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A B S T R A C T   

Environmental innovations hold promise for cutting greenhouse gas (GHG) emissions, but most technology in-
vestments are made in large technologically leading countries. Thus, emission reductions in small open econo-
mies, such as the Nordic countries, depend on not only domestic technological development, but also technology 
spillovers from foreign countries. The present study analysed how the development of climate change technol-
ogies affected the Nordic countries’ GHG emissions from the industrial and energy sectors during a particular 
time frame. Consequently, while controlling for economic growth and population, domestic and foreign tech-
nological development’s effects on industrial and energy sector GHG emissions were examined from the 
1990–2019 period. The results revealed that both domestically developed environmental technologies and 
technology spillovers from foreign economies mitigated GHG emissions from these nations’ energy and industrial 
sectors, thereby providing an efficient pathway to achieving sectoral environmental sustainability. In particular, 
domestic environmental technologies were found to be more efficient in driving environmental sustainability in 
the industrial sector, whereas impacts from domestic and foreign technological development did not differ 
significantly in the energy sector. Furthermore, given that economic growth plays a vital role in GHG emissions, 
environmental Kuznets curve (EKC; inverted U-shaped and U-shaped) relationships have been observed in the 
energy and industrial sectors, respectively. This suggests that the examined countries’ industrial sectors have 
more environmental quality hurdles to overcome.   

1. Introduction 

The climate crisis and the urgent problems that it poses for Earth’s 
natural systems and human societies are viewed as the largest global 
challenges of our time. Consequently, more and more countries are 
setting ambitious targets to become carbon neutral. Simultaneously, 
many countries have struggled to improve their populations’ economic 
well-being. Within current environmental discourse, development and 
diffusion of environmental technologies are viewed as the most cost- 
effective ways to reduce environmental and climate pressures without 
compromising economic well-being. Thus, achieving carbon neutrality 
is expected to depend heavily on the development of new climate change 
mitigation technologies and the efficient transfer of these technologies 

globally (Popp et al., 2010; Popp, 2020). Simultaneously, economists 
have pointed out the risk of a rebound effect, i.e., that improvements in 
resource efficiency due to environmental innovation fail to elicit ex-
pected resource savings and environmental benefits, and may even lead 
to increasing resource use and environmental degradation in some in-
stances, an effect also known as ‘backfire’ (Alcott, 2005). 

Therefore, to shape climate policies, it is fundamentally important to 
clarify the impacts of environmental technological change on green-
house gas (GHG) emissions. Accordingly, prior empirical studies have 
set out to analyse environmental technological development’s effects on 
carbon dioxide (CO2) and other GHG emissions (Du et al., 2019; Hashmi 
and Alam, 2019; Puertas and Marti, 2021; Toebelmann and Wendler, 
2020; Yıldırım et al., 2022; Zhang et al., 2017). While these studies 
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generally have indicated that environmental innovations reduce emis-
sions, the results have not been uniform and have not indicated climate 
benefits in all circumstances. Thus, more empirical evidence that ana-
lyses different contexts is needed. Moreover, although domestic tech-
nological development matters, how climate technologies diffuse 
internationally and how these technology spillovers impact emissions 
from receiving countries also are important. Theoretical studies have 
recognised the key importance of environmental technology spillovers 
(Gerlagh and Kuik, 2014; Hübler et al., 2012). Few empirical studies 
have analysed environmental technology spillovers’ impacts on envi-
ronmental productivity and emissions on the sectoral and regional 
levels, whereas other prior studies have examined trade or foreign direct 
investments (FDI) as indicators of knowledge transfer (Costantini et al., 
2017; Jiao et al., 2020; Cui et al., 2022; Balsalobre-Lorente et al., 
2022a). Nevertheless, extant literature is scant on international envi-
ronmental technology spillovers’ impact on country-level emissions. 
Finally, emission-reduction pathways differ across sectors, and sectoral 
characteristics need specific analyses (Erdoğan et al., 2020). These are 
empirical literature gaps that the present study aims to address. 

The global diffusion of climate change technologies (CCT) is partic-
ularly important for small open economies, including the Nordic coun-
tries, that depend on international trade and foreign developed 
technologies, thereby magnifying the importance of using environment- 
related trade policy measures to curb potential diffusion of environ-
mentally hazardous technological innovations. However, the Nordic 
countries also have set stringent targets to reduce their emissions and 
reach net zero emissions (OECD, 2016). Since these economies’ pio-
neering implementation of energy taxation in 1990s, primarily to soften 
the effects from economic woes at the time, the countries have remained 
global leaders in terms of environmental policy stringency and green 
growth approaches. Notably, given the Nordic countries’ administrative 
and governance characteristics in terms of transparency, decentralisa-
tion and rule-based governance (Sääksjärvi, 2020), a more consistent 
implementation of environment-related measures among these coun-
tries is not surprising. These measures have positioned the Nordic 
countries as prime research subjects through which to examine domestic 
and foreign environmental technological development’s effects. 

Globally, the energy and industrial sectors produce the most GHG 
emissions. Energy production is also crucial for countries’ economic and 
social development. Furthermore, the industrial sector is highly relevant 
to economic growth in developed economies, given that the sector in-
cludes construction and manufacturing. Given the above motivation, 
this study examined the Nordic countries’ GHG emissions from their 
industrial and energy sectors, and how domestic and foreign CCT 
development influences GHG emissions. To achieve the investigation’s 
objective, we applied econometric approaches that include cross- 
sectional dependency, stationarity, cointegration tests and autore-
gressive distributed lag panel data set analysis that covers the 
1990–2019 period in Denmark, Finland, Norway and Sweden. Using a 
novel perspective, the study contributes to prior empirical literature by 
examining domestic and foreign CCT spillovers’ emission-reducing ef-
fects and how these effects differ across industrial and energy sectors. 
Furthermore, economic growth’s role in GHG emissions from the energy 
and industrial sectors also is examined, thereby providing evidence of 
the environmental Kuznets curve’s (EKC) (in)validity. This study also 
makes additional contributions by deploying the recently developed 
Granger causality approach, by Juodis et al. (2021), for robustness es-
timates. Moreover, the focus is on GHG emissions as an environmental 
indicator, rather than more commonly analysed CO2 emissions. 

