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Abstract

The aim of this paper is to show how option prices in the Jump-diffusion
model can be computed using meshless methods based on Radial Basis Func-
tion (RBF) interpolation. The RBF technique is demonstrated by solving the
partial integro-differential equation (PIDE) in one-dimension for the Ameri-
can put and the European vanilla call/put options on dividend-paying stocks
in the Merton and Kou Jump-diffusion models. The radial basis function we
select is the Cubic Spline. We also propose a simple numerical algorithm for
finding a finite computational range of a global integral term in the PIDE so
that the accuracy of approximation of the integral can be improved. More-
over, the solution functions of the PIDE are approximated explicitly by RBFs
which have exact forms so we can easily compute the global intergal by any
kind of numerical quadrature. Finally, we will also show numerically that
our scheme is second order accurate in spatial variables in both American
and European cases.
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Option, American Option.

1. Introduction

In this paper we show how to compute European and American option
prices in the Jump-diffusion model using Radial Basis Function (RBF) in-
terpolation techniques. RBF methods have recently been proposed for nu-
merically solving initial value and free boundary problems for the classical
Black and Scholes equation, both in the one and in the multiple asset case
(Fausshauer et al., 2004a,b; Hon and Mao, 1999; Larsson et al., 2008). The
new feature of the present paper is that in the Jump-diffusion model, as in
general Lévy type models, the Black and Scholes PDE is replaced by a Partial
Integro-Differential Operator or PIDE, involving a global term in the form
of an integral operator. The PIDE has a form:

∂τu(x, τ) =
1

2
σ2∂2

xu+

(
r − q − 1

2
σ2 − η

)
∂xu− (r + λ)u+

λ

∫
R
u(x+ y, τ)f(y)dy (1)

(cf. Cont and Tankov, 2004; Schoutens, 2003, 2006). Our main contribution
is to show how to numerically solve (1) in an efficient way using RBFs, both
for initial value and free boundary problems (as for American options). We
have chosen the Jump-diffusion model as a typical case on which to test the
present RBF methodology. Our method extends however without problems
to other contexts in which the basic pricing equation is a PIDE, like that of
Lévy-type models such as Carr-Geman-Madan-Yor (CGGMY) (Carr et al.,
2002) or Variance Gamma (VG) (Carr et al., 1998; Madan and Milne, 1991).
These will be treated in a future paper.

Currently, PIDEs such as the Merton Model (Merton, 1976) and the Kou
Model (Kou, 2002; Kou and Wang, 2001), one have mostly been treated by
a traditional Finite Difference Method (FDM) or Finite Elements Method
(FEM). In FDM, the idea is to simply fully discretize the PIDE on an
equidistant grid, after having (artificially) localized the equations to some
bounded interval/domain in R. The global integral term can be computed
by numerical quadrature or by using the Fast Fourier Transform (FFT) (see,
Almendra, 2005; Almendral and Oosterlee, 2004, 2005a, 2006, 2007; Ander-
sen and Andreasen, 2000; Briani et al., 2007; Cont and Voltchkova, 2005;
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D’Halluin et al., 2004, 2005; Hirsa and Madan, 2004; Wang et al., 2007). By
contrast, FEM is defined as piecewise polynomial functions or wavelet func-
tions on regular triangularizations. This technique is used to approximate
solutions of the partial differential terms as well as of the integral term (cf.
Almendral and Oosterlee, 2005b; Matache et al., 2003, 2005).

In general, there are a number of problems which arise with these cur-
rent approaches. First, some of the literature, (e.g., Briani et al., 2007;
Cont and Voltchkova, 2005), plays down the importance of pricing American
and European vanilla option values when time to maturity is less than 3
months. The reason is that for short times-to-maturity the numerical meth-
ods used to price the option tend to be inaccurate near the strike price where
a singularity (kink) exists. A singularity is defined as a point at which the
function, or its derivative, is discontinuous. The payoff functions of vanilla
call and put options have such a singularity. As a result, standard numeri-
cal methods such as FDM cannot ensure accuracy and suffer a reduced rate
of convergence when used to price options at a very short time to matu-
rity. This can be explained by Forysth and Vetzal’s heuristic findings in
(Forsyth and Vetzal, 2002) when they solve an American options under a
Brownian case. By their heuristic analysis of the behavior of the solution
near the exercise boundary in an American option Forysth and Vetzal finds
that the convergence rate of the solution appears only at the rate less than
second order convergence when a standard FDM with implicit method and
constant timesteps has been applied. Forysth et al. shed light on this kind
of problem (D’Halluin et al., 2005) by suggesting Rannacher’s time stepping
method (Rannacher, 1984). This is a mixture of implicit and Crank-Nicolson
methods. They demonstrate this technique by approximating an option price
whose maturity is a quarter of a year. This method gives second order rates
of convergence when pricing European options but not American ones. By
using the same idea and combining it with a penalty method and a modi-
fied form of a timestep selector suggested in (Johnson, 1987), Forysth et al.
(D’Halluin et al., 2004) show how to achieve second order convergence for
pricing American options. Although their methods can yield second order
convergence, the necessary calculations can be quite complex. Moreover, the
papers (Briani et al., 2007; Cont and Voltchkova, 2005; D’Halluin et al., 2005,
2004) implement an implicit-explicit numerical scheme to price European or
American options under the Lévy model. These papers treat the convection
(hyperbolic) term ∂xu(x, τ) of (1) explicitly by implementing the upwind
scheme and the diffusion (elliptic) term ∂xxu(x, τ) of (1) implicitly. As a
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result, restrictive stability conditions are necessary for the convection term
when the upwind scheme is implemented. A final but fundamental problem
with FDM and FEM is that these are, in practice, restricted to problems
of two or three space dimensions; however, most applications easily require
many more, e.g. when pricing basket options.

Our RBF-method will circumvent many of these disadvantages. This
paper is divided into five sections, including this introduction. Section 2
is a brief review of both the Merton and Kou Jump-diffusion models. In
section 3 we first explain and then define our RBF algorithm for solving
PIDEs, which we implement the Jump-diffusion model. Section 4 contains
our numerical results for both European and American call and put options,
including an analysis of the root-mean-square error and rate of convergence
and also a comparison the accuracy of our solution with that of FDM and
FEM . Section 5 concludes.

