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LÉVY PROCESSES
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Abstract. We study tail probabilities of superexponential infinite divisible distributions as well
as tail probabilities of suprema of Lévy processes with superexponential marginal distributions over
compact intervals.
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1. Introduction

By a Lévy process we mean a stochastically continuous process ξ = {ξ(t)}t≥0 starting at ξ(0) = 0, that has
stationary and independent increments. Writing κ(x) = x/(1∨|x|) for x ∈ R, the finite dimensional distributions
of a Lévy process are fully determined by its so called characteristic triplet (ν,m, s2) through the relation

E
{

eiθξ(t)
}

= exp

{
itθm+ t

∫
R

(
eiθx−1− iθκ(x)

)
dν(x)− tθ2s2

2

}
for θ ∈R and t≥ 0. (1.1)

Here m ∈ R and s2 ≥ 0 are constants while ν is the so called Lévy measure on R that satisfies ν({0}) = 0 and∫
R(1 ∧ |x|2)dν(x) <∞.

We call a Lévy process ξ superexponential if E{eαξ(1)} < ∞ for α ≥ 0. It follows from Sato [29],
Theorem 25.17, that ξ is superexponential if and only if it has a well-defined Laplace transform

φt(λ) = E{e−λξ(t)} = φ1(λ)t <∞ for λ ≤ 0 and t > 0. (1.2)

Also, according to Sato [29], Theorem 25.17, (1.2) is equivalent to∫
|x|>1

e−λxdν(x) <∞ for λ ≤ 0.

Hence, in order for a process to be superexponential its Lévy measure has to decay more that exponentially fast
approaching +∞.
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In Theorems 2.2 and 2.12 of Section 2 we find the asymptotic behaviour of P{ξ(h) > u} for large u in closed
form. Besides being of interest on their own in, e.g., extreme value theory, these findings are also crucially used
for the proof of our main result (1.5) below.

As infinitely divisible distributions are built up as sums of independent identically distributed increments of
Lévy processes, not surprisingly, it turns out that investigation of the asymptotic behaviour of P{ξ(h) > u}
for large u is directly linked to how big are increments of Lévy processes over infinitesimal time intervals. So
as a biproduct of our results on tails for superexponential infinitely divisible distributions, under appropriate
technical conditions, for a superexponential Lévy process ξ, in Theorems 2.11 and 2.12 below, we show that
there exist functions q, w : (0,∞)→ (0,∞) with q(u), w(u)→ 0 as u→∞ such that

ξ(aq(u))

w(u)

d→ ζ(a) as u→∞ for a > 0 (1.3)

for some random variables {ζ(a)}a>0. This condition controls the size of increments over small time intervals of
the Lévy process. Further, in Theorems 2.2 and 2.12 below, we show that the limit

L(t, x) = lim
u→∞

P{ξ(h− q(u)t) > u+ xw(u)}
P{ξ(h) > u}

exists for t ≥ 0 and x ∈ R. (1.4)

This condition is a version of belongingness to the so called Type I domain of attraction of extremes, see, e.g.,
[22], Chapter 1. The verification of these two results use Tauberian techniques developed for this purpose.

In Section 3 we do some preparatory investigations of the behaviour of suprema of Lévy processes.
In Section 4, under a technical conditions on the superexponential Lévy process ξ, we establish the existence

of a constant H ≥ 1 such that

lim
u→∞

1

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u

}
= H for h > 0. (1.5)

This completes our findings in [3] where the tail behaviour of suprema of so called subexponential and exponential
Lévy processes were studied. The constant H given by equation 4.8 below cannot be calculated explicitly in
general. This is similar to what is the situation with the famous Pickands’ constant Hα from extreme value
theory of stationary Gaussian processes, the definition of which somewhat resembles that of H (when done as in
Albin and Choi [4]). However, in some setups it can be seen that, for example, H = 1 from a certain degeneracy
of weak limits ingredients. See the examples in Section 5 for more on this.

As we know the behaviour of P{ξ(h) > u} for large u in more or less closed form from Section 2, this means
that the asymptotic behaviour of P{supt∈[0,h] ξ(t) > u} is fully understood.

In the concluding Section 5 we consider six examples of usage of (1.5):

1. Brownian motion with drift for which H = 2 in (1.5).
2. Merton’s jump diffusion for which H = 1 in (1.5).
3. Rapidly decreasing tempered stable Lévy processes for which H = 1 in (1.5).
4. Totally skewed to the left α-stable Lévy processes with α ∈ (1, 2) for which H > 1 in (1.5).
5. Totally skewed to the left 1-stable Lévy processes for which H = 1 in (1.5).
6. An unnamed superexponential Lévy process defined by Linnik and Ostrovskĭı [23] for which H = 1 in

(1.5).

At a first reading some readers might want to skip Section 4 and go directly to the examples in Section 5.
Extreme value theory origins in the search for nondegenerate limit laws for (max1≤i≤nXi−an)/bn as n→∞

when {Xi}∞i=1 are iid. random variables and {an}∞n=1 and {bn}∞n=1 are suitable normalizing sequences. The
solution to this problem is the so called extremal types theorem from around the middle of the previous century,
see, e.g., [22], Chapter 1. After this extensions were considered to stationary and other sequences {Xi}∞i=1, see,
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e.g., [22], Chapter 3–6. Subsequently interest moved to maxima of continuous time random processes, see, e.g.,
[9] and [22], Chapters 7–13. However, arguably, there exists no really up to date comprehensive coverage of this
latter topic. As for applications of extreme value theory, there are some material on this in [22], Chapters 14–15.
Basically, in many applications of random processes, one of the most interesting problems is that of extreme
values. This can be in risk analysis in mathematical finance or for construction applications, etc. And it is there
extreme value theory provides the theoretical framework.

We now state our main result on extremes of superexponential Lévy processes. See Albin and Sundén [3] on
bibliographic information for results on this type. In addition, a few relevant references not mentioned there are
Albin [1] and Braverman [11–13]. In particular Braverman have studied related problems in many papers but
with completely different techniques than ours. For exemple, [13] is an extensive treatment of light tailed Lévy
processes made up of a finite variation process with (possibly) an added Brownian motion component.

Recall that the right end-point sup{x ∈ R : P{ξ(t)>x}> 0} of a Lévy process ξ is infinite for some t > 0 if
and only if

sup
{
x ∈ R : P{ξ(t)>x}> 0

}
=∞ for each t > 0 (1.6)

(see e.g., Sato [29], Thm. 24.7). By inspection of, e.g., Sato [29], Definition 11.9 and Theorem 24.7, (1.6) is same
thing as ∫ 0

−1

(−x)dν(x) =∞ or ν((0,∞)) > 0 or s2 > 0. (1.7)

Theorem 1.1. Let ξ be a separable superexponential Lévy process with infinite upper end-point (1.6). Assume
that there exist functions w > 0 and q > 0 with w continuous and random variables {ζ(a)}a>0 such that (1.3)
and (1.4) hold with L(0, x) = e−x. Further, assume that ζ(a) is continuously distributed for a > 0, or that L(t, ·)
is a continuous function for t > 0. If

lim
T→∞

lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup

t∈[0,h−Tq(u)]

ξ(t) > u

}
= 0, (1.8)

then the limit (1.5) exists with value H ∈ [1,∞).

The proof of Theorem 1.1 constitutes Section 4.
Sufficient conditions on the characteristic triplet for the conditions (1.3) and (1.4) to hold are established in

Theorems 2.2, 2.11 and 2.12 together with Propositions 2.8, 2.9 and 2.10 below.
The constant H in (1.5) is a rather complicated functional of the quantities ζ and L, see the proof of Theorem

1.1 in Section 4 for more information. It seems, in general, that H cannot be calculated in closed form. However,
as we will see below, in some cases we encounter H really can be calculated. Also, in other cases, qualitative
information such as whether H > 1 or not can be established.

Equation 1.8 means that the appropriate time scale of the Lévy process {ξ(t)}t∈[0,h] when it takes a large value
u (always close to the terminal point h) is q(u). This can be said to govern the whole analysis of the probability
for such large values. Some conditions to check 1.8 are given in Section 3, especially in Proposition 3.4.

2. Tail probabilities of superexponential processes

We start with the notion of Type I domain of attraction of extremes:
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Definition 2.1. A random variable X belongs to the Type I domain of attraction of extremes, with auxiliary
function w(u) > 0, if

lim
u→∞

P{X > u+ xw(u)}
P{X > u}

= e−x for x ∈ R.

The auxiliary function in Definition 2.1 satisfies limu→∞ w(u)/u = 0 and can be chosen to be continuous
(see e.g., Bingham, Goldie and Teugels [10], Lem. 3.10.1 and Cor 3.10.9). Further, w̃ is another auxiliary for X
function if and only if limu→∞ w̃(u)/w(u) = 1.

Feigin and Yashchin [17], Theorems 2 and 3, give a scheme to deduce the asymptotics of the right tail of a
probability distribution function from the left tail of its Laplace transform. The usefulness of this to establish
Type I attraction was noted in a particular case by Davis and Resnick, [14], Section 3, see also Rootzén
[26, 27]. Balkema, Klüppelberg and Resnick [5–7] and Balkema, Klüppelberg and Stadtmüller [8] characterized
convergence of the Esscher transforms (exponential families), which are the key ingredient of proofs in this area.
But they impose conditions on densities that we are not comfortable with. And it is not that convergence which
is our goal, but to find the actual tail behaviour and to show Type I attraction. In fact, we deal with random
variables, the distribution of which depends on how far out we are in the tail (an “external parameter”). This
makes the existing literature non-applicable anyway.

For a Lévy process ξ with Laplace transform (1.2), we introduce the following notation:
µ(λ) = −φ

′
1(λ)

φ1(λ)
=

∫
R

(
xe−λx − κ(x)

)
dν(x) +m− λs2 for λ ≤ 0,

σ(λ)2 = −µ′(λ) =

∫
R
x2e−λx dν(x) + s2 for λ ≤ 0,

µ←(u) = inf{λ ∈ R : µ(λ) ≤ u} for u > 0 large enough.

(2.1)

The so called Esscher transform of ξ(t) is defined to be a random variable Xt,λ having probability distribution

dFXt,λ(x) =
e−λxdFξ(t)(x)

φt(λ)
, (2.2)

where Fξ(t) denotes the cumulative probability distribution function of ξ(t). It is easy to see that tµ(λ) and
tσ(λ)2 are the mean and variance of Xt,λ, respectively.

2.1. The asymptotic behaviour of P{ξ(h) > u} as u → ∞.

The following Theorem 2.2 is a development of a scheme of Feigin and Yashchin [17], and Davis and Resnick
[14], with additional input from Albin [2], to establish Type I attraction for infinitely divisible probability
distributions. The sufficient conditions of Theorem 2.2 are rather involved but may be verified from properties
of the characteristic triple by means of Propositions 2.8, 2.9 and 2.10 below.