The study proceeds as follows. Section 2 provides a literature review. 
Section 3 explains the data and empirical methods. Sections 4 and 5 
present the investigation’s results and conclude the investigation with 
policy recommendations, a discussion of the study’s limitations and 
suggestions for future research directions. 

2. Literature review 

This section discusses the existing literature. The investigation’s 
theoretical and modelling underpinnings are examined first, then 
several related empirical studies are discussed critically from the 
perspective of empirical approaches and results. 

2.1. Theoretical literature 

Environmental technological development is characterised by a 
double externality (Barbieri et al., 2016). First, environmental techno-
logical innovations help reduce negative environmental externalities 
from production and human activities. Second, like all innovations, they 
can produce positive knowledge spillovers that benefit other individuals 
and countries in addition to the initial innovator. The first externality 
implies that climate change technological development should lead to a 
reduction in CO2 and other GHG emissions. However, the rebound effect 
and the Jevons paradox imply that part or even all of these climate gains 
may be offset, as an innovation that improves resource efficiency leads 
to a decrease in the effective price of that resource and, thus, demand 
and use of the resource will tend to increase (Alcott, 2005). Overall, 
large uncertainties surround macroeconomic rebound effects’ size 
(Gillingham et al., 2016), implying that the environmental and climate 
impacts from environmental technological change are theoretically 
ambiguous and call for empirical research. Moreover, environmental 
technological development’s second externality, positive knowledge 
spillovers, implies that environmental innovations also may make 
environmental and climate impacts in other countries aside from the 
original innovator. 

The empirical research on environmental innovation’s impacts 
dovetails with the environmental Kuznets curve (EKC) literature, 
following Grossman and Krueger (1995) and research on the IPAT model 
that Ehrlich and Holdren (1971) introduced. The EKC hypothesises an 
inverted U-shaped relationship between environmental indicators and 
per capita income. Despite the extensive literature on EKC, the validity 
of the hypothesis remains under scrutiny (Stern, 2017; Sarkodie and 
Strezov, 2019). Meanwhile, the IPAT model and its stochastic version, 
Stochastic Impacts by Regression on Population, Affluence and Tech-
nology (STIRPAT), model the environmental impact as a function of 
population, affluence and technology (Dietz and Rosa, 1994; York et al., 
2003). 

2.2. Empirical literature 

Following the theoretical literature lines, recent studies have inves-
tigated environmental innovations’ impacts on emissions at national 
and regional levels. Most of these studies have relied on data on envi-
ronmental or CCT patent applications, and in some cases R&D data. 
Generally, these studies have found that environmental patents help 
reduce CO2 and GHG emissions (Hashmi and Alam, 2019; Puertas and 
Marti, 2021; Toebelmann and Wendler, 2020; Zhang et al., 2017). They 
analysed, e.g., European countries, Organisation for Economic Cooper-
ation and Development (OECD) countries and Chinese provinces. 
However, other studies have provided more complex results. Weina 
et al. (2016) reported that while environmental patents have improved 
Italian regions’ environmental productivity, they did not reduce the 
regions’ CO2 emissions. Yıldırım et al. (2022) demonstrated that green 
patenting makes a nonlinear impact on energy sector CO2 emissions 
from OECD countries. Furthermore, Du et al. (2019) analysed panel data 
comprising 71 countries and reported that green patents do not reduce 
CO2 emissions in low- and middle-income countries, but do so in high- 
income countries. Thus, the empirical literature has not yet reached a 
comprehensive consensus on the relationship between environmental 
technological change and GHG emissions. 

Moreover, the second externality produced by environmental tech-
nological development, i.e., positive knowledge spillovers that impact 
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other individuals and countries, has received considerably less attention 
in the literature analysing determinants of GHG emissions. The theo-
retical studies following the path of endogenous growth models have 
recognised technology spillovers’ important role in emissions (Gerlagh 
and Kuik, 2014; Hübler et al., 2012), and international technology dif-
fusion’s role in the context of climate change has also been examined 
and noted generally (Popp, 2011). However, few empirical studies have 
examined this channel of impact in the CCT and emissions context. 

Costantini et al. (2017) examined several European industrial sectors 
and reported that sectoral environmental patents, as well as domestic 
and foreign environmental technology spillovers from vertically related 
sectors, reduced sectoral emission intensity. Similarly, Ghisetti and 
Quatraro (2017), Jiao et al. (2018) and Jiao et al. (2020) found that 
environmental technology spillovers influence environmental and car-
bon productivity among vertically related sectors in Italy and China. 
While these studies have indicated that international or interregional 
environmental technology spillovers can be important in mitigating 
GHG emissions, we are not aware of studies that have analysed inter-
national environmental technology spillovers’ effects on country-level 
emissions. In the energy efficiency context, Sun et al. (2021) found 
that international technology spillovers improve other countries’ energy 
efficiency. Their analysis used patent data to measure technological 
innovation directly. 

