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A B S T R A C T

Reference Evapotranspiration (ET𝑜) is the cornerstone of efficient water utilization for sustain-
ability in agriculture. The standard Penman–Montieth (PM) approach of Reference Evapotran-
spiration (ET𝑜), is complex due to the involvement of an extensive set of climatic conditions. The
existing solutions of simplification of ET𝑜 predictions are not in accordance with the Penman–
Montieth approach. A hybrid ensemble machine learning approach for simplification of ET𝑜
prediction is proposed using the Internet of Things(IoT) based crop field sensed climatic data.
The proposed hybrid ensemble model is implemented with an Artificial Neural Network (ANN)
and regression models. The proposed solution is unique for its utilization of flexible climatic
conditions and in accordance with the standard Penman–Montieth (PM) approach. The proposed
solution is able to predict daily ET𝑜 from only temperature and also can adjust ET𝑜 according to
wind speed, humidity, and sunshine duration. The assessment of the proposed model exhibits
a high coefficient of determination (R2) of 0.94 compared to 0.91 from the basic ANN model.
The proposed hybrid ensemble model also exhibits a low RMSE of 0.86, MAE of 0.75 mm
day−1, and MAPE of 15.05%, compared to 0.91, 0.75 mm day−1, and 20.40% from the basic
ANN model. The ET𝑜 predictions by the proposed hybrid ensemble model also exhibit a higher
Pearson correlation coefficient of 0.917 with the ET𝑜 by the Penman–Montieth (PM) approach,
compared to 0.778 by the basic ANN model. The statistics reveal the accuracy and goodness of
fit of the proposed hybrid ensemble machine learning model.

1. Introduction

Agriculture is the main supplier of human livelihood [1]. The scarcity of natural resources has created serious concerns to feed
the world’s increasing population [2]. Agriculture productivity needs to be improved, to serve the basic needs of the large human
opulation [3]. Water scarcity has become a major issue across the world [4,5]. More than sixty-nine (69%) percent of available

fresh water on earth is used for agricultural purposes [3]. Around seventy percent (70%) of the water used for agricultural activities,
is wasted due to poorly managed agricultural activities. The core cause of wastage of scarce water in agricultural activities is the
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application of irrigation water without ET𝑜 consideration [6]. Efficient water resource management is key to sustainable development
n agriculture [2].

Evapotranspiration (ET) is the core element of water management [7–9]. Reference Evapotranspiration (ET𝑜) is the ET of grass
under specific climatic conditions [10]. The ET𝑜 is the basis of effective water management and the scheduling of irrigation in
agriculture [8,11]. ET𝑜 has significant importance in determining the efficient irrigation management strategy [12,13]. ET𝑜 is
essential to conserve irrigation water to support sustainable development in agriculture [6,14]. The estimation of ET𝑜 for water
esource management is critical, and challenging due to the complexity of the standard Penman-Montieth (PM) approach of ET𝑜
alculations [15]. The standard PM approach requires an extensive set of climatic data to calculate ET𝑜 according to these climatic
onditions. The inherent complexity of the standard PM approach of ET𝑜 determination makes it difficult to use the standard PM
pproach for precise irrigation water management [16]. The major reason for the lack of ET𝑜 application in smart irrigation water
olutions is the complexity of the standard PM approach for ET𝑜 and the unavailability of the crop field climatic conditions [9,11,17].
implification of ET𝑜 prediction with the limited number of climatic conditions is the core of productivity and sustainability in
griculture [18–20]. Temperature, humidity, wind speed, and sunshine are significant elements for calculating ET𝑜 using the standard
M approach, expressed by Eq. (1) [21].

𝐸𝑇𝑜 =
0.0408𝛥(𝑅𝑛 − 𝐺 + 𝛾 900

𝑇+273𝑊𝑆(𝑒𝑠 − 𝑒𝑎))

𝛥 + 𝛾(1 + 0.34𝑊𝑆)
(1)

Where ET𝑜 represents the reference evapotranspiration measured in millimeters per day, G is the soil heat flux density measured
n mega-joules per square meter per day, R𝑛 is the net radiation at the crop surface measured in mega-joules per square meter

per day, WS is the wind speed measured in meter per second (ms−1) at 2-meter height, and 𝑇 as the air temperature at a 2-meter
height measured in degrees Celsius (◦C). e𝑎 and e𝑠 denote the actual vapor pressure and saturated vapor pressure respectively,
oth measured in kilo-pascals (kPa). The difference between e𝑠 and e𝑎 is known as the vapor pressure deficit measured in kPa. 𝛾 is

the psychometric constant measured in kilo-pascals per degree Celsius, and 𝛥 is the slope of the vapor pressure curve measured in
ilo-pascals per degree Celsius (◦C).