Theorem 2.2. Let ξ be a superexponential Lévy process with characteristic triplet (ν,m, s2) and infinite upper
end-point (1.6). With the notation (2.1), assume that

lim
λ→−∞

λ2σ(λ)2 =∞, (2.3)

lim
λ→−∞

∫
|x|>εσ(λ)

x2

σ(λ)2
e−λxdν(x) = 0 for ε>0 (2.4)
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and

lim
K→∞

lim sup
λ→−∞

∫
|θ|>K

exp

{
−t
[∫

R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x) +

θ2s2

2σ(λ)2

]}
dθ = 0 (2.5)

for t in a neighborhood of h > 0. Further assume that the following limit exists

lim
λ→−∞

λµ(λ)

λµ(λ) + ln(φ1(λ))
= L (2.6)

With the notation

w(u) = − 1

µ←(u/h)
and q(u) =

1

ln(φ1(µ←(u/h)))
, (2.7)

we have limu→∞ q(u)/w(u) = 0,

P{ξ(h) > u} ∼ euµ
←(u/h)φ1(µ←(u/h))h√

2πhσ(µ←(u/h))(−µ←(u/h))
as u→∞ (2.8)

as well as

lim
u→∞

P{ξ(h− q(u)t) > u+ xw(u)}
P{ξ(h) > u}

= e−t−x for x ∈ R and t ≥ 0. (2.9)

Proof. Let

Q(λ) ≡ 1

ln(φ1(λ)) + λµ(λ)
=

(∫
R

(
e−λx − 1 + λκ(x)

)
dν(x)−mλ+

λ2s2

2
+ λµ(λ)

)−1

and let Zt,λ be the Esscher transform of ξ(h−Q(λ)t) given by

dFZt,λ(x) =
e−λxdFξ(h−Q(λ)t)(x)

φh−Q(λ)t(λ)
for x ∈ R and t > 0,

for λ ≤ 0 sufficiently small [recall (2.2)].
Our first aim is to establish asymptotic normality of a normalized Esscher transform (Zt,λ−µt,λ)/σ(λ). Here

µt,λ is the expected value of Zt,λ and σ(λ) is the standard deviation of Z0,λ for h = 1, respectively. From (1.7)
we readily see that the function µ satisfies

µ(λ) =

∫ 0

−∞

(
e−λxx−κ(x)

)
dν(x) +

∫ ∞
0

(
e−λxx−κ(x)

)
dν(x) +m+ (−λ)s2 →∞ (2.10)

as λ→ −∞ [note that all terms on the right of the equality in (2.10) are non-negative]. Further, observe that
Q(λ) satisfies

Q(λ) > 0 for λ sufficiently small, with lim
λ→−∞

Q(λ) = 0: (2.11)
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This follows readily when ν((0,∞)) > 0 or s2 = 0 [recall (1.7)] using that

∫ 0

−1

(
e−λx − 1 + λx

)
dν(x) = o(λ2) (2.12)

as λ→ −∞. This in turn is so since (integrating by parts)

∫ 0

−1

(
e−λx−1+λx

)
dν(x)

=

[
e−λx−1+λx

x2

∫ x

−1

y2dν(y)

]0

−1

− λ2

∫ −λ
0

xe−x+x+2e−x−2

x3

(∫ x/λ

−1

y2dν(y)

)
dx

∼ λ2

∫ 0

−1

y2dν(y)

(
1

2
−
∫ −λ

0

xe−x+x+2e−x−2

x3
dx

)
,

(2.13)

where the inner integral on the right-hand side converges to 1/2 as λ → −∞, so that the whole expression
under consideration is o(λ2) as λ → −∞, as required. If instead ν((0,∞)) = s2 = 0, then (2.11) holds since
(1.7) ensures that

lim
λ→−∞

1

|λ|

∫ 0

−∞

(
e−λx − 1 + λκ(x)

)
dν(x) ≥ lim

λ→−∞

1

2

∫ 2/λ

−∞
−κ(x)dν(x) =∞.

As a final preparation we observe that

lim
λ→−∞

∫
R

(
θx

σ(λ)
− sin

( θx

σ(λ)

))
e−λx dν(x) = 0 for θ ∈ R. (2.14)

This is so because (2.4) gives

lim sup
λ→−∞

∫
|x|>εσ(λ)

∣∣∣∣ θxσ(λ)
− sin

( θx

σ(λ)

)∣∣∣∣e−λx dν(x) ≤ lim sup
λ→−∞

∫
|x|>εσ(λ)

2|θ|x2

ε σ(λ)2
e−λx dν(x) = 0

for ε > 0, while by Taylor expansion, given any δ > 0 and for ε = ε(θ) > 0 sufficiently small,

lim sup
λ→−∞

∫
|x|≤εσ(λ)

∣∣∣∣ θxσ(λ)
− sin

( θx

σ(λ)

)∣∣∣∣e−λx dν(x) ≤ lim sup
λ→−∞

∫
|x|≤εσ(λ)

δθ2x2

σ(λ)2
e−λx dν(x) ≤ δθ2.

Notice that, writing

(
dνt,λ(x),mt,λ, s

2
t,λ

)
= (h−Q(λ)t)

(
e−λx dν(x), m−

∫
R
κ(x)(1−e−λx)dν(x)−λs2, s2

)
,

the random variable Zt,λ has characteristic function

E
{

eiθZt,λ
}

= exp

{
iθmt,λ +

∫
R

(
eiθx − 1− iθκ(x)

)
dνt,λ(x)−

θ2s2
t,λ

2

}
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for θ ∈ R and t > 0, for λ ≤ 0 sufficiently small. Hence the random variable Zt,λ is infinitely divisible with
characteristic triplet (νt,λ,mt,λ, s

2
t,λ). Observing that

E{Zt,λ} = (h−Q(λ)t)µ(λ) ≡ µt,λ

it follows that

E{eiθZt,λ} = exp

{
iθµt,λ +

∫
R

(eiθx − 1− iθx)dνt,λ(x)−
θ2s2

t,λ

2

}
(see e.g. Sato [29], p. 39). Hence the characteristic function gt,λ of (Zt,λ − µt,λ)/σ(λ) is given by

gt,λ(θ) =

(
exp

{
−
∫
R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

− i
∫
R

(
θx

σ(λ)
− sin

( θx

σ(λ)

))
e−λxdν(x)− θ2s2

2σ(λ)2

})h−Q(λ)t

.

Here (2.4) and (2.14) together with (2.11) and a Taylor expansion readily give limλ→−∞ gt,λ(θ) = e−hθ
2/2 for

θ ∈R and t > 0. Since 1− cos(x) ≥ x2/4 for |x| ≤ 1 we further have∫
R
|gt,λ(θ)|dθ =

∫
R

exp

{
−(h−Q(λ)t)

∫
R

(
1− cos

( θx

σ(λ)

))
e−λx dν(x)

}
dθ

≤
∫
|θ|>K

exp

{
−(h−Q(λ)t)

∫
R

(
1− cos

( θx

σ(λ)

))
e−λx dν(x)

}
dθ

+

∫
|θ|≤K

exp

{
−(h−Q(λ)t)

θ2

4σ(λ)2

∫
|x|≤σ(λ)/K

x2e−λx dν(x)

}
dθ.

Here the first term on the right-hand side can be made arbitrarily small as λ → −∞ and K → ∞ (on that
order) using (2.5). For the second term on the right-hand side, (2.4) and (2.11) show that there exists a constant
δ = δ(K) ∈ (0, 1) such that

∫
|θ|≤K

exp

{
−(h−Q(λ)t)

θ2

4σ(λ)2

∫
|x|≤σ(λ)/K

x2e−λx dν(x)

}
dθ

≤
∫
|θ|≤K

exp

{
−h(1−δ) θ

2

4

}
dθ for λ small enough.

The integrability of |gt,λ| established in the previous paragraph together with the Riemann-Lebesgue lemma
show that (Zt,λ − µt,λ)/σ(λ) has a well-defined continuous probability density function f(Zt,λ−µt,λ)/σ(λ) for λ
small enough. Furthermore, using (2.5) again, we readily see that

lim sup
λ→−∞

sup
x∈R

∣∣∣∣f(Zt,λ−µt,λ)/σ(λ)(x)− 1√
2πh

e−x
2/(2h)

∣∣∣∣
≤ lim sup

K→∞
lim sup
λ→−∞

(∫
|θ|≤K

∣∣gt,λ(θ)− e−hθ
2/2
∣∣dθ +

∫
|θ|>K

(
|gt,λ(θ)|+e−hθ

2/2
)
dθ

)
= 0.

(2.15)
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Observing that

f(Zt,λ−µt,λ)/σ(λ)(x) =
e−λ(σ(λ)x+µt,λ)fξ(h−Q(λ)t)(µt,λ + σ(λ)x)σ(λ)

φh−Q(λ)t(λ)

for x ∈ R and t ≥ 0. Hence (2.10) together with (2.3) and (2.15) show that

fξ(h−Q(λ)t)(µt,λ + x/λ) = ex
f(Zt,λ−µt,λ)/σ(λ)(x/(λσ(λ)))eλµt,λφh−Q(λ)t(λ)

σ(λ)

∼ ex
eλµt,λφ1(λ)h−Q(λ)t

√
2πhσ(λ)

∼ ex−t
ehλµ(λ)φ1(λ)h√

2πhσ(λ)
as λ→ −∞.

(2.16)

We are now prepared to establish (2.9): By the asymptotics (2.16) of fξ(h−Q(λ)t)(µt,λ + x/λ) together with
application of (2.3) and (2.15), we get

lim
λ→−∞

P{ξ(h−Q(λ)t) > µt,λ − y/λ}
−λ fξ(h−Q(λ)t)(µt,λ − x/λ)

= ex lim
λ→−∞

∫ ∞
y

fξ(h−Q(λ)t)(µt,λ − z/λ)

fξ(h−Q(λ)t)(µt,λ)
dz

= ex lim
λ→−∞

∫ ∞
y

e−z
f(Zt,λ−µt,λ)/σ(λ)(−z/(λσ(λ)))

f(Zt,λ−µt,λ)/σ(λ)(0)
dz

= ex−y for x, y ∈ R.

(2.17)

Observing that

−λ fξ(h−Q(λ)t)(µt,λ + (Lt−y)/λ)

P{ξ(h−Q(λ)t) > µt,λ + Lt/λ}
y ≥ 0, (2.18)

is a probability density function, (2.17) and the theorem of Scheffé [30] show that

lim
λ→−∞

P{ξ(h−Q(λ)t) > µt,λ+(Lt−x)/λ}
P{ξ(h−Q(λ)t) > µt,λ+Lt/λ}

= lim
λ→−∞

∫ ∞
x

−λ fξ(h−Q(λ)t)(µt,λ + (Lt−y)/λ)

P{ξ(h−Q(λ)t) > µt,λ+Lt/λ}
dy

=

∫ ∞
x

e−ydy = e−x for x ≥ 0.