2. PIDE Option Pricing Formula in Jump-diffusion Market

In this short section we will focus on the Merton and the Kou Jump-
diffusion Models which are a general Lévy processes consisting of Brownian
motion and compound Possion jumps. By using this model we can describe
the price dynamics of the underlying risky asset, (St)t≥0. The evolution of
(St)t≥0 is driven by a diffusion process, punctuated by jumps which describe
rare events such as crashes and/or drawdowns at random intervals. As a
market model, it is an example of an incomplete market. We will skirt
around the hedging issue by working directly with the risk-neutral probability
measure Q, as is customary. The stock price process,(St)t≥0, is then given by

St = S0e
Lt (2)

where S0 is the stock price at time zero and Lt is defined by:

Lt := γct+ σWt +
Nt∑
i=1

Yi, (3)

here, γc is a drift term, σ is a volatility, Wt is a Brownian motion, Nt is a
Possion process with intensity λ, Yi is an i.i.d. sequence of random variables.
The risk-neutral Lévy triplet of these two processes can be described as
follows:

(γc, σ, ν)
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where

γc = r − q − 1

2
σ2 − λη +

∫
R
x ν(dx), (4)

Here we focus on the case where the Lévy measure is associated to the
pure-jump component and hence the Lévy measure ν(dx) can be written
as λf(x)dx, where the weight function f(x) can take two forms:

1. In the classical Merton model, for any i ∈ {1, 2, . . .}, Yi are log-normally
distributed variables with Yi ∼ N(µJ , σ

2
J) and as a result,

f(x) :=
1√

2πσj
e(x−µJ )2/2σ2

J . (5)

2. In the Kou model,

f(x) = pα1e
−α1x1x≥0 + (1− p)α2e

α2x1x≤0. (6)

Remark 1. In the Merton Jump-diffusion model, one should notice that Yi
is i.i.d so for each i ∈ {1, 2, 3, . . .}, Yi has the same mean and variance. For
the sake of simplicity, we use µJ and σ2

J to represent the mean and variance
of each Yi respectively.

Also in (4), η = E(ex − 1) =
∫

R (ex − 1)ν(dx) represents the expected
relative price change due to a jump. Since we have defined the Lévy density
function f(x) for both Jump-diffusion processes, η can be computed as:

1. In the Merton model,

η = eµJ+σ2
J/2 − 1. (7)

2. In the Kou model,

η =
pα1

α1 − 1
+

(1− p)α2

α2 + 1
− 1. (8)

This is found by integrating ex over the real line by setting α1 > 1 and
α2 > 0.

5



For the details of the computation of (7) and (8), we shall refer the reader
to (Cont and Tankov, 2004; Boyarchenko and Levendorskĭi, 2002).

The drift-term γc in (3) assumes that e−rtSt is a martingale with respect
to the natural filtration. We let τ = T − t, the time-to-maturity, where T
is the maturity of the financial option under consideration and we introduce
x = logSt, the underlying asset’s log-price. If u(x, τ) denotes the values of
some (American and European) contingent claim on St when log St = x and
τ = T − t, then it is well-known, see for example, (Cont and Tankov, 2004)
that u satisfies the following PIDE in the non-exercise region:

∂τu(x, τ) =
1

2
σ2∂2

xu+

(
r − q − 1

2
σ2 − η

)
∂xu− (r + λ)u+

λ

∫
R
u(x+ y, τ)f(y)dy, (9)

=: L[u](x, τ).

with initial value

u(x, 0) = g(x) := G(ex) =

{
max{ex −K, 0} , call option

max{K − ex, 0} , put option
: (10)

For an American put, we have to take into account the possibility of early
exercise (e.g., Cont and Tankov, 2004; Schoutens, 2003, 2006). As a result,
the highest value of American option can be achieved by maximizing over all
allowed exercise strategies:

u(x, τ) = ess supτ∗∈Γ(t,T)E
Q
t

[
e−r(τ∗−t)G

(
exτ∗

)]
(11)

where Γ(t, T ) denotes the set of non-anticipating exercise times τ ∗, satisfying
t ≤ τ ∗ ≤ T . To actually compute the u(x, τ) of the American put, one can
solve the following linear complementarity problem (Cont and Tankov, 2004;
Schoutens, 2003, 2006):

∂τu(τ, x)− Lu(x, τ) ≥ 0, in (0, T )× R (12)

u(x, τ)−G(ex) ≥ 0, a.e. in (0,T)× R (13)(
u(x, τ)−G(ex)

)
(∂τu(τ, x)− Lu(x, τ)) = 0, in (0, T )× R (14)

u(x, 0) = G(ex), (15)
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Since we only deal with a jump-diffusion model with σ > 0 and finite jump
intensity in this paper, we know that by Pham (Pham, 1997), the smooth
pasting condition,

∂u(xτ∗ , τ
∗)

∂x
= −1

is valid at time of exercise τ∗. Therefore the value of an American put option
is continuously differentiable with respect to the underlying on (0, T )×R; in
particular the derivative is continuous across the exercise boundary.

3. Meshfree Numerical Approximation Method

Meshfree radial basis function (RBF) interpolation is a well-known tech-
nique for reconstructing an unknown function from scattered data. It has
numerous applications in different fields, such as terrain modeling in geol-
ogy, surface reconstruction in imaging, and the numerical solution of partial
differential equations in applied mathematics. In particular, RBFs have re-
cently been used to solve the PDEs of quantitative finance. A number of
authors, including Fausshauer et al. (Fausshauer et al., 2004a,b), Larsson
et al. (Larsson et al., 2008) and Hon and Mao (Hon and Mao, 1999), have
suggested RBFs as a tool for solving Black-Scholes equations for European
as well as American options. This numerical scheme for the estimation of
partial derivatives using RBFs was originally proposed by Kansa (Kansa,
1990a), resulting in a new method for solving partial differential equations
(Kansa, 1990b). The aim here is to obtain a RBF approximation of the initial
value or pay-off of the option. Once we dispose of such a RBF-interpolant,
we implement an RBF-scheme to solve the PIDE with this RBF-interpolant
as initial value. The general idea of the proposed numerical scheme is to
approximate the unknown function u(x, τ) by a RBF-interpolant using the
interpolation points found for the initial value using the RBF-scheme, and
derive a system of linear constant coefficient ODE by requiring that the PIDE
(9) be satisfied in the chosen RBF-interpolation points. After picking inter-
polation points xj ∈ R, we approximate, for any fixed time-to-maturity τ ,
the solution u(x, τ) in (9) by its RBF-interpolant:

u(x, τ) '
N∑
j=1

ρj(τ)φ(||x− xj||2) =: ũ(x, τ), (16)
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Since the radial basis function does not depend on time, the time derivative
of ũ(x, τ) in equation (9) is simply:

