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Abstract: Persistent Scatterer Deformation Pattern Analysis Tool, for short PSDefoPAT, was designed
to assign each measuring point of an advanced DInSAR data set a best-fitting time series model
based on its displacement time series. In this paper, we will outline the operating principles of the
tool. The periodic and trend components of a time series model are separately determined based on
hypothesis tests. The periodic component is fitted as a sine function, and for the trend component,
linear, quadratic, and piecewise linear regression models are considered. Additionally, the tool
assesses the goodness-of-fit for each model in the form of the adjusted coefficient of determination
R2

adj value. The tool works fully automatically and thus facilitates the analysis of large data sets,
which are becoming more available to the public due to services such as the European Ground
Motion Service. Additionally, we demonstrate the capabilities of PSDefoPAT using four case studies
characterized by different deformation mechanisms, various extents of active deformation area, and
varying density of measuring points. In all cases, we successfully reveal information on the temporal
behavior of the deformation not apparent in the typically presented mean deformation velocity maps.

Keywords: advanced DInSAR; European Ground Motion Service; Sentinel-1; infrastructure monitor-
ing; geo-hazards; time series analysis; EGMS

1. Motivation

Differential Interferometric Synthetic Aperture Radar (DInSAR) has become an essen-
tial tool to document and analyze ground surface deformation since the first differential
interferogram was published in 1993. It mapped the coseismic displacement field of the
Landers earthquake in 1992 in California [1]. Documenting the displacement field of earth-
quakes is part of the geophysical research field of tectonic geodesy, which employs geodetic
methods to study crustal deformation processes. The first surface deformation related to
earthquakes was documented in the early 1890s based on geodetic triangulation and level-
ing measurements collected before and after the Nobi earthquake in Japan (1891). However,
conducting surveys to map the displacement field of active faults was quite costly and
labor-intensive, and could take years until the end of the 20th century. The observation of
far-field ground surface deformation was beyond the capabilities of classical ground-based
geodetic techniques. Only the development of Global Navigation Satellite Systems (GNSS),
such as the Global Positioning System (GPS) in the 1980s and DInSAR in the early 1990s,
facilitated periodically conducting surveys over wide areas independently of weather and
daylight conditions. With an increase in available data, they quickly replaced the traditional
methods in the field of tectonic geodesy [2].

The strong suits of DInSAR are its higher data acquisition frequency, spatial cover-
age, and lower costs for studies over wide areas compared with traditional ground-based
techniques. Its major limitations are temporal and spatial decorrelation, and atmospheric
artifacts that may impair estimating the desired displacement rates [3]. Advanced DInSAR
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techniques, such as Persistent Scatterer Interferometry (PSI), Small Baseline Subset (SBAS)
Interferometry, and SqueeSAR™ (an integrated Persistent and Distributed Scatterers (PS
and DS) algorithm) were developed to overcome these limitations [4–6]. These techniques
are capable of monitoring deformation in the line of sight (LOS) of the sensor with mil-
limeter accuracy, in the case of PSI algorithms and SqueeSAR™ [7,8], and sub-centimeter
accuracy, for SBAS algorithms [9].

Launching the Sentinel-1 (S1) satellites in 2014 and 2016 made SAR data more ac-
cessible for users from both the public and private sectors, consequently leading to the
development of ground motion services (GMS) based on advanced DInSAR techniques.
One example is the European Ground Motion Service (EGMS), part of the Copernicus
land monitoring service. The service provides deformation maps and displacement rates
for all countries participating in the Copernicus initiative. The first product is based on
all available S1 images between February 2015 and December 2020. A yearly update of
the database is planned [10,11]. The amount of accessible data sparks the question of
automatized post-processing strategies to extract the relevant information for land use and
urban planning as well as disaster risk assessment. The PSI post-processing algorithm
by Berti et al. (2013) [12] automatically distinguishes among PSs with a long-term linear,
quadratic, or piecewise linear trend. A seasonal component is not taken into consideration.
The algorithm presented by Costantini et al. (2018) [13] does consider a seasonal component
but was developed for PSs corresponding to buildings. The algorithm presumes that the
area of interest (AOI) is an urban area with a dense PS grid. The PSs are clustered with
respect to the location and extent of individual buildings, and the PSs not included in one
of the clusters are not further analyzed. Afterward, the displacement time series of each
cluster are averaged and subsequently labeled as piecewise linear time series or combined
seasonal-and-linear time series.

However, ground surface deformation processes can affect urban and rural areas
alike. Excluding PSs not associated with a building could cause missing active deformation
areas that could become relevant to settlements or infrastructure in the future. Ground
surface deformation processes can also be quite complex, and only estimating the trend
or only allowing for a certain combination of components may lead to an incomplete
understanding of its nature.