Some related studies have examined spillovers’ role in general and 
have analysed their impacts on environmental or carbon productivity 
and energy intensity. Pan et al. (2020) interpreted outward foreign 
direct investment (FDI) as technology transfer and found that such 
transfers improve carbon productivity in Chinese provinces, while Zhou 
et al. (2019) reported that such technology spillovers make a positive, 
but very limited impact, on green total factor productivity in China. 
They also reported that the effects indicate large heterogeneity across 
provinces. Furthermore, Wang et al. (2021) examined Chinese provinces 
and found that international R&D spillovers influence environmental 
productivity. Pan et al. (2021) found that interregional technology 
spillovers reduce energy intensity in China, but that the effects depend 
on absorptive capacity. Similarly, Balsalobre-Lorente et al. (2022a) 
found that FDI dampens energy use, which indicates potential technol-
ogy transfer. However, Cui et al. (2022) and Lv et al. (2021) reported 
mixed environmental impacts from FDI and trade openness among 
OECD countries and China. 

Beyond the (aggregate) economy-level investigation of 
environmental-related R&D’s role in carbon emissions, related sectoral 
perspective studies can be found in the literature (Jiao et al., 2018; Yang 
et al., 2021; Jiang et al., 2022; Kassouri and Alola, 2023). For instance, 
Yang et al. (2021) implemented an approach that combines geograph-
ically and temporally weighted regression (GTWR) and STIRPAT models 
to investigate how CO2 emissions are impacted across six sectors in 
China during the 2000–2017 period. Three aspects of technology spill-
overs were considered in the investigation, i.e., spillovers from inter-
national technology arising from FDI inflow, inter-provincial technology 
spillovers and domestic R&D investment. The investigation’s results 
indicated that R&D investment hinders carbon emissions from the 
wholesale, industrial and agricultural sectors, but triggers carbon 
emissions across the residential, construction and transportation sectors. 
Furthermore, with the exception of the transportation sector, interna-
tional technology spillovers arising from FDI worsen carbon emissions 
across the sectors. Moreover, the findings revealed that inter-provincial 
technology spillovers mitigate carbon emissions from the agricultural, 
construction and wholesale sectors, but worsen CO2 emissions from the 
transportation, residential and industrial sectors. In addition to 
technology-related indicators discussed above, economic (i.e., income) 
and other socioeconomic (i.e., population) factors also have proven to 
influence the economic sectors’ environmental quality aspects (Chen 
et al., 2022; Balsalobre-Lorente et al., 2022b; Alola et al., 2023). 

To sum up, most of the aforementioned studies analysed overall FDI 
impacts and largely failed to provide a clear distinction between 

environmental and nonenvironmental R&D. Moreover, the spillovers 
from different climate change technologies also have not been examined 
from sectoral perspectives. Considering this obvious literature gap, the 
present study contributes to the literature by examining the critical 
drivers of energy and industrial sector emissions given climate change 
technologies’ development domestically and international spillovers 
alongside economic and socioeconomic factors. 

3. Materials and empirical methods 

In this section, the materials and empirical techniques employed for 
the investigation are described in detail. Specifically, the details on 
relevant data computations are presented first, followed by the pre-
liminary and main estimation approaches. 

3.1. Materials and computations 

In this investigation of the Nordic countries (Denmark, Finland, 
Norway and Sweden), Iceland is excluded given data availability issues 
and the nation’s seemingly heterogeneous characteristics compared 
with other Nordic economies. To achieve the study’s objective, data on 
gross domestic product (denoted as GDP and measured in constant 2015 
prices, expressed in U.S. dollars), population (denoted as POP and 
measured as the number of people in millions), energy sector GHG 
emissions1 (denoted as EGHG and measured in thousands of tonnes), 
industrial sector GHG emissions2 (denoted as IGHG and measured in 
thousands of tonnes) and patent application statistics were used to 
measure technological innovation as described in detail in the next 
section. The examined data set covered only the 1990–2019 period, 
given that patent applications are published with considerable time lags, 
which vary across applications. GDP and POP data were retrieved online 
from the World Bank database, and sectoral GHG emission data were 
retrieved from the Eurostat online database. The selection of variables 
was motivated by the previous literature, summarised in Section 2.2 
(see, e.g., Costantini et al., 2017, Jiao et al., 2020, Chen et al., 2022; 
Balsalobre-Lorente et al., 2022b; Alola et al., 2023). 

3.1.1. Computations 
Climate change technology was measured using patent data, which 

was retrieved from the OECD’s REGPAT database. Consequently, two 
distinct computations were made for domestic climate change technol-
ogy stock (CC), which captures a country’s climate change mitigation 
and adaptation technologies, and climate change technology spillover 
stock (SCC), which accounts for diffusion of climate change-related 
technologies from other countries to a country in question. Climate 
change patents were counted as the number of patent applications in 
technology classes Y02E and Y02P based on patent applications filed 
with the European Patent Office (EPO) (Angelucci et al., 2018).3 Class 
Y02E comprises energy generation-, transmission- and distribution- 
related CC technologies, i.e., technologies related to the energy sector, 
and Y02P comprises CC technologies related to the production and 
processing of goods, i.e., technologies related to the industrial sector. 
Following prior studies, we relied on patent applications filed at the 

1 Energy sector GHG accounts for CO2, N2O in CO2 equivalent, CH4 in CO2 
equivalent, HFC in CO2 equivalent, PFC in CO2 equivalent, SF6 in CO2 equiv-
alent and NF3 in CO2 equivalent. 

2 Industrial sector GHG emissions comprise emissions from industrial pro-
cesses and product use (IPU), including mineral products, chemical industry, 
metal production, other solvent and product use, other industrial production, 
wood processing, production of POPs, consumption of POPs and heavy metals, 
other production and consumption, storage and transportation or handling of 
bulk products.  

3 This study considers energy sector- and industrial sector-related CC patents, 
not the broader category of environmental patents. 
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EPO, thereby avoiding problems tied to differing patent regimes in 
various countries and because Nordic countries are EPO members. 
Patents are allocated to countries based on the inventor’s resident 
country. In the case of multiple inventors from several countries, frac-
tional counting was applied to avoid double counting of patents. 