Internet of Things (IoT) is the major paradigm to cope with major issues of low productivity in agriculture and the conservation
f natural resources by leveraging context-aware applications [3,22]. IoT has revolutionized every aspect of life with context-aware
pplications [23,24]. IoT is emerged as the potential technology for smart irrigation water systems [25]. IoT is the basic pillar
f precision agriculture by assisting in monitoring and controlling various farming activities [2,26]. IoT is also very effective for
fficient irrigation water management by providing real-time crop field climate context [27,28].

Machine learning is an exciting paradigm with enormous capabilities to deal with real-life complex problems through data-driven
ecisions [23]. Machine learning has played a substantial influence in all facets of life [29]. Machine learning has also played a
ubstantial role in agriculture from plant disease identification to quality control [30]. Machine learning also has a substantial role
n efficient irrigation water management by simplifying the ET𝑜 determination with limited meteorological conditions [31–33].

Modern machine learning capabilities are used to simplify the ET𝑜 determination with limited climatic conditions [34]. To deal
ith the complexity of standard PM approaches of ET𝑜 many efforts were made to determine ET𝑜 with limited meteorological

onditions. The existing approaches for simplifying ET𝑜 determination are not in accordance with the standard PM approach for
T𝑜 calculations. Moreover, these existing methods of ET𝑜 simplification do not take into account the real-time climatic conditions
f the crop field. To overcome these issues a hybrid ensembled machine learning model is proposed with the following unique
haracteristics.

1. The proposed solution is flexible to use the variable number of input climatic conditions.
2. The ET𝑜 predictions are based on real-time crop field climatic conditions sensed using IoT capabilities.
3. The proposed solution is in accordance with the ET𝑜 by the standard PM approach.

. Literature review

IoT and machine learning are extensively used for addressing various challenges in agriculture. The recent developments in
achine learning and IoT-based solutions for agriculture monitoring and simplification of ET𝑜 with limited climatic conditions are

eviewed with the following objective:

1. To explore recent emerging smart irrigation water management solutions.
2. To explore major advancements in agriculture monitoring technologies like IoT for precision irrigation water management.
3. To explore the machine learning approaches for ET𝑜 prediction with limited climatic conditions.

u Zhengguang et al. [35] proposed a framework for efficient irrigation water management for recovery of drought conditions
n the Yangtze River Basin. The recommended solution proved to be very effective in efficient water management in drought-
ffected areas. Alvis Rafael Gomes et al. [3] proposed a digital twin of irrigation to enable the real-time simulation of the irrigation
ystem’s behavior to design a smart irrigation system. Rodrigo Togneri et al. [36] proposed a data-driven model of irrigation water
equirement estimation with soil moisture observations. The results reflect that the Light Gradient Boosting Machines (GBM) model
erforms better in irrigation water requirements estimation using soil moisture conditions. Alexander Kocian et al. [12] presented
crop water usage modeling for soil-less cultivation using IoT to defines a stochastic crop coefficient with temperature.
2
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Ravi Kant Jain [37] proposed an automated drip irrigation water system with IoT and web portal-based field monitoring to
vercome the problem of continuous human vigilance for the conservation of irrigation water. Simrat Walia and Jyotsna Sengupta
27] proposed an automated irrigation water system with remote monitoring of climate conditions. The proposed irrigation water
ystem is made up of sensors and climate data for accurate irrigation water forecasting. Rab Nawaz Bashir et al. [23] introduced a
achine learning-oriented leaching process to deal with soil salinity using IoT data to observe the soil salinity. The recommended
ethod employs the Gaussian Naive Bayes (GNB) machine learning technique to determine the most effective irrigation water for

eaching. Muhammed Enes Bayrakdar et al. [22] proposes a cognitive terrestrial and underground Wireless Regional Area Network
WRAN) for agriculture monitoring in rural areas. The proposed solution for agriculture monitoring is based on Consumer Premise
quipment (CPE) and base station for low interference and spectrum cost.

Muhammed Enes Bayrakdar et al. [24] proposed a relay selection approach for agricultural monitoring over a large area to
mprove network sustainability. The simulation of the proposed model reveals the use of few sensor nodes to serve the intended
urpose. Arfat Ahmad Khan et al. [34] present an IoT and ensembled machine learning model for estimating monthly ET for saline
oil reclamation. The ensembled LSTM model shows 92% accuracy from the test dataset.

