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Sophia Harlid1, Carl Brunius4,5 and Bethany Van Guelpen1,9 

Abstract 

Background Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, but if discovered 
at an early stage, the survival rate is high. The aim of this study was to identify novel markers predictive of future CRC 
risk using untargeted metabolomics.

Methods This study included prospectively collected plasma samples from 902 CRC cases and 902 matched cancer-
free control participants from the population-based Northern Sweden Health and Disease Study (NSHDS), which were 
obtained up to 26 years prior to CRC diagnosis. Using reverse-phase liquid chromatography–mass spectrometry (LC–
MS), data comprising 5015 metabolic features were obtained. Conditional logistic regression was applied to identify 
potentially important metabolic features associated with CRC risk. In addition, we investigated if previously reported 
metabolite biomarkers of CRC risk could be validated in this study population.

Results In the univariable analysis, seven metabolic features were associated with CRC risk (using a false discovery 
rate cutoff of 0.25). Two of these could be annotated, one as pyroglutamic acid (odds ratio per one standard deviation 
increase = 0.79, 95% confidence interval, 0.70–0.89) and another as hydroxytigecycline (odds ratio per one standard 
deviation increase = 0.77, 95% confidence interval, 0.67–0.89). Associations with CRC risk were also found for six previ-
ously reported metabolic biomarkers of prevalent and/or incident CRC: sebacic acid (inverse association) and L-trypto-
phan, 3-hydroxybutyric acid, 9,12,13-TriHOME, valine, and 13-OxoODE (positive associations).

Conclusions These findings suggest that although the circulating metabolome may provide new etiological insights 
into the underlying causes of CRC development, its potential application for the identification of individuals at higher 
risk of developing CRC is limited.
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Background
Colorectal cancer (CRC) is the second leading cause of 
cancer-related death worldwide [1]. CRC tends to pro-
gress slowly without clear symptoms at early stages, 
and the high number of deaths due to CRC is partly a 
consequence of late detection. Thus, effective screening 
methods for early detection and for removal of precan-
cerous lesions are essential to decrease CRC mortality. 
Development of a blood-based screening method could 
play an important role in motivating individuals at risk 
to undergo further screening, thereby reducing CRC 
incidence and mortality.

Metabolomics is the study of small molecules 
(metabolites) that are present in biological systems at 
a given time point. The metabolomic profile can reflect 
extrinsic exposures, such as diet and tobacco, as well as 
intrinsic factors, including genetic variation [2]. Meta-
bolic reprogramming is an important cancer hallmark, 
and metabolomics is currently being used both to dis-
cover diagnostic disease biomarkers and to investigate 
etiological pathways involved in cancer development, 
which might have clinical implications for targeted 
pharmaco-prevention or therapy [3].

Previous studies have identified differences in metab-
olomic profiles between cases and healthy controls for 
several cancer types including CRC [4, 5]. A Chinese 
study of 22 colon cancer patients, 23 rectal cancer 
patients, and 45 healthy control participants reported 
differences in the levels of several serum metabolites 
between the three groups, and comparisons between 
preoperative and postoperative samples indicated that 
changes in the metabolic profiles were associated with 
the outcome of surgical treatment [6]. However, few 
studies have identified biomarkers of etiology or for 
early detection of CRC based on metabolic profiles 
in early-stage CRC or in pre-diagnostic settings, such 
as samples collected at screening or in prospective 
cohorts [7]. A prospective study in an Asian population 
identified 35 metabolites associated with subsequent 
CRC risk [8], none of which was replicated in a study 
based on the Cancer Prevention Study II Nutrition 
Cohort [9]. Six metabolites were associated with CRC 
risk in the latter study, which remain to be validated.

In this study, we employed an untargeted metabo-
lomics approach, using pre-diagnostic blood samples 
from 902 CRC cases and 902 individually matched con-
trol participants from a population-based cohort, to 
investigate the potential of plasma-based metabolomics 
for prediction of CRC risk. In addition, we investigated 
whether previously reported metabolite biomarkers of 
prevalent and/or incident CRC could be validated in 
our study.

Methods
Study population
The study population was derived from two population-
based cohorts within the Northern Sweden Health and 
Disease study (NSHDS). The majority of the study par-
ticipants (91%) were part of the Västerbotten Interven-
tion Programme (VIP), which invites the residents in 
Västerbotten County to general health exams. The study 
intends to invite all residents at 10-year intervals at 40, 
50, and 60 years of age (and 30 years of age until 1996), 
and the participation rates have varied over time with 
an average of around 60%. The physical exam includes 
measurements of height, weight, blood pressure, blood 
lipids, and an oral glucose tolerance test, and the partici-
pants are asked to donate a blood sample for biobanking. 
Participants in VIP complete extensive questionnaires 
regarding health and health-related factors, such as life-
style. The remainder of the data (9%) were collected from 
the WHO’s Northern Sweden Multinational Monitoring 
of Trends and Determinants in Cardiovascular Disease 
(MONICA) study. Using a random selection of partici-
pants aged 25–74 years from the counties of Västerbotten 
and Norrbotten and repeated every 4–5 years since 1986, 
the MONICA study followed very similar protocols to 
the VIP [10]. Both cohorts have been described in detail 
elsewhere [11, 12]. Around 20% (374 participants) of the 
1804 individuals in this study had a repeated measure, 
meaning that they participated in an NSHDS cohort on 
two occasions, for example, at 50 and 60 years of age.

