𝑊𝑊𝑥𝑥𝑥+ 𝑏𝑏𝑏

𝑓 (2) = 𝜎(𝑓 (1))
(53)

where 𝑓 (1) is the linear transformation (or the dot product) of the input feature
vector 𝑥𝑥𝑥 via the weight matrix 𝑊𝑊𝑊 shifted by bias term 𝑏𝑏𝑏. In addition, 𝑓 (2) is the
non-linear transformation of 𝑓 (1) via Sigmoid function 𝜎 [83]. These types of ANNs
which employ layers of perceptrons that are connected to all the input elements are
called multilayer perceptron (MLP) [83]. MLPs are the oldest known ANNs and
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are still very popular and effective for various classification and regression prob-
lems [83].

There exist other types of ANNs that perform the transformation operation differ-
ently when compared with Equation 53. In the following sub-sections, convolutional
and recurrent neural networks which have been used throughout this thesis work are
briefly described.

4.4.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) [85] are among the most popular variants of
ANNs which by definition are specialized neural networks for analyzing data whose
topology resembles a grid [83]. In machine learning terminology, convolution is a
type of linear transformation that is applied sequentially to smaller areas of the input
data grid and places the results in an output data grid. In a convolution operation,
the transformations are usually applied locally with a specific order according to the
relative location of the data points on the input data grid [83]. If we assume that we
are dealing with a multi-channel (or multi-variate) signal𝑋𝑋𝑋 that contains 𝐶 channels
and has time duration 𝐽 +𝑀 − 1, a convolutional kernel 𝐾𝐾𝐾 iteratively transforms a
time-shifted receptive field from 𝑋𝑋𝑋 . It is worth noting that 𝐾𝐾𝐾 must contain the same
number of channels as in the input signal. This operation is known as 1-dimensional
convolution and can be expressed mathematically via

𝑠𝑠𝑠𝑗 = 𝑔𝑟𝑎𝑛𝑑𝑠𝑢𝑚(𝑋𝑋𝑋𝑗:𝑗+𝑀, : ⊙𝐾𝐾𝐾) , 𝑗 = 0, ..., 𝐽 − 1 (54)

where kernel 𝐾𝐾𝐾 is a matrix of 𝑀 rows and 𝐶 columns which holds the transfor-
mation coefficients, very much equivalent to the weight matrix 𝑊𝑊𝑊 in an MLP. The
operation in Equation 54 indicates that for every data point 𝑠𝑠𝑠𝑗 in the output, the trans-
formation is computed by performing first a Hadamard product of a local region with
a length 𝑀 from the input 𝑋𝑋𝑋 and the kernel 𝐾𝐾𝐾 and then computing the 𝑔𝑟𝑎𝑛𝑑𝑠𝑢𝑚

– which is the sum of all elements of the product. It can be seen that the kernel 𝐾𝐾𝐾
sweeps along the time axis of the input to generate the output data points one at a
time. Note that the indexing starts from 0.

It is worth noting that the transformation presented as a convolution here is sim-
ilar to a cross-correlation in digital signal processing [83]. However, in the machine
learning community, this transformation is known as convolution.

The formulation of the convolution operation as in Equation 54 can be easily ex-
panded to higher dimensional arrays or tensors [83]. It is worth noting that there can
be many different variants of convolution operation depending on how they compute
and combine the transformations. Interested readers are encouraged to see [86].

The popularity and strength of CNNs originate from three important properties
of convolution operation which are namely, sparse connectivity, parameter sharing,
and equivariance to translation [83]. Sparse connectivity refers to the property that
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allows a convolutional kernel to have a smaller number of elements in each dimen-
sion than the input tensor that is applied to. This property helps reduce the number
of parameters needed for creating a transformed representation of an input [83]. Pa-
rameter sharing refers to the ability to sweep a small kernel over a large input tensor
as opposed to the dense connection in MLP which requires one unique weight value
per each input data sample [83]. When sparse connectivity and parameter sharing
properties are combined, significant improvements in terms of memory consump-
tion and network size reduction are achieved [83]. Lastly, equivariance to translation
signifies a property that enables convolutional transformation to return an identical
output irrespective of shifts in the input or the relative location of the receptive field
over which the convolutional kernels are applied [83].

The training of a convolutional layer through back-propagation is very similar
to how it is done in an MLP but with a subtle difference. Since each convolutional
kernel sweeps along one or more axes of the input data grid (weight sharing), the in-
dividual coefficients inside the kernel contribute to the transformation of many input
samples. In this case, when back-propagation is performed, the training algorithm
has to accumulate the gradients of the loss for all the input data samples which were
transformed by each individual coefficient in a kernel [83; 87].