Xiang Jiao et al. [38] introduced a model to examine the primary climatic influences on ET𝑜 in a sub-alpine wetland valley in
hina. The findings of the study indicate a robust positive linear correlation between monthly mean ET𝑜 and air temperature, net
adiation, and vapor pressure deficit. Genan Wu et al. [39] explored the changes in major factors affecting the ET𝑜 in China over
he last thirty-four (34) years. Chen Junxu et al. [37] explored the ET𝑜 variation in different geographical distributions of Red River
asin and also explored the sensitivity ET𝑜 to various climatic conditions. Mona Ghafouri-Azar and Sang Lee [40] investigated the
nfluence of climatic conditions on ET𝑜 across diverse geographical regions in Korea. The forty-two (42) years of data reveal that
he impact of climatic factors varies across geographical locations. Neha K. Nawandar et al. [13] proposes an ANN-based model for
T𝑜 determination with limited meteorological conditions. ET𝑜 by the proposed solution shows a maximum error of 0.4 mm day−1.

Darbi Homa et al. [7] evaluated different methods of the Thornthwaite equation for ET𝑜 determination. The study compared
he six different methods of the Thornthwaite to adjust the Thornthwaite equation for the Sistan region of Iran. Feng Xuyu et al.
41] recommended a model of forecasting of crop specifics evapotranspiration (ET𝑐) and crop coefficient (K𝑐). Rongfei Zhang et al.
42] recommended an ET estimation model using Thermal Dissipation Probes (TDP) in southwest China using Landsat −8 images.
ranislav Kandra et al. [43] proposed a model to measure and analyze actual ET in the east Slovakian Lowland. Francesco Granata
44] evaluated three models of ET using the Support Vector Machine (SVM), with different combinations of inputs in the central
lorida region. The implementation of the solution shows that Model 1, using solar radiation, soil moisture, wind speed, humidity,
nd temperature provided the best results for ET𝑜 determination.

Sevim Seda Yamaç and Mladen Todorovic [45] evaluated various machine learning models with different climatic conditions to
etermine the ET𝑜 of the potato crop. The results revealed that the ANN model performs better with all climatic conditions. The
-nearest neighbor (kNN) based model is recommended in case of limited climatic conditions. The results were compared against the
oil water balance model and soil water content. Xianming Dou and Yongguo Yang [46] evaluated the SVM and Extreme Learning
achine (ELM) in the forecasting of daily ET𝑜 for four types of ecosystems. The study concluded that ELM and Adaptive Neuro-Fuzzy

nference System (ANFIS) outperformed in the forecasting daily ET𝑜.
Srdić et al. [47] assessed the performance of different empirical methods for ET𝑜 estimation in Bosnia and Herzegovina. The

esults show that the calibrated Hargreaves–Samani method (HC) performed best, while the Hargreaves–Samani method (HS) and
opais method (COP) showed an overestimation of ET𝑜. Esther Lee et al. [48] evaluated the performance of different models for daily
T𝑜 estimation in South Korea. The evaluation of the different models reveals that temperature-radiation-based models outperformed
he other models in ET𝑜. Su Yuexia et al. [49] observed the changes in ET𝑜 over time and discovered the major driving factors
ffecting the ET𝑜 in cotton production areas in China. The results of the observations showed a declining trend of ET𝑜. Moreover,
he maximum air temperature (Tmax), relative humidity (RH), sunshine duration (SD), wind speed at 2-meter height (WS), and
inimum air temperature (Tmin) are the major influential factors affecting the ET𝑜 in China.

Yixiao Zhang et al. [50] proposed a machine learning framework for estimating actual evapotranspiration (ETa) across the Hai
iver Basin using remote sensing data to forecast ET over a large area. The results reveal that maximum temperature is the major

nfluential factor of ET. Ravi Kant Jain [51] recommended drip irrigation water monitoring and control system using IoT. The
roposed solution is intended to be designed for the conservation of irrigation water without constant human vigilance. Zeng Cui
t al. [52] observed the variations in ET in Alpine meadows and its driving factors with climatic changes. The increasing ET pattern
s observed in Alpine meadows.

From the literature review, it is found that many machine learning approaches have been proposed to simplify the ET𝑜 predictions.
ollowing are the major limitations of existing machine learning approaches for ET𝑜 simplification.

1. The existing solutions use a fixed number of limited climatic conditions. The existing solutions are not flexible enough to
take advantage of additional climatic conditions in case they are also available to refine estimated ET𝑜 according to these
available conditions.

2. Many existing proposed solutions ignore the standard PM approach of ET𝑜 and are limited in predicting the ET𝑜 according
to the standard PM approach.

3. The implementation of the standard PM approach required sensing of crop field climate data at a 2-meter height from the
soil surface [7]. The existing solutions are limited in the use of real-time crop field climatic conditions. This limitation of
existing solutions results in inconsistencies in ET𝑜 predictions.