(2.19)

Using this in turn, together with (2.16) and (2.17), we readily obtain

lim
λ→−∞

P{ξ(h−Q(λ)t) > µt,λ + (Lt−x)/λ}
P{ξ(h) > µt,λ + Lt/λ}

= e−x−t for x, t ≥ 0.

As (2.6) shows that, given any ε > 0,

µt,λ +
Lt+ ε

λ
≤ hµ(λ) ≤ µt,λ +

Lt− ε
λ

for λ small enough,
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we may now conclude that

lim sup
λ→−∞

P{ξ(h−Q(λ)t) > hµ(λ)− x/λ}
P{ξ(h) > hµ(λ)}

≤ lim sup
λ→−∞

P{ξ(h−Q(λ)t) > µt,λ + (Lt+ε−x)/λ}
P{ξ(h) > µt,λ + (Lt−ε)/λ}

= lim sup
λ→−∞

P{ξ(h−Q(λ)t) > µt,λ + (Lt+ε−x)/λ}
P{ξ(h) > µt,λ + Lt/λ}

P{ξ(h) > µt,λ + Lt/λ}
P{ξ(h) > µt,λ + (Lt−ε)/λ}

= e2ε−x−t

→ e−x−t as ε ↓ 0.

Treating the corresponding lim inf in an entirely similar fashion, it follows that

lim
λ→−∞

P{ξ(h−Q(λ)t) > hµ(λ)− x/λ}
P{ξ(h) > hµ(λ)}

= e−x−t for x, t ≥ 0. (2.20)

As µ is continuous and eventually strictly decreasing [by (2.3)], with µ(λ)→∞ if and only if λ→ −∞, we may
substitute λ = µ←(u) in (2.20), to obtain

lim
u→∞

P{ξ(h− q(hu)t) > hu+ xw(hu)}
P{ξ(h) > hu}

= e−x−t for x, t ≥ 0. (2.21)

From (2.21) it is a simple matter to establish (2.9) in full generality with x ∈ R rather for x ≥ 0 only.
Further, the asymptotics (2.8) follow from inspection of (2.16) and (2.17). Finally, by inspection of (2.7),
the limit limu→∞ q(u)/w(u) = 0 holds if limλ→−∞ λ/ ln(φ1(λ)) = 0. However, this latter limit holds by the
arguments we use to establish (2.11). This finishes the proof of all claims of the theorem. �

Remark 2.3. For ĥ ∈ (0, h) it is possible, with extra work, to prove a version of Theorem 2.2 where (2.9) holds

uniformly (in an obvious sense) for t ∈ [0, (h− ĥ)/q(u)]. As we do not need this extension, we do not elaborate
on it.

To check all the technical conditions of Theorem 2.2 we provide Propositions 2.8, 2.9 and 2.10 below, the
proofs of which involve the following concepts of regular variation at 0:

Definition 2.4. A monotone function f : [x0, 0) → (0,∞) is regularly varying as x ↑ 0 with index α ∈ R,
denoted f ∈ R0−(α), if

lim
x↑0

f(yx)

f(x)
= yα for y > 0.

Definition 2.5. A monotone function f : [x0, 0) → (0,∞) is O-regularly varying as x ↑ 0, with Matuszewska
indices −∞ < α ≤ β <∞, denoted f ∈ OR0−(α, β), if for some constant x0 < 0 and for each ε > 0, there exists
a constant C ≥ 1, such that

yβ+ε

C
≤ f(yx)

f(x)
≤ Cyα−ε for x ∈ [x0, 0) and y ∈ (0, 1],
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where α and β are the largest and smallest numbers, respectively, such that these two inequalities hold.

By Potter’s theorem (see e.g. Bingham, Goldie and Teugels [10], Thm. 1.5.6), we have R0−(α) ⊆ OR0−(α, α)
for α ∈ R.

The next lemma which is used in the proof of Proposition 2.10 is a version at 0 of the Stieltjes’ version of
Karamata’s theorem for one-sided indices at ∞ (see e.g. Bingham, Goldie and Teugels [10], Sect. 2.6.2):

Lemma 2.6. For U ∈ OR0−(α, β) nondecreasing with −2 < α ≤ β < 0, we have

0 < lim inf
x↑0

1

x2U(x)

∫ 0

x

y2 dU(y) ≤ lim sup
x↑0

1

x2U(x)

∫ 0

x

y2 dU(y) <∞. (2.22)

Proof. We have limx↑0 x
2U(x) = 0 because

lim sup
x↑0

x2 U(x)

U(x0)
≤ lim sup

x↑0

Cx2+α−ε

xβ+ε
0

= 0 for ε > 0 small enough.

From this in turn we get the upper bound noticing that

∫ 0

x

y2 dU(y)

x2U(x)
= 2

∫ 0

x

(−y)U(y)

x2U(x)
dy − 1 = 2

∫ 1

0

zU(zx)

U(x)
dz − 1 ≤ 2

∫ 1

0

Czα+1−εdz − 1

where the right-hand side is finite for ε > 0 small enough. Further, as we have

lim sup
z↓0

z

∫ 1

z

U(yx)

U(x)
dy ≤ lim sup

z↓0
z

∫ 1

z

Cyα−εdy = lim sup
z↓0

C(z − zα+2−ε)

α+ 1− ε
= 0

for x ∈ [x0, 0) and ε > 0 small enough, Fatou’s Lemma gives

lim inf
x↑0

∫ 0

x

y2 dU(y)

x2U(x)
= 2 lim inf

x↑0

∫ 1

0

zU(zx)

U(x)
dz − 1 ≥ 2

∫ 1

0

(∫ 1

z

lim inf
x↑0

U(yx)

U(x)
dy

)
dz − 1. (2.23)

Since U(yx)/U(x) ≥ 1 is a nondecreasing function of y ∈ (0, 1), the lim inf on the left in (2.22) can be 0 only
if lim infx↑0 U(yx)/U(x) = 1 for y ∈ (0, 1), as otherwise the right-hand side of (2.23) is strictly greater than

2
∫ 1

0
(
∫ 1

z
dy)dz − 1 = 0. And so the lim inf on the left in (2.22) must be strictly greater than 0, because

lim inf
x↑0

U(yx)

U(x)
≥ yβ+ε

C
> 1 for ε, y > 0 small enough.

�

Our second lemma, which is also used in the proof of Proposition 2.10, is a version at 0 of the de Haan-
Stadtmüller theorem (see e.g. Bingham, Goldie and Teugels [10], Thm. 2.10.2):
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Lemma 2.7. For U ∈ OR0−(α, β) non-increasing with 0 < α ≤ β < ∞ and
∫ 0

−∞ e−λx d(−U)(x),∫ 0

−∞ e−λxU(x) dx <∞ for λ small enough (i.e., |λ| large enough), we have

0 < lim inf
λ→−∞

∫ 0

−∞

e−λx d(−U)(x)

U(1/λ)
≤ lim sup

λ→−∞

∫ 0

−∞

e−λx d(−U)(x)

U(1/λ)
<∞.

Proof. We have

∫ 0

−∞

e−λx d(−U)(x)

U(1/λ)
=

[
−e−λxU(x)

U(1/λ)

]0

−∞
− λ

∫ 0

−∞

e−λxU(x)

U(1/λ)
dx

= 0 +

∫ 0

−λx0

eyU(−y/λ)

U(1/λ)
dy − λ

∫ x0

−∞

e−λxU(x)

U(1/λ)
dx.

Here Definition 2.5 gives that lower and upper limits (as λ→ −∞) of the first integral on the right-hand side
are strictly positive and finite. Further

0 < −λ
∫ x0

−∞

e−λxU(x)

U(1/λ)
dx ≤ (−λ) e−λx0/2

U(1/λ)

∫ x0

−∞
e−λx/2U(x) dx,

the upper limit of which must be zero as U(x0/(−λ)) ≥ C−1U(x0)(−λ)−ε−β for λ small enough, so that
U(1/λ) ≥ C−1U(x0)(x0λ)−ε−β . �

As have been mentioned already, the following three propositions are key results for verifying the conditions
of Theorem 2.2:

Proposition 2.8. For a superexponential Lévy process ξ with characteristic triplet (ν,m, s2) and infinite upper
end-point (1.6), we have the following implications:

1. If s2 > 0, then (2.3) and (2.5) hold.
2. If s2 > 0 and ν((0,∞)) = 0, then (2.3)–(2.6) hold.

Proof. Statement 1 of the proposition is quite immediate.
To prove Statement 2, notice that

lim sup
λ→−∞

∫
|x|>εσ(λ)

x2

σ(λ)2
e−λx dν(x) ≤ lim sup

λ→−∞

1

s2

∫ 0

−∞
x2e−λx dν(x) = 0 (2.24)

when s2 > 0 and ν((0,∞)) = 0, so that (2.4) holds. In view of Statement 1 it thus remains to prove (2.6). To
that end it is sufficient to show that the limit

lim
λ→−∞

ln(φ1(λ))

λµ(λ)
= lim
λ→−∞

∫
R
(
e−λx−1+λκ(x)

)
dν(x) +mλ+ λ2s2/2∫

R
(
λxe−λx−λκ(x)

)
dν(x)−mλ− λ2s2

≡ L̃ (2.25)

exists and is not equal to −1. As it is obvious that∫ −1

−∞

(
e−λx−1+λκ(x)

)
dν(x) = O(λ) and

∫ −1

−∞

(
λxe−λx−λκ(x)

)
dν(x) = O(λ)
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as λ→ −∞, (2.25) with L̃ = −1/2 will in turn follow provided that we prove that∫ 0

−1

(
e−λx − 1 + λx

)
dν(x) = o(λ2) and

∫ 0

−1

(
λxe−λx − λx

)
dν(x) = o(λ2)

as λ → −∞. The first of these asymptotic relations is established in (2.13). The second asymptotic relation
follows in a similar fashion noticing that, by integration by parts,∫ 0

−1

(
λxe−λx − λx

)
dν(x) = −λ2

∫ −λ
0

xe−x + e−x − 1

x2

(∫ x/λ

−1

y2dν(y)

)
dx

∼ λ2

∫ 0

−1

y2dν(y)

(
−1−

∫ −λ
0

xe−x + e−x − 1

x2
dx

)
,

where the inner integral on the right-hand side converges to −1 as λ→ −∞, so that the whole expression under
consideration is o(λ2) as λ→ −∞, as required. �

Proposition 2.9. For a superexponential Lévy process ξ with characteristic triplet (ν,m, s2) and infinite upper
end-point (1.6), we have the following implications:

1. If ν((0,∞)) > 0, then (2.3) and (2.6) hold.
2. Equations (2.3), (2.4) and (2.6) hold if ν((0,∞)) > 0 and there exists a non-decreasing function g such

that

lim
x→∞

g(x)

ln(x)
=∞ and

∫ ∞
1

exp{g(x)x}dν(x) <∞. (2.26)

3. Equations (2.3)–(2.6) hold if x0 ≡ sup
{
x : ν((x,∞)) > 0

}
∈ (0,∞) and ν is absolutely continuous with

a version of dν(x)/dx that is bounded, strictly positive for x ∈ (x1, x2) for some 0 < x1 < x2 ≤ x0 and
satisfies

dν(x)

dx
∼ Cx−1−ρ as x ↓ 0+ for some constants C > 0 and ρ ∈ (0, 2). (2.27)

4. Equations (2.3)–(2.6) hold if ν is absolutely continuous with sup
{
x : ν((x,∞)) > 0

}
= ∞, if ν satisfies

(2.26) and (2.27), and if ν has a version of dν(x)/dx that is ultimately decreasing.