Sample collection and storage
The blood samples were taken after 5  min of rest and 
after more than 8  h of fasting for most subjects (83%). 
The blood samples used in this study were collected 
in EDTA tubes, and aliquots of plasma, buffy coat, and 
erythrocytes were frozen (− 20 ◦C ) within 1 h of collec-
tion. Within a week, the tubes were transported to − 80 
◦C freezers at a central storage facility.

Selection of study participants
Cohort participants who later developed CRC were iden-
tified through linkage with the Swedish Cancer Registry. 
Individuals that participated in MONICA or VIP before 
19th January 2016 were subject for inclusion, and the cut-
off date for case diagnosis was on 31st May 2016. Tumor 
stage and anatomical tumor location data were retrieved 
through the Swedish Colorectal Cancer Registry and, 
when necessary, through individual patient records. 
Tumor site was defined using the International Classifica-
tion of Disease 10th edition (ICD-10) codes: C.18.0 and 
C 18.2–18.4 for proximal colon, C18.5–18.7 for distal 
colon, and C19.9 and C20.9 for rectum. Exclusions were 
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made for participants with previous cancer diagnoses 
other than non-melanoma skin cancer. Individual match-
ing of cases and controls was based on the following: sex, 
age at baseline (± 1 year), cohort, year of blood sampling 
and data collection (± 1  year), number of freeze–thaw 
cycles of the plasma samples (92% with exact match), and 
fasting status at blood collection. All samples, including 
the repeated measures were prediagnostic. For partici-
pants with repeated sampling occasions, the sample col-
lected closest to the diagnosis date of the CRC case was 
used for each case set in the main analyses.

Tumor tissue analysis
Formalin-fixed and paraffin-embedded CRC tissue 
samples were collected either through primary tumor 
resection (majority of the samples) or biopsies (small 
proportion of the samples) at Umeå University Hos-
pital, Sweden. KRAS and BRAF mutational status was 
determined by analyzing DNA extracted using a Qiagen 
QIAamp DNA FFPE Tissue Kit. Sequencing to determine 
KRAS mutation (codon 12 and 13) was carried out using 
BigDye v. 3.1 (Applied Biosystems, Life Technologies, 
Stockholm, Sweden). BRAF mutations were detected 
by TaqMan allelic discrimination assay or digital drop-
let PCR. Tumors were determined as either microsatel-
lite instable (MSI) or microsatellite stable (MSS) using 
immunohistochemical analysis or a PCR-based method. 
The tumor tissue analyses are described in more detail 
elsewhere [13].

Metabolomic profiling
Plasma samples were aliquoted and sorted to preserve 
case sets, with random ordering within sets, and cold-
shipped (− 80  °C) to the Chalmers Mass Spectrometry 
Infrastructure at Chalmers University of Technology, 
Gothenburg, Sweden. Samples were thawed at 4 °C, vor-
texed, and an aliquot of 30 µL together with 200 µL of 
cold acetonitrile (ACN, VWR International) was added 
to the well of a 96-deep well microplate (Captiva, Agi-
lent Technologies), which was then mixed on an orbital 
shaker for 3 min at 1000  rpm. The microplate was cen-
trifuged for 10 min at 500 g at 4 °C, and the supernatant 
was filtered through a 96-well filter plate (0.45 µm, Cap-
tiva, Agilent Technologies). The filtrate was collected in 
a 96-well microplate (Nunc, Thermo Fisher Scientific), 
which was centrifuged at 500  g at 4  °C for 1  min and 
kept at 4  °C until instrumental analysis. The prepara-
tion of study-specific quality control samples (sQCs) was 
conducted by pooling equal amounts of plasma from 
samples in the first two batches. The sQCs were subject 
to the same sample preparation procedure as the actual 
samples. sQCs were injected at the beginning, at the end, 
and systematically between every 11 samples throughout 

the batch sequence. Independent long-term quality con-
trol plasma samples (ltQCs) were used to monitor the 
performance of the instrument and to correct for batch 
effects [14].