4. The existing solutions of ET𝑜 predictions are limited for specific geographical locations.

Keeping in view the above-mentioned limitations of the existing solution there is a need for an ET𝑜 predictions solution that
ddresses these limitations.
3
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Fig. 1. Model of smart Reference Evapotranspiration (ET𝑜).

3. Material and method

In this section, the model of the proposed solutions, the configuration of the hybrid ensemble machine learning model, the IoT
architecture used to collect crop field data, and the dataset used in the study are presented.

3.1. Proposed model of Reference Evapotranspiration (ET𝑜)

The proposed model of ET𝑜 prediction is shown in the Fig. 1, where the ET𝑜 determination with daily mean temperature (Tmean)
along with adjustments in ET𝑜 according to the daily maximum humidity (RHmax), maximum wind speed (WSmax) and sunshine
duration ratio (n/N) are also made. Initially, the ET𝑜 is determined from the Tmean using a deep learning model. The ET𝑜 is adjusted
according to the RHmax, WSmax, and n/N in the next phase. The RHmax, WSmax, and n/N are classified according to impact on
ET𝑜. For each class of climatic conditions, a separate regression model is applied to deal with the complexity and non-linear structure
of the problem. The ET𝑜 from the previous step with the classification of the RHmax, WSmax, and n/N act as input to one of the
appropriate regression models. The output of the regression models is the adjusted ET𝑜 (adj.ET𝑜). The proposed model can predict
ET𝑜 with only Tmean and enable to make an adjustment to ET𝑜 according to additional available climatic conditions. The salient
features of the proposed model of the ET𝑜 prediction are listed below.

1. ET𝑜 prediction are in according to the standard PM approach of ET𝑜.
2. The proposed solution relies on directly sensing climatic conditions from the crop field, at a 2-meter height from the soil

surface. It is the basic requirement for the standard PM approach [7]. The crop field sensed data, facilitated by IoT technology,
is utilized to make accurate predictions of ET𝑜.

3. The hybrid ensemble machine learning model is enabled to make predictions with only temperature, as well as flexible enough
to adjust ET𝑜, according to other available climatic conditions, in case they are also available.

The temperature is the most influential climatic condition of ET𝑜 [50,53]. The air temperature, humidity, sunshine duration,
nd wind speed (WS) at 2-meter height, are the major influential factors affecting the ET𝑜 [49]. Moreover, the correlation between
limatic conditions and ET𝑜 is shown in the Fig. 2, reveals the importance of climatic conditions especially the use of temperature as
he major factor in the proposed model of ET𝑜 prediction. The Pearson correlation coefficient (r) between ET𝑜 and Tmean, RHmax,

Smax, and n/N is 0.88, −0.74, 0.50, and 0.21 respectively. This correlation analysis between the ET𝑜 and climatic condition reveals
he importance of the use of Tmean, RHmax, WSmax, and n/N for ET𝑜 determination.

.2. Configuration of hybrid ensemble machine learning model

In this section, a detailed explanation of the configurations of machine learning models is given. The configuration of the proposed
ybrid machine-learning model is shown in Fig. 3 This particular configuration corresponds to the boosting ensemble machine
earning model, where two models, namely Model-C and Model-A, are combined in such a manner that the output of Model-C,
erves as input to Model-A. Model-C can predict ET𝑜 with only Tmean. Model-C is implemented with the ANN model. In case
ther climatic conditions are available then the ET𝑜 determined by Model-C, is adjusted according to additional available climatic
onditions by using Model-A. RHmax, WSmax, and n/N are classified according to their impact on ET𝑜 before being used as input
o Model-A. For each set of RHmax, WSmax, and n/N a different regression model is defined. Based on the classification of climatic
onditions, the appropriate regression algorithm is applied in Model-A. The step-by-step working of the hybrid ensemble machine
earning model is as follows.

1. Train the Model-C: The Model-C is implemented by the ANN model. ANN model is configured to take Tmean as input variables
4

and output ET𝑜 prediction using only Tmean.



Internet of Things 24 (2023) 100962R.N. Bashir et al.
Fig. 2. The correlation analysis between climatic conditions and ET𝑜.

Fig. 3. Configurations of Hybrid ensembled machine learning model.

Fig. 4. Configuration of simple Machine learning model with all input.
5
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Fig. 5. IoT architecture for collection of crop field climate data.

Table 1
Summery of configurations of machine learning models.

