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Eternally inflating cosmologies from
intersecting spacelike branes

Riuji Mochizuki∗

Laboratory of Physics, Tokyo Dental College, Chiba 261-8502, Japan

October 19, 2007

Abstract

Intersecting spacelike braneworld cosmologies are investigated. The
time axis is set on the scale parameter of extra space, which may in-
clude more than one timelike metric. Obtained are eternally inflating
(i.e. undergoing late-time inflation) Robertson-Walker spacetime and
extra space with a constant scale factor. In the case of multibrane
solutions, some dimensions are static or shrink. The fact that the
largest supersymmetry algebra contains 32 supercharges in 4 dimen-
sions imposes a restriction on the geometry of extra space.

PACS numbers: 95.36.+X, 11.25.Wx, 11.25.Yb
keywords: Spacelike braneworld, Accelerating cosmologies

1 Introduction

The first observational evidence that the present universe is still inflat-
ing (late-time inflation) was shown by Riess et al. [1] and Perlmutter
et al. [2], separately. Later observations [3, 4, 5, 6] supported this
claim.

If the cosmological constant is equal to zero or absorbed into ρ and
P , then the condition for inflation can be written as

ρ + 3P < 0,

where ρ is the energy density of the universe and P is its pressure. Be-
cause the left-hand side of this equation is always positive for ordinary

∗e-mail address:rjmochi@tdc.ac.jp
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matter, radiation and dark matter, the existence of dark energy is re-
garded as indispensable in accounting for late-time inflation. Although
we have yet to unmask dark energy, some potential candidates, such
as the cosmological constant and quintessence, have been proposed.
If we define the ratio of P to ρ as

w ≡ P

ρ
,

then w = −1, if the cosmological constant is identified as dark energy.
On the other hand, w usually fluctuates if quintessence assumptions
are adopted. Recent observations [5, 6, 7, 8] support the former can-
didate. If the cosmological constant is the only source of late-time
inflation, it will be a very small positive value, but not zero. Al-
though the cosmological constant can be chosen arbitrarily within the
limits of general relativity, it should be zero if general relativity is to
be regarded as a low-energy effective theory of M-theory/superstring
theory.

Many models of cosmological inflation have been posited based
on M-theory/superstring theory. However, one no-go theorem [9]
suggests that 4-dimensional de Sitter spacetime could not realized
by the ordinary compactification methods available under M the-
ory/superstring theory. One way to overcome this problem [10] would
be to put S-branes, which are time-dependent spacelike branes, into
the model [11, 12, 13, 14, 15]. As Dp-branes are objects which ex-
tend in p space dimensions and a time dimension, Sq-branes extend
in (q + 1) space dimensions in ordinary notation. It is known that ac-
celerating S-brane solutions exist and that eternal inflation is possible
if both internal and external spaces are hyperbolic [16, 17]. Higher-
order quantum corrections have been added to the action, and so-
lutions which include exponentially expanding braneworld and static
extra space have been found numerically [18, 19]. In a recent paper
[20], we pointed out the existence of singular single-brane solutions
to Einstein gravity coupled to a dilaton and an n-field. One of these
analytic solutions includes a 4-dimensional exponentially expanding
Robertson-Walker spacetime consisting of an SM2-brane and a time
axis, and an extra hyperbolic space HD−p−2 with a constant scale
factor.

In this paper, our starting point is Einstein gravity coupled to a
dilaton and one or some n-form fields, which yield multibrane solu-
tions, as a low-energy effective theory of M-theory/superstring theory.
In order to obtain singular solutions, we set the time axis on the scale
parameter of extra space, which may include more than one timelike
metric, in contrast to our previous paper, in which only one timelike
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metric was considered. We obtain eternally inflating (i.e. undergo-
ing late-time inflation) Robertson-Walker spacetime and extra space
with a constant scale factor. With multibrane solutions, some dimen-
sions are static or shrink. The required intersection rule is shown to
be the same as that suggested for regular solutions in other papers
[21, 22, 23, 24]. The last section is devoted to an examination of these
solutions in relation to the real Universe. The fact that the largest
supersymmetry algebra contains 32 supercharges in 4 dimensions im-
poses a restriction on the geometry of extra space.