4.4.2 Recurrent Neural Networks

Another popular variant of ANNs is the recurrent neural networks (RNNs) [88]
which are specialized at processing sequential data [83]. These networks are es-
pecially good at modeling the data representations that evolve as a function of time
or any equivalent independent variable. In the classical form of a dynamical or re-
current system, the state of the system at time instance 𝑡 is measured by applying
a function 𝑓 to the previous state given the parameters of the system [83]. For ex-
ample, for a process that evolves sequentially from time steps 1 to 3, the dynamical
system can be represented symbolically via Equation 55.

𝑠𝑠𝑠(3) = 𝑓(𝑠𝑠𝑠(2);𝜃𝜃𝜃)

= 𝑓(𝑓(𝑠𝑠𝑠(1);𝜃𝜃𝜃);𝜃𝜃𝜃)
(55)

By definition, an RNN is a dynamical system that is capable of accounting for
an input signal 𝑥𝑥𝑥𝑡 at each time point 𝑡 in addition to the past state 𝑓(𝑠𝑠𝑠(1);𝜃𝜃𝜃). Such a
system can be expressed in the mathematical form of Equation 56.

ℎℎℎ(𝑡) = 𝑓(ℎℎℎ(𝑡−1),𝑥𝑥𝑥(𝑡);𝜃𝜃𝜃) (56)

where we denote the state of the system viaℎℎℎ(𝑡) to emphasize that this is a hidden
state. The hidden state ℎℎℎ(𝑡) serves as a summary of the task-relevant features of the
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past sequence of inputs up to time point 𝑡. Since ℎℎℎ(𝑡) is a vector-valued variable of
limited length, the maximum amount of information that it contains is limited. As a
result, the formation of the vector ℎℎℎ(𝑡) is in general a lossy operation [83].

With the formulation of an RNN as in Equation 56, the time duration over which
the dynamical system is applied is determined by the sequence length 𝑇 . However,
regardless of the magnitude of 𝑇 , a single function 𝑓 parametrized with a fixed set of
parameters 𝜃𝜃𝜃 is reused at each time step. An RNN can model sequences of any length
by learning a single shared model 𝑓 . In other words, for any value of 𝑇 , the RNN
iteratively applies a single transformation function 𝑓 to each time point 𝑡. Hence,
fewer training examples are required to estimate the function 𝑓 as we do not have to
train with all possible sequences of arbitrary length 𝑇 [83].

At each time point 𝑡 transformation that happens in a vanilla RNN layer, which
is composed of many RNN nodes, can be represented via

ℎℎℎ(𝑡) = 𝑡𝑎𝑛ℎ(𝑏𝑏𝑏+𝑊𝑊𝑊𝑥𝑥𝑥(𝑡) +𝑈𝑈𝑈ℎℎℎ(𝑡−1)) (57)

where 𝑊𝑊𝑊 and 𝑈𝑈𝑈 are the weight matrices which transform the input vector 𝑥𝑥𝑥(𝑡)

and the hidden state vector from the previous time step ℎℎℎ(𝑡−1). The bias 𝑏𝑏𝑏 is the
intercept of the transformation before the hyperbolic tangent activation. Note that
since in an RNN layer there can be more than one single RNN node, the hidden state
and bias are vector-valued. This requires also defining the transformation weights in
matrix form.

The vanilla RNN layer as represented in Equation 57 has a few shortcomings.
Vanishing and exploding gradients are the two weaknesses of vanilla RNN [83]. In
addition, when dealing with long sequences that are made of sub-sequences, vanilla
RNN nodes are incapable of memorizing the critical information or discarding the no
longer needed information [83]. To overcome these weaknesses, gated RNNs were
introduced and are used effectively in practical applications [83].

Long short-term memory (LSTM) is one of the most popular variants in the fam-
ily of gated RNNs [83]. In an LSTM node, there is a new quantity named cell
or memory state which facilitates the passage of information from previous time
points to the future. During the backpropagation, the path through the cell state al-
lows smoother passage of gradients which in turn alleviates the vanishing gradient
issue [83].

In this paragraph and the following equations, similar vector and matrix notations
as in Equation 56 are used to show that an LSTM layer can contain many nodes. In
an LSTM node, there is a forget gate 𝑓𝑓𝑓 (𝑡) that controls the memory of the LSTM node
at each time point 𝑡. The forget gate is computed via Equation 58. Once the forget
gate is computed, we can compute the value of the new cell state 𝑐𝑐𝑐(𝑡). To measure
the new cell state, we need to compute the input gate 𝑖𝑖𝑖(𝑡) and candidate cell state
values 𝑐𝑐𝑐(𝑡). These input gate and candidate cell states are measured via Equation 59
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and Equation 60. The new cell state value is computed via Equation 61. Finally, the
new hidden state ℎℎℎ(𝑡) is computed by combining the new cell state 𝑐𝑐𝑐(𝑡) and the output
gate 𝑜𝑜𝑜(𝑡). The output gate 𝑜𝑜𝑜(𝑡) is computed via Equation 62 and the new hidden state
ℎℎℎ(𝑡) via Equation 63 [83].