Name Input Output

Model-A ET𝑜, RHmax, WSmax, n/N Adj. ET𝑜
Model-B Tmean, RHmax, WSmax, n/N ET𝑜
Model-C Tmean ET𝑜

2. Generate ET𝑜 predictions from the Model-C: Use the trained ANNs to generate ET𝑜 predictions with only Tmean as input.
3. Classification of climatic conditions: RHmax, WSmax, and n/N are classified according to the range of values with similar

impacts on ET𝑜
4. Train Model-A: Use the classified training data of RHmax, WSmax, n/N, and the initial ET𝑜 prediction from the Model-C,

to train regression models selected according to the class identified in the previous section. The regression models output a
refined prediction of the ET𝑜 in the form of adj.ET𝑜.

o evaluate the proposed hybrid ensembled machine learning model, the performance is compared against Model-B, where all
he inputs are used to determine the ET𝑜. The configuration of Model-B is shown in the Fig. 4. The configuration of Model-B is

implemented using the ANN model. The summary of reconfiguration of the machine learning models is given in Table 1, where the
inputs and output to each configuration of the machine learning model are given.

3.3. Dataset and implementation

The climate data is collected from Pakistan which is an agriculture-intensive country. Pakistan is suffering from the severe threat
of a shortage of irrigation water and the implementation of the proposed solution is significant for the economic development of
Pakistan. The climate data from Pakistan is collected from the Years 2016 to 2022. The climate of Pakistan is arid. The data from
the crop field is sensed using a simple IoT architecture shown in Fig. 5. The sensor nodes are deployed in the field to sense the crop
field climate conditions. The sensor nodes sense data from the crop field at a 2-meter height from the soil surface as shown in Fig. 6.
6
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Fig. 6. IoT sensor node deployed in the crop field at 2 meter height.

Table 2
Daily maximum relative humidity
(RHmax) classes.

RHmax range % Class

<20 Low (L)
20–50 Medium (M)
>50 High (H)

Table 3
Daily maximum wind speed (WSmax) classes.

Daily maximum wind
speed (WSmax) ms−1

Class

<2 Low (L)
2–5 Medium (M)
>50 High (H)

The IoT-assisted crop field sensed data from the crop field helps the proposed solution to be accurate and in accordance with the
standard PM approach. The IoT server receives the sensed climate data from the sensor nodes deployed in the crop field, through
the gateway node. The server process, and store the data as well as provide data analysis services. The trained machine learning
model deployed at the server makes ET𝑜 predictions from the sensed climate conditions from the crop field. The collected climate
data is processed for both training the machine learning models and validating the ET𝑜 predictions. The use of crop field climate
data using IoT enables ET𝑜 determination according to the crop field climate. The use of IoT also enables to proposed solution to be
universally applicable according to different climates. The Tmean is calculated from the daily maximum temperature (Tmax) and
daily minimum temperature (Tmin) by Eq. (2).

𝑇𝑚𝑒𝑎𝑛 =
(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)

2
(2)

Fig. 2 illustrates the climate data at the selected location and Pearson correlation coefficient of different climate conditions
ith ET𝑜. There exists a positive relationship between Tmean and ET𝑜 with a Pearson correlation coefficient (r) of 0.88, revealing

hat temperature is the most influential climatic condition for ET𝑜. Therefore a separate model (Model-C) is configured for ET𝑜
etermination when only temperature data is available. The RHmax from the year 2016 to 2022 of the selected location with its
elationship to ET𝑜 is also shown in Fig. 2, with Pearson correlation coefficient (r) of −0.74. There exists a negative correlation

between the RHmax and ET𝑜. The Pearson correlation between WSmax and ET𝑜 is 0.50 revealing a positive correlation between
the WSmax and ET𝑜. The correlation between n/N and ET𝑜 is 0.21. The existence of a strong correlation between ET𝑜 and selected
climatic conditions justifies the use of these climatic conditions for ET𝑜 predictions in the proposed solution.

The climatic conditions are classified according to their impacts on ET𝑜. The climate classes are defined on the basis of their
ranges with subtle impact on ET𝑜 to define a separate regression model for each set of climate conditions.

The RHmax classes defined according to the RHmax values and their encoding are given in Table 2. The WSmax classes defined
according to the WSmax values and their encoding are given in Table 3. The n/N ratio is 0.8 for the bright sunshine day, 0.60–0.8
for forty percent daytime hours with partial cloudiness, and 0.6 for total cloudiness [54]. The n/N classes according to the n/N
7

values and their encoding are given in Table 4.
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Fig. 7. Dataset for regression models [54].

Table 4
Sunshine duration (n/N) classes.

Sunshine duration
ratio (n/N)

Class

<0.6 Low (L)
0.6–0.8 Medium (M)
>0.8 High (H)

Table 5
Encoding of climate conditions.