Given that new technologies are expected to exert an effect over a 
longer period, the accumulated CC patent stocks using the annual patent 
counts were constructed. Thus, CCE and CCI stocks, i.e., domestic 
climate change-related technologies, were computed as follows: 

CCIit = CCIit− 1 x (1 − δ)+CIit (1)  

CCEit = CCEit− 1 x (1 − δ)+CEit (2)  

in which CI and CE are the number of patent applications in year t in 
country i in industrial activity- and energy-related technologies, and CCI 
and CCE are the respective accumulated stocks. δ is the depreciation 
rate, which is set at 15 % (Hall et al., 2010). EPO patent data are 
available as early as 1978; thus, we did not estimate starting values 

separately, as our estimation period begins in 1990. 
Moreover, climate change-related technologies’ spillovers also were 

calculated. As technological innovations in one country diffuse over 
national borders, they create technology spillovers, which are expected 
to benefit countries beyond the country of origin. The computation of 
technology spillovers could be performed through a weighted (by im-
ports, FDI or distance) or unweighted approach. Previous studies have 
indicated that knowledge spillovers occur between regions and coun-
tries situated near each other, and that spillover probability diminishes 
as distance increases. Thus, following prior studies (e.g., Costantini 
et al., 2013; Grafström, 2018), we adopted the distance-weighted 
approach. The distance-weighted spillover stocks for energy sector- 
and industrial sector-related climate change technologies, i.e., DSCCE 
and DSCCI, are computed as follows: 

DSCCIit =
∑

k
dikCCIkt (3)  

DSCCEit =
∑

k
dikCCEkt (4) 

Table 1 
Statistics of the variables.   

GDP POP EGHG IGHG CCE CCI DSCCE DSCCI 

Denmark 
Mean  2.69E+11  5,440,864.  51,127.37  2637.06  497.26  185.92  10.51  6.98 
Median  2.77E+11  5,411,978.  53,751.49  2579.27  207.59  120.99  7.31  6.04 
Maximum  3.35E+11  5,814,422.  74,038.28  3698.25  1459.41  481.81  22.24  13.11 
Minimum  2.02E+11  5,140,939.  30,052.42  1835.17  28.12  22.93  2.62  2.59 
Std. Dev.  3.74E+10  200,289.7  11,121.46  593.80  519.32  155.26  7.61  3.57 
Skewness  − 0.28  0.29  − 0.29  0.27  0.66  0.60  0.51  0.42 
Kurtosis  2.17  2.02  2.25  1.74  1.75  1.82  1.58  1.75 
Jarque-Bera  1.25  1.60  1.11  2.36  4.15  3.54  3.80  2.85  

Finland 
Mean  2.06E+11  5,264,458.  53,780.71  5888.27  128.13  127.44  6.75  4.23 
Median  2.20E+11  5,237,134.  53,726.42  5803.24  66.10  108.50  4.58  3.62 
Maximum  2.55E+11  5,521,606.  69,369.55  7696.77  307.91  256.32  14.80  8.16 
Minimum  1.41E+11  4,986,431.  38,922.22  4704.42  21.11  26.71  1.54  1.47 
Std. Dev.  3.85E+10  163,690.1  7917.34  724.87  113.10  82.40  5.06  2.26 
Skewness  − 0.49  0.12  − 0.19  0.66  0.66  0.38  0.52  0.45 
Kurtosis  1.73  1.82  2.35  3.27  1.66  1.62  1.60  1.78 
Jarque-Bera  3.20  1.82  0.71  2.24  4.44  3.10  3.81  2.87  

Norway 
Mean  3.21E+11  4,706,821.  35,855.79  11,194.24  81.04  46.83  9.11  5.72 
Median  3.33E+11  4,607,601.  37,172.51  11,418.26  62.64  37.17  6.02  4.88 
Maximum  4.06E+11  5,347,896.  39,687.40  15,376.57  175.09  86.67  20.10  11.05 
Minimum  2.11E+11  4,241,473.  27,785.10  8371.14  5.86  13.62  2.09  2.01 
Std. Dev.  5.92E+10  354,258.9  3353.136  1810.17  64.74  27.85  6.91  3.07 
Skewness  − 0.40  0.45  − 1.18  0.23  0.26  0.17  0.54  0.45 
Kurtosis  2.00  1.85  3.21  2.16  1.38  1.35  1.61  1.77 
Jarque-Bera  2.02  2.67  6.99  1.14  3.61  3.56  3.87  2.92  

Sweden 
Mean  4.04E+11  9,195,494.  47,276.63  7902.88  270.57  146.09  7.80  5.01 
Median  4.10E+11  9,011,552.  48,743.80  7899.66  207.29  119.30  5.10  4.28 
Maximum  5.50E+11  10,278,887  58,376.54  8948.81  514.48  325.72  17.45  9.62 
Minimum  2.83E+11  8,558,835.  34,995.89  6387.09  81.12  54.66  1.67  1.70 
Std. Dev.  8.42E+10  485,665.7  6573.75  622.73  151.74  84.08  6.07  2.71 
Skewness  0.06  0.80  − 0.43  − 0.16  0.36  0.82  0.54  0.42 
Kurtosis  1.76  2.51  1.94  2.65  1.60  2.42  1.61  1.72 
Jarque-Bera  1.96  3.48  2.30  0.27  3.12  3.79  3.89  2.93  

Panel 
Mean  3.00E+11  6,151,909.  47,010.13  6905.61  244.25  126.57  8.54  5.48 
Median  2.89E+11  5,343,756.  48,091.79  7036.72  142.13  82.56  5.89  4.66 
Maximum  5.50E+11  10,278,887  74,038.28  15,376.57  1459.41  481.82  22.24  13.11 
Minimum  1.41E+11  4,241,473.  27,785.10  1835.17  5.86  13.62  1.54  1.47 
Std. Dev.  9.28E+10  1,814,427.  10,290.94  3293.75  319.22  109.67  6.56  3.07 
Skewness  0.64  1.09  0.17  0.27  2.29  1.33  0.68  0.68 
Kurtosis  2.98  2.50  2.10  2.39  7.73  4.05  2.02  2.43 

Note: Jarque-Bera statistics is the statistics for normality and std. Dev is the standard deviation. 
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in which d = 1/distance in kms between the capital cities of countries i 
and k, and CCI and CCE are the domestic CC technology stocks in 
country k in year t. 