𝑓𝑓𝑓 (𝑡) = 𝜎(𝑏𝑏𝑏𝑓 +𝑊𝑊𝑊 𝑓ℎℎℎ
(𝑡−1) +𝑈𝑈𝑈𝑓𝑥𝑥𝑥

(𝑡)) (58)

𝑖𝑖𝑖(𝑡) = 𝜎(𝑏𝑏𝑏𝑖 +𝑊𝑊𝑊 𝑖ℎℎℎ
(𝑡−1) +𝑈𝑈𝑈 𝑖𝑥𝑥𝑥

(𝑡)) (59)

𝑐𝑐𝑐(𝑡) = 𝑡𝑎𝑛ℎ(𝑏𝑏𝑏𝑐 +𝑊𝑊𝑊 𝑐ℎℎℎ
(𝑡−1) +𝑈𝑈𝑈 𝑐𝑥𝑥𝑥

(𝑡)) (60)

𝑐𝑐𝑐(𝑡) = 𝑓𝑓𝑓 (𝑡) ⊙ 𝑐𝑐𝑐(𝑡−1) + 𝑖𝑖𝑖(𝑡) ⊙ 𝑐𝑐𝑐(𝑡) (61)

𝑜𝑜𝑜(𝑡) = 𝜎(𝑏𝑏𝑏𝑜 +𝑊𝑊𝑊 𝑜ℎℎℎ
(𝑡−1) +𝑈𝑈𝑈𝑜𝑥𝑥𝑥

(𝑡)) (62)

ℎℎℎ(𝑡) = 𝑜𝑜𝑜(𝑡) ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑐𝑐(𝑡)) (63)

The training process of RNNs happens via back-propagation through time tech-
nique [83]. Assuming that we have a sequence-to-sequence (seq2seq) RNN layer,
the total loss of the layer with respect to the trainable parameters is equal to the av-
erage of all output loss values from time point 1 all the way to 𝑇 . Since there is a
recurrent connection with shared weights inside each RNN node, the gradient of the
shared weights has to be measured differently than the non-recurrent neural network
weights [89]. In simple terms, the gradient of the loss with respect to shared weights
has to be measured for all time steps and then aggregated [89]. More details about
this aggregation can be found in [89].

4.5 Validation and Testing Approaches
Validation and testing are essential components of a machine learning project as they
play a crucial role in assessing model performance on unseen data. Usually, this
involves splitting the available data into three subsets: a training set to fit the model,
a validation set to closely track the goodness of fit during training, and a separate test
set to evaluate its prediction performance. In disciplines such as medical sciences and
analogous fields, splitting must be executed in a manner that ensures the exclusive
allocation of each patient’s data to one of the aforementioned sets. This imperative
arises from the fundamental objective of deploying a trained machine learning model
to unseen individuals’ data. This principle is also applied to cross-validation methods
described in the following paragraphs.
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When the size of the dataset is not large enough, machine learning practitioners
choose to do the validation and testing differently. In this case, cross-validation is
selected instead [90]. This involves splitting the dataset on the fly. That is, dividing
the dataset into multiple subsets or folds, and using each fold as a validation set and
the remaining as a new training set. This process is repeated for each fold, and the
average prediction performance across all folds is used as an estimate of the model’s
generalization performance. The primary objective of validation and cross-validation
is to address the issue of overfitting, where a model is excessively tailored to the
training data and fails to perform well on new, unseen data. By evaluating the model
on various validation sets, these techniques provide a more realistic estimation of
the model’s ability to generalize to new data. It is worth noting that several types of
cross-validation methods exist, including k-fold cross-validation [90], leave-one-out
cross-validation [91], and nested cross-validation [92]. The choice of the appropriate
technique depends on factors like the dataset size and characteristics and the specific
requirements of the modeling problem.

K-fold cross-validation involves dividing the data into k equal or nearly equal
folds, using each fold once as a validation set, and the remaining k-1 folds as a
training set [90]. The model’s prediction performance is computed for each fold
and averaged across all folds. While k-fold cross-validation is a widely used and
straightforward technique applicable to any data set, the selection of k can influence
the prediction performance estimate’s variance and bias. A small k may lead to
high variance as the model is evaluated on a small validation set that may not fully
represent the entire data, whereas a large k may reduce variance but introduce high
bias, as the model is trained on a smaller training set potentially missing important
patterns. A common guideline is to use k=10, as it strikes a good balance between
variance and bias.