∂ũ(x, τ)

∂τ
=

N∑
j=1

dρj(τ)

dτ
φ(|x− xj|), (17)

Moreover, the first and second partial derivatives of ũ(x, τ) with respect to
x are

∂ũ(x, τ)

∂x
=

N∑
j=1

ρj(τ)
∂φ(|x− xj|)

∂x
, (18)

∂2ũ(x, τ)

∂x2
=

N∑
j=1

ρj(τ)
∂2φ(|x− xj|)

∂x2
, (19)

where for the particular case when φ is the Cubic Spline,

∂φ(|x− xj|)
∂x

=

{
3(|x− xj|)2 if x− xj > 0,

−3(|x− xj|)2 if x− xj < 0,

∂2φ(|x− xj|)
∂x2

= 6(|x− xj|),

(20)

In this research we choose the Cubic Spline rather than the most popular
ones, MQ and IMQ as a basis function because its simplicity and accuracy.
Although there exits a substantial literature on choosing ”optimal” shape
parameters in MQ and IMQ, (e.g., Fasshauer and Zhang, 2007; Fornberg
and Wright, 2004; Kansa and Carlson, 1992), it is still an open question and
there is no theoretical proof for selecting an optimal shape parameter in IMQ
and MQ(cf. Wendland, 2005). To avoid this complexity, Cubic Spline will
prevail in our RBF-approximation scheme.

3.1. Transforming PIDE to A System of ODEs by RBF

Given a set of interpolation points x1, . . . , xj, . . . , xN in R, and a RBF
φ, we can construct N × N matrices AAA, AAAx and AAAxx defined by

(
φ(|xi −

xj|)
)

1≤i,j≤N ,
(
φ
′
(|xi − xj|)

)
1≤i,j≤N and

(
φ
′′
(|xi − xj|)

)
1≤i,j≤N respectively.

Note in case the xj’s are chosen according to the Equally Spacing Mehtod,
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ESM, used in (Fausshauer et al., 2004a,b; Hon and Mao, 1999). In brief,
Equally Spacing Mehtod is the way to choose equally spaced points in a
finite interval. In the ESM, we determine an interval [xmin, xmax] outside of
which we can neglect the contribution of u(x, τ) to the global integral term
of an PIDE (9), and for given N = 0, 1, 2, . . . , simply put

xj := x∆ξ
j = xmin + j∆x, j = 0, 1, 2, . . . , N − 1 (21)

where ∆x = (xmax− xmin)/(N − 1). We also define a matrix-valued function
y → AAA(y) by

(
φ(|xi+y−xj|)

)
1≤i,j≤N . If we substitute ũ(x, τ) for u(x, τ) in (9)

and require the PIDE to be satisfied in the interpolation points xj, we arrive
at the following system of ODEs for the vector ρρρ(τ) :=

(
ρ1(τ), . . . , ρN(τ)

)
AAAρρρτ =

σ2

2
AAAxxρρρ+

(
r − q − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+

λ

(∫ ∞
−∞

AAA(y)f(y) dy

)
ρρρ, (22)

where ρτ := ∂ρ
∂τ

, and where we recall that f(y) is the probability density of the

jump Yi ∼ N(µJ , σ
2
J) : f(y) = (σJ

√
2π)−1 exp

(
− (y − µJ)2/2σ2

J

)
in the Mer-

ton model, or f(y) = pα1e
−α1x1x≥0 + (1 − p)α2e

α2x1x≤0 in the Kou model.
Before applying a suitable numerical integration algorithm to the integral
terms in (22), we truncate the integrals from an infinite computational range
to a finite one. Briani et al. (Briani et al., 2007), Cont and Voltchkova (Cont
and Voltchkova, 2005), Tankov and Voltchkova Tankov and Voltchkova and
d’Halluin et al. (D’Halluin et al., 2004, 2005) have provided different numer-
ical techniques to find out a finite computational range so as to reduce the
numerical approximation errors when doing this truncation. In this thesis,
we shall adopt Briani et al.’s numerical technique to truncate the integral
domain of our PIDE (cf. Briani et al., 2007) in both the Merton and Kou
model. See the Appendix Appendix A for a proof. Supposed ε > 0, a for-
mula of selecting a bounded interval [y−ε, yε] for the set of points y in the
Merton case is:

yε =

√
−2σ2

J log(εσJ
√

2π/2) + µJ , ∀ y ≥ 0 (23)

y−ε = −yε, ∀ y < 0. (24)

In the Kou model we have

yε = log
(
ε/p
)
/(1− α1), ∀ y ≥ 0 (25)

y−ε = − log
(
ε/(1− p)

)
/(1− α2), ∀ y < 0, (26)
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We therefore transform equation (22) into

AAAρρρτ =
σ2

2
AAAxxρρρ+

(
r − q − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+

λ

(∫ yε

y−ε

AAA(y)f(y) dy

)
ρρρ. (27)

We use matlab’s adaptive Gauss-Kronrod quadrature to evaluate the matrix
of the integrals in (27): this amounts to approximating∫ yε

y−ε

φ(|xi + y − xj|)f(y) dy ≈
m∑
k=1

wkφ(|xi + yk − xj|)f(yk), (28)

where wk and yk are suitable quadrature weights and quadrature points; cf.
(Shampine, 2008) for details. To simplify notations, we set

F (xi − xj) =
m∑
k=1

wkφ(|xi + yk − xj|)f(yk).

Then the integrals in equation (27) will be approximated by

∫ yε

y−ε

AAA(y)f(y) dy ≈


F (x1 − x1) F (x1 − x2) . . . F (x1 − xN)
F (x2 − x1) F (x2 − x2) . . . F (x2 − xN)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
F (xN − x1) F (xN − x2) . . . F (xN − xN)


= CCC(y). (29)

Substituting (29) into equation (27), we arrive at the new approximate equa-
tion:

AAAρτρτρτ =
σ2

2
AAAxxρρρ+

(
r − q − σ2

2
− λη

)
AAAxρρρ+ (r + λ)AAAρρρ+ λCCC(y)ρρρ. (30)

As we have known the Cubic Spline is strictly conditionally positive definite
function of order 2, the invertibility of AAA is not assumed without adding a
real-valued polynomial of degree at most 1 in (16) (cf. Wendland, 2005). Nev-
ertheless, Bos and Salkauskas proved that AAA is non-singular in a univariate
case (cf. Bos and Salkauskas, 1987, theorem 5.1). As a result, the invertibility
of AAA is still guaranteed.
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We perform Gaussian elimination with partial pivoting to calculate AAA−1.
Then, we multiply both sides of (30) by AAA−1 and obtain the following homo-
geneous system of ODEs with constant coefficients:

ρρρτ = AAA−1

(
σ2

2
AAAxx +

(
r − q − σ2

2
− λη

)
AAAx + (r + λ)AAA+ λCCC(y)

)
ρρρ

≡ ΘΘΘρρρ (31)

where ΘΘΘ is defined by the left hand side. After some numerical experimenta-
tion, we found that the matrix ΘΘΘ is very stiff. To explain why ΘΘΘ is stiff, we
shall use the following example to illustrate it. Suppose we select our max-
imum and minimum logarithm price xmin

(
log(Smin)

)
and xmax

(
log(Smax)

)
in (21) equal to −10 and 10 respectively, then we use (21) to generate a
list of 100 interpolation points. Based on the procedures and the ideas we
have mentioned above we can get a 100 × 100 matrix ΘΘΘ in (31). Then we
measure the stiffness ratio of ΘΘΘ. The stiffness ratio is the quotient of the
largest and the smallest eignvalues of the Jacobian matrix ΘΘΘ. The ratio we
have is 1.2864× 105. This implies that (31) is a stiff ODE and therefore we
have to solve the ODEs by an implicit method, e.g. backward differentiation
formulas (BDFs), a modified Rosenbrock formula of order 2, the trapezoidal
rule or TR-BDF2, an implicit Runge-Kutta formula with a first stage that is
a trapezoidal rule step and a second stage that is a backward differentiation
formula of order two. In this paper we use former one.

4. Numerical Results

4.1. European Options

In this section we present the numerical results of our Cubic Spline ap-
proximation scheme and compare these with Merton and Kou’s analytical
option price formula for both puts and calls. Beside this, we also compare
the results of our Cubic Spline approximation scheme with those of Briani et
al.’s finite difference method (FD) with implicit and explicit (IMEX) scheme
in Briani et al. (2007) and Almendral et al.’s finite element method (FE)
with backward differentiation formulas of order two (BDF2) and FD with
BDF2 in Almendral and Oosterlee (2005b). To measure the accuracy of our
RBF-approximation, we use a set of evaluation points x̂∆x

i , for which we will
simply take the grid points

x̂i := x̂∆x
i = x̂min + j∆x̂, j = 0, 1, 2, . . . , Neval − 1. (32)
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Here ∆x̂ = (x̂max − x̂max)/(Neval − 1) with xmin ≤ x̂min ≤ x̂max ≤ xmax and
Neval is the number of the evaluation points chosen. To define our evaluation
points. We set x̂min = K − 0.7× 10−ς−1 and x̂max = K + 0.7× 10−ς−1 where
K is a strike price and ς is the total number of the digits of K. We will use
the following two different measures for the errors,

the root-mean-square (rms) error:

E2 =

√
1

Neval

∑
0≤i≤Neval

|V (ex̂i , t)− ũ(x̂i)|2, (33)

and the relative error:

Erel.(x̂, t) =
|V (ex̂, t)− ũ(x̂, t)|

V (ex̂, t)
. (34)

where V (ex̂i , t) and ũ(x̂, t) are the exact value and approximate value at the
point (x̂, t) respectively. We also calculate the rate of convergence by using
E2(x̂i, T ). We define the formula:

E2(x̂i, T ) = C(1/N)R2 (35)

where N is the number of interpolation points, C is a constant number
and R2 is the rate of convergence which represent linear when they are equal
to one or quadratic when they are equal to two.

It is known Merton (1976) that the analytical price of a European call/put
option in the Merton Jump-diffusion model is given by

VMJ(St, T − t,K, r, q, σ)

=
∞∑
k=0

e−λ(1+η)(T−t)((λ(1 + η)(T − t))k

k!
VBS(St, T − t,K, rk, σk, q).(36)

where T − t is the time to maturity, η = eµJ+
σ2
J
2 − 1 represents the expected

percentage change in the stock price originating from a jump, σ2
k = σ2 +

kσ2
J

T−t
the observed volatility, rk = r − λη + k log(1 + η)/(T − t), q is the dividend
and VBS the Black-Scholes price of a call and put, computed as

VBS(St, T − t,K, rk, σk, q)

=

{
Se−q(t−t)Φ(d+,k)−Ke−rk(T−t)Φ(d−,k) call option,
Ke−rk(T−t)Φ(−d−,k)− Se−q(T−t)Φ(−d+,k) put option,

12



where Φ(·) is the cumulative normal distribution and

d+,k =
log(S/K)+(rk−q+σ2

k/2)(T−t)
σk
√

(T−t)
, d−,k = d+,k − σk

√
(T − t).

For the derivation of VMJ(St, T − t,K, r, q, σ), we shall refer to the reader to
(Merton, 1976; Cont and Tankov, 2004)

In general, for models where the characteristic function of the Lévy pro-
cess is known, an analytical solution of PIDE (9) may be found using Fourier
analysis (Carr and Madan, 1999; Lewis, 2001). For the sake of simplicity and
accuracy we propose Jackson et al.’s Fourier Space Time-Stepping method
rather than Carr-Madan’s Fast Fourier Transform (FFT) method (Carr and
Madan, 1999) and Lewis’s FFT method Lewis (2001). In brief, the idea of
this method is based on the Fourier transform of the PIDE. By making use
of FFT and inverse Fast Fourier transform (FFT−1), European Option price
can be determined. The pricing formula of evaluating European option can
be expressed as follows:

VKou(S, τ,K, r, σ, q) = FFT−1[ FFT [VKou(S, T ) ]eψτ ], (37)

where ψ(z) is the characteristic function of the Kou model which can be
defined as:

−σ
2z2

2
+ izγc + λ

( pα1

α1 − iz
+

(1− p)α2

α2 + iz
− 1
)
,

and VKou(S, T ) is the payoff function (10). For more details of this method,
we shall refer the reader to (Jackson et al., 2008). This method has been
reported to have second order convergence in spatial variables in European
cases.

Our RBF-algorithm for numerically solving (9) with initial condition (10)
runs as follows:

1. Find the RBF-approximation to the initial value u(x, 0) using ESM (see
21). This will provide us with a set of interpolation points x1, . . . , xn,
together with an initial vector ρρρ(0) =

(
ρ1(0), . . . , ρN(0)

)
.

2. Then use ρρρ(0) as initial value for the system (31). By using any stiff
ODE solver, we find out the ρρρ(T ) at time T .