In this study, we present the fundamentals and operating principles of Persistent Scat-
terer Deformation Pattern Analysis Tool (PSDefoPAT). It is designed to automatically assign
each displacement time series of an advanced DInSAR data set a best-fitting time series
model. The time series is decomposed into its trend, periodic, and residual components.
The components can be viewed separately or as an additively composed model. PSDefoPAT
also offers parameters to judge the goodness-of-fit for each estimated model. A first version
and first results of PSDefoPAT have been previously presented in Evers et al. (2021) [14]
and Evers et al. (2022) [15]. This paper is structured into six sections. The background
concerning data sources and pre-processing is provided in Section 2. The operating prin-
ciple of PSDefoPAT and the relevant fundamentals of time series analysis are outlined in
Section 3. Results generated with PSDefoPAT are presented and discussed in Section 4.
Sections 5 and 6 provide an overall discussion of the presented tool and our conclusions.

2. Background
2.1. Persistent and Distributed Scatterers

DInSAR exploits the phase of at least two complex SAR images acquired over the same
area using either the same sensor or sensors with identical system characteristics at different
times to map ground surface deformation. This technique was first demonstrated for Impe-
rial Valley in California using Seasat images [16]. The differential phase is influenced by
temporal and geometric decorrelation and changes in the atmosphere between acquisitions.
In the worst case, both effects may leave the interferometric phase unusable for ground
surface deformation mapping [17,18]. The basic idea to overcome these limitations is to
use a time series of differential interferograms to identify pixels characterized by a low
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noise level. Only those pixels are then used to derive the desired displacement rates instead
of the entire differential interferogram. Algorithms that use this approach are generally
referred to as advanced DInSAR techniques. There are two types of reflectors typically
associated with such pixels: (a) Persistent Scatterers (PS) and (b) Distributed Scatterers (DS).
In the case of a PS pixel, the backscattered signal of its ground resolution cell is dominated
by one reflector and stable over time. The algorithm PSInSAR™ by Tele-Rilevamento
Europa (TRE) is the first implementation of a PSI algorithm [4,19]. However, over the years,
many PSI algorithms have been proposed. Some notable algorithms are Stanford Method
for Persistent Scatterer (StaMPS) [20], the PSI algorithm by Gamma Remote Sensing [21],
and the adaptation of the LAMBDA algorithm to PSI, which was later included in the
Spatio-Temporal Unwrapping Network (STUN) [22,23]. Further information on several
different PSI algorithms is provided in Crosetto et al. (2016) [24].

In contrast to PSs, DSs do not stand out due to one single reflector. They are character-
ized by their similarity to adjacent pixels. Processing them together using spatial averaging
allows for an improvement in the signal-to-noise ratio (SNR) and thus the extraction of
relevant information on the ground surface deformation. SqueeSAR™ by TRE is the first
algorithm to successfully jointly process PSs and DSs [6]. Nowadays, advanced DInSAR
techniques based on either or both types of reflectors are well-established remote sensing
techniques used to map ground surface deformation with millimeter accuracy [7,8,25].

2.2. Ground Motion Services

The capabilities of advanced DInSAR techniques to monitor geo-hazards, e.g., land-
slides [26] and aseismic displacement [27], human settlements [28], or critical infrastruc-
ture [29,30], have been demonstrated over recent years. The numerous applications and
precision of advanced DInSAR techniques has led, in connection with the increase in SAR
image availability since the S1 satellites were launched, to a number of different ground
motion services (GMS) [10].

At this point, we will only briefly report on the most established national endeavors
and will focus on the European Ground Motion Service (EGMS). Displacement measure-
ments of different AOIs provided by the EGMS will be used within the scope of this study
to demonstrate the capabilities of PSDefoPAT.

2.2.1. National Endeavors

The most progressed initiatives are the ones led by Italy, Norway, and Germany.
Norway was the first country to launch its nationwide GMS, InSAR Norway. The first
baseline product covering 2015 to 2018 was launched in November 2018. Regular updates
are planned. The main goal of the service is the detection and mapping of landslides.
More than 100 new potential landslides were detected only months after the launch of
InSAR Norway. SAR images are processed with a PSI approach mainly developed by the
Norwegian Research Center (NORCE) [10].

The German BodenBewegungsdienst Deutschland was launched a year after the Nor-
wegian GMS. The initiative is led by the Federal Institute for Geosciences and Natural
Resources (BGR). The German Aerospace Center (DLR) was contracted to process the S1
images covering Germany with a wide-area PSI approach. The baseline product covers the
time from November 2014 to March 2019 [10].

