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Abstract

Osteoblasts play a major role in bone formation. Osteoblasts employ intracellular 
Ca2+ as a second messenger to modulate hormonal responses and a cofactor for bone 
mineralization. Adrenomedullin (ADM) promotes osteoblast growth and proliferation, 
inducing an increase in bone mass. Voltage-dependent Ca2+ channels (VDCCs) mediate 
the influx of Ca2+ in response to membrane depolarization. Voltage-dependent Ca2+ 
channels serve as crucial mediators of many Ca2+-dependent functions, including growth 
of bone and regulation of proliferation. The purpose of this study was to investigate the 
effects of ADM on VDCC currents in osteoblasts using a patch-clamp recording method. 
To our knowledge, the data presented here demonstrate for the first time that ADM 
facilitates VDCCs in osteoblasts.
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Introduction

In cells of osteoblastic lineage, intracellular 
Ca2+ signals coordinate cell behavior, which 
translates into systemic control of Ca2+ home
ostasis and maintenance of normal bone 
mineral density. Adrenomedullin (ADM) is  
a 52-amino-acid peptide originally isolated 
from a human pheochromocytoma12). It is 
structurally and functionally related to cal
citonin gene-related peptide (CGRP) and 
belongs to the amylin peptide family14). Dorit 

et al. demonstrated that ADM receptors are 
expressed in osteoblasts6). Several studies have  
shown that ADM stimulate osteoblasts prolif-
eration2,3,9). Voltage-dependent Ca2+ channels 
(VDCCs) serve as crucial mediators of mem-
brane excitability15) and many Ca2+-dependent 
functions such as growth of bone7), regulation 
of proliferation13), enzyme activity17) and gene 
expression16). Modulation of VDCCs by CGRP 
and ADM in various types of cells has been 
described previously8,11,19). However, the effect 
of ADM on VDCCs in osteoblasts remains to 
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be clarified. Therefore, the purpose of this 
study was to investigate the effects of ADM on 
VDCC currents (ICa) in osteoblasts.

Materials and Methods

Murine osteoblastic MC3T3-E1 cells were 
purchased from Summit Pharmaceuticals 
International Corporation (Tokyo, Japan). 
Cells were cultured at 37°C in a 5%(v/v) CO2 
atmosphere with α-modified minimal essen-
tial medium (α-MEM; Gibco BRL, Grand 
Island, NY, U.S.A.). Unless otherwise speci-
fied, the medium contained 10%(v/v) heat-
inactivated fetal bovine serum, 100 U/ml 
penicillin and 100 mg/ml streptomycin. Cell 
culture medium was changed every 2–3 days. 
For patch-clamp experiments, cells were har-
vested using a 0.05% trypsin/0.02% EDTA 
solution, when cells reached confluence. Cells  
were plated at very low density in 35 mm tissue 
culture dishes. Prior to recordings, the cells 
were washed at least three times with Krebs 
solution of the following composition (in 
mM): 136 NaCl; 5 KCl; 2.5 CaCl2; 0.5 MgCl2; 
10.9 glucose; 11.9 NaHCO3 and 1.1 NaH2PO4. 
The pH was 7.3–7.4. Cell culture reagents 
were purchased from Sigma (Tokyo, Japan).

Voltage-clamp recordings were obtained 
using whole-cell configuration patch-clamp 
technique10). Fabricated recording pipettes 
(2–3 MΩ) were filled with internal solution  
of the following composition (in mM): 150 
CsCl; 5 EGTA; 10 D-glucose and 10 HEPES. 
The pH was adjusted to 7.3 with CsOH.  
After the formation of a giga seal, in order to 
record ICa carried by Ba2+ (IBa), the extracel-
lular solution was replaced changing Krebs 
solution for a solution containing the follow-
ing (in mM): 115 BaCl2 and 20 HEPES. The 
pH was adjusted to 7.4 with tetraethylam
monium hydroxide (TEA-OH). Command 
voltage protocols were generated with the 
computer software pCLAMP version 10 (Axon 
Instruments, Union City, CA, U.S.A.) and 
transformed to an analogue signal using the 
DigiData1440A interface (Axon Instruments). 
The command pulses were applied to the 

cells through an L/M-EPC7 amplifier (HEKA 
Elektronik, Lambrecht, Germany). The cur-
rents were recorded with an amplifier and  
the computer software pCLAMP10 acquisi-
tion system. Access resistance (<15 MΩ) was 
determined by transient responses to voltage 
commands. Adrenomedullin was purchased 
from Sigma.

Results

The properties of VDCCs in osteoblasts 
using current-voltage relationships have been 
demonstrated previously18). Osteoblasts have 
L-type VDCCs, which are fully activated at  
a test potential (=110 mV) from a holding 
potential (=180 mV). Therefore, in this 
study, full activation of IBa was obtained by 
applying a test pulse from a holding potential 
of 180 mV in depolarizing voltage steps of 
110 mV evoked every 20 sec.

Representative examples of superimposed 
IBa traces in the absence or presence of 1 mM 
ADM are shown in Figs. 1A and B. As shown 
in Figs. 1A and B, application of 1 mM ADM 
rapidly and reversibly facilitated IBa from 
149 pA to 1127 pA (159% facilitation) in 
this cell. Representative examples of super
imposed IBa traces in the absence or presence 
of 0.1 mM ADM are shown in Figs. 1C and D. 
As shown in Figs. 1C and D, application of  
0.1 mM ADM rapidly and reversibly facilitated 
IBa from 178 pA to 193 pA (19% facilitation) 
in this cell.

Discussion

The results of this study showed that ADM 
facilitates VDCCs in osteoblasts.

Cornish et al. has suggested that ADM stimu- 
late osteoblast proliferation and increases 
intracellular Ca2+ levels ([Ca2+]i)

4). It is possible  
that ADM-induced proliferation is due to an 
increase in [Ca2+]i by facilitation of VDCCs.

There are several mechanisms of VDCCs 
facilitation5). L-type VDCCs facilitation can 
result from a strong conditioning depolari
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zation that recruits silent channels1). Alter
natively, L-type VDCCs can be facilitated  
by protein kinases14). L-type VDCCs possess  
several consensus protein kinase A (PKA) and 
protein kinase C (PKC) phosphorylation sites 
and physiological studies have demonstrated 
channel facilitation by these enzymes14). We 
previously demonstrated that ADM facilitates 
VDCCs mediated by PKA in submandibular 
ganglion8). We have also demonstrated that 
ADM facilitates VDCCs involving mitogen-
activated protein kinase in nucleus tractus 
solitarius11). It is possible that ADM could play 
a role in therapy for osteoporosis. Therefore, 
ADM receptor’s intracellular pathways in 

osteoblasts should be investigated in further 
study.
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