Proof. To prove Statement 1, notice that (2.12) readily gives (2.3). Further, by inspection of the proof of
Proposition 2.8(2), (2.6) holds with L̃ = L = 0 if

lim
λ→−∞

∫ ∞
0

(
e−λx − 1 + λκ(x)

)
dν(x)

/(∫ ∞
0

(
λκ(x)− λxe−λx

)
dν(x)

)
= 0

and

lim
λ→−∞

1

λ2

∫ ∞
0

(
e−λx−1+λκ(x)

)
dν(x) = lim

λ→−∞

1

λ2

∫ ∞
0

(
λκ(x)−λxe−λx

)
dν(x) =∞.

However, both these requirements are quite obvious consequences of the fact that∫ 1

0

(
λκ(x)− λxe−λx

)
dν(x) ≥

∫ 1

0

(
e−λx − 1 + λκ(x)

)
dν(x) ≥ 0.
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To prove Statement 2, notice that by (2.26), the function G(x) = g(
√
x) is non-decreasing with

lim
x→∞

G(x)

ln(x)
=∞ and

∫ ∞
1

exp
{
G(x2)x

}
dν(x) <∞. (2.28)

As we must have ν((x,∞)) > 0 for some x > 0, (2.28) gives that

lim inf
λ→−∞

G(ε2σ(λ)2)

−λ
≥ lim inf

λ→−∞

1

−λ
G

(
ε2

∫ ∞
x

x2e−λxdν(x)

)
≥ lim inf

λ→−∞

G
(
ε2x2ν((x,∞))e−λx

)
−λ

=∞

for ε > 0. From this in turn we readily obtain, making use of (2.28) again [see also (2.24)],

lim sup
λ→−∞

∫
|x|>εσ(λ)

x2

σ(λ)2
e−λxdν(x)

≤ lim sup
λ→−∞

1

σ(λ)2

∫ 0

−∞
x2e−λxdν(x) +

(
sup
x<0

x2ex
)(

lim sup
λ→−∞

1

λ2σ(λ)2

∫
|x|>εσ(λ)

e−2λxdν(x)

)
≤ 0 +

(
sup
x<0

x2ex
)(∫ ∞

1

exp
{
G(x2)x

}
dν(x)

)(
lim sup
λ→−∞

sup
x>εσ(λ)

exp
{
−2λx−G(x2)x

})
= 0 for ε > 0.

Hence (2.4) holds. The statement now follows from Statement 1.
To prove Statement 3, notice that Statement 2 shows that (2.3), (2.4) and (2.6) hold. Using the elementary

inequality 1− cos(x) ≥ x2/4 for |x| ≤ 1 we further get

lim sup
λ→−∞

∫
K<|θ|≤σ(λ)/x0

exp

{
−t
∫
R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>K

exp

{
−
∫ x0

0

tθ2x2

4σ(λ)2
e−λxdν(x)

}
dθ

=

∫
|θ|>K

exp

{
− tθ

2

4

}
dθ

→ 0 as K →∞.

(2.29)

Further, using (2.27) to find a δ ∈ (0, 1 ∧ x0) such that dν(x)/dx ≥ 1
2Cx

−1−ρ for x ∈ (0, δ), we get in a similar
fashion

lim sup
λ→−∞

∫
σ(λ)/x0<|θ|<σ(λ)

√
−λ

exp

{
−t
∫
R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

}
dθ

≤ lim sup
λ→−∞

∫
σ(λ)/x0<|θ|<σ(λ)

√
−λ

exp

{
−
∫ δσ(λ)/|θ|

(δσ(λ)/|θ|)/2

Ctθ2x1−ρ

8σ(λ)2
e−λxdx

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>σ(λ)/x0

exp

{
− Ct(1− 2ρ−2)|θ|ρ

8(2− ρ)δρ−2σ(λ)ρ
eδ
√
−λ/2

}
dθ

= 0,

(2.30)
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where we made use of the simple fact that

lim sup
λ→−∞

σ(λ)2eλx0 = 0 (2.31)

to get the last equality. Finally, we have, based in part on a slight modification of (2.30), and noticing the quick
oscillations of the cosine function,

lim sup
λ→−∞

∫
|θ|>σ(λ)

√
−λ

exp

{
−t
∫
R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>σ(λ)

√
−λ

exp

{
− Ct(1−2ρ−2)|θ|ρ

16(2−ρ)δρ−2σ(λ)ρ
− t

2

∫ x2

x1

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>σ(λ)

√
−λ

exp

{
− Ct(1− 2ρ−2)|θ|ρ

16(2− ρ)δρ−2σ(λ)ρ
− t x2−x1

4
inf

x∈(x1,x2)

dν(x)

dx
e−λx1

}
dθ

= 0,

(2.32)

using (2.31) at the end again. Putting (2.29), (2.30) and (2.32) together we arrive at (2.5).
To prove Statement 4, notice that Statement 2 shows that (2.3), (2.4) and (2.6) hold. As

2 ln(y)− λy − yg(y)−
(
2 ln(x)− λx− xg(x)

)
≤ (y − x)(2− λ− g(x)) for 1 ≤ x ≤ y

by the first part of (2.26), we can further find a function x0(λ) such that limλ→−∞ x0(λ) =∞,

lim
λ→−∞

exp{λε}x0(λ) = 0 for ε > 0, (2.33)

and 2 ln(x)− λx− xg(x) is non-increasing for x ≥ x0(λ), so that, by the second part of (2.26),∫ ∞
x0(λ)

x2e−λxdν(x) ≤ e2 ln(x0(λ))−λx0(λ)−x0(λ)g(x0(λ))

∫ ∞
1

exg(x)dν(x)→ 0 as λ→ −∞. (2.34)

Now by (2.34), the argument for (2.29) in the proof of Statement 3 carries over to show that

lim
K→∞

lim sup
λ→−∞

∫
K<|θ|≤σ(λ)/x0(λ)

exp

{
−t
∫
R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

}
dθ = 0. (2.35)

Notice that (2.34) also gives

σ(λ)2 ∼
∫ x0(λ)

0

x2e−λx dν(x) ≤ x0(λ)2e−λx0(λ)

∫ ∞
0

(1 ∧ x2) dν(x) as λ→ −∞,

from which we readily conclude that (2.33) implies

lim
λ→−∞

exp{−λε}
x0(λ)ρ ln(σ(λ))

=∞ for ε > 0. (2.36)

By (2.36) in turn, there exists a function f(λ) > 0 with limλ→−∞ f(λ) = 0 such that

lim
λ→−∞

exp{−λf(λ)}
x0(λ)ρ ln(σ(λ))

=∞. (2.37)
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Selecting δ ∈ (0, 1) such that dν(x)/dx ≥ 1
2Cx

−1−ρ for x ∈ (0, δ), the analogue of (2.30) in the proof of Statement
3 now becomes

lim sup
λ→−∞

∫
σ(λ)/x0(λ)<|θ|<δσ(λ)/(2f(λ))

exp

{
−t
∫
R

(
1− cos

( θx

σ(λ)

))
e−λxdν(x)

}
dθ

≤ lim sup
λ→−∞

∫
σ(λ)/x0(λ)<|θ|<δσ(λ)/(2f(λ))

exp

{
−
∫ δσ(λ)/|θ|

(δσ(λ)/|θ|)/2

Ctθ2x1−ρ

8σ(λ)2
e−λxdx

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>σ(λ)/x0(λ)

exp

{
− Ct(1− 2ρ−2)|θ|ρ

8(2− ρ)δρ−2σ(λ)ρ
e−λf(λ)

}
dθ

= lim sup
λ→−∞

2

ρ

(
Ct(1− 2ρ−2)

8(2− ρ)δρ−2σ(λ)ρ
e−λf(λ)

)−1/ρ

Γ

(
1

ρ
,
( σ(λ)

x0(λ)

)ρ Ct(1− 2ρ−2)

8(2− ρ)δρ−2σ(λ)ρ
e−λf(λ)

)
= lim sup

λ→−∞

2

ρ

( σ(λ)

x0(λ)

)1−ρ( Ct(1−2ρ−2)

8(2−ρ)δρ−2σ(λ)ρ
e−λf(λ)

)−1

exp

{
−
( σ(λ)

x0(λ)

)ρ Ct(1−2ρ−2)

8(2−ρ)δρ−2σ(λ)ρ
e−λf(λ)

}
= 0,

(2.38)

by well-known asymptotics for the incomplete Gamma function Γ(1/ρ, ·), and provided that

lim
λ→−∞

σ(λ)x0(λ)ρ−1

exp{−λf(λ)}
exp

{
− t exp{−λf(λ)}

x0(λ)ρ

}
= 0 for t > 0,

the latter fact which in turn holds when (2.37) does. Finally, the analogue of (2.32) becomes

lim sup
λ→−∞

∫
|θ|>δσ(λ)/(2f(λ))

exp

{
−t
∫
R

(
1− cos

( θx

σ(λ)

))
e−λx dν(x)

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>δσ(λ)/(2f(λ))

exp

{
− Ct(1−2ρ−2)|θ|ρ

16(2−ρ)δρ−2σ(λ)ρ
− t

2

∫ x0(λ)

1

(
1− cos

( θx

σ(λ)

))
e−λx dν(x)

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>δσ(λ)/(2f(λ))

exp

{
− Ct(1−2ρ−2)|θ|ρ

16(2−ρ)δρ−2σ(λ)ρ
− t

4

∫ x0(λ)

1

e−λx−1 dν(x)

}
dθ

≤ lim sup
λ→−∞

∫
|θ|>δσ(λ)/(2f(λ))

exp

{
− Ct(1−2ρ−2)|θ|ρ

16(2−ρ)δρ−2σ(λ)ρ
− t e−1σ(λ)2

4x0(λ)2

}
dθ

= lim sup
λ→−∞

2

ρ

(
Ct(1− 2ρ−2)

16(2− ρ)δρ−2σ(λ)ρ

)−1/ρ

Γ

(
1

ρ
,
(δσ(λ)

2f(λ)

)ρ Ct(1− 2ρ−2)

16(2− ρ)δρ−2σ(λ)ρ

)
exp

{
− t e−1σ(λ)2

4x0(λ)2

}
= lim sup

λ→−∞

2

ρ

(δσ(λ)