2 Intersecting S-brane solution

We consider Einstein gravity coupled to a dilaton field φ and m kinds
of n-form fields Fn as a low-energy effective theory of M-theory/superstring
theory, whose action I is

I =
1

16πG

∫
dDx

√±g
[
R− 1

2
gµν∂µφ∂νφ−

m∑

A=1

1
2 · nA!

eαAφF 2
nA

]
, (1)

where the sign in front of g should be selected as appropriate. αA is
the dilaton coupling constant given by

αA =





0 (M− theory)
−1 (NS−NS sector)

5−nA
2 (R− R sector),

and the bare cosmological constant is assumed to be zero. D=11 for
M-theory and D=10 for superstring theories.

We assume the following metric form:

ds2 =
p+1∑

i=1

e2uidxidxi +
D∑

a,b=p+2

e2vηabdyadyb, (2)

where
ηab = {diag.(+, · · · , +︸ ︷︷ ︸

D−p−1−s

,−, · · · ,−︸ ︷︷ ︸
s

)}. (3)

We use xi, i = 1, · · · , and p+1 as the coordinates of the space where
the branes exist. A recent study has posited singular single-brane
solutions for the case where only one minus sign is to be included
in the metric [20]. General orthogonally intersecting solutions where
the metric functions u and v and fields φ and F depend only on one
timelike coordinate have also been proposed [23]. A D-brane solution
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which depends on all the extra space coordinates has been suggested
[24].

We assume that the metrics and fields do not depend only on the
timelike coordinates ya, a = D − s + 1, · · · , and D, but also on the
other perpendicular coordinates ya, a = p + 2, · · · , and D − s. That
is to say,

u = u(y) ≡ u(yp+2, · · · , yD),

v = v(y) ≡ v(yp+2, · · · , yD),

φ = φ(y) ≡ φ(yp+2, · · · , yD),

F = F (y) ≡ F (yp+2, · · · , yD).

The field strength for an electrically charged Sp-brane is given by

(Fn)i1···in−1a(y) = εi1···in−1∂aE(y), (4)

where
n = q + 2.

The magnetically charged case is given by

(Fn)a1···an =
1√±g

e−αφεa1···anb∂bE(y), (5)

where
n = D − q − 2.

The field equations are

−∂2ui − (∂ui){
p+1∑

k=1

(∂uk) + (D − p− 3)(∂v)}

=
m∑

A=1

δA,i

2(D − 2)
e
εAαAφ−2

∑
k∈qA

uk(∂EA)2, (6)

ηab

[
− ∂2v − (∂v){(D − p− 3)(∂v) +

p+1∑

k=1

(∂uk)}
]
−

p+1∑

k=1

∂auk∂buk

−∂a∂b

[
(D − p− 3)v +

p+1∑

k=1

uk

]
− (D − p− 3)∂av∂bv

+∂av
[
(D − p− 3)∂bv +

p+1∑

k=1

∂buk

]
+ (a ↔ b)

=
m∑

A=1

1
2
e
εAαAφ−2

∑
k∈qA

uk
[
∂aEA∂bEA − qA + 1

D − 2
ηab(∂EA)2

]

+
1
2
∂aφ∂bφ, (7)
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∂a

[
e
∑p+1

k=1
uk+(D−p−3)vηab∂bφ

]

=
m∑

A=1

εAαA

2
e
εAαAφ−

∑
k∈qA

uk+
∑

j /∈qA
uj+(D−p−3)v(∂EA)2, (8)

∂a

[
e
εAαAφ−

∑
k∈qA

uk+
∑

j /∈qA
uj+(D−p−3)v

ηab∂bEA

]
= 0, (9)

and the Bianchi identity is

∂[aF···] = 0. (10)

In these equations, we have introduced notations defined as

ηabηbc = δa
c

∂2 ≡ ηab∂a∂b,

(∂f)(∂g) ≡ ηab(∂af)(∂bg)

εA =

{
+1 (FnA is an electric field strength)
−1 (FnA is a magnetic field strength)

δA,i =

{
D − qA − 3 (i ∈ qA)
−(qA + 1) (i /∈ qA).

