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Abstract
Vertical Fixed-Field Alternating Gradient (vFFA) accel-

erators exhibit particle orbits which move vertically during
acceleration. This recently rediscovered circular accelera-
tor type has several advantages over conventional ring ac-
celerators, such as zero momentum compaction factor. At
the same time, inherently non-planar orbits and a unique
transverse coupling make controlling the beam dynamics a
complex task. In general, betatron tune adjustment is cru-
cial to avoid resonances, particularly when space charge
effects are present. Due to highly nonlinear magnetic fields
in the vFFA, it remains a challenging task to determine an
optimal lattice design in terms of maximising the dynamic
aperture. This contribution describes a deep learning based
algorithm which strongly improves on regular grid scans and
random search to find an optimal lattice: a surrogate model
is built iteratively from simulations with varying lattice pa-
rameters to predict the dynamic aperture. The training of
the model follows an active learning paradigm, which thus
considerably reduces the number of samples needed from
the computationally expensive simulations.

OVERVIEW
The concept of a vertical FFA (vertical Fixed Field al-

ternating gradient Accelerator) [1] has recently gained pop-
ularity [2]. In this type of circular accelerator, the beams
move vertically when accelerated as can be seen in Fig. 1. In
contrast, orbits in the original FFA remain in the horizontal
plane. Vertical FFAs are characterised by strong transverse
coupling and highly nonlinear magnetic fields. The design
of such lattices was so far carried out in a trial-and-error
fashion [3], and it remains challenging to optimise them.

The goal of this study is to efficiently explore the lattice
parameter space in order to identify a lattice design with max-
imum dynamic aperture (DA). In such higher-dimensional
problems, an exhaustive grid scan can easily become imprac-
tical and a mere random selection too sparse to resolve the im-
portant regions. Data-driven approaches lend themselves as
computationally economical and rewarding solutions. This
paper guides the exploration by iterative supervised learning,
which is also referred to as active learning [4]. Since many
lattice configurations do not even yield a closed orbit (CO)
around the accelerator, the domain of valid CO needs to be
identified before searching for maximum DA.
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The present study was staged in three steps. First, the
lattice parameter space was randomly sampled to obtain
an initial set of lattices which possess a CO. In a second
step, a classification algorithm was trained on predicting CO
existence for a given lattice configuration. Rejection sam-
pling based on the predicted probability then significantly
improved the efficiency of gathering more samples with a
valid CO. The third and last stage qualifies the DA across the
valid CO domain: an uncertainty-aware surrogate model was
initially trained to predict the DA, and was later re-trained
with additional simulations where predictions were most
uncertain. With this approach, several interesting parameter
regions could be identified where particular lattices yield a
larger DA compared to previous studies based on grid scans.

MACHINE AND SIMULATION MODEL
The vertical beam excursion of a vFFA has several advan-

tages. The momentum compaction factor is zero because
of the vanishing radial dispersion function, which would be
advantageous e.g. for acceleration at ultra-relativistic ener-
gies in a muon collider, a neutrino factory, or a relativistic
cyclotron. It would also vertically separate the light rays
of different radiation spectra in a light source. However,
these benefits come at the cost of coupling the particle mo-
tion between the two transverse planes [5]. The vertical
field gradient also implies a transversely oscillating closed
orbit, making it challenging to derive essential accelerator
parameters and optics other than by numerical modelling.
In addition to this, the scaling condition requires magnetic
fields that increase exponentially in the vertical direction
𝑧 as 𝐵𝑥,𝑦,𝑧 ∝ 𝐵0 exp(𝑚𝑧) to obtain zero-chromatic opera-
tion, leading to highly nonlinear magnetic fields. The DA
is a critical parameter in high-power machines to avoid un-

Figure 1: Closed orbit in a reference vFFA triplet lattice.
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controlled beam loss, and numerical simulations have been
conducted to investigate it in vFFAs in Ref. [3]. The layout
of the vFFA lattice is similar in our study with a ring made
of 10 FDF triplet cells with an average radius of 4.45 m. The
rectangular F and D magnets have identical lengths of 50 cm.
Preliminary hardware studies have shown that tanh fringe
fields used previously [3] do not properly fit first magnet
prototypes, so the fringe field model here is of the form

𝑓 (𝑦) = 1
𝜋 (arctan (𝑦 − 𝑦ent

𝜆 ) − arctan (𝑦 − 𝑦ex
𝜆 )) , (1)

where 𝑦 is the longitudinal coordinate, 𝑦en and 𝑦ex the effec-
tive entrance and exit boundaries of the magnet, respectively,
and 𝜆 the characteristic fringe field extent.