Class Code Class Code Class Code Class Code Class Code Class Code

L, H, L 1 L, H, M 2 L, H, H 3 M, H, L 4 M, H, M 5 M, H, H 6
H, H, L 7 H, H, M 8 H, H, H 9 L, M, L 10 L, M, M 11 L, M, H 12
M, M, L 13 M, M, M 14 M, M, H 15 H, M, L 16 H, M, M 17 H, M, M 18
L, H, L 19 L, H, M 20 L, H, H 21 M, H, L 22 M, H, M 23 M, H, H 24
H, H, L 25 H, H, M 26 H, H, H 27
8
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Fig. 8. Regression models.

Twenty-seven (27) unique combinations of climatic conditions are made with each defined range of RHmax, WSmax, and n/N.
The encoding of the climate combination is defined in Table 5. For each set of climatic conditions, a different dataset is used as
hown in Fig. 7. Each dataset is used to train a different regression model. For each encoded class a different regression model is
efined as shown in Fig. 8. The encoding of climatic conditions into different classes is used to select an appropriate regression
odel defined in Table 5. The ET𝑜 from the Model-C and encoded climatic conditions are made as input to the Model-A, to get
refined ET𝑜 according to additional climatic conditions in the form of adj.ET𝑜 by applying appropriate regression models. The

wenty-seven regression models for each of the twenty-seven combinations of RHmax, WSmax, and n/N are given in Fig. 8. The
lassification of climatic conditions helps to deal with the non-linear nature of the ET𝑜 prediction problem, with the help of linear
egression models. The residual plot of each regression model is shown in Fig. 9, from where it is observed that residual values in
ach plot are randomly scattered around zero point without any trend, revealing the goodness of fit of each regression model.

. Results

The evaluation of the proposed solution is performed from the following aspects.

1. Assessment of performance of regression model used in the configuration of proposed hybrid ensemble model (Model-A).
2. Assessment of performance of proposed hybrid ensemble model against other configurations of machine learning models.

For evaluation purposes, 30% of the dataset is set as the test dataset. The machine learning models are assessed based on
9
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Fig. 9. Residuals plots for regression models.
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Table 6
Performance metric of regression models.

Model R2 RMSE MAE
mm day−1

MAPE %

1 0.93 0.88 0.77 24.38
2 0.93 0.87 0.75 20.48
3 0.94 0.77 0.65 19.33
4 0.94 0.83 0.69 18.36
5 0.94 0.85 0.73 20.11
6 0.94 0.83 0.72 25.25
7 0.95 0.88 0.76 23.84
8 0.94 0.85 0.72 22.92
9 0.94 0.82 0.70 20.91
10 0.94 0.89 0.75 26.01
11 0.95 0.82 0.70 21.42
12 0.94 0.81 0.69 18.89
13 0.92 0.92 0.81 20.87
14 0.95 0.86 0.74 18.66
15 0.92 0.89 0.73 20.25
16 0.94 0.92 0.80 20.41
17 0.94 0.82 0.71 17.12
18 0.95 0.83 0.71 18.07
19 0.93 0.92 0.82 24.53
20 0.93 0.89 0.78 21.12
21 0.93 0.84 0.72 14.41
22 0.94 0.84 0.71 16.31
23 0.94 0.80 0.67 20.46
24 0.92 0.88 0.77 20.80
25 0.94 0.77 0.63 18.90
26 0.95 0.79 0.67 18.06
27 0.93 0.90 0.80 20.31

the coefficient of determination (R2), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute
Percentage Error(MAPE) from the test dataset. Moreover, the performance of different configurations of the machine learning
model is also assessed based on the similarity between the ET𝑜 predicted by these models and ET𝑜 by the standard PM
approach, using the Pearson correlation coefficient analysis.

For each combination of climatic conditions, twenty-seven regression models are trained. The performance of

4.1. Assessment of performance of regression models

For each combination of climatic conditions, twenty-seven regression models are trained. The performance of regression models
is evaluated using R2, RMSE, MAE, and MAPE and reported in Table 6 and comparative analysis is shown in Fig. 10. The R2 of
each regression model is high in the range of 0.92 and 0.95. and RMSE assesses the average errors in predicted value by a machine
learning model. The RMSE of each regression model is low in the range of 0.77 to 0.92. The MAE assesses the magnitude of errors
in predicted values by a machine learning model. The MAE by all the regression models is in the range of 0.63 to 0.82 mm day−1.
The MAPE is the measure of goodness of fit of the regression model. The lower values of MAPE of all the regression models are in
the range of 14.4% to 26.01% revealing the goodness of fit of all of the regression models. Comparative analysis of each regression
model using these performance matrices is also shown in Fig. 10. The lower values of MEA, MSE, and RMSE for each regression

odel reflect that there is a minimum difference in actual and predicted values of the ET𝑜 from the test dataset.