Leave-one-out cross-validation (LOOCV) represents a special case of k-fold
cross-validation where k is set equal to the number of samples in the data set [91].
Each sample is used once as a validation set, while the rest are employed as a train-
ing set. LOOCV possesses advantages and disadvantages compared to k-fold cross-
validation. On the positive side, LOOCV utilizes all data for training and testing,
making it low-bias and highly efficient. However, a drawback is that it can be com-
putationally demanding, especially for large data sets, and may suffer from high
variance, as the model is assessed on a single sample that might not be fully repre-
sentative of the entire data.

Nested cross-validation merges cross-validation with hyperparameter tun-
ing [93], where hyperparameters need manual specification, such as the regulariza-
tion strength or the number of hidden units in a neural network. The goal is to find the
optimal values for these parameters that maximize the model’s performance on a val-
idation set. However, using the same validation set for both hyperparameter tuning
and model evaluation may lead to overfitting, as the model is tuned specifically for
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that particular set of data. Nested cross-validation addresses this issue by employing
two levels of cross-validation: an inner level for hyperparameter tuning and an outer
level for model evaluation [93]. The data is initially split into outer folds, with each
outer fold serving as a test set, while the rest form an inner data set. The inner data
set is then subdivided into inner folds, using each inner fold as a validation set and
the remaining as a training set. Hyperparameters are tuned by cross-validation on
the inner folds, selecting values that maximize average prediction performance. The
model with these optimal hyperparameters is then trained on the entire inner data
set and evaluated on the outer test set. The prediction performance of the model is
computed for each outer fold and averaged across all outer folds. This approach pro-
vides a more robust estimation of the model’s performance on new data, as it avoids
overfitting on any single validation set [93].

In this thesis work, different types of validation and cross-validation were ex-
ploited based on the dataset size and the nature of the problem at hand. Interested
readers are encouraged to see the individual papers for more information.
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5 Overview of Original Publications

5.1 Paper I: Comprehensive analysis of cardiogenic vi-
brations for automated detection of atrial fibrillation
using smartphone mechanocardiograms

Objectives

In [25], our main objective was the classification of AFib using SCG and GCG sig-
nals via feature engineering and supervised machine learning. The data were solely
collected by a smartphone built-in accelerometer and gyroscope sensors.

Approach

The MODE-AF study dataset which consists of SCG and GCG signals collected from
a sample size of 300 clinical patients was used in this study. This dataset contains
a curated population of elderly adults with and without AFib. In detail, MODE-AF
contains 150 patients with AFib and 150 patients with sinus rhythm (SR) who were
enrolled in the cardiology and internal medicine wards of Turku University Hospital,
Finland, between April and September 2017. The subjects were instructed to partic-
ipate in a 3-minute joint SCG and GCG recording with a Sony Xperia smartphone
placed on their sternum following the obtaining of informed consent. Simultane-
ously, a five-lead telemetry ECG recording was recorded to determine the rhythm,
supraventricular extrasystoles, and ventricular extrasystoles. The rhythm classifica-
tion and interpretation of the ECG were done by two independent cardiologists. In
the case of disagreement in the interpretations, a third cardiologist made the final
decision. Additionally, physical measurements were recorded and electronic patient
records were searched for information regarding the subjects’ clinical history and
investigations conducted during the index hospitalization.

We implemented (1) singular spectrum analysis and signal envelope for signal
enhancement, (2) multi-disciplinary features for signal characterization, and (3) a
majority voting classifier for increasing the robustness of the classification. We tested
three classifiers namely, SVM, random forest, and robust boosting. These classifiers
were grouped to form a majority voting classifier.

For the evaluation of the classification performance, we performed training and
leave-one-person-out cross-validation on the MODE-AF dataset. Next, we trained
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the classifiers on the whole MODE-AF dataset and then tested the classifiers on a
separate dataset which is called cross-database which consisted of an entirely differ-
ent population.

Main Results

In the cross-validation study, the values of accuracy, sensitivity, specificity, F1-score,
and positive predictive value were approximately 0.97, 0.99, 0.95, 0.97, and 0.95,
respectively; the same metrics for the cross-database test set were approximately
0.95, 0.93, 0.97, 0.96, and 0.92, respectively.

The best-performing classifier was random forest which was trained on median
averaged features over 10-second segments with features from both SCG and GCG
modalities.

It is worth mentioning that no hyper-parameter tuning of any kind was performed
for the classifiers. Hence, there may still be room for improvement in the presented
results.

Significance

The introduced machine learning pipeline could effectively extract the relevant
knowledge needed for the classification of AFib using SCG and GCG data collected
by smartphones. In addition, the results encouraged further investigation of SCG and
GCG measurements for the detection of AFib and even other cardiac disorders.

Author’s contribution

The author assisted the main author of the study with the machine learning pipeline
design, verification of the overall approach and the results, and manuscript writing.