3. Finally, substitute ρρρ(T ) back into
∑N

j=1 ρj(T )φ(|x− xj|) to get an ap-
proximate value of u(x, T ).

13



In our numerical experiment we implement the algorithm in MATLAB
R2007b. We select our maximum and minimum logarithm price xmin

(
log(Smin)

)
and xmax

(
log(Smax)

)
, as before, equal to −10 and 10 respectively. We also

set ε in both 23 and 25 to be 3.72× 10−40 for finding a finite computational
interval [y−ε, yε] . Moreover, we use function quadgk which implements adap-
tive Gauss-Kronrod quadrature for computing equation (28) as well as func-
tion ode15s which implements backward differentiation formulas (BDFs) of
order two for the calculation of equation (31). Two main reasons of choosing
it is the following: In BDFs, the formulas of orders 1 and 2 are A-stable
(the stability region includes the entire left half complex plane). The higher
order formulas are not as stable, and the higher the order the worse the sta-
bility(cf. Shampine, 1994). Beside this, we have already tried to BDFs of
different higher orders such as 3 and 5. However, all the numerical exper-
iments have come up with same convergence order 2. This issue is raised
by the non-smooth initial payoff functions of vanilla call and put (10). Ac-
cording to (Shampine and Zhang, 1988), a jump in the second derivative at
a singularity of the initial condition means that any kinds of ODE solvers
such as numerical differentiation formulas (NDFs) or BDFs provide approx-
imations that are accurate there only to O(h2), where h is the step size of
the initial value problem. For more details about the analysis of situations
like the one with non-smooth initial conditions are to be found in (Shampine
and Zhang, 1988).

All the parameters of all the tables except Table 3 and 6 are chosen from
different literatures. The parameter σ = 1 in Table 3 and 6 is selected to
stress our numerical algorithm. From Table 1 to 6, E2 falls down when the
number of the interpolation points N increases. Our Cubic Spline approx-
imation scheme can get second order convergence in space. In Table 7, we
compare the results of the FD used in Briani et al.’s paper (Briani et al.,
2007) with those using our Cubic Spline approximation scheme. Our numer-
ical approximation scheme can achieve lower Erel.(logS, T ) than ARS-233
scheme and Explicit scheme. Table 7 and 9 are other comparisons the ac-
curacy between our Cubic Spline approximation scheme and Almendral and
Oosterlee’s FD and FE with BDF2. To illustrate a fair comparison, we set our
maximum and minimum logarithm price xmin and xmax same as Almendral
and Oosterlee proposed in their numerical experiments. Hence we set [xmin

xmax] equal to [-4 4] and [-6 6] in the Merton model (Table 8) and the Kou
model (Table 9) respectively. Our Cubic Spline approximation scheme can
attain lower Erel.(logS, T ) than FD and FE with BDF2 in both the Merton
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and Kou cases.

N E2(x̂i, T ) R2

100 4.421249E-03 N/A

600 1.192379E-04 2.016

1100 3.550438E-05 1.999

1600 1.678138E-05 2.000

2100 9.741214E-06 2.000

2600 6.353858E-06 2.001

3100 4.469202E-06 2.000

3600 3.313767E-06 2.000

Table 1: E2 of the Cubic Spline approximation for pricing of a European call under the
Merton Jump-diffusion model are presented. N is the number of the interpolation points.
x̂i = logSi is any evaluation points of a range of S from 0.3 to 1.7 and the total numbers
are 201. T is the Time-to-maturity. The parameters are: r = 0.05, q = 0, σ = 0.15,
σJ = 0.45, µJ = −0.9, λ = 0.1, K = 1 and T = 0.25. The parameters are taken from
(Andersen and Andreasen, 2000). The order of convergence is 2 in space.
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N E2(x̂i, T ) R2

100 5.568295E-03 N/A

600 1.539291E-04 2.003

1100 4.596552E-05 1.994

1600 2.174172E-05 1.998

2100 1.263001E-05 1.997

2600 8.235945E-06 2.002

3100 5.793457E-06 2.000

3600 4.295872E-06 2.000

Table 2: E∞ and E2 of the Cubic Spline approximation for pricing of a European put under
the Merton Jump-diffusion model are presented. N is the number of the interpolation
points. x̂i = logSi is any evaluation points of a range of S from 0.3 to 1.7 and the total
numbers are 141. T is the Time-to-maturity. The parameters are: r = 0.05, q = 0.02,
σ = 0.15, σJ = 0.4, µJ = −1.08, λ = 0.1, K = 1 and T = 0.1. The parameters are taken
from (Andersen and Andreasen, 2000). The order of convergence is 2 in space.

N E2(x̂i, T ) R2

100 6.883556E-04 N/A

600 1.889097E-05 2.007

1100 5.612280E-06 2.002

1600 2.651002E-06 2.002

2100 1.538267E-06 2.002

2600 1.003022E-06 2.002

3100 7.054350E-07 2.001

3600 5.227885E-07 2.004

Table 3: E2 of the Cubic Spline approximation for pricing of a European call under the
Merton Jump-diffusion model are presented. N is the number of the interpolation points.
x̂i = logSi is any evaluation points of a range of S from 0.3 to 1.7 and the total numbers
are 141. T is the Time-to-maturity. The parameters are: r = 0.05, q = 0.01, σ = 1,
σJ = 0.6, µJ = −1.08, λ = 0.1, K = 1 and T = 1, whereas the parameter σ = 1 is selected
to stress our numerical algorithm. The order of convergence is 2 in space.

16



N E2(x̂i, T ) R2

100 4.034493E-03 N/A

600 1.113014E-04 2.004

1100 3.311668E-05 2.000

1600 1.565011E-05 2.000

2100 9.084581E-06 2.000

2600 5.925440E-06 2.001

3100 4.168045E-06 2.000

3600 3.090654E-06 2.000

Table 4: E2 of the Cubic Spline approximation for pricing of a European put under the
Kou Jump-diffusion model are presented. N is the number of the interpolation points.
x̂i = logSi is any evaluation points of a range of S from 0.3 to 1.7 and the total numbers
are 141. T is the Time-to-maturity. The parameters are: r = 0, q = 0, σ = 0.2, α1 = 3,
α2 = 2, λ = 0.2, p = 0.5, K = 1 and T = 0.2. The parameters are taken from (Almendral
and Oosterlee, 2005b). The order of convergence is 2 in space.