The analysis of plasma samples was performed on an 
Agilent UHPLC-qTOF-MS system which consisted of 
a 1290 Infinity series UHPLC system with a 6550 UHD 
iFunnel accurate-mass qTOF spectrometer. During the 
analysis, the sample chamber was kept at 4  °C. Metabo-
lites were separated by reversed-phase chromatogra-
phy on a Waters ACQUITY UPLC HSS T3 column 
(100 × 2.1  mm, 1.8  µm). The Agilent MassHunter work-
station was used to operate and monitor the instrument 
and acquire data. The mobile phase included (A) water 
and (B) methanol, both containing 0.04% formic acid. The 
linear gradient elution was as follows: 0–6 min, 5–100% B 
and 6–10.5 min, 100% B. The flow of mobile phase was 
set at 0.4  mL/min. Metabolites were ionized by a Jet 
Stream Electrospray ionization (ESI) source. The mass 
spectrometer was operated in both positive and nega-
tive modes, and 2 and 4 µL of sample were injected for 
positive and negative modes, respectively. The spectrom-
eter parameters were set as follows: drying gas (nitrogen) 
temperature at 175 °C and flow at 12 mL/min, sheath gas 
temperature at 350  °C and flow at 11 L/min, nebulizer 
pressure at 45 psi, capillary voltage at 3500 V, nozzle volt-
age at 300 V, and fragmentor voltage at 175 V. Data were 
acquired within mass-to-charge ratio (m/z) 50–1600 in 
centroid mode with the acquisition rate at 1.67 spectra/s. 
The MS abundance threshold was set at 200. Iterative 
MS/MS data acquisition was performed on sQC samples 
in both modes with 10, 20, and 40 eV collision energies 
and with the same chromatographic conditions as for the 
MS analysis.

Metabolomics data preprocessing
Vendor raw data files were converted into mzML for-
mat (Proteo Wizard, version 3.0) for data preprocess-
ing, which was mainly performed using the R package 
“XCMS” [15]. Data from reversed-phase positive (RP) 
and negative (RN) modes were processed separately. 
The key parameters of XCMS were optimized with the 
aid of the R package “IPO” [16]. In total, 8236 metabolite 
features were obtained for RP and 6599 features for RN. 
Imputation for missing values in the metabolomics data 
was conducted using an in-house random forest-based 
algorithm (the mvImpWrap function from https:// git-
lab. com/ CarlB runius/ StatT ools). Within- and between-
batch normalization were performed using the R 
package “BatchCorr” [14]. After normalization, 4804 fea-
tures for RP and 4461 features for RN with coefficient of 
variation (CV) ≤ 30% among sQCs were retained. Finally, 
features presumably derived from the same metabolite 

https://gitlab.com/CarlBrunius/StatTools
https://gitlab.com/CarlBrunius/StatTools
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were grouped with the R package “RAMClustR” [17] 
using manually optimized parameters. The feature with 
the highest intensity in each group was selected to repre-
sent the corresponding metabolite. Features not grouped 
were retained as singletons. The final data set comprised 
2644 features for RP and 2391 features for RN. Param-
eters used for XCMS and RAMClustR are presented in 
additional notes.

Metabolite identification
Metabolite identification was carried out using an in-
house native standard library and the MassBank of North 
America [18], as well as the in silico fragmentation tools 
MetFrag [19] and SIRIUS [20]. All files containing MS2 
spectra were converted to.mgf format prior to analysis. 
Identification was carried out according to the Schy-
manski scale, determining the confidence level (CL) on a 
scale from 1 to 5 [21]. We considered CL 1 (confirmed 
structure by reference match) for comparisons against 
in-house reference library with a modified cosine score 
above 0.9; CL 2 (probable structure by library/diagnos-
tic evidence) for an exact spectral similarity above 0.9 in 
MetFrag; CL 3 (tentative candidate) for features where 
the majority of spectra of a feature were predicted to be 
the same compound by both MetFrag and SIRIUS; CL 3 
or CL 4 (unequivocal molecular formula) was assigned, 
depending on manual assessment of spectral similarity 
when the majority of the spectra of a feature were pre-
dicted to be the same compound in either MetFrag or 
SIRIUS, but not by both; CL 4 was also assigned when 
the majority of the spectra were predicted to have the 
same chemical formula in SIRIUS; and CL 5 (mass of 
interest) was assigned when no MS2 was obtained for a 
feature or when there was no majority of spectral predic-
tions. Parameters for SIRIUS, MetFrag, HMDB, and in-
house library matching are found in additional notes.

Statistical analysis
All statistical analyses were performed in R v4.0.3 [22]. 
A p-value below 0.05 was considered statistically sig-
nificant. When testing differences in metabolite fea-
tures by CRC status, the false discovery rate (FDR) was 
controlled for using the Benjamini–Hochberg method 
[23]. A relatively non-stringent FDR cutoff of 0.25 was 
chosen to increase the possibility to find potential bio-
markers in the exploratory main analysis. Baseline 
characteristics of the study participants were presented 
as mean values and standard deviations or as frequen-
cies and percentages. Differences between matched 
cases and controls were assessed using paired Wilcoxon 
signed-rank tests or chi-squared tests. Metabolite-wise 
analysis of case–control status was performed using 
conditional logistic regression to identify metabolite 

features associated with CRC risk. Odds ratios (OR) 
were calculated per 1 standard deviation increase in 
the metabolite feature and expressed with a 95% confi-
dence interval (CI). Significant features were also stud-
ied in the earlier samples from the 374 individuals with 
repeated sample occasions.