49



Saeed Mehrang

5.2 Paper II: Reliability of self-applied smartphone
mechanocardiography for atrial fibrillation detec-
tion

Objectives

In [94], we assessed the reliability of self-applied SCG and GCG signals in detecting
AFib.

Note that in our previous contributions, we only used recordings handled by
study administrators, not by study subjects. The administrators were physicians.

Approach

As part of the MODE-AF dataset measurements, we also collected a set of self-
applied measurements, which were collected solely for assessing the feasibility of
self-monitoring. Self-applied measurements were recorded by the users after the
first successful recording was collected by the study administrator. These recordings
are referred to in our reports as self-applied measurements.

We opted to use two entirely different classification approaches for the assess-
ment of the objective. One was based on knowledge-driven (rule-based) classifica-
tion and another one was based on supervised machine learning classification.

The rule-based classification technique worked largely based on the quantifica-
tion of the regularity of the signal morphology. That is, searching for a dominant
frequency content that signifies the presence of a regular beating pattern.

For the supervised classification, We reused the same signal enhancement and
feature extraction pipeline as in the paper described in 5.1. We utilized four dif-
ferent classifiers consuming the features and providing the predictions. The four
classifiers were namely, random forest, SVM, XGBoost, and ANN. The knowledge-
driven classification approach was previously investigated and proved effective for
AFib classification in other studies of the research group.

For the evaluation of the reliability of self-applied AFib detection, we performed
a subject-by-subject investigation of the predictions besides quantifying the overall
performance of each classifier on the self-applied data. In this investigation, the
misclassified data samples were visually inspected, argued, and reported.

Main Results

The knowledge-driven approach predicted AFib with sensitivity values of 0.96 and
0.98, specificity values of 0.98 and 0.93, and F1-score values of 0.97 and 0.95
for the physician- and self-applied measurements, respectively. Similarly, the best-
performing machine learning classifier according to the F1-score, delivered, on av-
erage, sensitivity values of 0.98 and 0.94, specificity values of 0.96 and 0.94, and
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F1-score values of 0.97 and 0.94, respectively.

Significance

The self-applied SCG and GCG measurements can potentially be used for differen-
tiating AFib from SR. This new technology can help screen patients with episodic or
undiagnosed AFib and also be used as a home-based self-monitoring technique.

The performance figures of almost all the tested techniques were close proving
the reliability of the employed signal enhancement, feature extraction, and classifi-
cation.

Author’s contribution

The author was the main author of the study who designed the machine learning
pipeline, performed all the machine learning-related experiments, contributed to the
verification of the results, and lastly contributed to the writing and preparation of the
manuscript.
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5.3 Paper III: Classification of Atrial Fibrillation and
Acute Decompensated Heart Failure Using Smart-
phone Mechanocardiography: A Multilabel Learn-
ing Approach

Objectives

In [46], our main objective was the evaluation of the feasibility of the detection of
AFib and ADHF from a single joint SCG and GCG measurement. We were interested
in knowing whether ADHF can be detected in the same way as AFib.

Approach

We implemented (1) a set of carefully studied and engineered features for the char-
acterization of the signals and (2) two separate machine learning pipelines, one for
multilabel and another for hierarchical classification of the two target cardiac dis-
eases. In the hierarchical classification, first AFib was classified and the correspond-
ing predictions were passed to the ADHF classifier besides the other features. It is
worth noting that in the hierarchical classification, the input sample is limited to the
subjects who have been classified into AFib. This translates to a sample population
who were expected to all have AFib.

Our study was done on the MODE-AF dataset. For the evaluation, we used
nested cross-validation in which we repeatedly left out one subject’s data from the
prepared dataset. Then, we performed hyper-parameter tuning, training, and valida-
tion utilizing K-fold cross-validation on the remaining data. Next, we predicted the
test subject’s classes, stored them for later post-processing, put back the left-out sub-
ject’s data into the dataset, and lastly repeated the same procedure for all the subjects
in the dataset.

Main Results

In the multilabel classification approach, the highest performance levels of classi-
fication, as measured with sensitivity, were 1.00 and 0.68 for AFib and ADHF, re-
spectively. The positive predictive and negative predictive values were 0.92 and 1.00
for AFib and 0.55 and 0.88 for ADHF, respectively. The aforementioned best per-
formances were obtained by Random Forest for AFib and Logistic Regression for
ADHF.

In the hierarchical classification, the same performance levels were observed for
AFib as the pipeline and the input dataset were both identical to that of the multilabel
approach. For ADHF, the best-observed sensitivity was 0.68 again obtained with the
logistic regression. The corresponding positive and negative predictive values were
0.70 and 0.69, respectively.
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Significance

Analyzing AFib and ADHF presence from a single measurement is valuable from
many perspectives. In this study, we showed that using a joint SCG and GCG and a
sample size of only a limited number of ADHF patients, we could attain a relatively
moderate performance for ADHF classification. The results of this study suggested
that we need to implement different measures and analysis strategies for ADHF. We
know that the clinical diagnosis of ADHF requires the examination of several hemo-
dynamic parameters before and after a cardiopulmonary exercise test. In our data
collection, we included no such exercise test or any direct hemodynamic parameter
acquisition.