2f(λ)

)1−ρ( Ct(1−2ρ−2)

16(2−ρ)δρ−2σ(λ)ρ

)−1

exp

{
−
(δσ(λ)

2f(λ)

)ρ Ct(1−2ρ−2)

16(2−ρ)δρ−2σ(λ)ρ
− t e−1σ(λ)2

4x0(λ)2

}
= 0,

(2.39)

by the already cited properties of the incomplete Gamma function, and provided that

lim
λ→−∞

σ(λ)f(λ)ρ−1 exp

{
−t σ(λ)2

x0(λ)2

}
= 0 for t > 0,
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the latter fact which in turn holds provided that

lim
λ→−∞

σ(λ)2

x0(λ)2 ln(σ(λ))
=∞, (2.40)

because (2.37) readily gives that f(λ)−1 = o(σ(λ)) as λ → −∞. However, it is also readily seen that (2.36)
implies (2.40), using that σ(λ)/x0(λ)→∞ by (2.33), and that σ(λ)2−ρeλε →∞. Putting (2.35)–(2.39) together
we now finally arrive at (2.5), which in turn completes the proof of Statement 4. �

Proposition 2.10. For a superexponential Lévy process ξ with characteristic triplet (ν,m, s2) and infinite upper
end-point (1.6), we have the following implications:

1. Equation (2.3) holds if

ν((−∞, ·)) ∈ OR0−(α, β) for some constants − 2 < α ≤ β < 0. (2.41)

2. If ν((0,∞)) = 0 and (2.3) holds, then (2.4) holds.
3. If ν((0,∞)) = 0 and (2.41) holds, then (2.3)–(2.5) hold.
4. If ξ is selfdecomposable, then (2.3) and (2.4) hold.
5. If ν((0,∞)) = 0 and dν(x) = k(x)dx/|x|2 for x < 0 where k > 0 is non-decreasing, then (2.3)–(2.5) hold.
6. Equations (2.3)–(2.6) hold if ν((0,∞)) = 0 and

ν((−∞, ·)) ∈ R0−(α) for some constant − 2 < α < −1. (2.42)

Proof. To prove Statement 1, notice that Lemma 2.6 gives

0 <
1

C1
≤ lim inf

x↑0

∫ 0

x

y2dν(y)

x2ν((−∞, x))
≤ lim sup

x↑0

∫ 0

x

y2dν(y)

x2ν((−∞, x))
≤ C1 <∞ (2.43)

for some constant C1 ≥ 1. As this also shows that
∫ 0

· y
2dν(y) belongs to OR0−(α+ 2, β + 2), Lemma 2.7 now

in turn gives

0 <
1

C2
≤ lim inf

λ→−∞

(∫ 0

1/λ

y2dν(y)

)−1∫ 0

−∞
e−λxd

(
−
∫ 0

x

y2dν(y)

)
≤ lim sup

λ→−∞

(∫ 0

1/λ

y2dν(y)

)−1∫ 0

−∞
e−λxd

(
−
∫ 0

x

y2dν(y)

)
≤ C2 <∞

for some constant C2 ≥ 1. And so we get (2.3) in the following manner [recall (1.7)]:

lim inf
λ→−∞

λ2σ(λ)2 ≥ lim inf
λ→−∞

λ2

∫ 0

−∞
e−λxd

(
−
∫ 0

x

y2 dν(y)

)
≥ 1

C2
lim inf
λ→−∞

λ2

∫ 0

1/λ

y2 dν(y)

≥ 1

C1C2
lim inf
λ→−∞

ν((−∞, 1/λ))

=∞

(2.44)
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To prove Statement 2, using that −εσ(λ) < 1/λ for λ small enough, we get (2.4) in the following manner:

lim sup
λ→−∞

∫ −εσ(λ)

−∞

x2

σ(λ)2
e−λx dν(x)

≤
(

sup
x<0

x2ex/2
)

lim sup
λ→−∞

eελσ(λ)/2 ν((−∞,−εσ(λ)))

/(
1

e

∫ 0

1/λ

x2 dν(x)

)
= 0 for ε > 0.

To prove Statement 3, in view of Statements 1 and 2, it is enough to prove that (2.5) holds. Note that, since
ν((0,∞)) = 0, the arguments that were use to establish (2.44) carry over to show that

1

C1C2
≤ lim inf

λ→−∞

ν((−∞, 1/λ))

λ2σ(λ)2
≤ lim sup

λ→−∞

ν((−∞, 1/λ))

λ2σ(λ)2
≤ C1C2. (2.45)

Further, using the inequality 1− cos(x) ≥ x2/4 for |x| ≤ 1 we have by (2.43) and (2.45)

∫
R

(
1− cos

( θx

σ(λ)

))
e−λx dν(x) ≥ θ2

4 eσ(λ)2

∫ 0

max{−σ(λ)/|θ|,1/λ}
x2 dν(x)

≥ 1

8C1e
min

{
ν((−∞,−σ(λ)/|θ|)), ν((−∞, 1/λ))θ2

λ2σ(λ)2

}
≥ 1

8C1e
min

{
|θ|−β−εν((−∞,−σ(λ)))

C
,

θ2

2C1C2

}
for |θ| > 1 and λ small enough. As the fact that limλ→−∞ σ(λ) = 0 implies that limλ→−∞ ν((−∞,
−σ(λ))) =∞ [recall (1.7)], it follows that (2.5) holds.

To prove Statement 4, by Proposition 2.8(1) and Proposition 2.9(1) we may assume that ν((0,∞)) = 0 and
s2 = 0. It is enough to prove (2.3), as Statement 2 then gives (2.4). Recall that selfdecomposability means that
dν(x) = k(x)/|x| where k > 0 is non-decreasing (see e.g. Sato, [29], Cor. 15.11). From (1.7) we get in addition
that limx↑0 k(x) =∞. And so we get (2.3) as follows:

lim inf
λ→−∞

λ2σ(λ)2 ≥ lim inf
λ→−∞

∫ 0

1/λ

λ2x2e−λx dν(x)

≥ 1

e
lim inf
λ→−∞

∫ 0

1/λ

λ2(−x)k(x)dx

≥ 1

e
lim inf
λ→−∞

λ2(−0−)

∫ 0−

1/λ

k(y)dy +
1

e
lim inf
λ→−∞

λ2

∫ 0

1/λ

(∫ x

1/λ

k(y)dy

)
dx

≥ 1

2 e
lim inf
λ→−∞

k(1/λ)

=∞.

To prove Statement 5, by Proposition 2.8(1) we may assume that s2 = 0. Further, ξ is selfdecomposable (see
the proof of Statement 4), so that Statement 4 gives (2.4). Noticing that

d

dx
−
∫ 0

x

y2

x
e−λy dν(y) =

∫ 0

x

k(y)

x2
e−λy dy +

k(x)

x
e−λx =

∫ 0

x

−y
x2

d

dy
(e−λyk(y)) dy ≥ 0 (2.46)
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it is now an easy matter to finish off the proof: Using that 1− cos(x) ≥ x2/4 for |x| ≤ 1 we get (2.5), as (2.46)
together with (2.4) give that

∫
R

(
1− cos

( θx

σ(λ)

))
e−λx dν(x)≥

∫ 0

−σ(λ)/|θ|

θ2x2e−λx

4σ(λ)2
dν(x)≥

∫ 0

−σ(λ)

x2|θ| e−λx

4σ(λ)2
dν(x) ≥ |θ|

8

for λ small enough and |θ| ≥ 1.
To prove Statement 6, in view of Proposition 2.8(2) we may assume that s2 = 0. By (2.52) below we have

∫ 0

−∞

(
e−λx − 1 + λκ(x)

)
dν(x) ∼ −Γ (1 + α) ν((−∞, 1/λ)) as λ→ −∞. (2.47)

Moreover, by (2.51) below together with Feller’s Tauberian theorem (see e.g. Bingham, Goldie and Teugels [10],
Thm. 1.7.1′), we have

∫ 0

−∞

(
λxe−λx − λκ(x)

)
dν(x)

=

∫ 0

−1

λx(e−λx − 1) dν(x) +

∫ −1

−∞

(
λxe−λx + λ

)
dν(x)

= λ(eλ − 1)ν((−∞,−1)) +

∫ 0

−1

(
(λ2x− λ)e−λx + λ ν((−∞, x)

)
dx+ O(λ)

= λ2

∫ 0

−1

(λx− 2)e−λxd

(∫ 0

x

(∫ y

−1

ν((−∞, z)) dz

)
dy

)
+ O(λ)

∼ λ3 (1/λ)3Γ (4 + α) ν((−∞,−1/λ))

−(α+ 1) (2 + α)
− 2λ2 (1/λ)2Γ (3 + α) ν((−∞,−1/λ))

−(α+ 1) (2 + α)

= −Γ (2 + α) ν((−∞,−1/λ)) as λ→ −∞,

(2.48)

where α < −1 ensures that limλ→−∞ ν((−∞, 1/λ))/(−λ) =∞. Putting (2.47) and (2.48) together we see that
(2.25) holds with L̃ = 1 + α. �

2.2. Sufficient conditions for condition (1.3)

The next theorem gives sufficient conditions for condition (1.3) to hold in terms of the characteristic triplet:

Theorem 2.11. Let ξ be a superexponential Lévy process with characteristic triplet (ν,m, s2) and infinite upper
end-point (1.6). With the notation (2.7) we have the following implications (with obvious notation):

1. If ν((0,∞)) > 0, then
ξ(aq(u))

w(u)

d→ 0 as u→∞ for a > 0;

2. If ν((0,∞))=0 and s2>0, then
ξ(aq(u))

w(u)

d→ N(0, 2a) as u→∞ for a>0.

3. If ν((0,∞)) = 0 and s2 = 0 and (2.42) holds, then

ξ(aq(u))

w(u)

d→ S−α

(
(−a cos(−πα

2
))−1/α,−1, 0

)
as u→∞ for a > 0.



828 J.M.P. ALBIN AND M. SUNDÉN

Proof. We have weak convergence ξ(aq(u))/w(u)
d→ X if and only if we have convergence of the Laplace

transform

lim
u→∞

E
{

e−tξ(aq(u))/w(u)
}

= lim
u→∞

φ1(t/w(u))aq(u)

= lim
u→∞

exp
{
aq(u) ln(φ1(t/w(u)))

}
= lim
λ→−∞

exp

{
a ln(φ1(−tλ))

ln(φ1(λ))

}
= lim
λ→−∞

exp

{
a

∫
R
(
etλx−1−tλκ(x)

)
dν(x)+mtλ+(tλs)2/2∫

R
(
e−λx−1+λκ(x)

)
dν(x)−mλ+(λs)2/2

}
= E{e−tX} for t ∈ (−1, 0)

(2.49)

(see e.g. Hoffmann-Jørgensen [19], pp. 377–378).
To prove Statement 1, notice that by arguing as for the proof of (2.6) in Proposition 2.9(1), the limit in

(2.49) is 1 when ν((0,∞)) > 0, which implies weak convergence to a degenerate random variable X = 0.
To prove Statement 2, notice that by arguing as for the proof of (2.6) in Proposition 2.8(2), the limit in

(2.49) is eat
2

when ν((0,∞)) = 0 and s2 > 0, which implies weak convergence to a normal N(0, 2a) distributed
random variable X.