Classification of participants according to disease 
status and clinical and molecular tumor subtypes was 
performed using a random forest model with incorpo-
rated recursive variable selection in a repeated double 
cross-validation procedure (R package MUVR) [24]. 
Parameters in the models were set to the following: var-
Ratio = 0.85, nOuter = 6, and nrep = 30. Separate models 
were constructed based on time intervals from sampling 
to diagnosis according to < 5  years prior to diagnosis, 
5–9  years prior to diagnosis, 10–15  years prior to diag-
nosis, and > 15 years prior to diagnosis. Sensitivity analy-
sis was performed by stratifying by sex as well as limiting 
to participants who had fasted > 8  h. Subgroup analysis 
was conducted by considering CRC cases defined by the 
following: tumor location (proximal colon, distal colon, 
rectum), tumor stage (stages I–II, stages III–IV), KRAS 
mutation (mutation, wild type), BRAF mutation (muta-
tion, wild type), combined KRAS/BRAF mutation sta-
tus (KRAS mutated, BRAF mutated, both wild type), 
and MSI status (MSI, MSS). A set of a priori defined 
potential confounders with adequate data available was 
included together with the metabolomics data for selec-
tion in the random forest models. The aim in a random 
forest model is to reduce classification error by splitting 
the data so that the variance is minimized. The model 
does not consider the confounding effect of covariates in 
the split of the data, so the potential confounders were 
added to the model to see if they were retained and could 
improve predictions. The potential confounders included 
the following: body mass index (BMI, kg/m2), smoking 
status (current smoker, former smoker or nonsmoker), 
education level (elementary school (9  years of compul-
sory school for children aged 7 post-secondary 16), sec-
ondary school, postsecondary education), diabetes (yes 
or no, self-reported in questionnaire), alcohol intake (g/
day trichotomized to the following: zero intake, intake 
below sex-specific median or above sex-specific median), 
and recreational physical activity (single questionnaire 
item: never, now and then, 1–2 times/week, 2–3 times/
week, > 3 times/week).

Two random forest models were built for each sub-
group analysis. One was based only on the metabolomics 
profiles, and a second model included the abovemen-
tioned potential confounders as well as the case–con-
trol matching variables (cohort, baseline age, sex, year of 
blood sampling, fasting status, and number of freeze and 
thaw cycles) together with the metabolite features.
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The predictive power was assessed by calculating overall 
error rate (OER) and balanced error rate (BER) using pre-
dictions from cross validation, where BER =

Class
ErrorRateClass

nClass
 

and OER = 1− correctclassificationrate . Consequently, 
BER under random conditions vary depending on the 
number of subgroups. For three subgroups, the expected 
 BERrandom is 0.67, and for two subgroups, the expected 
 BERrandom is 0.5. Expected OER under random conditions 
were obtained by randomly permuting the class labels 
(n = 10,000). Imputation of missing data among con-
founder variables was handled by replacing the missing 
value with the sex-specific mode for discrete variables and 
with the sex-specific median for continuous variables. 
Median values and modes were calculated based on the 
data in this study. For categorical variables in which more 
than 10% of the samples had missing values, the missing 
values were considered as a dummy category in the 
model.

Replication of previously reported CRC biomarker 
candidates
Metabolites previously reported to be associated with 
incident and/or prevalent CRC were identified through 
a literature search in PubMed in March 2021 for studies 
on metabolite biomarkers for CRC (Additional Table 1). 
Identification of candidate masses in our metabolomics 
data was performed using exact mass when reported 
in the original publications. In addition, monoisotopic 
masses for all candidates were extracted from HMDB, 
and theoretical m/z-values were obtained for posi-
tive and negative ionization-specific adducts, respec-
tively: [M +  H]+, [M +  Na]+, [M +  K]+, [M +  NH4]+, 
[M +  2H]+, [M + ACN +  H]+, and [M −  H2O +  H]+ for 
positive ionization and [M −  H]−, [M −  H2O −  H]−, 
[M −  2H]−, [M + Na −  2H]−, [M + K −  2H]−, [M +  Cl]−, 
and [M + FA −  H]− for negative ionization. Metabo-
lite candidates were considered to be replicated in our 
study for features that both corresponded to a lookup 
match (within class tolerance < 10  ppm) and were asso-
ciated with CRC risk in multivariable conditional logis-
tic regression adjusted for the potential confounders 
described above (nominal p < 0.05). The candidate list 
was filtered to remove instrument artifacts, isotopes, or 
features having an MS/MS fragmentation pattern not 
corresponding to the candidate of interest.