.2. Assessment of the performance of the proposed hybrid ensemble model

The performance of the proposed hybrid ensemble model (Model-A) is assessed by evaluation metrics of R2, RMSE, MAE, and
APE. Model-A is the hybrid ensemble machine learning model, which takes ET𝑜 from Model-C and incorporates RHmax, WSmax,

nd n/N with a classification process as input. Model-B uses all the inputs to the machine learning model while Model C uses
nly Tmean as input to the model. The performance of Model-A is compared against Model-B and Model-C using the evaluation
etrics. Moreover, the ET𝑜 prediction by each configuration of the machine learning model is also compared against the standard
M approach using the Person correlation (r), to assess the accuracy of each configuration of the machine learning model. The R2,
MSE, MAE, MAPE, and r of each of the three configurations of machine learning models is reported in Table 7. The proposed

hybrid ensemble model (Model-A) outperformed other configurations with high R2 of 0.94 and low values of RMSE, MAE, MAPE,
and r. The performance of the proposed hybrid ensemble model (Model-A) is also assessed by comparing it against ET𝑜 by the
standard PM approach from the test dataset. The ET𝑜 predictions made by three models are numerically correlated with the ET𝑜
values obtained through the standard PM approach. The correlation between ET𝑜 from Model-A and ET𝑜 derived from the standard
11

PM approach is found to be 0.917, as illustrated in Fig. 11. The ET𝑜 by model-B shows a correlation of 0.778 with the ET𝑜 by the



Internet of Things 24 (2023) 100962R.N. Bashir et al.

s

T
b
E
l

Fig. 10. Performance Analysis of regression models.

Fig. 11. Relationship between ET𝑜 by different models and the standard PM approach.

Table 7
Performance analysis of different configurations of machine learning models.

Model R2 RMSE MAE
(mm day−1)

MAPE (%) Pearson
correlation

Model-A 0.94 0.86 0.75 15.05 0.917
Model-B 0.91 0.91 0.95 20.40 0.778
Model-C 0.89 1.16 1.01 23.76 0.640

standard PM approach. Model-C determines the ET𝑜 from the only temperature. Model-C is part of Model-A, but it can also be used
as an independent model to predict ET𝑜 with only temperature. The ET𝑜 predicted by model-C with its correlation to ET𝑜 by the
tandard PM approach is 0.64.

The comparison of the correlation of ET𝑜 predictions by all the models against the standard PM approach is summarized in
able 7. The ET𝑜 by Model-A shows a Pearson correlation of 0.917 with the ET𝑜 by the standard PM approach. The ET𝑜 predictions
y Model-A are more similar to the ET𝑜 by the standard PM approach, compared to ET𝑜 predictions by Model-B and Model-C. The
T𝑜 by Model-C exhibits a Pearson correlation of 0.64 with the ET𝑜 by the standard PM approach. The performance of Model-C is
12

ess than Model-A and Model-B in the prediction of ET𝑜.
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Fig. 12. Comparison of ET𝑜 prediction by all models.

For comparison purposes, the ET𝑜 by all the configurations of machine learning models against the standard PM approach is
also shown in Fig. 12, from where it is observed that pattern ET𝑜 predictions by the Model-A is similar to the ET𝑜 determined by
he standard PM approach. The difference in ET𝑜 predictions against the standard PM approach by all the models is also shown in
ig. 12. The difference in ET𝑜 prediction against the standard PM approach by Model-A is less compared to Model-B, and Model-C.
he performance of Model-C in ET𝑜 prediction is low compared to Model-B.

.3. Discussion

The study proposed a hybrid ensembled machine learning for ET𝑜 predictions using the IoT-based crop field sensed climatic
ata. IoT-sensed crop field climatic conditions help to accurately predict the ET𝑜 according to the crop field conditions and to be
n accordance with the standard PM approach. The standard PM approach of ET𝑜 implies that climatic data should be taken at a
-meter height from the soil surface [7]. Therefore the implication of IoT in the proposed solution helps to accurately predict the
T𝑜 in compliance with the standard method of ET𝑜, and according to the real-time crop field conditions.