To simplify the calculation, we assume

p+1∑

k=1

uk(y) + (D − p− 3)v(y) = 0. (11)

Then, the above field equations and the Bianchi identity become

−∂2ui =
m∑

A=1

δA,i

2(D − 2)
e
εAαAφ−2

∑
k∈qA

uk(∂EA)2, (12)

−ηab∂
2v −

p+1∑

k=1

∂auk∂buk − (D − p− 3)∂av∂bv

=
m∑

A=1

1
2
e
εAαAφ−2

∑
k∈qA

uk
[
∂aEA∂bEA − qA + 1

D − 2
ηab(∂EA)2

]

+
1
2
∂aφ∂bφ, (13)

∂2φ =
εAαA

2
e
εAαAφ−2

∑
k∈qA

uk(∂EA)2, (14)

∂a

[
e
εAαAφ−2

∑
k∈qA

ukηab∂bEA

]
= 0. (15)
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The Bianchi identity (10) is trivially satisfied in the electric case, as
is the field equation (9) in the magnetic case.

We write candidates for the solution of the above equations (12)
∼ (15) which satisfy assumption (11) as

EA(y) = iHA(y), (16)

ui(y) =
m∑

A=1

δA,i

2(D − 2)
ln HA(y), (17)

v(y) =
m∑

A=1

−(qA + 1)
2(D − 2)

ln HA(y), (18)

φ(y) =
m∑

A=1

−εAαA

2
lnHA(y), (19)

where
HA(y) ≡ QA

h(y)
, (20)

with QA as a constant.
Substituting (16) ∼ (21) into (12) ∼ (15), we find sufficient condi-

tions
∂2h(y) = 0 (21)

and
−εAεBαAαB − 2(q̄ + 1) +

2(qA + 1)(qB + 1)
D − 2

= 0, (22)

where q̄ + 1 represents dimensions on which qA-brane and qB-brane
cross. (22) is the intersection rule, which has already been suggested
for regular solutions in other papers [21, 22, 23, 24].

3 Eternally inflating braneworld

Now, consider a metric which depends only on the scale parameter r
of either the entire, or a part of, the spacetime perpendicular to the
brane:

r ≡
√
−ηabyayb, −ηaby

ayb > 0. (23)

Note that r is a timelike coordinate. To satisfy (21),

h = r−(D−p−3). (24)

Then, the metric of this spacetime is

ds2 =
p+1∑

i=1

e2uidxidxi − e2v
(
dr2 − r2dΣ2

D−p−2

)
, (25)
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where dΣD−p−2 is the line element of a hypersurface with a unit scale
factor. If s = 1 in (3), this hypersurface is a (D−p−2)-dimensional hy-
perbolic space HD−p−2 with a unit scale factor. Meanwhile, it becomes
a (D − p− 2)-dimensional unit timelike spherical surface −SD−p−2 if
s = D − p− 1.

We define cosmic time t as

dt ≡ evdr

= Cr
(D−p−3)

∑ −(qA+1)

2(D−2) dr, (26)

where

C =
m∏

A=1

Q
−(qA+1)

2(D−2)

A . (27)

It is most interesting that the case

(D − p− 3)
m∑

A=1

(qA + 1)
2(D − 2)

= 1 (28)

is satisfied. In this case, as

t = C ln r, (29)

and
e2v = C2r−2, (30)

the metric (25) becomes

ds2 = −dt2 +
p+1∑

i=1

e2uidxidxi + C2dΣ2
D−p−2 . (31)

Note that the scale factor of the extra space is independent of t in this
metric. On the other hand, because

e2ui =
( m∏

A=1

Q
δA,i
D−2

A

)
e

D−p−3
C(D−2)

∑
A

δA,it, (32)

the i-th dimension exponentially expands if
∑

A δA,i is positive, is
static if

∑
A δA,i = 0, or shrinks if

∑
A δA,i is negative.