Italy has several regional GMSs implemented. The services process S1 images with a
parallelized SqueeSAR™ approach. Two processing strategies are used: (1) deferred defor-
mation maps and (2) near-real-time deformation monitoring. The first strategy provides
the user with a database of ground surface deformation maps as snapshots at certain times.
The second approach relies on the continuous processing of S1 images coupled with a data
mining algorithm to identify anomalous measuring points (MPs), either PSs or DSs, that
accelerate or decelerate [10].
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2.2.2. European Ground Motion Service

The EGMS [11] constitutes the first application of ground surface deformation mon-
itoring with DInSAR techniques on a continental scale. The service is an addition to the
Copernicus land monitoring service funded by the European Commission. The deforma-
tion measurements are based on S1 images collected over European states participating
in the Copernicus initiative and the United Kingdom. The data are processed by the
OpeRatIonal Ground motion INsar ALliance (ORIGINAL) consortium, which is composed
of four companies: e-GEOS, TRE Altamira, NORCE, and GAF. Each company uses its own
well-established processing chain based on advanced DInSAR techniques. Both PSs and
DSs are considered during processing to reach the maximal MP density in urban and rural
areas. The EGMS is a coherent and homogeneous service, despite the different processing
chains. Overlapping sections between adjacent processing areas were used to harmonize
the end product.

The service delivers four products:

1. Basic or L2a.
2. Calibrated or L2b.
3. Ortho or L3.
4. A-EPND.

The Basic product constitutes ground surface deformation measurements in the LOS
of the S1 sensors in ascending or descending geometries. Since DInSAR techniques only
provide relative measurements in space, it is important to tie the measurements to a
geodetic reference system and integrate large-scale motions such as those caused by plate
tectonics. For the Calibrated product, this is performed by using the ITRF2014 geodetic
reference frame and relating the measurements to a large-scale velocity model derived
from maintained Global Navigation Satellite Systems (GNSS), provided as the A-EPND
product. The Ortho product stems from a combination of ascending and descending
Calibrated products to resolve the ground surface deformation in its vertical and east–
west components. In order to facilitate the decomposition of the LOS displacements,
the Calibrated ascending and descending products are resampled to a 100 × 100 m grid.
Additionally, the A-PEND model is used to factor in the south–north component, which is
usually difficult to extract from available DInSAR observations. The Ortho product is also
tied to the ITRF2014 geodetic reference system.

The first released version of these products considers S1 images from February 2015 to
December 2020. A yearly update of the data set is planned. All products are visualized on
the EGMS portal (https://egms.land.copernicus.eu/, accessed on 3rd May 2023) online
and are available for download.

3. PSDefoPAT—Time Series Analysis Approach

The Matlab-based tool PSDefoPAT assigns each MP resulting from an advanced
DInSAR algorithm a best-fitting time series model based on its associated displacement
time series. The model provides information on the evolution of the deformation instead of
only a snapshot as the mean velocity does [14,15].

A time series is commonly defined as a sequence of measurements yi of a specific
variable, here the displacement of an MP between SAR image acquisitions, in chronological
order but not necessarily equidistantly spaced. Time series analysis aims to determine a
mathematical model that describes the evolution of the variable over time. A time series is
often split into its trend, seasonal, cyclic, and residual components. The trend component
describes the long-term evolution of a variable, while the seasonal and cyclic components
describe behavior that repeats regularly. In the literature, the periodic behavior of a variable
is referred to as seasonal if it is linked to seasonal effects, such as varying weather conditions
over the course of a year. Periodicities linked to other causes are subsumed under the term
cyclic [31,32]. Here, we will refer to both components as periodic. The tool determines the
trend ŷT and periodic ŷP components of a given time series separately from one another.
The resulting deformation model ŷ is the sum of the trend and periodic components,

https://egms.land.copernicus.eu/
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while the residual component ŷR represents the part of the time series that the model
cannot explain.

ŷ = ŷT + ŷP + ŷR (1)

The tool can be used either manually or in an automated fashion. The main difference
is that if the tool is used manually, the user must provide input during each processing
step, and only selected MPs are processed. In contrast, if the tool is used in an automatized
fashion, all MPs in the data set are processed, and the user only has to provide input at
the beginning of the process. The sequence of the processing steps for the automatized
version of PSDefoPAT is presented in Figure 1. In this paper, we will focus on the autom-
atized version of our tool, and an overview of the manual usage of the tool is provided
in Evers et al. (2021) [14]. The approach used for the automatized version of the tool is
demonstrated using two MPs selected from two advanced DInSAR data sets provided by
the EGMS. They were selected so that each processing step could be demonstrated and
discussed based on an example. The first one is referred to as MP F and is located at top
of the dam body of Parapeiros–Peiros Dam in Greece. It was selected because its time
series features a piecewise linear trend. The second MP is called MP G and is located on
Fehmarnsund Bridge in Germany. Its time series has a periodic component and a piecewise
linear trend.

Figure 1. Workflow of PSDefoPAT.