3.1.2. Descriptive statistics and correlation 
These variables’ common statistics for each country and the corre-

lation statistics are presented in Tables 1 and 2, respectively. As 
observed in Table 1, the countries exhibited similar statistical properties 
across the data set. Clearly, and as presented visually in Fig. 3, GHG 
emission volume from the energy sector was significantly larger than 
from the industrial sector in all the countries and the overall panel. A 
similar pattern occurred with domestic CC technological development 
and foreign technology spillovers, in which climate change technologies 
in the energy sector were more abundant than in the industrial sector 
(see Figs. 1 and 2). Specifically, as depicted in Fig. 1, the disparity in 
energy and industrial domestic climate change technologies is more 
significant in Denmark. Moreover, the statistical evidence indicates that 
CCE, CCI, DSCCE and DSCCI are correlated negatively with EGHG and 
IGHG (see Table 2). While a negative correlation was found between 
EGHG and GDP, a positive correlation was found between IGHG and 
GDP. Meanwhile, population exhibited a positive association with 
EGHG, while the correlation between population and IGHG was not 
statistically significant. 

3.2. Models and empirical methods 

3.2.1. Empirical model 
Given that this study examined economic growth’s effects alongside 

domestic and foreign development of climate change technologies on 
energy and industrial sector GHG emissions, the investigation was 
designed to follow the empirical literature on the EKC hypothesis and 
STIRPAT model. The EKC hypothesises an inverted U-shaped connection 
between environmental indicators and income. Meanwhile, human 
impact on the environment is represented as a function of population, 
affluence and technology in a STIRPAT model (Dietz and Rosa, 1994; 
York et al., 2003). 

In the present study, GHG impacts within this framework are 
modelled for the energy and industrial sectors as: 

Energy Model : EGHG = f {GDP,GDPsq, POP,CCE (DSCCE) } (5)  

Industrial Model : IGHG = f {GDP,GDPsq, POP,CCI (DSCCI) } (6)  

and the respective econometric models are modelled as: 

EGHGit = γ0 + γ1GDPit + γ2GDPsqit + γ3POPit + γ4CCEit/DSCCEit + ϵit

(7)  

IGHGit = δ0 + δ1GDPit + δ2GDPsqit + δ3POPit + δ4CCIit/DSCCIit + ϵit (8)  

in which CCEit and DSCCEit in Eq. (7) and CCIit and DSCCIitin Eq. (8) are 
incorporated into the respective models one at a time. Furthermore, i, t 
and ϵ stand for countries (i = Denmark, Finland, Norway and Sweden), 
period (t = 1990, 1991, 1992, …, 2019) and error terms, respectively. 

3.2.2. Empirical methods 
Given that this was a panel investigation, several preliminary tests 

were conducted ahead of the coefficient estimation. First, tests were 
conducted to investigate cross-sectional dependence (CSD) in the panel, 
i.e., for each variable and proposed model. This aimed to ascertain 
whether changes in macroeconomic, economic and/or socioeconomic 
factors in one country can impact those in another country. Therefore, a 
variable-wise CSD test was conducted following Pesaran (2021), and the 
results suggested the presence of CSD. In the models, the combination of 
the Breusch-Pagan Lagrange Multiplier Test (Breusch and Pagan, 1980) 
and Pesaran Scaled Lagrange Multiplier Test (Pesaran, 2021) also pro-
vided evidence of CSD in the outlined models. Given the evidence of CSD 
in Table 3, a stationarity test was conducted, with the results indicating 
that the variables were all stationary at most after first difference. Two 
distinct approaches to stationarity tests – i.e., Pesaran (2007), which 
accounted for CSD, and Levin et al. (2002) – were conducted, and the 
results are documented in Table A (appendix). However, Pedroni’s 
(1999) cointegration test and Pesaran and Yamagata’s (2008) slope 
homogeneity test provided evidence of cointegration (see Table 4). 
Meanwhile, as indicated in Table 5, slope homogeneity was rejected for 
the energy model, but the test failed to reject the null hypothesis for the 
industrial model. 

Concerning coefficient estimations, the appropriateness of Pooled 
Mean Group (PMG) autoregressive distributed lag (ARDL) by Pesaran 
et al. (1999) is relied upon for the long run and short run. The choice of 
PMG was guided by its suitability to estimate coefficients with cross- 
sectional short-run heterogeneity and long-run homogeneity. Further-
more, the PMG-ARDL approach was deployed, given the mixed evidence 
of slope homogeneity, as the two models in Table 5 indicate. Finally, the 
aforementioned technique is effective at providing short- and long-run 
coefficient estimates. Given that the step-by-step procedure is docu-
mented widely in the literature, details on the process are excluded here 
for space considerations. However, a robustness investigation was con-
ducted to ascertain Granger causality direction among the variables in 
the panel. Specifically, the recently developed Granger noncausality 
approach by Juodis et al. (2021) was employed. For the aforementioned 
empirical approaches, the step-by-step descriptions were not docu-
mented here to avoid unnecessary replication and because of space 
constraints. 