To prove Statement 3, assume that ν((0,∞)) = 0 and s2 = 0. Notice that by Karamata’s theorem (see e.g.
Bingham, Goldie and Teugels [10], Sect. 1.5.6),

−
∫ 0

x

yν((−∞, y)) dy ∼ x2ν((−∞, x))

2 + α
∈ R0−(2 + α) as x ↑ 0.

Hence Feller’s Tauberian theorem (see e.g. Bingham, Goldie and Teugels [10], Thm. 1.7.1′) gives

∫ 0

−∞

(
1− e−λx(1 + λx)

)
dν(x) =

∫ 0

−∞
λ2e−λx d

(
−
∫ 0

x

yν((−∞, y)) dy

)
∼ Γ (2 + α) ν((−∞, 1/λ)) as λ→ −∞.

(2.50)

Moreover, using Karamata’s theorem again we get

∫ 0

x

(∫ y

−1

ν((−∞, z)) dz

)
dy ∼ x2 ν((−∞, x))

−(α+ 1) (2 + α)
∈ R0−(2 + α) as x ↑ 0, (2.51)

so that by Feller’s Tauberian theorem

∫ 0

−∞

(
etλx − 1− tλκ(x)

)
dν(x) = o(1) +

∫ 0

−1

(
tλ− etλxtλ)ν((−∞, x)

)
dx

∼ (tλ)2

∫ 0

−1

etλx d

(∫ 0

x

(∫ y

−1

ν((−∞, z)) dz

)
dy

)
∼ Γ (2 + α) ν((−∞,−1/(tλ)))

−(α+ 1)

∼ −(−t)−α Γ (1 + α) ν((−∞, 1/λ)) as λ→ −∞

(2.52)
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for t ∈ [−1, 0). Since α < −1 ensures that limλ→−∞ ν((−∞, 1/λ))/(−λ) =∞ it follows that the limit in (2.49) is

e−a (−t)−α , which is the Laplace transform of the −α-stable distribution in Statement 3 (see e.g. Samorodnitsky
and Taqqu [28], Prop. 1.2.12). �

By (1.6) we have α ≤ −1 in (2.41) when ν((0,∞)) = 0 and s2 = 0. But α = −1 was not covered in
Theorem 2.11 and turns out to behave differently than α < −1:

Theorem 2.12. Let ξ be a superexponential Lévy process with characteristic triplet (ν,m, 0) and infinite upper
end-point (1.6). Assume that ν((0,∞)) = 0 and that ν((−∞, ·)) ∈ R0−(−1). Denoting

w(u) = − 1

µ←(u/h)
and q(u) =

1

ln(φ1(µ←(u/h)))
,

we have

lim
u→∞

P{ξ(h− q(u)t) > u+ xw(u)}
P{ξ(h) > u}

=

{
e−x for x ∈ R and t = 0
0 for x ∈ R and t > 0

(2.53)

and

ξ(aq(u))

w(u)

d→ a as u→∞ for a > 0. (2.54)

Further, (2.8) holds.

Proof. We still have (2.50) with α = −1. However, by so called de Haan theory (see e.g. Bingham, Goldie and
Teugels [10], Prop. 1.5.9a), (2.51) changes to

∫ 0

·

(∫ y

−1

ν((−∞, z))dz
)

dy ∈ R0−(1) (2.55)

with

lim
x↑0

1

x2ν((−∞, x))

∫ 0

x

(∫ y

−1

ν((−∞, z)) dz

)
dy =∞. (2.56)

And so by Feller’s Tauberian theorem the corresponding modification of (2.52) becomes

∫ 0

−∞

(
e−λx−1+λκ(x)

)
dν(x) = o(1) + λ2

∫ 0

−1

e−λx d

(∫ 0

x

(∫ y

−1

ν((−∞, z)) dz

)
dy

)
∼ Γ (2)λ2

∫ 0

1/λ

(∫ y

−1

ν((−∞, z)) dz

)
as λ→ −∞,

(2.57)

where the right-hand side is regularly varying by (2.55). Since (1.7) shows that

lim
λ→−∞

1

(−λ)

∫ 0

−∞
(e−λx − 1 + λκ(x))dν(x) =∞,
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we now readily obtain (2.54) in the following manner: For t ∈ (−1, 0) we have

lim
u→∞

E
{

e−tξ(aq(u))/w(u)
}

= lim
u→∞

exp

{
a ln(φ1(−tµ←(u/h)))

ln(φ1(µ←(u/h)))

}
= lim
λ→−∞

exp

{
a

∫ 0

−∞
(
etλx−1− tλκ(x)

)
dν(x) +mtλ∫ 0

−∞
(
e−λx−1+λκ(x)

)
dν(x)−mλ

}

= lim
λ→−∞

exp

{
a

(−t)
∫ 0

−∞
(
e−λx−1+λκ(x)

)
dν(x)∫ 0

−∞
(
e−λx−1+λκ(x)

)
dν(x)

}
= e−at.

Changing the definition of Q to Q(λ) = 1/ ln(φ1(λ)) in the proof of Theorem 2.2, that proof still goes through
in essence. The only important change is that since

lim
λ→−∞

−λµ(λ)− ln(φ1(λ))

ln(φ1(λ))
= 0

by (2.50) and (2.56)–(2.57) [recall that ν((−∞, 1/λ))/(−λ)→∞], (2.16) changes to

fξ(h−Q(λ)t)(µt(λ) + x/λ) ∼ ex−t ln(φ1(λ))/(−λµ(λ)−ln(φ1(λ))) ehλµ(λ)φ1(λ)h√
2πhσ(λ)

as λ→ −∞.

This does not affect the validity of (2.17)–(2.19), while (2.20) and (2.21) change to

lim
u→∞

P{ξ(h− q(hu)t) > hu− xw(hu)}
P{ξ(h) > hu}

=

{
e−x for x ∈ R and t = 0,
0 for x ∈ R and t > 0.

From this in turn it follows that (2.53) holds as claimed. The proof of (2.8) is as before. �

3. A general upper bound and consequences

We will study the probability P{supt∈[0,h] ξ(t) > u} for a separable Lévy process ξ. As that probability
coincide for all separable Lévy processes with the same finite dimensional distributions, it is enough to consider
one specific such process: In proofs we can thus henceforth assume that ξ is càdlàg (right continuous with left
limits).

The following simple general upper bound for the above mentioned probability will be an important tool for
us:

Proposition 3.1. For a separable Lévy process ξ we have

sup
u∈R

1

P{ξ(h)>u−ε}
P

{
sup
t∈[0,h]

ξ(t)>u

}
≤ 1

inft∈[0,h] P{ξ(t)≥−ε}
for ε ≥ 0.
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Proof. Writing T = inf{t > 0 : ξ(t)>u} and g(t) = P{ξ(t) ≥ −ε}, we have

P{ξ(h) > u− ε} ≥ E
{
P{T < h, ξ(h)− ξ(T ) ≥ −ε

∣∣T}}
= E

{
1{T<h}P{ξ(h)− ξ(T ) ≥ −ε

∣∣T}}
= E

{
1{T<h} g(h− T )

}
≥ P

{
sup
t∈[0,h)

ξ(t) > u

}
inf

t∈[0,h]
g(t)

= P

{
sup
t∈[0,h]

ξ(t) > u

}
inf

t∈[0,h]
g(t). �

A simple version of the following corollary to Proposition 3.1 for symmetric processes appears already in
Doob [15], p. 106:

Corollary 3.2. For a separable Lévy process ξ such that

lim inf
t↓0

P{ξ(t) > 0} > 0 (3.1)

we have

inf
t∈[0,h]

P{ξ(t) ≥ 0} > 0, (3.2)

which in turn implies that

sup
u∈R

1

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u

}
<∞.

Proof. By inspection of Proposition 3.1 it is enough to show that (3.1) implies (3.2). So assume that (3.1) holds
and that (3.2) does not. Then there exists a sequence {tn}∞n=1 ⊆ [0, h] such that

P{ξ(tn) ≥ 0} → inf
t∈[0,h]

P{ξ(t) ≥ 0} = 0 as n→∞.

Picking a convergent subsequence {t′n}∞n=1 ⊆ {tn}∞n=1 with limn→∞ t′n = t0, we get

P{ξ(t0) > 0} ≤ lim inf
n→∞

P{ξ(t′n) > 0} ≤ lim inf
n→∞

P{ξ(t′n) ≥ 0} = 0 (3.3)

by continuity in probability of ξ. Hence (3.1) implies that t0 > 0. And so ξ(t0) is supported on (−∞, 0] by (3.3),
which contradicts the left condition in (3.1). �

The next example addresses the difference between Proposition 3.1 and Corollary 3.2:

Example 3.3. Let {N(t)}t≥0 be a unit rate Poisson process and {ηk}∞k=1 independent Bernoulli distributed
random variables satisfying P{ηk = 1} = P{ηk = −1} = 1

2 . Rather spectacularly, Braverman [11], Section 4,
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shows that for the Lévy process ξ(t) =
∑N(t)
k=1 ηk − t, it holds that

1 = lim inf
u→∞

P
{

supt∈[0,h] ξ(t) > u
}

P{ξ(h) > u}
< lim sup

u→∞

P
{

supt∈[0,h] ξ(t) > u
}

P{ξ(h) > u}
=∞.

Hence neither Corollary 3.2 nor (3.1) holds for this process.
For an example of a Lévy process that does not satisfy (3.1) it is enough to consider ξ(t) = N(t)− t.

The following proposition can be very useful to verify that the condition (1.8) of Theorem 1.1 holds:

Proposition 3.4. Let ξ be a separable Lévy process such that (3.1) or (3.2) holds and such that

lim
u→∞

P{ξ(h− Tq(u)) > u}
P{ξ(h) > u}

≤ e−T for T ≥ 0. (3.4)

Then we have

lim
T→∞

lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup

t∈[0,h−Tq(u)]

ξ(t) > u

}
= 0.

Proof. According to Corollary 3.2 (3.1) implies (3.2). Further, Proposition 3.1 together with (3.2) and (3.4) give

lim
T→∞

lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup

t∈[0,h−Tq(u)]

ξ(t) > u

}
≤ lim
T→∞

lim sup
u→∞

P{ξ(h− Tq(u)) > u}
P{ξ(h) > u}

1

inft∈[0,h−Tq(u)] P{ξ(t) ≥ 0}

≤ lim
T→∞

lim sup
u→∞

P{ξ(h− Tq(u)) > u}
P{ξ(h) > u}

1

inft∈[0,h] P{ξ(t ≥ 0}

≤ lim
T→∞

e−T
1

inft∈[0,h] P{ξ(t) ≥ 0}
= 0.