Analogous to the previous study in Ref. [3], the following
5 lattice parameters are varied in this study: the field at
the centre of the F magnet (𝐵0𝑓) and D magnet (𝐵0𝑑) at the
reference altitude 𝑧 = 0, the normalised field gradient 𝑚,
the radial displacement between F and D magnet 𝑥𝑠, and
the tilt angle 𝑡𝑓 of F magnets with respect to the D magnet
(cf. the sketch on the right of Fig. 1). The characteristic
fringe field extent 𝜆 is fixed at 15 cm, and the extrapolation
off the magnetic median plane is truncated at the 10th order.
The neighbouring triplet cells are included in the simulation
due to overlapping fringe fields in the long straight section.
Simulations were carried out with the particle tracking code
FixField [6].

DOMAIN OF VALID CLOSED ORBITS
Steps 1 and 2 of the study identify the domain of

valid COs in the 5-dimensional parameter space. Due to
the nonlinear potential, a lattice described by the 5-tuple
(𝐵0𝑓, 𝐵0𝑑, 𝑚, 𝑥𝑠, 𝑡𝑓) might not feature a CO. In this case the
tracked particles either turn backwards, get lost in the far-
located collimators1, or even get quasi-trapped2. Figure 1
shows CO projections for various particle momenta in a refer-
ence vFFA triplet lattice (−1 T, 1.15 T, 1.31 m−1, 0, 0). The
particle used in the present study is a 3 MeV proton. At the
centre of the long straight section (the beginning of a triplet
cell), the CO of the reference lattice is located radially (hor-
izontally) at 𝑥𝑐𝑜 = 4.36 m and vertically at 𝑧𝑐𝑜 = −0.73 m.
Owing to the symmetry, the corresponding transverse mo-
menta vanish.

In step 1, an initial data set is generated via uniform ran-
dom sampling of the 5D parameter space to generate 20 000
lattice configurations. Simulations computed valid COs for
429 lattices i.e., 2% success rate for random sampling. Step
2 involves a classification algorithm which is trained to pre-
dict the probability for a new random lattice configuration
to possess a valid CO. Samples from the uniform random
distribution can then be rejected based on probability limits.
A new set of 10 000 lattices is readily generated using the
rejection sampling, and simulations are run to determine
the CO. With each iteration of 10 000 lattices, the classifier
1 limiting to radial 2 m < 𝑥 < 6 m and vertical −10 m < 𝑧 < 10 m.
2 i.e. reaching a maximum number of integration steps ≫ than for the CO.

improves in prediction quality as the data set increases. The
employed rejection strategy first gathered more data by ex-
cluding lattices below a 30% probability of having a CO,
then resolved the domain boundary in finer detail by accept-
ing lattices between 30% and 70%, and eventually focused
on gathering more CO by accepting only lattices above a
90% probability. Two initial iterations used Gaussian Naive
Bayes classification [7], resulting in ≈ 10% valid COs. How-
ever, the emerging rather complex domain shape in the 5D
space was not well captured by the classifier. Changing to
random forest classification [7] resulted in reproducing the
domain shape in much more detail, which in turn tremen-
dously improved the fraction of valid COs. Approximately
85% of valid COs were obtained when rejecting lattices
below 90% of predicted probability.

Proceeding with the rejection sampling stage, a total of
170 000 lattices was simulated, with more than a quarter
possessing a valid CO. Figure 2 presents an overview of the
domain of valid CO (after step 3) along with a histogram of
all simulated lattices in 2D projections of the 5D parameter
space. The clear overlap of the highest number of COs with
the highest number of launched simulations show that the
classifier-based rejection sampling successfully guided the
parameter space exploration to the most interesting regions.
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Figure 2: Distribution of identified closed orbits in 5D lat-
tice parameter space. The number of lattices simulated per
bin is shown in grey, where non-white bins contain at least
one simulation. The red contours show the kernel density
estimation for the distribution of valid closed orbits.