The proposed solution simplifies the ET𝑜 determination process with minimum climatic conditions and is flexible in the use of
he number of climatic conditions. A hybrid ensemble machine learning model (Model-A) is proposed that can use only temperature
o predict ET𝑜, as well as can take advantage of other climatic conditions in case they are available. The proposed hybrid ensemble
achine learning model is comprised of an ANN and multiple regression models. Initially, the ET𝑜 is determined from the ANN
odel (Model-C) with only temperature as input. The ET𝑜 from Model-C can be used when only temperature data is available. In

ase other climate data is also available the ET𝑜 from Model-C is used as input to Model-A along with other available climate data.
he other available climate data are classified according to their impact on ET𝑜, to serve as input to model-A. For each set of climatic
onditions, a different regression model is defined. The performance of each regression model is analyzed in terms of R2, RMSE,
AE, and MAPE of each regression model. The assessment results of regression models reveal a wide range of performance. The R2

f regression models is in the range of 0.92 and 0.95 exhibits high R2 values of each regression model and lower values of MAPE in
he range of 14.4% to 26.01% revealing the goodness of fit of all of the regression models. The RMSE and MAE of each regression
odel are also low in the range of 0.77 to 0.92 and 0.63 to 0.82 mm day−1 respectively. This goodness of fit and accuracy of each

egression model used in Model-A reveals the accuracy of Model-A.
The proposed hybrid ensemble model (Model-A) exhibits a higher R2 value of 0.94 compared to 0.91 from Model-B. Model-A

lso achieves a lower MAPE value of 15.05%, compared to the MAPE value of 23.76% from Model-B. These statistics reveal that
odel-A exhibits better goodness of fit compared to Model-B. Moreover, Model-A also exhibits lower RMSE and MAE values of

.86 and 0.75 respectively compared to RMSE and MAE values of 0.91 and 0.95 from Model-B. The ET𝑜 predicted by Model-A also
xhibits the highest Pearson correlation coefficient of 0.917 with the ET𝑜 by standard PM approach. In contrast, the ET𝑜 predictions
y Model-B exhibit the Pearson correlation of 0.778 to the ET𝑜 by the standard PM approach. These statistics reveal that the ET𝑜
redictions by Model-A are more accurate and in accordance with the ET𝑜 by the standard PM approach, compared to Model-B.
odel-C which uses only temperature exhibits a lower R2 value of 0.89 compared to Model-A and Model-B. Model-C also exhibits

ow RMSE and MAE values of 1.16, and 1.01 mm day−1 respectively. The performance of Model-C is reasonable due to the use of
nly temperature data.

The performance analysis of the different configurations of the machine learning model describes the importance of selecting
he appropriate machine learning model for ET𝑜 prediction. Model-A shows superior performance across various metrics compared
o Model-B and Model-C. However, the choice of the model should consider the availability of climatic conditions and trade-offs
etween the accuracy and the cost of acquiring additional climatic data. The Model-C can be used when only temperature data is
vailable with a slight sacrifice of accuracy in ET𝑜 predictions.

The recommended solution helps in the conservation of irrigation water by simplification the ET𝑜 determination process. The
13

roposed solution of ET𝑜 determinations has several implications in precision and smart irrigation water management. The proposed
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hybrid ensemble machine learning model (Model-A) helps to simplify the complexity associated with the standard ET𝑜 method using
the variable number of climatic conditions. The proposed solution is limited in terms of applications and evaluation in other parts
of the world with different climatic conditions. The applications and performance evaluations of the proposed solutions in other
parts of the world and improving the accuracy of ET𝑜 predictions using only temperature data are recommended for future work.

5. Conclusion

A hybrid ensemble machine learning model for ET𝑜 predictions is proposed by using the Internet of Things (IoT) based crop
field climate data to simplify the ET𝑜 determination. The application of crop field sensed data by leveraging IoT helps to predict
the ET𝑜 according to crop field climate conditions and to be in accordance with the standard Penman-Montieth approach of ET𝑜
etermination. The proposed solution is unique in the use of a flexible number of climate conditions and in accordance with the
tandard Penman-Montieth approach (PM) of ET𝑜. The hybrid ensemble machine learning model is implemented with ANN and
egression models using the climate data of Pakistan from Year 2016 to 2022. The proposed hybrid ensemble machine learning
odel exhibits a R2 of 0.94, RMSE of 0.86, and MAE of 0.75 mm day−1 in ET𝑜 prediction from 30% test dataset, revealing the

ccuracy of the proposed hybrid ensemble machine learning model in ET𝑜 predictions. The ET𝑜 prediction by the proposed model
xhibits a Pearson correlation of 0.917 with the ET𝑜 by the standard Penman-Montieth (PM) approach, compared to 0.778 with
imple configurations of the machine learning model using ANN. The application and evaluation of the proposed solution in other
arts of the world with different climate conditions is recommended for future work.
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