N E2(x̂i, T ) R2

100 4.440921E-03 N/A

600 1.205043E-04 2.013

1100 3.587776E-05 1.999

1600 1.695646E-05 2.000

2100 9.842519E-06 2.000

2600 6.418917E-06 2.001

3100 4.514415E-06 2.001

3600 3.346805E-06 2.001

Table 5: E2 of the Cubic Spline approximation for pricing of a European call under the
Kou Jump-diffusion model are presented. N is the number of the interpolation points.
x̂i = logSi is any evaluation points of a range of S from 0.3 to 1.7 and the total numbers
are 141. T is the Time-to-maturity. The parameters are: r = 0.05, q = 0, σ = 0.15,
α1 = 3.0465, α2 = 3.0465, λ = 0.1, p = 0.3445, K = 1 and T = 0.25. The parameters are
taken from (Carr and Mayo, 2007). The order of convergence is 2 in space.
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N E2(x̂i, T ) R2

100 6.710733E-04 N/A

600 1.841203E-05 2.007

1100 5.470175E-06 2.002

1600 2.584042E-06 2.002

2100 1.499549E-06 2.001

2600 9.779429E-07 2.001

3100 6.878041E-07 2.001

3600 5.098150E-07 2.003

Table 6: E2 of the Cubic Spline approximation for pricing of a European put under the
Kou Jump-diffusion model are presented. N is the number of the interpolation points.
x̂i = logSi is any evaluation points of a range of S from 0.3 to 1.7 and the total numbers
are 141. T is the Time-to-maturity. The parameters are: r = 0.04, q = 0.03, σ = 1,
α1 = 4, α2 = 4, λ = 0.3, p = 0.6 K = 1 and T = 1, whereas the parameter σ = 1 is
selected to stress our numerical algorithm. The order of convergence is 2 in space.
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Explicit scheme (Briani et al., 2007)

N V alue Erel.(logS, T )

Call 1024 13.286915 5.175624E-03

Put 1024 8.319940 2.57797E-03

ARS-233 Scheme (Briani et al., 2007)

N V alue Erel.(logS, T )

Call 1024 13.287427 5.214358E-03

Put 1024 8.326102 1.839249E-03

Cubic Spline

N V alue Erel.(logS, T )

Call 1024 13.219358 6.489263E-05

Put 1024 8.342301 1.027679E-04

Table 7: Comparison between Explicit scheme (Briani et al., 2007), ARS-233 Scheme
(Briani et al., 2007) and Cubic Spline interpolation scheme in evaluating of European
call/put under the Merton Jump-diffusion Model. The input parameters are: r = 0.05,
q = 0, σ = 0.2, σJ = 0.8, µJ = 0, λ = 0.1, K = 100, T = 1, and x = log 100. Reference
prices of 13.218501 (call) and 8.341444 (put) and parameters from Briani et al. (2007).
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FD with BDF2 (Almendral and Oosterlee, 2005b)

N V alue Erel.(logS, T )

1025 9.411968E-02 1.682457e-04

FE with BDF2 (Almendral and Oosterlee, 2005b)

N V alue Erel.(logS, T )

1025 9.412972E-02 6.165536E-05

Cubic Spline

N V alue Erel.(logS, T )

1025 9.413023E-02 5.621522E-005

Table 8: Comparison of FD with BDF2 (Almendral and Oosterlee, 2005b), FE with BDF2
(Almendral and Oosterlee, 2005b) and Cubic Spline interpolation scheme in evaluating of
a European call (put) under the Merton Jump-diffusion Model. The input parameters
are: r = 0, q = 0, σ = 0.2, σJ = 0.5, µJ = 0, λ = 0.1, K = 1, T = 1, and S = 1.
Reference prices of 0.094135525 for both call and put and parameters from (Almendral
and Oosterlee, 2005b).
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FD with BDF2 (Almendral and Oosterlee, 2005b)

N V alue Erel.(logS, T )

513 4.240E-02 6.346096E-03

FE with BDF2 (Almendral and Oosterlee, 2005b)

N V alue Erel.(logS, T )

513 4.24579E-02 5.1285862E-03

Cubic Spline

N V alue Erel.(logS, T )

513 4.254583E-02 3.061686E-03

Table 9: Comparison of FD with BDF2 (Almendral and Oosterlee, 2005b), FE with BDF2
(Almendral and Oosterlee, 2005b) and Cubic Spline interpolation scheme in evaluating of
a European call (put) under the Kou Jump-diffusion Model. The input parameters are:
r = 0, q = 0, σ = 0.2, α1 = 3, α2 = 2, λ = 0.2, p = 0.5, K = 1, T = 0.2, and S = 1.
Reference prices of 0.0426761 for both call and put and parameters from (Almendral and
Oosterlee, 2005b).
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4.2. American Put Options

In this section we adapt our RBF-algorithm to compute American put-
option prices. We then compare the option prices obtained from our RBF-
algorithm with Jackson et al. ’s FST methods (Jackson et al., 2008). As
mentioned in section 2, an American put option problem is a free boundary
problem because of the possibility of early exercise at any point during its
life, leading to the free boundary condition:

u(x, τ) = max
(
K − ex, u(x, τ)

)
.

Together with the smooth pasting condition mentioned in section ??, this
uniquely determines the exercise boundary.

Jackson et al. ’s FST methods (Jackson et al., 2008) suggest that their
solutions can achieve second order in spatial variables when they implement
their methods to price American put options. They implement their methods
in the context of the LCP. As we seen in Section 2, the value of an American
option u(τ, x) is always greater than or equal to the payoff function G(ex).
To numerically keep the condition u(τ, x) − G(ex) ≥ 0 to be continuously
held (see 2), this can be achieved when boundary conditions are applied.
The numerical algorithm for this idea can be defined as follows:

V (S, (m+ 1)∆t,K, r, σ, q)

= max{FFT−1[ FFT [V (S,m∆t,K, r, σ, q) ]eψ∆t ], G(ex)} (38)

where time interval ∆t is obtained by dividing time-to-maturity T by the
total number M , m∆ is the time-step, where m ∈ {0, 1, 2, . . . ,M − 1},
ψ(z) is the characteristic function of the Merton or Kou models, V (S, (m +
1)∆t,K, r, σ, q) is the American put price at time (m+ 1)∆t and the payoff
condition G(ex) is equal to max(K − ex, 0). These methods also are required
to swap between real and Fourier spaces at each time-step when the Amer-
ican option prices are calculated at each time interval. This is due to no
convenient representation of the max(., .) operator in Fourier space. For the
full schematic and numerical description of this method, we refer readers to
(Jackson et al., 2008).