Author’s contribution

The author contributed to this study together with the second author equally. The
author was in charge of designing machine learning pipelines and all the respective
experiments with different classifiers within multilabel and hierarchical classification
frameworks. Moreover, the author contributed to the verification of the results as well
as preparing and writing the manuscript.
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5.4 Paper IV: sensor fusion and classification of atrial
fibrillation using deep neural networks and smart-
phone mechanocardiography

Objectives

In [95], our main objective was to assess the feasibility of automated end-to-end
feature learning and classification of AFib, SR, and Noise classes using SCG and
GCG signals via deep neural networks.

Approach

We implemented (1) rotational data augmentation motivated by algebraic vector ro-
tation, (2) a fully automated machine learning pipeline that constitutes an attention-
powered deep convolutional recurrent neural network model, (3) a learnable neu-
ral network-integrated sensor fusion, (4) automated spatiotemporal feature learning
through deep convolutional-recurrent blocks.

Furthermore, We assessed the usefulness and contribution of the building blocks
of the deep neural network model through an ablation study. The stability and speed
of convergence of the presented neural network architecture were investigated and
reported as well.

Our study was done on an extended version of the MODE-AF dataset which in-
cluded both physician-applied and self-applied measurements. For the evaluation,
we used fully disjoint training, validation, and test sets which were created by split-
ting the dataset subject-wise. In the pre-processing, we performed a light noise re-
moval and segmentation of the original records. The output of the segmentation was
10-second-long excerpts of multi-channel SCG and GCG signals. Next, the created
segments were enhanced and expanded with channel-by-channel signal envelopes
that were concatenated with the filtered input channels. Lastly, the rotational data
augmentation was applied to the input segments to expand the size of the training
and validation sets.

We reported the performance metrics on the segment and measurement levels.
The measurement-level performance metrics were calculated by taking a majority
vote on the predicted class labels of the respective constituting segments. We per-
formed several experiments and repeated each experiment for ten iterations to obtain
a statistical distribution over all the computed metrics and quantities we reported. We
quantified the classification performance using micro-averaged and macro-averaged
F1-score.
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Main Results

Using the unseen test set, for segment-wise classification, micro- and macro-F1-
score of 0.88 (0.87–0.89; 95% CI) and 0.83 (0.83–0.84; 95% CI) were produced,
respectively. Similarly, for the measurement-wise classification micro- and macro-
F1-score of 0.95 (0.94–0.96; 95% CI) and 0.95 (0.94–0.96; 95% CI) were obtained,
respectively.

Significance

Our study illustrated a machine learning pipeline designed for the classification of
multidimensional SCG and GCG signals with minimal signal enhancement and fea-
ture engineering efforts. We integrated many different components of conventional
machine learning pipelines into a single modern deep neural network architecture.
We tested the utility of the created components and proved the effectiveness of each.

Author’s contribution

In this study, the author and the second author each contributed equally. Together
with the second author, the author was in charge of designing the machine learning
pipeline, deep neural network architecture, and all the respective experiments. Fur-
thermore, the author contributed to the verification of the results as well as preparing
and writing the manuscript.
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6 Discussion and Conclusions

Remote and personalized health monitoring has many potential benefits. Early detec-
tion and progression of diseases as well as evaluation of the efficacy of interventions
could be substantially improved by remote health monitoring. With the aid of remote
monitoring systems, we can detect potentially harmful symptoms or risks before they
become chronic or pathological. With the growing number of mobile and wearable
devices, remote health monitoring is now more feasible than ever before. Wearable
sensors and smartphones carry a wealth of reliable sensors that are capable of mea-
suring many different physiological and health-related variables. Similarly, remote
cardiac monitoring can have many benefits and may even be life-saving in some
cases. Undiagnosed AFib, for instance, may cause irreversible and deadly complica-
tions. Using remote cardiac monitoring, other alarming heart conditions can also be
detected. Consequently, the burden of cardiovascular diseases can be reduced.

In addition to accurate and precise sensing hardware, a successful remote cardiac
monitoring system depends on analysis algorithms. Among all the choices of anal-
ysis algorithms, machine learning is one of the most powerful ones and, therefore,
has been selected and investigated throughout this thesis work. Machine learning
algorithms can uncover patterns, relationships, and insights from large and complex
datasets that might be difficult or impossible to discern using manual analysis or
traditional methods. Moreover, machine learning algorithms can capture nonlinear
relationships between variables, allowing them to model complex systems that tra-
ditional linear methods might struggle with. These are just a few of the strengths of
the machine learning algorithms that set them apart from alternative solutions.