4. Discussion of findings 

4.1. Main results 

The results from coefficient estimation through the PMG-ARDL 
approach for both the energy and industrial sector GHG models from 
Eqs. (7) and (8) are provided in Table 6. As for the drivers of energy 
sector GHG emissions, the short- and long-run results are presented on 
the left-hand side of Table 6. Notably, the results affirm the validity of 
the EKC hypothesis for energy GHG emissions, particularly in the long 
run. This desirable outcome suggests that although economic growth 
was detrimental to environmental quality in the energy sector, these 
countries’ environmental quality began to improve significantly over 

Table 2 
Correlation evidence.  

Variables GDP POP EGHG IGHG CCE CCI DSCCE DSCCI 

GDP  1.00        
POP  0.69a  1.00       
EGHG  − 0.46a  0.04  1.00      
IGHG  0.29a  0.01  − 0.51a  1.00     
CCE  0.31a  0.19b  − 0.35a  − 0.48a  1.00    
CCI  0.35a  0.28a  − 0.29a  − 0.48a  0.92a  1.00   
DSCCE  0.52a  0.09  − 0.51a  − 0.22b  0.75a  0.79a  1.00  
DSCCI  0.53a  0.07  − 0.50a  − 0.26a  0.78a  0.80a  0.98a 1.00 

Note: a = probability value <0.01 and b = probability value <0.05. 
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time, particularly after attaining a certain threshold of economic per-
formance. Specifically, economic growth elicited less environmental 
degradation from a surge in energy GHG emissions, i.e., a percentage 
increase in economic growth began to mitigate energy GHG by 0.41 % in 

the long run. The current evidence partly aligns with the validly of the 
EKC hypothesis in the literature (Urban and Nordensvärd, 2018; Alola 
and Onifade, 2022). While Urban and Nordensvärd (2018) validated the 
EKC hypothesis for Denmark, Iceland and Sweden, Alola and Onifade 

Fig. 1. The trend in energy (CCE) and industrial (CCI) climate change technologies across the Nordic countries.  

Fig. 2. The trend in distance-weighted energy (DSCCE) and industrial (DSCCI) spillovers of climate change technologies across the Nordic countries.  
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(2022) validated it for Finland. 
Furthermore, for energy sector GHG emissions, both climate change 

technological development domestically and CC technologies’ spillovers 
diffusing from other countries mitigated GHG emissions across the 
panel, thereby improving environmental sustainability. Specifically, a 1 
% increase in locally produced CC technologies and CC technology 
spillovers from foreign states mitigated energy GHG emissions by 0.16 % 
and 0.13 %, respectively, particularly in the long run. Notably, in the 
energy sector, locally produced environmental technologies and 

Fig. 3. The trend in greenhouse gas emissions across the Nordic countries.  

Table 3 
Cross sectional dependence tests.  

Cross section dependence in panels by Pesaran (2021) 

Variables GDP GDPsq POP EGHG IGHG CCE CCI DSCCE DSCCP 

CD-test statistics 13.07a 12.07a 13.23a 3.44a 4.78a 13.08a 12.90a 13.41a 13.42a   

Cross section dependence in models  

With domestic climate technology With international climate technology (spillover) 

B-P LM PS LM P CD B-P LM PS LM P CD 

Energy model  54.09a  13.88a  4.66a  54.10a  13.89a  4.71a 

Industrial model  60.27a  15.67a  -1.16  21.43a  4.45a  0.49 

Note: a = probability value <0.01, b = probability value <0.05, and c = probability value <0.10. B–P LM is Breusch-Pagan Lagrange Multiplier by Breusch and Pagan 
(1980). Then, PS LM which represents Pesaran scaled Lagrange Multiplier and P CD the Pesaran cross sectional dependence are reported in Pesaran (2021). 

Table 4 
Cointegration by Pedroni (1999).  

Pedroni cointegration 
statistic 

Domestic climate 
technology 

International climate 
technology (spillover) 

Within the 
panel 

Entire 
panel 

Within the 
panel 

Entire 
panel 

Energy model 
Modified Phillips- 

Perron t  
-0.91  -1.41c  -0.86  -1.88 

Phillips-Perron t  -4.66a  -4.10a  -4.74a  -4.03a 

Augmented Dickey- 
Fuller  

-3.53a  -3.33a  -3.71a  -3.29a  

Industrial model 
Modified Phillips- 

Perron t  
0.52  -0.29c  0.47  -0.27 

Phillips-Perron t  -1.95b  -2.09b  -1.77b  -1.78b 

Augmented Dickey- 
Fuller  

-2.09a  -2.16b  -1.51c  -1.68b 

Note: a = probability value <0.01, b = probability value <0.05, and c =
probability value <0. 

Table 5 
Slope homogeneity.   

Domestic climate 
technology 

International climate technology 
(spillover) 

Delta Adjusted delta Delta Adjusted delta 

Energy model  4.88a  5.46a  -0.23  -0.26 
Industry model  3.25a  3.63a  -0.13  -0.14 

Note: HAC kernel with bartlett with average bandwidth 3. The null hypothesis, 
H0 is slope coefficient are homogenous. 
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international technology spillovers exerted roughly similar impacts on 
emissions. Although there is almost no previous study that compares 
sector-wide GHG emissions from locally produced environmental tech-
nologies and spillovers, Wang et al.’s (2021) study on Chinese provinces 
and Costantini et al.’s (2017) examination of European industrial sectors 
both aligned with the evidence that environmental technology spillovers 
and international R&D spillovers improve environmental productivity 
and mitigate sectoral emission intensity. The positive result for local CC 
technologies is in line with Du et al. (2019) and Yıldırım et al. (2022), 
but not Erdoğan et al. (2020). However, Erdoğan et al. (2020) did not 
focus on environmental or climate patents, unlike Du et al. (2019), 
Yıldırım et al. (2022) and the present analysis, which may be one reason 
for the differences. Meanwhile, as the population has increased by 1 %, 
energy GHG emissions declined by ~1.2 %, particularly in the long run. 