As before, we use ESM to approximate u(x, 0) = max(K − ex, 0) and
then continue to work with the interpolation points found at τ = 0. The
algorithm now reads as follows:
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1. Divide time-to-maturity T by total numbers of time-steps M to obtain
time interval ∆t and create a list of equally spaced time-points m∆t,
m ∈ {0, 1, 2, . . . ,M − 1}.

2. Find the RBF-approximation to the initial value u(x, 0) either using
ESM. This will provide us with a set of interpolation points x1, . . . , xn,
together with an initial vector ρρρ(0) =

(
ρ1(0), . . . , ρN(0)

)
.

3. Assume we have already determined ρρρ(m∆t) (if m = 0, we have ρρρ(0))
in equation (31). Solve the system of (stiff) ODEs to find ρρρ

(
(m+1)∆t

)
at the next successive time-step, (m+ 1)∆t.

4. Then at time (m+ 1)∆t, for each interpolation point xi, define

u
(
xi, (m+ 1)∆t

)
= max

(
(K − exi),

N∑
j=1

ρj
(
(m+ 1)∆t

)
φ(|xi − xj|)

)
.

5. Find a new vector ρρρ
(
(m+1)∆t

)
such that u

(
xi, (m+1)∆t

)
=
∑N

j=1 ρj
(
(m+

1)∆t
)
φ(|xi − xj|) for all i.

6. Repeat Step 3.) to 5.) until m = M − 1.

7. Finally, substitute ρρρ(T ) back into
∑N

j=1 ρj(T )φ(|x− xj|) to get an ap-
proximate value of u(x, T ).

The settings of our numerical experiment are the same as those in section
4.1. The reason of using ode15s to calculate American prices is due to its
supporting variable time-stepping. According to Forysth and Vetzal (Forsyth
and Vetzal, 2002) who compute American put prices under Black-Scholes
PDE form, they find out that if constant time-steps are used, the computed
solution appears to converge at less than a second order rate in the limit
as the grid spacing and time-step are reduced to zero. Also, their heuristic
analysis of the behavior of the solution near the exercise boundary shows
that convergence (with constant time-steps) appears only at the rate less
than second order convergence. For this reason they suggest a time-step
selector (a variable time-stepping method) which reduce the step size to
increase the accuracy when the model states are changing rapidly (like the
one when τ ≈ 0, the solution curve is still non-smooth) and increase the step
size to avoid unnecessary steps when the model states are changing slowly
(like the one when τ > 0, the solution curve starts getting fairly smooth).
As a result by this time-step selector second order convergence rate can be
restored. Another reason using ode15s is because of its stability. ode15s
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impalements NDFs and BDFs of orders 1 and 2 are A-stable (cf. section
4.1).

The results from Table 10 and 15 suggest that our Cubic Spline approxi-
mation method for pricing of American put options is second order in spatial
variables when the number of interpolation numbers N and the number of
time-steps M0 are twofold and fourfold respectively.

N M0 E2(x̂i, T ) R2

225 10 1.065795E-03 N/A

450 40 2.946799E-04 1.8547

900 160 7.496031E-05 1.9749

1800 640 2.030907E-05 1.8840

3600 2560 5.402608E-06 1.9104

Table 10: E2 of the Cubic Spline approximation for pricing of an American put under
the Merton model are presented. N is the number of the interpolation points. M0 is the
number of the time steps. x̂i = logSi is any evaluation points of a range of S from 0.3
to 1.7 and the total numbers are 141. T is the Time-to-maturity. The parameters are:
r = 0.05, q = 0, σ = 0.15, σJ = 0.45, µJ = −0.9, λ = 0.1, K = 1 and T = 0.25. The
parameters are taken from (Andersen and Andreasen, 2000). The order of convergence is
2 in space.

5. Conclusion

We have implemented a RBF method to solve the PIDE boundary value
problem for pricing American put and European call/put options on a dividend-
paying stock in a Merton and Kou Jump-diffusion market. By using Briani
et al.’s numerical scheme, we find out a finite computational range of our
global integral. Our results also suggest that the Cubic Spline approxima-
tion scheme can achieve second order convergence in spatial variables when it
is used to compute the American put and European call/put options. Beside
this, we compare our RBF-approximation method against FDM and FEM.
Our results suggest that one can achieve a high accuracy by implementing
our meshless scheme. Moreover, in terms of meshless interpolation meth-
ods, we use cubic spline as a basis function rather than MQ and IMQ. This
basis function can avoid the open question of choosing an optimal shape
parameter c of both MQ and IMQ. Finally, several drawbacks associated
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N M0 E2(x̂i, T ) R2

225 10 9.221531E-04 N/A

450 40 2.846899E-04 1.6956

900 160 7.999130E-05 1.8315

1800 640 2.240200E-05 1.8362

3600 2560 5.980951E-06 1.9052

Table 11: E2 of the Cubic Spline approximation for pricing of an American put under
the Merton model are presented. N is the number of the interpolation points. M0 is the
number of the time steps. x̂i = logSi is any evaluation points of a range of S from 0.3
to 1.7 and the total numbers are 141. T is the Time-to-maturity. The parameters are:
r = 0.05, q = 0.02, σ = 0.15, σJ = 0.4, µJ = −1.08, λ = 0.1, K = 1 and T = 0.1. The
parameters are taken from (Andersen and Andreasen, 2000). The order of convergence is
2 in space.

N M0 E2(x̂i, T ) R2

225 10 9.891272E-04 N/A

450 40 1.839887E-04 2.4265

900 160 4.490722E-05 2.0346

1800 640 1.087954E-05 2.0453

3600 2560 2.671901E-06 2.0257

Table 12: E2 of the Cubic Spline approximation for pricing of an American put under
the Merton model are presented. N is the number of the interpolation points. M0 is the
number of the time steps. x̂i = logSi is any evaluation points of a range of S from 0.3
to 1.7 and the total numbers are 141. T is the Time-to-maturity. The parameters are:
r = 0.05, q = 0.01, σ = 1, σJ = 0.6, µJ = −1.08, λ = 0.1, K = 1 and T = 1, whereas the
parameter σ = 1 is selected to stress our numerical algorithm. The order of convergence
is 2 in space.
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N M0 E2(x̂i, T ) R2

225 10 6.589592E-04 N/A

450 40 2.074520E-04 1.6674

900 160 5.580623E-05 1.8943

1800 640 1.498170E-05 1.8972

3600 2560 4.013413E-06 1.9003

Table 13: E2 of the Cubic Spline approximation for pricing of an American put under the
Kou Jump-diffusion model are presented. N is the number of the interpolation points.
M0 is the number of the time steps. x̂i = logSi is any evaluation points of a range of S
from 0.3 to 1.7 and the total numbers are 141. T is the Time-to-maturity. The parameters
are: r = 0, q = 0, σ = 0.2, α1 = 3, α2 = 2, λ = 0.2, p = 0.5, K = 1 and T = 0.2. The
parameters are taken from (Almendral and Oosterlee, 2005b). The order of convergence
is 2 in space.