ECG is the most widely validated and recommended measurement for detecting
heart arrhythmias inside and outside clinical settings. In addition to ECG or in the
absence of ECG, SCG and GCG signals can be obtained by simply logging the values
of the accelerometer and gyroscope sensors of a smartphone which is placed on
the chest of an individual. Through SCG and GCG we can detect AFib as long
as we have proper sensor placement on the chest. The subtle changes in cardiac
electrophysiology such as P wave changes may not be directly detectable by SCG
and GCG signals. Therefore, we may not expect to obtain the same information and
analysis results with SCG and GCG signals compared to ECG.

In Papers I, II, III, and IV, we explored the problem of AFib detection via a
smartphone device as the data logger. We examined two scenarios, in one of which
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a physician handled the data collection while subjects remained in a supine posi-
tion. In the second scenario, the patients themselves carried out the whole process
of measurement initiation, collection, and termination. Despite a slight performance
decrease in the latter scenario, AFib detection was still feasible via SCG and GCG
signals. The investigations were carried out via different data analysis pipelines in
each of the papers.

Given that one of the main characteristics of AFib is irregularly irregular rhythm,
any device or sensor that can reliably detect rhythm changes can become a viable so-
lution for AFib monitoring. SCG and GCG signals are promising for the detection
of rhythm changes and, therefore, a viable option for AFib monitoring. However, it
is important to acknowledge the potential for misdiagnosing other disorders exhibit-
ing some form of rhythm irregularity when relying solely on rhythm changes. Some
such disorders are Atrial Flutter, Ectopic Atrial Rhythm, Multifocal Atrial Tachycar-
dia, Wandering Atrial Pacemaker, as well as frequent premature atrial or ventricular
contractions. This limitation needs to be further studied. However, if the target pop-
ulation we are screening for is suspected to have AFib and we are aiming to only
measure the frequency and the duration of AFib episodes, this limitation becomes
less of a concern.

As a result of the first three studies and the exploratory data analysis we have
done on the MODE-AF dataset [25; 19], we understood that the rhythm regular-
ity analysis could be simplified. The main simplification could be accomplished
by augmenting the input signals with their signal envelopes. Then, limit the set of
hand-crafted features to the ones that are sensitive to the regularity of the peak lo-
cations. In paper IV, we experimented with such an input set and automated feature
extraction using a deep convolutional-recurrent neural network for AFib detection
and obtained fairly good results. Hence, a simple peak detection and rhythm analysis
could provide a moderate performance for AFib versus Sinus Rhythm classification.
Nonetheless, when attempting to expand the target classes, for example by including
the Noise class, simple peak detection and rhythm analysis may not be sufficiently
powerful.

Throughout this doctoral work, we did not attempt to directly investigate the sub-
tle morphological changes of the SCG and GCG signals when doing AFib or ADHF
classification. But rather we focused on creating better hand-crafted features that
could capture all the rhythm and morphological changes. There were two reasons
for not doing an in-depth morphology analysis. Firstly, the data we gathered came
with variable noise and quality levels. This was due to the fact that the population
over which the MODE-AF dataset was gathered were all elderly adults who were ad-
mitted to the hospital and the technology was just introduced to the subjects briefly.
The quality of the recordings can be improved by making these recordings in a more
relaxed environment after receiving sufficient instructions and trial and error. Again,
here we have to keep in mind the target use case and the population who is gaining the
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most benefit from this technology. Secondly, based on some earlier studies on AFib
detection, we knew that rhythm regularity analysis alone could deliver sufficiently
high performance.

For the ADHF classification, we could not achieve the same performance levels
as in the AFib classification. The low performance levels were mainly due to our
ambitious objective which was the detection of ADHF using a single measurement.
As it was proved in our study, the detection of ADHF is extremely challenging if
we do not perform any cardiopulmonary exercise test by which we can quantify the
variations in hemodynamic parameters such as pulmonary capillary wedge pressure,
oxygen uptake, cardiac output, contractility, and blood pressure [96]. Without having
access to the variations of the hemodynamic parameters measured before and after
physically demanding tasks, the detection accuracy of ADHF likely remains low.

6.1 Potential significance
The results presented in this thesis highlight the promising potential of smartphone-
based detection and monitoring of cardiovascular diseases, relying on built-in in-
ertial sensors. These solutions offer ease of distribution and scalability, requiring
only analysis software without additional hardware. The achieved accuracy and
performance metrics suggest that recording durations as short as 10 to 60 seconds
could yield clinically relevant results. While self-taken measurements demonstrated
slightly lower performance compared to measurements taken by healthcare profes-
sionals, the difference was not substantial, indicating that with improved instructions
and user practice, high-quality data can be obtained for reliable results, enabling
various telehealthcare applications.