Results
A total of 2300 plasma samples from 1150 case–con-
trol sample pairs were subject to LC–MS analysis. 
Some samples were excluded due to technical issues 
(low blood volume, instrument, or operation error), 
no available cohort data corresponding to the date 
of blood sampling, and lack of a case–control match 

due to exclusion for one of the above reasons. Of the 
remaining samples, 374 (from 187 case–control pairs 
with repeated sampling occasions) were excluded from 
the main statistical analysis since a more recent sample 
taken closer to diagnosis of the CRC case was available. 
The main analyses thus included 1804 samples from as 
many participants, of which 902 later developed CRC 
and 902 were matched controls (Fig. 1). The 374 earliest 
samples among the repeated measures (187 case–con-
trol pairs), which were excluded in the main analysis, 
were studied separately, to see if metabolite features 
associated with CRC in the main analysis showed the 
same pattern at time points further from CRC diagno-
sis. These samples were collected on average 9.7  years 
(standard deviation 2.5) prior to the later sample. For 
744 CRC cases, tumor tissue was available and success-
fully analyzed for the BRAF V600E mutation, KRAS 
mutations, or MSI status.

Descriptive statistics of key variables
The mean age at sample collection was 56.2  years±7.4 
(mean ± standard deviation), with an even sex distribu-
tion. The time from sample collection to diagnosis var-
ied from 1  week to more than 26  years and on average 
cases were diagnosed with CRC 10.3  years after sample 
collection. Eighty-three percent of samples were col-
lected after > 8 h of fasting, and 94% of samples had been 
thawed at most once prior to aliquoting for this study. 
The number of freeze and thaw cycles was higher in cases 
compared to controls (p < 0.001). Sixty-two percent of the 
participants were considered either overweight or obese 
(BMI > 25) among both cases and controls, and BMI was 
lower among the controls (p = 0.015). None of the other 
factors in Table  1 differed significantly between cases 
and controls at baseline. The distribution of CRC cases 
by site was 32% right-sided colon, 30% left-sided colon, 
and 38% rectum, and the distribution was approximately 
even between stages I–II and III–IV (Table  1). Of the 
CRC cases with molecular tumor data, 20% were BRAF 
mutated, 23% were KRAS mutated, and 13% were MSI. 
Observations that had missing values in an outcome vari-
able (and their matched samples) were excluded from the 
respective subgroup analysis.

Plasma metabolomics for classification of CRC cases 
and controls
In the samples successfully analyzed by LC–MS, data 
were generated for 5015 metabolite features. To inves-
tigate the predictive potential of plasma metabolomics 
for CRC risk, we used a random forest classifica-
tion approach. None of the potential confounders was 
selected in the variable selection step.
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The predictive power was slightly higher in analy-
ses limited to cases and matched controls with samples 
collected within 5 years prior to the case diagnosis, but 
the performance of the classification models remained 
low (Table  2). The results also showed poor separation 
between CRC cases and controls when men and women 
were analyzed separately. Since there were only minor 
differences in performance between the joint and sex-
specific models (Additional Table 2), the sexes were com-
bined for all downstream analyses. Sensitivity analysis 
regarding fasting time showed that exclusion of partici-
pants with < 8  h fasting also made negligible differences 
in prediction performance (Additional Table  2). Down-
stream analysis, therefore, included both fasting and 
non-fasting participants.

Of all 5015 metabolite features, 480 were associ-
ated with CRC with a nominal p < 0.05 in the uni-
variable analysis. After adjusting for multiple testing 

(FDR 0.25), seven features remained significant, all of 
which demonstrated inverse associations with CRC. Of 
these, five could not be annotated (levels 4–5) due to 
low feature intensity, resulting in absent or low qual-
ity MS2 fragmentation. One metabolite was tentatively 
annotated as pyroglutamic acid (level 2), and another 
feature was annotated as hydroxytigecycline (level 
3). Inclusion of potential confounders in the condi-
tional logistic regression models resulted in two sig-
nificant metabolite features (Table 3), neither of which 
could be annotated. We also repeated the analyses for 
the seven features in the subset of 374 earliest sam-
ples (187 case–control pairs) from participants with 
repeated samples, from whom the sample collected 
closest to case diagnosis was included in the main 
analyses. In the univariable analysis, two features had 
nominal p-values < 0.05, one of which was hydroxyt-
igecycline, and an additional two had p-values < 0.10. 

Fig. 1 Flowchart of plasma samples eligible for LC–MS analysis. This nested case–control study included samples from two population-based 
cohorts within the Northern Sweden Health and Disease Study, which had recruited almost 142,000 participants as of end of May 2020. Participants 
who later developed colorectal cancers were identified through cancer registries, and control participants were selected with matching for sex, age 
at baseline, cohort, year of blood sampling and data collection, number of freeze–thaw cycles of the plasma samples, and fasting status at blood 
collection. After exclusion of samples due to technical losses, unavailable confounder data, and incomplete case–control pairs, 2178 samples (1089 
case–control pairs) remained for statistical analysis. In total, 1804 samples were included in the main analysis after filtering out 374 earliest samples 
from participants with repeated sampling occasions
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The directions of all associations were consistent with 
the main analyses, with lower concentrations in cases 
than controls. After inclusion of possible confounders 
in the models for the additional data set, two features 
had nominal p-values < 0.10, but none reached the sig-
nificance level of 0.05.