N M0 E2(x̂i, T ) R2

225 10 9.200626E-04 N/A

450 40 3.007262E-04 1.6133

900 160 7.902329E-05 1.9281

1800 640 2.126498E-05 1.8938

3600 2560 5.647481E-06 1.9128

Table 14: E2 of the Cubic Spline approximation for pricing of an American put under the
Kou Jump-diffusion model are presented. N is the number of the interpolation points.
M0 is the number of the time steps. x̂i = logSi is any evaluation points of a range of S
from 0.3 to 1.7 and the total numbers are 141. T is the Time-to-maturity. The parameters
are: r = 0.05, q = 0, σ = 0.15, α1 = 3.0465, α2 = 3.0465, λ = 0.1, p = 0.3445, K = 1
and T = 0.25. The parameters are taken from (Carr and Mayo, 2007). The order of
convergence is 2 in space.
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N M0 E2(x̂i, T ) R2

225 10 6.553901E-04 N/A

450 40 9.645335E-05 2.7645

900 160 2.225501E-05 2.1157

1800 640 4.893031E-06 2.1853

3600 2560 1.144807E-06 2.0956

Table 15: E2 of the Cubic Spline approximation for pricing of an American put under the
Kou Jump-diffusion model are presented. N is the number of the interpolation points. M0

is the number of the time steps. x̂i = logSi is any evaluation points of a range of S from
0.3 to 1.7 and the total numbers are 141. T is the Time-to-maturity. The parameters are:
r = 0.04, q = 0.03, σ = 1, α1 = 4, α2 = 4, λ = 0.3, p = 0.6, K = 1 and T = 1, whereas the
parameter σ = 1 is selected to stress our numerical algorithm. The order of convergence
is 2 in space.

with grid-based methods like the FDM have been avoided: we seem to avoid
the stability problems associated with explicit or implicit finite difference
schemes. Moreover, we dramatically improve the accuracy of pricing options
in particular for small times to maturity.

Our Method extends in principle to pure jump Lévy type models for
the underlying stocks, like the Variance Gamma (VG) model or the CGMY
model.

Appendix A. A Finite Computational Range in the Jump-diffusion
Model

In the Merton Model suppose in a domian Ω ∈ R European option price
u(x, τ) satisfies Lipchitz inequality such that

|u(x1, τ)− u(x2, τ)| ≤ L|x1 − x2|, ∀x1, x2 ∈ Ω.

Then we choose a parameter ε > 0 and select the bounded intervals [y−ε, yε]
as the set of all points y that verify

k(y) =
1√

2πσJ
e
− (y−µJ )2

2σ2
J ≥ ε.

Because of the symmetry of k(y) we set y−ε = −yε. Then the truncation of
the integral domain giving an error to approximation of the problem can be
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estimated by∣∣∣∣∫ ∞
−∞

(u(x+ y)− u(x))k(y) dy −
∫ yε

−yε
(u(x+ y)− u(x))k(y) dy

∣∣∣∣
≤ L

∣∣∣∣∫ ∞
−∞

(x+ y − x)k(y) dy −
∫ yε

−yε
(x+ y − x)k(y) dy

∣∣∣∣ (A.1a)

≤ L

(∫ −yε
−∞
|y|k(y) dy +

∫ ∞
yε

|y|k(y) dy

)
(A.1b)

= 2

∫ ∞
yε

y
1√

2πσJ
exp(−(y − µJ)2

2σ2
J

) dy (A.1c)

= 2

∫ ∞
yε−µJ

(y + µJ)
1√

2πσJ
exp(− y2

2σ2
J

) dy (A.1d)

= 2

∫ ∞
yε−µJ

(y + µJ)
1√

2πσJ
exp(− y2

2σ2
J

) dy (A.1e)

≤ 2

∫ ∞
yε−µJ

(y + y)
1√

2πσJ
exp(− y2

2σ2
J

) dy (A.1f)

=
4σJ√

2π
exp(−(yε − µJ)2

2σ2
J

) (A.1g)

= 2σ2
Jε (A.1h)

Hence by using (A.1g) and (A.1h),

yε =

√
−2σ2

J log(εσJ
√

2π/2) + µJ (A.2)

We use the aforementioned arguments to find the finite computational range
[y−ε, yε] in the Kou model. We carry out the reasoning for the positive semi-
axis (the reasoning goes similarly for the negative semi-axis) and set k(y) =
pα1e

−α1y for y ≥ 0
(
(1− p)α2e

α2x for y < 0
)
. Then, yε can be found out by
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the following equations:∣∣∣∣∫ ∞
0

(u(x+ y)− u(x))λf(y) dy −
∫ yε

0

(u(x+ y)− u(x))λf(y) dy

∣∣∣∣
≤ L

∣∣∣∣∫ ∞
0

(x+ y − x)λf(y) dy −
∫ yε

0

(x+ y − x)λf(y) dy

∣∣∣∣ (A.3a)

≤ L

∫ ∞
yε

|y|f(y) dy (A.3b)

=

∫ ∞
yε

|y|pα1e
−α1y dy (A.3c)

= pα1e
−yεα1

(
1

α2
1

+
yε
α1

)
(A.3d)

(Gradshteyn and Ryzhik, 1994, equation 3.351)

=
p

α1

e−yεα1(1 + yεα1) (A.3e)

≤ p

α1

e−yεα1α1e
yε (A.3f)

= peyε(1−α1) (A.3g)

= ε, (A.3h)

as a result,

yε = log(ε/p)/(1− α1). (A.4)

Similar arguments can be applied to y < 0, so

y−ε = − log
(
ε/(1− p)

)
/(1− α2). (A.5)
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Larsson, E., Åhlander, K., Hall, A., 2008. Multi-dimensional option pricing
using radial basis functions and the generalized fourier transform. Journal
of Computational and Applied Mathematics 222, 175–192.

Lewis, A. L., 2001. A simple option formula for general Jump-diffusion and
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