�

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Provided that L(t, 0) > 0 repeated use of (1.4) gives

P

{
ξ(h−q(u)t)−u

w(u)
> x

∣∣∣∣ ξ(h−q(u)t)>u

}
=

P{ξ(h−q(u)t)>u+xw(u)}
P{ξ(h−q(u)t)>u}

→ L(t, x)

L(t, 0)
(4.1)

as u→∞ for x > 0. Let {ζi(a)}∞i=1 be independent random variables distributed as ζ(a). Further, let ηt ≥ 0 be a
possibly infinite valued random variable that is independent of {ζi(a)}∞i=1, that has the possibly improper cumu-
lative probability distribution function 1−L(t, x)/L(t, 0) when L(t, 0) > 0 and that is infinite when L(t, 0) = 0.
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By (1.3) and (4.1) we get

lim inf
u→∞

1

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u

}
≥ lim
T→∞

lim sup
a↓0

lim inf
u→∞

1

P{ξ(h) > u}
P

{
max

k=0,...,bT/ac
ξ(h−kaq(u)) > u

}

= lim
T→∞

lim sup
a↓0

bT/ac∑
k=0

L(ka, 0) lim inf
u→∞

P

{k−1⋂
`=0

{ξ(h−`aq(u))

− ξ(h−kaq(u))+ ξ(h−kaq(u))− u ≤ 0}
∣∣∣∣ ξ(h−kaq(u)) > u

}

≥ lim
T→∞

lim sup
a↓0

bT/ac∑
k=0

L(ka, 0) P

{k−1⋂
`=0

{k−∑̀
i=0

ζi(a) + ηka < 0

}}
.

= lim
T→∞

lim sup
a↓0

bT/ac∑
k=0

L(ka, 0) P

{k−1⋂
`=0

{k−∑̀
i=0

ζi(a) + ηka ≤ 0

}}
.

(4.2)

Here the first inequality is due to discretization, while the equality follows from the inclusion-exclusion formula
and the fact that

P

{
max

k=0,...,bT/ac
ξ(h−kaq(u)) > u

}

=

bT/ac∑
k=0

P

{k−1⋂
`=0

{ξ(h−`aq(u)) ≤ u}
∣∣∣∣ ξ(h−kaq(u)) > u

}
P{ξ(h−kaq(u)) > u}.

The last inequality follows from (1.3) and the reasoning on the first few lines of this proof by means of dividing
by w(u) in the featured intersected events and the last equality follows from the assumed continuity properties
of ζ(a) or L(t, ·). For an upper bound we make some preparations: The strong Markov property gives

P

{
sup

t∈[h−Tq(u),h]

ξ(t) > u+ xw(u)

}
≤ P

{
max

k=0,...,bT/ac
ξ(h−kaq(u)) > u

}
+ P

{
sup

t∈[h−Tq(u),h]

ξ(t) > u+ xw(u)

}
P

{
inf

t∈[0,aq(u)]
ξ(t) ≤ −xw(u)

}
for x > 0,

(4.3)

so that by rearranging

P

{
sup

t∈[h−Tq(u),h]

ξ(t) > u+ xw(u)

}
P

{
inf

t∈[0,aq(u)]
ξ(t) > −xw(u)

}
≤ P

{
max

k=0,...,bT/ac
ξ(h−kaq(u)) > u

}
for x > 0.

(4.4)

Here we have w(u) = o(u) since (1.4) implies that ξ(h) belongs to the Type I domain of attraction of extremes,
see Definition 2.1. By the continuity of w it hence follows that the functions u and u + xw(u) range over the
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same values as u→∞ for any fixed x > 0. Hence we have

lim sup
u→∞

g(u) = lim sup
u→∞

g(u+ xw(u)) for x ∈ R for any function g. (4.5)

From (1.3) together with basic theory of Lévy processes (see e.g. Sato [29], Thm. 8.7, together with Fristedt

[18], p. 251), we have that {ξ(tq(u))/w(u)}t≥0
d→ {ζ(t)}t≥0 in the space of càdlàg functions equipped with the

Skorohod J1 topology, where {ζ(t)}t≥0 is a Lévy process. This gives that

lim inf
a↓0

lim inf
u→∞

P

{
inf

t∈[0,aq(u)]
ξ(t) > −xw(u)

}
≥ lim inf

a↓0
P

{
inf

t∈[0,2a]
ζ(t) > −x

}
= 1 (4.6)

for x > 0. Using (4.3)–(4.6) together with (1.4) and (1.3), we get in the fashion of (4.2)

lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u

}
= lim
T→∞

lim sup
x↓0

lim sup
u→∞

ex

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u+ xw(u)

}
≤ lim
T→∞

lim sup
x↓0

lim inf
a↓0

lim sup
u→∞

(
P

{
inf

t∈[0,aq(u)]
ξ(t) > −xw(u)

})−1

× 1

P{ξ(h) > u}
P

{
max

k=0,...,bT/ac
ξ(h− kaq(u)) > u

}

+ lim
T→∞

lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup

t∈[0,h−Tq(u)]

ξ(t) > u

}
≤ lim
T→∞

lim inf
a↓0

lim sup
u→∞

1

P{ξ(h) > u}
P

{
max

k=0,...,bT/ac
ξ(h− kaq(u)) > u

}

≤ lim
T→∞

lim inf
a↓0

bT/ac∑
k=0

L(ka, 0) P

{k−1⋂
`=0

{k−l∑
i=0

ζi(a) + ηka ≤ 0

}}
.

(4.7)

Here the first equality is due to the Type I attraction, the first inequality is due to Boole’s inequality (4.4), the
second inequality is due to (4.6) and (1.8), while the last inequality follows from the same arguments as were
used to establsih (4.2).

By (1.8) together with (4.2) and 4.7), the following three limits exist and coincide

H = lim
u→∞

1

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u

}

= lim
T→∞

lim sup
a↓0

bT/ac∑
k=0

L(ka, 0) P

{k−1⋂
`=0

{k−∑̀
i=0

ζi(a) + ηka ≤ 0

}}

= lim
T→∞

lim inf
a↓0

bT/ac∑
k=0

L(ka, 0) P

{k−1⋂
`=0

{k−∑̀
i=0

ζi(a) + ηka ≤ 0

}}
.

(4.8)
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As it is clear that H ≥ 1 it only remains to show that H <∞. However, this follows from applying (1.8) and
(4.6) to the following version of (4.7), with a > 0 small enough and T > 0 large enough,

lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup
t∈[0,h]

ξ(t) > u

}
≤ ex

(
P
{

inf
t∈[0,2a]

ζ(t) > −x
2

})−1

lim sup
u→∞

1

P{ξ(h) > u}
P

{
max

k=0,...,bT/ac
ξ(h− kaq(u)) > u

}
+ lim sup

u→∞

1

P{ξ(h) > u}
P

{
sup

t∈[0,h−Tq(u)]

ξ(t) > u

}

≤ lim sup
x↓0

(
P
{

inf
t∈[0,2a]

ζ(t) > −x
2

})−1 bT/ac∑
k=0

L(ka, 0)

+ lim sup
u→∞

1

P{ξ(h) > u}
P

{
sup

t∈[0,h−Tq(u)]

ξ(t) > u

}
for x > 0.

This concludes the proof of the full statement of Theorem 1.1. �

5. Examples

Example 5.1. Brownian motion with drift is a superexponential Lévy process ξ that has characteristic triplet
(0,m, s2) for some constants m ∈ R and s2 > 0.

By Proposition 2.8(2), (2.3)–(2.6) hold so that Theorem 2.2 gives (1.4) with L(t, x) = e−t−x while
Theorem 2.11(2) gives (1.3) with ζ(a) N(0, 2a) distributed. Further, as

µ(λ) = m− λ s2, σ(λ) = s, µ←(u) = (m− u)/s2 and φ1(λ) = e−mλ+s2λ2/2,

(2.8) shows that

P{ξ(h) > u} ∼ eu (m−u/h)/s2emh(u/h−m)/s2+s2h(u/h−m)2/(2s4)

√
2πh s (u/h−m)/s2

∼ s
√
h√

2π u
e−(u−mh)2/(2s2h)

as u→∞, agreeing with what elementary considerations give using that ξ(h) is N(mh, s2h).
Notice that by Proposition 2.8(2) and Theorem 2.11(2), (1.3) and (1.4) hold with ζ(a) N(0, 2a) distributed

and the functions w and q given by (2.7) for any Lévy process with characteristic triplet (ν,m, s2) such that
ν((0,∞)) = 0 and s2 > 0. Only that now (2.8) changes as compared with above as soon as ν is not zero/absent.

Further, note that

P{ξ(t) > 0} = P
{
mt+

√
tN(0, s2) > 0

}
= P

{
m
√
t+ N(0, s2) > 0

}
→ 1

2

as t ↓ 0 so that (3.1) holds. Hence (1.8) holds by Proposition 3.4 so that (1.5) holds by Theorem 1.1.
We have that (1.3) and (1.4) hold with ζ(a) and L(t, x) as above for any Lévy process with characteristic

triplet (ν,m, s2) such that ν((0,∞)) = 0 and s2 > 0. Hence, if also (1.8) holds it follows that H = 2 in (1.5) by
well-known properties of Brownian motion as the expression (4.8) for H depends only on ζ(a) and L(t, x) and
thus is same as for the triplet (0, 0, s2). For example, for a totally skewed to the left α-stable Lévy process η with
α ∈ (0, 2), see Examples 5.4 and 5.5 below, we have ν((0,∞)) = 0. Further, (1.1) together with [28] equation

1.1.6 shows that η(t)/
√
t

d→ 0 as t ↓ 0. And so (3.1) follows as before for the Lévy process ξ + η when ξ is an
independent Brownian motion with drift as before, as do then (1.5) with H = 2.
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Example 5.2. The Merton jump-diffusion [24] is the superexponential Lévy process

ξ(t) = mt+ sW (t) +

N(t)∑
i=1

Yi for t > 0,

where W is standard Brownian motion, m ∈ R and s > 0 are constants, N is a Poisson process with intensity
γ > 0 and the Yi:s independent N(0, δ2) distributed random variables.

The characteristic triplet is (ν,m, s2) with

dν/dx =
γ√
2πδ

e−x
2/2δ2 .

Since s2 > 0, (2.3) and (2.5) hold by Proposition 2.8(1), and we may take g(x) =
√
x in Proposition 2.9(2)

to see that (2.4) and (2.6) hold. Hence Theorem 2.2 gives (1.4) with L(t, x) = e−t−x while we have (1.3) with
ζ(a) = 0 by Theorem 2.11(1). Of course, (2.8) holds but as

µ(λ) = −γδ2λ eδ
2λ2/2 +m− λs2

does not allow an explicit closed form expression for µ←(u) the same applies to (2.8). We omit a discussion of
the details.