Table 1 Descriptive statistics of baseline variables in colorectal 
cancer cases and matched control samples

Cases (n = 902) Controls (n = 902) p-value

Age at baseline 56.2 (7.4) 56.2 (7.4) 0.826

Age at diagnosis 66.5 (9.1) - -

Sex 1.000

 Men 462 (51.2%) 462 (51.2%)

 Women 440 (48.8%) 440 (48.8%)

BMI (kg/m2)a 26.7 (4.0) 26.3 (4.0) 0.015

Cohort 1.000

 VIP 820 (91%) 820 (91%)

 MONICA 82 (9%) 82 (9%)

Freeze and thaw  cyclesb  < 0.001

 0 755 (84%) 752 (83%)

 1 79 (9%) 109 (12%)

 2 44 (5%) 40 (4%)

 3 24 (3%) 1 (0%)

Fasting status 1.000

 0–4 h 27 (3%) 27 (3%)

 4–8 h 125 (14%) 125 (14%)

 > 8 h 750 (83%) 750 (83%)

Storage time (years) 20.9 (5.7) 20.9 (5.7) 0.976

Smoking status 0.221

 Nonsmoker 364 (41%) 400 (45%)

 Former smoker 335 (38%) 307 (35%)

 Current smoker 187 (21%) 173 (20%)

 Missing 16 22

Education 0.359

 Elementary school 348 (39%) 369 (42%)

 Secondary school 397 (45%) 362 (41%)

 Postsecondary school 141 (16%) 157 (18%)

 Missing 16 14

Diabetes 0.069

 Yes 34 (4%) 20 (2%)

 No 863 (96%) 872 (98%)

 Missing 5 10

Recreational physical 
activity

0.432

 Never 373 (49%) 337 (44%)

 Now and then 201 (26%) 212 (28%)

 1–2 times/week 98 (14%) 103 (14%)

 2–3 times/week 61 (8%) 76 (10%)

  > 3 times/week 36 (5%) 30 (4%)

 Missing 133 144

Alcohol intake (g/day)c 4.1 (5.0) 3.8 (4.7) 0.624

Tumor location -

 Proximal colon 286 (32%) -

 Distal colon 266 (30%) -

 Rectum 342 (38%) -

 Missing 8 -

Stage -

 Stages I–II 426 (51%) -

Table 1 (continued)

Cases (n = 902) Controls (n = 902) p-value

 Stages III–IV 417 (49%) -

 Missing 59 -

BRAFd -

 Mutation 140 (20%) -

 Wild type 565 (80%) -

 Missing 197 -

KRASd -

 Mutation 154 23%) -

 Wild type 504 (77%) -

 Missing 244 -

KRAS/BRAFd -

 BRAF 140 (22%) -

 KRAS 154 (24%) -

 Both wild type 354 (55%) -

 Missing 254 -

MSI status -

 MSS 568 (87%) -

 MSI 87 (13%) -

 Missing 247 -

BMI body mass index. VIP Västerbotten Intervention Programme. MONICA 
Multinational Monitoring of Trends and Determinants in Cardiovascular Disease. 
MSI microsatellite instability. MSS microsatellite stable. Mean value and standard 
deviation are reported for continuous variable, whereas counts and percentage 
are presented for categorical variables. P-values were calculated using paired 
Wilcoxon signed-rank tests or chi-squared tests. aCases and controls had 5 and 
7 missing values, respectively. bPrior to aliquoting for shipment to lab. Of the 
case–control pairs, 92% were exactly matched on number of freeze–thaw cycles. 
cCases and controls had 98 and 101 missing values, respectively. dFour of the 
missing values were samples with both KRAS and BRAF mutation, which were 
excluded in the subgroup analysis

Table 2 Balanced error rates for random forest analysis of cases 
versus controls for samples collected at varying time intervals 
prior to diagnosis

Potential confounders (body mass index, smoking status, education level, 
diabetes, alcohol intake, and recreational physical activity) were included in the 
models, but none was selected in the built-in variable selection step. aBalanced 
error rate for a two-class problem with expected BER by chance of 0.50. bSince 
there is a 1:1 match between cases and controls (i.e., the data are perfectly 
balanced), the overall error rate is equal to the balanced error rate

 < 5 years 5–9 years 10–15 years  > 15 years All 
samples

Balanced 
error 
 ratea,b

0.43 0.49 0.50 0.54 0.46
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Metabolomic profiles and subtypes of CRC 
In addition to studying metabolites associated with 
overall CRC risk, we used the data to classify subjects 
according to clinical and molecular tumor subtypes. 
None of the potential confounders was selected in the 
variable selection step of the random forest models, with 
the exception of BMI, in the tumor location analysis 
restricted to samples taken < 5 years prior to diagnosis. In 
general, all models showed low predictive performance 
with balanced error rates (BER) close to what would be 
expected by chance, and no clear trend in performance 
was observed for CRC subtypes related to time to diag-
nosis (Table 4, Additional Table 3).