Regarding AFib detection, the combined use of SCG and GCG can serve as an al-
ternative to photoplethysmogram (PPG) and single-lead ECG, providing comparable
accuracy and potentially higher success rates than PPG without the additional hard-
ware burden associated with ECG. However, the ADHF results did not match the
reported state-of-the-art achievements using ECG or PPG, considering the limited
availability of ADHF data coexisting with arrhythmia. This raises concerns about
suboptimal feature selection due to the interference of arrhythmia in the learning
process. It should be noted that previous ADHF studies had small sample sizes (<
100 patients), which raises concerns about overfitting and generalizability. Overall,
it must be emphasized that SCG and GCG should not be regarded as a replacement
for clinical ECG measurements. Moreover, it is not a replacement for long-term am-
bulatory Holter ECG recordings. There is still a need for more research and more
contemporary devices to prove the real potential of SCG and GCG for clinical and
long-term ambulatory cardiac monitoring.

This doctoral thesis addresses the design, implementation, and examination of
different feature engineering and machine learning pipelines for achieving the stated
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objectives. Extensive exploration of various hand-crafted features targeting specific
signal characteristics was conducted. The utility of different supervised classification
techniques was assessed, providing a comprehensive understanding of their advan-
tages and disadvantages. Ultimately, a complete data analysis pipeline utilizing deep
neural networks for automated AFib detection was implemented and evaluated. The
potential benefits of such approaches for SCG and GCG analysis are demonstrated.

6.2 Challenges
Machine learning scenarios are inherently prone to biases when attempting to distin-
guish between diseased populations and controls. Biases may arise due to population
differences, such as the diseased population being sourced from one site while the
control population is obtained from another. Such biases can give rise to situations
where the model successfully separates the desired groups, but the model’s param-
eters may inadvertently capture unintended factors, rendering the model ineffective
when applied to different study settings. Moreover, the generalizability of supervised
learning models often necessitates a substantial amount of data, potentially involv-
ing hundreds of patients, depending on the complexity of the disease and the tech-
nology’s capability to capture disease-related features. Addressing these factors and
ensuring an adequate sample size requires extensive efforts and financial resources,
presenting limitations in typical academic research endeavors, including the studies
presented in this thesis. Nonetheless, measures were implemented to mitigate lim-
itations stemming from these sources, such as the careful selection of classification
algorithms suitable for specific study population sizes and the application of cross-
validation methods.

6.3 Future Work
The collection and proper labeling of data is a major challenge in medical science
research. The dataset that was used throughout this thesis work was quite small as
it contained short measurements from less than a thousand individuals. Rather than
collecting larger datasets, in the future, we can focus on unsupervised representation
learning (URL), which only needs unlabeled data. There has been a considerable
amount of research around URL at the core of which deep neural networks were
utilized.

In a URL task, the learning objective is engineered in such a way that the machine
learning model is forced to learn useful and sometimes meaningful representations
of the data. Once these representations are learned, the machine learning models are
transferred to a downstream fine-tuning task where the representations are fine-tuned
for a specific classification or regression task. Sometimes URL can be done jointly
with supervised classification. In this case, the machine learning model is trained
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in a semi-supervised fashion with two or more objective functions concurrently con-
tributing to the learning process.

Among the most popular URL and semi-supervised learning techniques are,

• input reconstraction [97], denoising [98], or sparse coding via an Autoen-
coder [99]

• semi-supervised generative modeling via Generative Adversarial Networks
(GAN) [100], semi-supervised Variational Autoencoder (VAE) [101], and
semi-supervised Normalizing Flows (NF) [102]

• self-supervised representation learning via Contrastive Predictive Coding
(CPC) [103], self-supervised contrastive learning [104], or self-supervised
learning through auxiliary or pseudo-labeling [105]

Besides the URL mentioned above and the semi-supervised learning strategies,
learning to structure the data based on the characteristics of representations of each
input data point can be effective in establishing a more generalized model and/or
creating models that require fewer labeled samples. Neural Graph Machines [106]
and similar techniques have been recently introduced and have proven effective for
this purpose.

Last but not least, in the world of medical sciences it is crucial to be able to
interpret and identify the factors causing a pathological condition. When sophisti-
cated machine learning models are utilized as a decision support system, engineers
are unable to interpret and explain the reasons behind the algorithms’ outputs. In
addition, we know that in many cases correlation does not imply causation. Many
of the popular machine learning models are not forced to look for causation and not
spurious correlations. Causal machine learning has been introduced to overcome this
issue and has been applied to medical data analytics [107]. Applying causal machine
learning to cardiac signal analysis is one of the main themes of the author’s future
studies.
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