The model for the industrial sector GHG emissions is slightly 
different, particularly from the perspective of the economic growth and 
GHG emission nexus (see the right-hand side of Table 6). Specifically, it 
is surprising that the EKC hypothesis was not valid. Instead, a U-shaped 
hypothesis was established in both the short and long runs, thereby 
indicating no evidence that economic growth improves environmental 
quality. Specifically, increases in economic activity initially continued to 
mitigate industrial sector GHG emissions until emissions were reduced 
to a certain minimum level, after which the sector’s GHG emissions 
surged in the long run. Meanwhile, for the separate models with do-
mestic and spillover environmental technologies, population increases 
played a desirable environmental role. 

Notably, locally produced environmental technologies and environ-
mental technologies’ spillovers mitigated GHG emissions from the in-
dustrial sector in the panel. However, unlike the energy sector, locally 
produced environmental technologies reduced industrial sector GHG 
emissions by almost twice as much as environmental technologies’ 
spillovers in the long run. Domestic environmental technologies’ impact 
on GHG emissions is also clearly higher in the industrial sector than in 
the energy sector. This finding also is in line with Erdoğan et al. (2020), 
who found that innovations reduced emissions from the industrial 
sector, but not from the energy sector. The evidence from this investi-
gation also partly aligns with the literature indicating that technology 
spillovers exert significant effects on emissions. However, Sun et al. 
(2021) demonstrated that international spillovers make a greater impact 
on energy efficiency than domestic innovations. Moreover, on the sec-
toral level, Costantini et al. (2013) and Jiao et al. (2020) also indicated 
that technological spillovers exert a greater impact on environmental 

performance than technological development, contradicting both en-
ergy and industrial sector results in Table 6. Spillovers’ lesser impor-
tance in our aggregate-level results can be due to differences in 
countries’ industrial structures, implying that not all foreign developed 
technologies are technologically relevant and applicable to domestic 
industrial activities, thereby limiting the potential to benefit from in-
ternational technology spillovers. Another interpretation of these dif-
ferences is that domestic inventive activities are particularly important 
in the industrial sector, but less so in the energy sector. This interpre-
tation is also in line with Sun et al. (2021). 

4.2. Robustness evidence 

Although the cross section under investigation was small (a panel of 
four countries), the Granger noncausality approach by Juodis et al. 
(2021) was found to be most suitable for the robustness analysis, 
considering its suitability for homogeneous or heterogeneous co-
efficients. Given the results presented in Table 7, significant evidence 
indicates that all the variables, with the exception of population, exerted 
a significantly negative impact on energy sector GHG emissions, i.e., 
these Granger variables caused energy sector GHG emissions from the 
Nordic states, in line with the results from the PMG-ARDL approach. 
Similarly, the Granger causality results from industrial sector GHG 
emissions supported the PMG-ARDL approach. Specifically, GDP and the 
square of GDP Granger elicited industrial sector GHG emissions with 
positive coefficients. Furthermore, locally produced environmental 
technologies and environmental technologies’ spillovers from foreign 
states also Granger cause industrial sector GHG emissions, but with 
negative coefficients. Overall, the results from Juodis et al.’s (2021) 
approach largely supported the PMG-ARDL results, thereby indicating 
significant robustness. 

5. Conclusions and policy recommendations 

In the present investigation, the drivers of energy and industrial 
sector GHG emissions were examined through a panel of small open 
economies in the Nordic region (i.e., Denmark, Finland, Norway and 
Sweden) from the 1990–2019 period. As such, environmental technol-
ogies’ roles through the domestic development of climate change tech-
nologies and spillovers from foreign climate change technology 
development were considered. Furthermore, the contributions of pop-
ulation and economic growth were also investigated. Regarding eco-
nomic growth’s role, this investigation contributes to the literature by 
examining the EKC hypothesis with energy and industrial sector GHG 
emissions as environmental indicators. 

Notably, the results indicate that domestic climate change techno-
logical development and international climate change technology 
spillovers mitigate energy and industrial GHG emissions across the 
panel. Although this indicates that both types of climate change tech-
nological development are useful in improving the energy and industrial 
sectors’ environmental quality, the findings indicate that domestic 

Table 6 
PMG Long-run coefficient estimates.  

With climate change energy technologies With climate change industrial 
technologies 

Variables E- 
Model 

E-Model with 
s 

Variable I-Model I-Model with 
s 

Long run 
GDP  22.06a  44.15b GDP  -57.42a  -45.41a 

GDPsq  -0.41a  -0.83b GDPsq  1.10a  0.87a 

POP  -1.21c  -4.48c POP  -1.50a  -2.24a 

CCE  -0.16a  CCI  -0.34a  

SCCE   -0.13c SCCI  -0.18a   

Short run 
GDP  21.25  8.36 GDP  -55.03a  -48.64 
GDPsq  -0.40  -0.15 GDPsq  1.07a  0.95 
POP  9.03  13.25b POP  1.84  -2.97 
CCE  0.13b  CCI  -0.04  
SCCE   0.28 SCCI  0.15  
Adjustment  -0.53a  -0.51b   -0.44b  -0.47b 

log 
likelihood  

198.07  199.70   212.95  209.39 

Note: Take a, b, and c as the p < 0.01, p < 0.05, and p < 0.1 respectively. E-Model 
and I-Model are respectively energy and Industrial models. 

Table 7 
Granger non-causality approach.   