Replication of previously reported CRC biomarker 
candidates
In 12 studies by 11 different research groups, blood, 
urine, or tumor tissue metabolomes were related to 
incident [8, 9, 25–28] or prevalent CRC [29–34], pro-
viding 297 potential metabolomic biomarker candidates 
(Additional Table  1). In our data, 37 features provided 
matches to exact mass (< 10 ppm) with 36 reported can-
didates and were associated with CRC risk (p-value in 
conditional logistic regression < 0.05).

Among these 37 features, six corresponded to the can-
didate of interest: L-tryptophan (level 2; OR (95% CI) 1.13 
(1.00–1.28), p = 0.05), 3-hydroxybutyric acid (level 2; 1.14 
(1.01–1.29), p = 0.04), sebacic acid (level 3; 0.85 (0.76–
0.96), p = 0.01), 9,12,13-TriHOME (level 3; 1.24 (1.06–
1.44), p = 0.01), valine (level 2; 1.20 (1.04–1.38), p = 0.01), 
and 13-OxoODE (level 3; 1.26 (1.04–1.51), p = 0.02). For 
the remaining features (n = 31), MS/MS fragmentation 
patterns were not matched in MassBank or well pre-
dicted by SIRIUS (n = 16) or obtained at all (n = 15) and 
could therefore not be confirmed.

Discussion
Using an untargeted metabolomics approach to study 
potential plasma biomarkers of CRC risk in prospec-
tively collected samples, we identified novel metabolite 
biomarkers associated with subsequent CRC risk and 
replicated some findings from previous studies. The 
metabolite profiles could not discriminate between indi-
viduals that later developed CRC and healthy control 
participants or between clinical and molecular tumor 
subtypes.

With respect to the novel findings, seven metabolite 
features were associated with CRC risk in the univariate 
analysis, two of which retained significance after adjust-
ing for potential confounders. However, neither of these 
two features were successfully annotated, limiting further 
interpretation. In a separate, unadjusted, analysis using 
samples collected from 374 of the participants on aver-
age 9.7  years prior to the sample included in the main 
analysis, directions of associations were confirmed, and 
one annotated metabolite (hydroxytigecycline) was sta-
tistically significant at a nominal p < 0.05. The identi-
fied metabolites associated with CRC risk in our study 
might have relevance in terms of colorectal carcinogen-
esis. Pyroglutamic acid, also known as pidolic acid, is a 
derivative of L-glutamic acid and has been associated 
with dysregulation of glutamine and glutathione metab-
olism. Interestingly, higher levels of pyroglutamic acid 
have also been associated with use of the antibiotic flu-
cloxacillin, through inhibition of 5-oxoprolinase in the 
glutamate/glutathione cycle [35]. Hydroxytigecycline, 
the other annotated feature, is also connected to antibi-
otic use, as it is a metabolite of the tetracycline family of 
broad-spectrum antibiotics. Several recent studies indi-
cate that antibiotic use may increase the risk of colon 
cancer, particularly proximal colon cancer [36–38]. 
In our study, however, levels of pyroglutamic acid and 

Table 4 Balanced error rate for classification using random forest model and stratified by follow-up time from sample collection to 
colorectal cancer diagnosis of cases

wt wild type. MSI microsatellite instability. MSS microsatellite stable. None of the potential confounders (body mass index, smoking status, education level, diabetes, 
alcohol intake, and recreational physical activity) was selected in the variable selection step of the random forest models, with the exception of body mass index in 
the tumor location analysis restricted to samples taken < 5 years prior to diagnosis. aBalanced error rate for a three-class problem with expected BER by chance of 0.67. 
bBalanced error rate for a two-class problem with expected BER by chance of 0.50

 < 5 years 5–9 years 10–15 years  > 15 years All samples

Three-level outcomes
 Location (proximal, distal, rectal)a 0.72 0.63 0.66 0.59 0.62

 KRAS/BRAF (KRAS, BRAF, both wt)a 0.68 0.67 0.70 0.64 0.67

Two-level outcomes
 Stage (stages I–II and stages III–IV)b 0.50 0.41 0.44 0.46 0.49

 KRAS (mutation, wild type)b 0.50 0.47 0.42 0.44 0.50

 BRAF (mutation, wild type)b 0.50 0.50 0.52 0.51 0.50

 MSI (MSI, MSS)b 0.50 0.51 0.50 0.50 0.50
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hydroxytigecycline were lower in cases compared to con-
trols, therefore not supporting the antibiotics hypothesis.

Although some studies identified alterations in meta-
bolic pathways related to CRC [4], there are very few 
reports of validated metabolite biomarkers for early 
disease detection [5]. A limited number of studies have 
analyzed potential metabolite biomarkers for CRC in 
pre-diagnostic settings, most of which have focused on 
association to CRC risk by calculating odds ratios [8, 9, 
39]. In a study based on an Asian population, a moder-
ate discriminatory accuracy (AUC  = 0.76) was obtained 
when classifying individuals that later developed CRC 
and their matched controls using conditional logistic 
regression (8). However, the results were not evaluated 
using a test set or cross validation, and over-fitting was 
noted as a potential issue. Another study based on 254 
incident CRC cases and 254 matched controls found sug-
gestive associations between some metabolites and CRC 
risk, though none reached significance after adjusting for 
multiple testing. Also, similar to our findings, random 
forest analysis resulted in poor predictive power of future 
cases (error rate = 0.497) [39]. Taken together, the results 
of previous studies and the current investigation suggest 
that the circulating metabolome is likely to be a poor pre-
dictor of future CRC.