DYNAMIC APERTURE QUALIFICATION
Step 3 continues the exploration of lattice space by mov-

ing from fast CO simulations ( ≈ 5 min) to slow DA simula-
tions (≈ 2 × 3 h). Ref. [3] establishes a useful approach to
determine the dynamic aperture (DA) of a vFFA lattice in de-
coupled transverse space, (𝑢, 𝑝𝑢, 𝑣, 𝑝𝑣): particles are tracked
for 1000 lattice cells starting from an initial amplitude, once
by scanning an initial 𝑢𝑖 as (𝑢𝑖, 0, 0, 0) and likewise for 𝑣𝑖
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as (0, 0, 𝑣𝑖, 0). The amplitude is considered unstable if the
particle gets lost, turns backwards, or is quasi-trapped dur-
ing the tracking. More than 1000 lattice periods are not
required as the DA estimate remained almost identical. The
present paper builds on this approach. For a given lattice
configuration, a DA amplitude is identified using the divide-
and-conquer algorithm separately for both decoupled planes,
𝑢𝑖 and 𝑣𝑖. Thirteen recursions of interval bisection yield a
2−13 ≈ 10−4 accuracy. This estimate is then confirmed by
probing the interval from zero in ten equidistant steps to
exclude the existence of smaller unstable amplitudes.

An initial DA data set is evaluated for the previously iden-
tified lattices with a valid CO. To continue exploring the
lattice parameter space, a surrogate model is built to predict
the two transverse DA values for a given 5D lattice configura-
tion. The uncertainty-aware surrogate model class employed
here is based on the ensembling of deep neural networks [8],
which is well suited for large and growing data sets (where
e.g. Gaussian processes do not scale well). In our case, five
structurally equivalent pyramid-shaped networks with three
hidden layers of 2048-1024-512 neurons were initialised
with different random seeds and then trained independently
on the data. The Adam algorithm [9] was used as optimiser
and the mean squared error (MSE) as loss function. The
standard deviation of the prediction for a given sample is
taken as estimate for the epistemic uncertainty [4], which
is used to guide the exploration. The devised algorithm
iteratively follows these steps:

1. Train the model on the existing DA data;
2. Draw new rejection-sampled lattice configurations

based on the trained classifier to ensure a valid CO;
3. Predict DA and epistemic uncertainty for new samples;
4. Rank new samples w.r.t. their epistemic uncertainty;
5. Run DA simulations for selected new samples.

Step 3 added three more iterations of 10 000 lattice sam-
ples each, which were selected as the top 25% quantile from
the ranked samples. The RMS prediction error from each
iteration is shown in Fig. 3 against the DA amplitude in de-
coupled 𝑢 and 𝑣 spaces. The underlying inference samples
are indicated by the grey histogram. Only a fraction of 0.5%
lattices does not feature a CO in this last iteration. From
the total of 200 000 simulated lattices, 25% possess a valid
CO. Figure 4 displays a maximum DA figure3 in the 5D
lattice parameter space projections. With a DA of 5.5 cm the
reference lattice lies in the light green area, red indicates the
location of the ten lattices with the largest DA up to 6.5 cm.

CONCLUSIVE REMARKS
The employed active learning approach tremendously im-

proved the efficiency of finding closed orbits in the 5D lattice
parameter space: from an initial 2% with random sampling
to 85% using classifier-based rejection sampling, and finally
3 sum of 𝑢 + 𝑣/2 since the 𝛽-function in 𝑣 is about twice as large as in 𝑢.
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Figure 3: Training results after each active-learning iteration.
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Figure 4: Simulation results for dynamic aperture (DA) in
5D lattice parameter space. Each panel plots the maximum
DA per projected bin for the nearly 50 000 valid closed orbits.
Red bins contain the top 10 lattices (overall maximum DA).
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Figure 5: Histogram of stable lattices in tune space.

99.5% via ranking using the deep neural network ensemble.
The gathered data set and established surrogate models link
lattice parameter space to dynamic aperture as well as tunes
(see Fig. 5). This result now allows to guide vFFA lattice
design by choosing a target tune and then obtaining a lattice
configuration with maximum dynamic aperture: a helpful
tool to gain space toward resonances located close by in
(decoupled) tune space, in particular in view of intensity
limitations due to space-charge detuning.
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