The solutions satisfying the above condition (28) are given in the
tables in Subsections 3.1, 3.2 and 3.3 for M-theory, IIA superstring
theory and IIB superstring theory, respectively. In these tables, we
use the following symbols:

symbol dimension
⊕ exponentially expands
ª exponentially shrinks
¯ static
• constitutes cosmic time and static extra space
◦ exponentially shrinks
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3.1 M-theory

　

1 brane
M2 ⊕ ⊕ ⊕

Other dim. • • • • • • • •

M5 ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Other dim. • • • • •

2 branes
M2 ⊕ ⊕ ⊕
M2 ⊕ ⊕ ⊕

Other dim. ◦ • • • • •

M2 ⊕ ⊕ ¯
M5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • • •
3 branes

M2 ⊕ ¯ ¯
M2 ⊕ ¯ ¯
M2 ⊕ ¯ ¯

Other dim. • • • •

M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯

Other dim. ◦ • • • •

M5 ⊕ ⊕ ¯ ¯ ¯ ¯
M5 ⊕ ⊕ ¯ ¯ ¯ ¯
M5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • •
4 branes

M2 ⊕ ¯ ¯
M2 ⊕ ¯ ¯
M5 ⊕ ¯ ¯ ¯ ¯ ¯
M5 ⊕ ¯ ¯ ¯ ¯ ¯

Other dim. • • •

M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M5 ⊕ ⊕ ¯ ¯ ¯ ¯
M5 ⊕ ⊕ ⊕ ¯ ¯ ª

Other dim. • • •
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5 branes
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M5 ⊕ ⊕ ⊕ ⊕ ª ª

Other dim. • • •
6 branes

M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯

Other dim. ◦ • • •

3.2 IIA superstring theory

2 branes
D0 ⊕
D2 ⊕ ⊕ ⊕

Other dim. • • • • • •
F1 ⊕ ⊕
NS5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • • •
D2 ⊕ ⊕ ¯
D4 ⊕ ⊕ ¯ ¯ ¯

Other dim. • • • •
3 branes

D0 ⊕
F1 ⊕ ¯
D4 ⊕ ¯ ¯ ¯ ¯

Other dim. • • • •
F1 ⊕ ¯
D2 ⊕ ¯ ¯
D2 ⊕ ¯ ¯

Other dim. • • • •
F1 ⊕ ⊕
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯

Other dim. ◦ • • • •
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D4 ⊕ ⊕ ¯ ¯ ¯
D4 ⊕ ⊕ ¯ ¯ ¯
NS5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • •

D2 ⊕ ⊕ ¯
NS5 ⊕ ⊕ ¯ ¯ ¯ ¯
D6 ⊕ ⊕ ¯ ¯ ¯ ¯ ¯

Other dim. • • •
4 branes

D0 ⊕
D4 ⊕ ¯ ¯ ¯ ¯
D4 ⊕ ¯ ¯ ¯ ¯
D4 ⊕ ¯ ¯ ¯ ¯

Other dim. • • •

F1 ⊕ ¯
D2 ⊕ ¯ ¯
D4 ⊕ ¯ ¯ ¯ ¯
NS5 ⊕ ¯ ¯ ¯ ¯ ¯

Other dim. • • •

F1 ⊕ ⊕
D2 ⊕ ⊕ ¯
D4 ⊕ ⊕ ¯ ¯ ¯
NS5 ⊕ ⊕ ⊕ ¯ ¯ ª

Other dim. • • •

D2 ⊕ ¯ ¯
D2 ⊕ ¯ ¯
D2 ⊕ ¯ ¯
D6 ⊕ ¯ ¯ ¯ ¯ ¯ ¯

Other dim. • • •

D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D6 ⊕ ⊕ ⊕ ¯ ¯ ¯ ª

Other dim. • • •

D2 ⊕ ¯ ¯
D2 ⊕ ¯ ¯
D4 ⊕ ¯ ¯ ¯ ¯
D4 ⊕ ¯ ¯ ¯ ¯

Other dim. • • •
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D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D4 ⊕ ⊕ ¯ ¯ ¯
D4 ⊕ ⊕ ⊕ ¯ ª