Half-Panel Jackknife Estimation Half-Panel Jackknife Estimation 

With energy sector With industrial sector 

Wald test Coefficient Wald test Coefficient 

GDP  1074.18a  -0.41b  204.33a  1.76a 

GDPsq  1037.23a  -0.01b  227.61a  0.03a 

POP  12.21a  -9.25  61.71a  -14.85c 

CCE  190.55a  -0.08   
DSCCE  272.77a  -0.46a   

CCI    180.89a  -0.22b 

DSCCI    349.01a  -0.29b 

Note: Number of lags = 2, BIC. 
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environmental technologies exert a greater impact on the industrial 
sector’s GHG emissions, while their impacts do not significantly differ in 
the energy sector. While the EKC, i.e., inverted U-shaped hypothesis, 
was validated based on the GHG emissions from the energy sector, U- 
shaped evidence of GHG emissions also was found in the industrial 
sector. Therefore, given economic performance, these results suggest 
that the energy sector in the examined countries has a more reliable 
pathway to environmental sustainability than the industrial sector. This 
is a positive finding, particularly as the energy sector accounts for the 
lion’s share of total GHG emissions. Interestingly, it also has been 
observed that population growth across the panel mitigates GHG emis-
sions from the energy and industrial sectors. 

5.1. Policy recommendations 

As both domestic environmental technological development and 
international technology spillovers have been demonstrated to reduce 
sectoral GHG emissions, national R&D and climate policies need to 
incorporate both aspects. R&D-related policies should be conceived 
from the perspective that environmental technological development has 
the potential to drive both economic and environmental benefits, 
thereby justifying wider policy interventions towards environmental 
R&D investments. Beyond considering wider policy interventions, 
environment-related measures, particularly for domestic and interna-
tionally imported technologies, should reflect the elements of the Nor-
dics’ nationally determined contributions (NDCs) significantly. 
Furthermore, because international technology spillovers appear to be 
an important mechanism for emission reductions, public policies should 
support international technology and R&D collaboration. Furthermore, 
to utilise foreign knowledge spillovers, countries’ absorptive capacity 
could also be improved through further human capital development and 
technology investment programmes. Differences in absorptive capacity 
also may explain why technology spillovers’ importance appears to vary 
across sectors and countries, but further research is needed to clarify 
this. However, further research is also needed to pinpoint the exact 
channels of foreign spillovers and to enable more targeted policy re-
sponses to support international climate change technology diffusion. 
The identified international technology spillovers could also backfire 
and provide countries with incentives for free-riding, which could lead 
to suboptimal environmental R&D investments globally. Thus, interna-
tional coordination of climate change technology subsidies and support 
policies is also warranted. 

Considering the evidence of a U-shaped relationship between eco-
nomic growth and GHG emissions, particularly in the industrial sector, 
the results suggest that adoption of green economic and environmentally 
friendly practices in the sector is highly deficient. To improve the in-
dustrial sector in this regard, more stringent environmental policies that 

promote resource productivity, resource reuse and circularity, and green 
and clean content development should be promoted further. Specif-
ically, such stringent environmental policy should span the sector’s 
value chain, from the manufacturing and distribution of capital goods, 
to end-users’ information through product labels. Furthermore, as do-
mestic technology development’s emission-reducing effects are high-
lighted in particular, the industrial sector’s environmental performance 
in the Nordic countries will benefit from more investment in environ-
mental R&D through more public-private partnerships that further 
encourage development of environmental technologies and innovations. 
Moreover, green entrepreneurial activities through increased access to 
credit facilities and relevant environmental sustainability trainings 
should be encouraged across economic sectors. 

5.2. Study limitations 

Although this study’s results are exciting and offer significant policy 
insight, the investigation contained limitations that could be improved 
upon in future research. One limitation is that the patent data used only 
covered technological inventions; thus, many important service-related 
innovations were ignored in the analysis. While patent data arguably are 
fit for analyses of energy and industrial sectors, other approaches are 
needed for more service-oriented sectors. 

A future study could extend the scope to GHG emissions from other 
sectors to provide a more holistic approach to achieving environmental 
and climate sustainability. Aside from a comprehensive sector-wide 
analysis, given data availability, future studies also could include 
intra-sector analysis. This approach should help channel organisations’ 
green management approaches further, thereby providing a pathway for 
micro- to macro-level climate sustainability and a green economy. While 
climate change technologies’ spillovers were measured via a distance- 
weighted approach, we do not argue that geographical closeness is the 
only mechanism for technology diffusion. Thus, future studies also could 
consider other technology spillover channels. Such an analysis also 
could provide a deeper understanding of why international environ-
mental technology spillovers’ role differs markedly between the energy 
and industrial sectors. 
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Appendix  

Table A 
Panel unit root tests.  

Variables LLC with adjusted t- Pesaran 

Level First difference Level First difference 

IGHG  -0.177  -9.890***  -1.882  -4.683*** 
EGHG  -2.1059  -9.251***  -1.175  -6.190*** 
GHG  -1.451  -10.001***  -2.501**  -5.832 *** 
GDP  -2.098*  -7.524***  -1.259  -3.572*** 
POP  -1.479  -4.068*  0.996  -2.668*** 
CCE  -1.768  -4.328*  -0.579  -3.470*** 
CCI  2.683  -4.306*  -2.238  -5.544*** 
DSCCE  -2.928***  -3.063***  0.581  -3.834*** 
DSCCI  -0.177  -6.779***  -2.805*  -5.551*** 

LLC: H0 (panels contain unit roots) against H1(panels are stationary) in Levin et al. (2002) and Pesaran: H0 (homogeneous non- 
stationary) against H1(homogeneous stationary) in Pesaran (2007). *, **, and *** are statistically significant levels for p < 0.1, 
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p < 0.05, and p < 0.01 respectively. Maximum number of lags implemented for the variables is 1 but 3 for POP. 
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