In addition to the main, agnostic approach in our study, 
we also attempted to replicate previously reported can-
didate metabolite markers of CRC or CRC risk. Of 37 
markers with exact mass matches in our data, we found 
associations with CRC for six metabolites of which two 
were of special interest: L-tryptophan and 3-hydroxy-
buyric acid. Tryptophan (L-tryptophan) is an essential 
amino acid, and lower levels of free tryptophan in plasma 
have been linked to progression in several cancer types 
including CRC [40]. Tryptophan metabolism plays an 
important role in the regulation of the immune system as 
catabolism of tryptophan through the kynurenine path-
way inhibits T-cell proliferation [41]. Two previous stud-
ies reported inverse associations between L-tryptophan 
blood levels and CRC [40, 42]. In contrast, we observed a 
positive association, i.e., individuals who later developed 
CRC had higher levels of L-tryptophan in plasma com-
pared to controls. The second metabolite of interest was 
3-hydroxybutyric acid (beta-hydroxybutyric acid), levels 
of which were higher in our prospective CRC cases com-
pared to the controls. In an earlier study of 3-hydroxybu-
tyric acid, using urine samples from a Canadian cohort, 
higher levels were also observed in CRC cases compared 
to controls, but the results could not be replicated in 
American patients [28]. Interestingly, 2-hydroxy-3-meth-
ylbutyric acid, which is a derivative of 3-hydroxybutyric 
acid, was recently identified as a biomarker of habitual 
alcohol intake and associated with risk of hepatocellular 

carcinoma (HCC) and pancreatic cancer in two large 
independent cohorts (EPIC and ATBC) [43]. This finding 
is well in line with our results as high alcohol consump-
tion is also a known risk factor for CRC.

A main limitation of metabolomics research using 
biobanked samples is the sensitivity of the methodology 
to pre-analytical sample management. Factors including 
freeze–thaw cycles and storage time and temperature are 
known to affect the measurable metabolome and might 
distort the results [44, 45]. In our study, the samples were 
collected and handled according to strict protocols and 
were matched between cases and controls with respect to 
relevant pre-analytical factors, such as fasting status (only 
3% of the participants had fasted < 4 h, 83% fasted > 8 h), 
thus reducing bias. We did not conduct analyses strati-
fied by pre-analytical factors because of limited power for 
such subgroups and to reduce the risk of chance findings 
due to multiple testing. However, the sensitivity analysis 
limiting the random forest analysis to participants who 
had fasted > 8 h did not affect predictive power. Overall, 
the sample size in our study should be large enough to 
discover pre-diagnostic disease markers even with poten-
tial noise caused by variability in pre-analytical factors. 
Other possible limitations of the study are the use of self-
reported data for some of the lifestyle-related potential 
confounders, minor changes in the questionnaire over 
time, and the lack of information regarding some CRC 
risk factors, such as family history and use of nonsteroi-
dal anti-inflammatory drugs (NSAIDs). That said, the 
confounder data, including the metabolic factors BMI 
(measured by a health professional) and diabetes, were 
strengths of the study. This study is one of the largest CRC 
metabolomics studies to date, and in addition to includ-
ing a large number of well-characterized CRC cases and 
matched controls from population-based cohorts, the 
main strengths are the prospective design, with samples 
collected at varying time points prior to case diagnosis, 
and the clinical and molecular tumor data for the CRC 
cases. The sampling protocol in VIP and MONICA was 
designed with needle-to-freezer time < 60  min, includ-
ing mainly fasting samples and storage time of < 1  week 
at − 20  °C prior to long-term storage at − 80  °C, thus 
ensuring uniform and high sample quality well suited for 
metabolomics analysis. Earlier reports agree that storage 
of samples up to 1 week in − 20 °C freezers have negligible 
effects on the plasma metabolome [46, 47]. We were able 
to take into consideration baseline assessments of several 
CRC risk factors. Finally, we applied a rigorous procedure 
for obtaining high-quality untargeted LC–MS metabo-
lomics data. A limitation of the untargeted approach was 
the low intensity of several of the reported features, with 
limited MS/MS fragmentation data, consequently limit-
ing the possibilities for accurate identification. However, 
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reporting of unannotated features is important for avail-
ability in future research.

Conclusions
In conclusion, the findings of this large population-based, 
nested case–control study suggest that although circulat-
ing metabolites may provide etiologic insight for further 
investigation, they demonstrate the importance of valida-
tion studies and suggest that the circulating metabolome 
alone probably cannot achieve a discriminatory perfor-
mance sufficient for clinical application in risk stratifica-
tion or precision screening for CRC.
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