Other dim. • • •
5 branes

F1 ⊕ ⊕
F1 ⊕ ⊕
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
NS5 ⊕ ⊕ ⊕ ⊕ ª ª

Other dim. • • •
6 branes

F1 ⊕ ⊕
F1 ⊕ ⊕
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯

Other dim. ◦ • • •

3.3 IIB superstring theory

　

1 brane
D3 ⊕ ⊕ ⊕ ⊕

Other dim. • • • • • •
2 branes

F1 ⊕ ⊕
F1 ⊕ ⊕

Other dim. • • • • • •

D1 ⊕ ⊕
D1 ⊕ ⊕

Other dim. • • • • • •

F1 ⊕ ⊕
D1 ⊕ ⊕

Other dim. ◦ • • • • • •

F1 ⊕ ⊕
NS5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • • •
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D1 ⊕ ⊕
D5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • • •

D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • • •
3 branes

F1 ⊕ ¯
F1 ⊕ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • • •

F1 ⊕ ¯
D1 ⊕ ¯
D3 ⊕ ¯ ¯ ¯

Other dim. • • • •

F1 ⊕ ⊕
D1 ⊕ ⊕
D3 ⊕ ⊕ ¯ ¯

Other dim. ◦ • • • •

D1 ⊕ ¯
D1 ⊕ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • • •

D3 ⊕ ⊕ ¯ ¯
NS5 ⊕ ⊕ ¯ ¯ ¯ ¯
D5 ⊕ ⊕ ¯ ¯ ¯ ¯

Other dim. • • •
4 branes

F1 ⊕ ⊕
F1 ⊕ ⊕
D1 ⊕ ⊕
D1 ⊕ ⊕

Other dim. ◦ ◦ • • • •

F1 ⊕ ¯
D1 ⊕ ¯
NS5 ⊕ ¯ ¯ ¯ ¯ ¯
D5 ⊕ ¯ ¯ ¯ ¯ ¯

Other dim. • • •
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F1 ⊕ ¯
D3 ⊕ ¯ ¯ ¯
D3 ⊕ ¯ ¯ ¯
NS5 ⊕ ¯ ¯ ¯ ¯ ¯

Other dim. • • •

F1 ⊕ ⊕
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯
NS5 ⊕ ⊕ ⊕ ¯ ¯ ª

Other dim. • • •

D1 ⊕ ¯
D3 ⊕ ¯ ¯ ¯
D3 ⊕ ¯ ¯ ¯
D5 ⊕ ¯ ¯ ¯ ¯ ¯

Other dim. • • •

D1 ⊕ ⊕
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯
D5 ⊕ ⊕ ⊕ ¯ ¯ ª

Other dim. • • •

D3 ⊕ ¯ ¯ ¯
D3 ⊕ ¯ ¯ ¯
D3 ⊕ ¯ ¯ ¯
D3 ⊕ ¯ ¯ ¯

Other dim. • • •

D3 ⊕ ⊕ ⊕ ª
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • •

5 branes
F1 ⊕ ¯
F1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • •
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D1 ⊕ ¯
D1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • •

F1 ⊕ ¯
F1 ⊕ ¯
F1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
NS5 ⊕ ⊕ ⊕ ¯ ¯ ¯

Other dim. • • •

D1 ⊕ ¯
D1 ⊕ ¯
D1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
D5 ⊕ ⊕ ⊕ ¯ ¯ ¯

Other dim. • • •
6 branes

F1 ⊕ ⊕
F1 ⊕ ⊕
D1 ⊕ ⊕
D1 ⊕ ⊕
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. ◦ • • •

4 Concluding remarks

In the previous sections, we constructed intersecting spacelike braneworld
models. To examine the reality of these models, we focus on the fol-
lowing 9 models, which include 3 isotropically expanding space dimen-
sions.