As
∑N(t)
i=1 Yi/

√
t

d→ 0 as t ↓ 0 we see that (3.1) holds as in Example 5.1. Hence (1.8) holds by Proposition 3.4
so that (1.5) holds by Theorem 1.1. Further, ζ(a) = 0 gives H = 1 by inspection of (4.8).

Example 5.3. A rapidly decreasing tempered stable (RDTS) Lévy process [21] ξ has characteristic triplet
(ν,m, 0) with

dν

dx
= |x|−α−1

(
C+e−λ

2
+x

2

1{x>0} + C−e−λ
2
−|x|

2

1{x<0}

)
,

where C+, C−, λ+, λ− > 0, α ∈ (0, 2) and α 6= 1. Choosing g(x) = 1
2λ

2
+x, we may employ Proposition 2.9(4)

to show that (2.3)–(2.6) hold. Hence, Theorem 2.2 gives (1.4) with L(t, x) = e−t−x. Further, Theorem 2.11(1)
shows that (1.3) holds with ζ(a) = 0. Of course, (2.8) applies but again µ←(u) in (2.8) cannot be calculated
explicitely in closed form.

By [21] Proposition 3.3 ξ(t) has characteristic function

E
{

eiθξ(t)
}

= exp
{
itθγ + C+tG(iθ, α, λ+) + C−tG(−iθ, α, λ−)

}
for θ ∈R and t≥ 0, (5.1)

for some constant γ ∈ R where

G(x, α, λ) = 2−α/2−1λαΓ(−α2 )
(

Φ
(
−α2 ,

1
2 ,

x2

2λ2

)
− 1
)

+ 2−α/2−1/2λα−1xΓ( 1−α
2 )
(

Φ
(

1−α
2 , 3

2 ,
x2

2λ2

)
− 1
)

and Φ is the confluent hypergeometric function (sometimes denoted 1F1).
We now restrict ourselves to the argubly most interesting case when α ∈ (1, 2), as α ∈ (0, 1) means that ξ(t)

is a finite variation process, i.e., the difference between two subordinators (see, e.g., [29] Thm. 21.5), although
the latter case can also be studied with a technique similar to that we now employ: Using the fact that

Φ(a, c, x) ∼ Γ(c)

Γ(c−a)
(−x)−a as x→ −∞
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(e.g., [16] Sect. 6.13.1) together with a so called multiplication formula for the Gamma function (e.g., [16] Sect.
1.2) we may readily conclude from (5.1) that

ξ(t)/t1/α
d→ Sα

((
(C++C−)[− cos(πα2 )]Γ(−α)

)1/α
,
C+−C−
C++C−

, 0

)
as t ↓ 0

(cf., e.g., [28] Eq. 1.1.6). It follows that

P{ξ(t) > 0} = P
{
ξ(t)/t1/α > 0

}
→ P

{
Sα

((
(C++C−)[− cos(πα2 )]Γ(−α)

)1/α
,
C+−C−
C++C−

, 0

)
> 0

}
> 0

as t ↓ 0. Hence (3.1) holds so that (1.8) holds by Proposition 3.4. And so (1.5) holds by Theorem 1.1. In addition
we have H = 1 for the same reason as in Example 5.2.

Example 5.4. Pick a constant α ∈ (1, 2). A totally skewed to the left α-stable Lévy process ξ has characteristic
triplet (ν,m, 0) with

dν(x)

dx
=

Q

(−x)α+1
for x < 0, for some constant Q > 0.

By Proposition 2.10(6), ξ satisfies (2.3)–(2.6) so that Theorem 2.2 shows that (1.4) holds with L(t, x) = e−t−x.
Further, Theorem 2.11(3) shows that (1.3) holds with ζ(a) having a Sα((−a cos(πα2 ))1/α,−1, 0) distribution.

Switching to the well established notation of [28] ξ(1) is Sα(σ,−1, η) distributed for some σ > 0 and η ∈ R
meaning that ([28], Prop. 1.2.12)

φ1(λ) = exp

{
σα(−λ)α

[− cos(πα2 )]
− ηλ

}
for λ ≤ 0.

Hence we have

µ(λ) =
ασα(−λ)α−1

[− cos(πα2 )]
+ η

σ(λ)2 =
α(α−1)σα(−λ)α−2

[− cos(πα2 )]

µ←(u) = −
(

(u−η)[− cos(πα2 )]

ασα

)1/(α−1)

for λ ≤ 0 and large u. Inserting this in (2.8) straightforward calculations gives

P{ξ(h)>u} ∼ u−
α

2(α−1)√
2π(α−1)

(
αhσα

[− cos(πα2 )]

) 1
2(α−1)

exp

{
−α−1

α

(
[− cos(πα2 )]

αhσα

) 1
α−1

(u−hη)
α
α−1

}

as u→∞. This result follows from, e.g., Ibragimov and Linnik [20] Theorem 2.4.7. See also, e.g., Minjheer [25]
Lemma 2.1 and [28], equation 1.2.11. Note that the treatment of [20] is analytically exceptionally complicated
and valid for the α-stable case only while our proof is just by insertion in (2.8).
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By Albin [1], Theorem 1, (1.5) holds with H > 1 for η = 0. Here we use Theorem 1.1 to extend Albin’s
result to a general η without using difficult results from the literature about α-stable distributions, contrary to
what did Albin.

By 1/α-self-similarity of ξ(t)− ηt (e.g., [28] Eq. 1.1.6) we have

lim inf
t↓0

P{ξ(t) > 0} = lim inf
t↓0

P
{
ξ(t)/t1/α > 0

}
= lim inf

t↓0
P
{
ξ(1)−η+η t1−1/α > 0

}
> 0.

Hence (3.1) holds so that (1.8) holds by Proposition 3.4. And so Theorem 1.1 gives (1.5).

Example 5.5. A totally skewed to the left 1-stable Lévy process ξ has charactersitic triplet (ν,m, 0) with

dν(x)

dx
=

Q

π(−x)2
for x < 0, for some constants Q > 0 and m ∈ R.

By Theorem 2.12 (1.3) holds with ζ(a) = a while (1.4) holds with L(0, x) = e−x and L(t, x) = 0 for t > 0.
Switching to the well established notation of [28] ξ(1) is S1(σ,−1, η) distributed for some σ > 0 and η ∈ R

meaning that (e.g., [28], Prop. 1.2.12)

φ1(λ) = exp

{
2σ

π
(−λ) ln(−λ)− ηλ

}
for λ ≤ 0,

Hence we have

µ(λ) =
2σ

π

(
ln(−λ) + 1

)
+ η, σ(λ)2 =

2σ

π(−λ)
and µ←(u) = exp

{
π(u−η)

2σ
+ 1

}
for λ ≤ 0 and large u. Inserting this in (2.8) straightforward calculations give

P{ξ(h) > u} ∼
√
e

2
√
hσ

exp

{
−π (u−hη)

4hσ
− 2hσ

π
exp
(π (u−hη)

2hσ
−1
)}

as u→∞.

This result fits with, e.g., Ibragimov and Linnik [20] Theorem 2.4.4. See also e.g., Minjheer [25] Lemma 2.1. The
result does not fit with [28], equation 1.2.11, which seems to be because their formula comes from Zolotarev
[31] which uses another parametrization of 1-stable distributions. Again, the treatment of [20] is analytically
exceptionally complicated and valid for the 1-stable case only while our proof is just by insertion in (2.8).

By Albin [1], Theorem 2, (1.5) holds with H = 1 for η = 0. Here we use Theorem 1.1 to extend Albin’s
result to a general η without using difficult results from the literature about 1-stable distributions, contrary to
what did Albin.

Further, equation 1.2.1 in [28] shows that

P{ξ(t) > 0} = P{ξ(t)/t > 0} = P
{
ξ(1)− 2

π σ ln(t) > 0
}
→ 1 as t ↓ 0.

Hence (3.1) holds so that (1.8) holds by Proposition 3.4. And so (1.5) holds by Theorem 1.1. Finally an inspection
of (4.8) shows that H = 1 when ζ(a) = a.

The methodologies of Examples 5.4 and 5.5 readily carry over to, for example, the sum of two independent
totally skewed stable Lévy processes with different stability indices.
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Example 5.6. An unnamed superexponential Lévy process ξ is defined by Linnik and Ostrovskĭı [23] pp. 52–53,
see also Sato [29], Exercise 18.19, as having characteristics (ν,m, 0), where

dν(x)

dx
=

ebx

|x|(1− eax)
for x < 0, for some constants a, b > 0.

For a suitable constant c = c(a, b,m) > 0 the corresponding Laplace transform is given by

φ1(λ) =
Γ((b− λ)/a)cλ/a

Γ(b/a)
for λ ≤ 0.

By Theorem 2.12, (1.3) holds with ζ(a′) = a′ while (1.4) holds with L(0, x) = e−x and L(t, x) = 0 for
t > 0.

We finish by demonstrating how (2.8) gives the asymptotics of P{ξ(h) > u} as u → ∞ in (1.5): Taking
a = 1 for simplicity and denoting the polygamma function ψ (see e.g. Erdélyi, Magnus, Oberhettinger and
Tricomi [16], Sects. 1.16–1.17), we have

µ(λ) = − ln(c) + ψ(b− λ) = ln((b− λ)/c)− 1

2(b− λ)
+ O

( 1

λ2

)
as λ→ −∞,

σ(λ)2 = ψ′(b− λ) =
1

b− λ
+ O

( 1

λ2

)
as λ→ −∞,

µ←(x) = b− 1
2 − cex + O(e−x) as x→∞.

Using this together with (2.8) and Stirling’s formula, we get

P{ξ(h) > u} ∼ (2π)(h−1)/2

√
hcΓ(b)h

exp

{
−(cu+ hc ln(c/e))eu/h − u

2h

}
as u→∞.

Picking a function g(t) > 0 with limt↓0 t ln(1/g(t))/g(t) = 1, Stirling’s formula (see, e.g., Erdélyi, Magnus,
Oberhettinger and Tricomi [16], Eq. 1.18.2) gives

φ1

( λ

g(t)

)t
∼ 1

(2π)t/2
exp

{
t
(bg(t)−λ

ag(t)
− 1

2

)
ln
(bg(t)−λ

ag(t)

)
− bt

a
+

ln(c/e)λt

ag(t)

}
→ e−λ/a

as t ↓ 0 for λ ≤ 0, so that

lim inf
t↓0

P{ξ(t) > 0} = lim inf
t↓0

P{ξ(t)/g(t) > 0} ≥ P{1/a > 0} = 1.

Hence (3.1) holds so that (1.8) holds by Proposition 3.4. And so Theorem 1.1 shows that (1.5) holds. In addition
we have H = 1 for the same reason as in Example 5.5.
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[29] K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999).
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