From M-theory, 2 models are nominated:

M2 ⊕ ⊕ ⊕
Other dim. • • • • • • • •

M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯
M2 ⊕ ⊕ ¯

Other dim. ◦ • • • •
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On the other hand, 3 and 7 candidates come from IIA and IIB super-
string theories, respectively:

F1 ⊕ ⊕
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯

Other dim. ◦ • • • •

D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D6 ⊕ ⊕ ⊕ ¯ ¯ ¯ ª

Other dim. • • •

D2 ⊕ ⊕ ¯
D2 ⊕ ⊕ ¯
D4 ⊕ ⊕ ¯ ¯ ¯
D4 ⊕ ⊕ ⊕ ¯ ª

Other dim. • • •

F1 ⊕ ⊕
D1 ⊕ ⊕
D3 ⊕ ⊕ ¯ ¯

Other dim. ◦ • • • •

D1 ⊕ ⊕
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯
D5 ⊕ ⊕ ⊕ ¯ ¯ ª

Other dim. • • •

D3 ⊕ ⊕ ⊕ ª
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • •

F1 ⊕ ¯
F1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • •
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D1 ⊕ ¯
D1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
D3 ⊕ ⊕ ¯ ¯
D3 ⊕ ⊕ ¯ ¯

Other dim. • • •

F1 ⊕ ¯
F1 ⊕ ¯
F1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
NS5 ⊕ ⊕ ⊕ ¯ ¯ ¯

Other dim. • • •

D1 ⊕ ¯
D1 ⊕ ¯
D1 ⊕ ¯
D3 ⊕ ⊕ ⊕ ª
D5 ⊕ ⊕ ⊕ ¯ ¯ ¯

Other dim. • • •

Because each multi-brane model includes a shrinking space dimen-
sion, its classical dimension would reduce with the passage of time.
Therefore, change of the behavior of other dimensions might be caused.

First, we investigate the restrictions caused by the fact that the
largest supersymmetry algebra in 4 dimensions is N = 8 and that
it contains 32 (real) supercharges. This is expected to hold in our
models. In 11 dimensions, the number of real components of the
smallest representation is 32, if the Majorana condition is satisfied.
Hence, the number of the timelike coordinates s = 1, 2, 5 and 6 is
allowed in the above-mentioned M-theory model. On the other hand,
s = 1, 2 and 4 are allowed, as the Majorana condition or the Weyl
condition must be satisfied in the superstring theory model. If s = 1,
the extra space is a (D−p−2)-dimensional hyperbolic space HD−p−2,
whereas if s = D−p−1, it is a compact (D−p−2)-dimensional timelike
sphere.

Some studies have pointed out the importance of compact hy-
perbolic manifolds for internal space. Modding out HD−p−2 by an
appropriate freely acting discrete subgroup of the isometry group of
HD−p−2, a compact hyperbolic manifold is obtained. These stud-
ies posit a model in which the universe is the direct product of a
Robertson-Walker spacetime and a compact hyperbolic manifold [25,
26, 27].
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Secondly, we compare expansion of our braneworld with late-time
inflation of the Universe. For simplicity, we neglect a curvature term
and think of an effective cosmological constant Λ as the only content
of the Universe. Then, the Friedmann equation of a Λ-dominated
universe is

H2 =
Λ
3

,

where H is the present Hubble parameter

H ∼ 10−26m−1.

Comparing its metric

ds2 = −dt2 + e
√

Λ
3

tdx2

with (32), we obtain
√

Λ
3

=
D − p− 3
2C(D − 2)

∑

A

δA,i . (33)

Because
D − p− 3
2(D − 2)

∑

A

δA,i ∼ O(1),

the scale factor of extra dimensions C is estimated as

C ∼ Λ−1/2. (34)

Therefore,
C ∼ H−1 ∼ (Λlate)−1/2 ∼ 1026m. (35)

This value is comparable to the present size of the Universe.

We would like to thank Associate Professor Jeremy Williams, Tokyo
Dental College, for his assistance with the English of this manuscript.
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