3.1. Theoretical Background on Time Series Analysis
3.1.1. De-Noising a Time Series

A time series can also be viewed as a combination of noise and a wanted signal. The
wanted signal represents any pattern caused by the intrinsic dynamics of the observed
process. The time series may additionally be affected by outliers. Outliers are unusual
data points in the time series representing possible recording or processing errors. They
can have a disruptive effect on time series model selection. PSDefoPAT considers any data
point yi that deviates more than three times the scaled median absolute deviation from
the median of the time series to be an extreme outlier. Extreme outliers are replaced using
linear interpolation.

Smoothing or de-noising refers to the process of separating the wanted signal in the
given time series from noise to reveal patterns previously obscured. An option to smooth
the time series is the simple moving average, which replaces the data point yT recorded at
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time point T with an average of yT and J previous data points yT−1, ...yT−J or an average of
yT and J

2 previous and subsequent data points yT− J
2
, ..., yT−1, yT+1, ...yT+ J

2
. Similarly, the

median could also be used instead of the average. However, a crucial point is to select the
right size J of the window, in which the average or median is calculated. The size of the
window determines how sensitively the moving average or median reacts to changes in the
wanted signal. If the underlying pattern of the wanted signal remains unchanged, a large
window is preferred, while a small window is preferable if the underlying pattern changes
rapidly over time [31]. Thus, J would need to be selected with a priori knowledge of the
time series. An alternative approach to extracting the wanted signal from the provided
time series is de-noising using wavelet transformation (WT).

The key factor is that WT can be used to represent any signal. As with any transfor-
mation, WT shifts the time series from its original domain into another, possibly making
operations such as signal compression or noise reduction easier to conduct [33]. The basic
concept of WT is that piecewise regular signals can be described by base wavelet functions,
similarly to how Fourier transformation is used to describe a periodic signal as a sum of
sine and cosine functions [34].

The basic building block, also referred to as the mother wavelet ψ(t), of a wavelet basis
is a wave-like function that oscillates around zero for a limited time. All other wavelets are
generated by dilating or translating the mother wavelet.

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(2)

The width of the wavelet non-zero part and its position in time are determined by the
scaling parameter a and the translation parameter b [33,35].

Noise reduction with WT requires wavelet coefficients derived with discrete wavelet
transformation (DWT). The wavelet transform of signal y(t) with N data points can be
written in vector–matrix form as

ξ = WTy(t) (3)

where ξ is a vector consisting of N wavelet coefficients and W is an N × N orthogonal
matrix containing the wavelet-base vectors. The wavelet base is defined by wavelet filtering
coefficients ej. The number of coefficients varies depending on the wavelet base used. The
Daubechies wavelet family, for example, is defined by 2n coefficients. In the case of the
second-order Daubechies wavelet, n is 2. The coefficients are used to generate two filters:
(1) a scaling filter H, which resembles a low-pass filter, and (2) a wavelet filter G, which is
similar to a high-pass filter. The same coefficients define the filters, only in reversed order
and with alternating signs. The filter matrices can be written as follows [33]:

G =


e0 e1 e2 e3 0 0 0 0
0 0 e0 e1 e2 e3 0 0
0 0 0 0 e0 e1 e2 e3
e2 e3 0 0 0 0 e0 e1

 (4)

and

H =


e3 −e2 e1 −e0 0 0 0 0
0 0 e3 −e2 e1 −e0 0 0
0 0 0 0 e3 −e2 e1 −e0
e1 −e0 0 0 0 0 e3 −e2

. (5)

The filters are used like a recursive pyramid decomposition algorithm, which provides
a hierarchical multi-resolution representation of the analyzed signal [36]. At level 1, the
scaling and wavelet filters are applied to a signal y(t) with N data points, producing N

2
detailed coefficients d1

j and N
2 approximation coefficients a1

j . The application of the filters
at resolution level m can be written as
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am = Gam−1 (6)

and
dm = Ham−1 (7)

where am−1 denotes the approximation coefficients at a previous resolution level. The
original signal y(t) can be considered a0.

At level 2, the filters are applied to the approximation coefficients from level 1, resulting
in N

4 detailed coefficients and N
4 approximation coefficients. The process is repeated until

the desired level is reached. The wavelet coefficients ξ j consist of both the approximation
and detailed coefficients at each resolution level. Thresholding is carried out after applying
the filters to the desired resolution level. Since approximation coefficients am

j contain the
low-frequency part of the signal, which is usually less affected by noise, thresholding is
only applied to detailed coefficients dm

j at each level [33,37].
For this purpose, Donoho et al. (1995) introduced the universal threshold κ [38].

κ =
√

2 log2 N (8)

There are two approaches: (1) hard and (2) soft thresholding. Coefficient dj is dismissed if its
absolute value is less than κ and kept if it surpasses the threshold in case of hard thresholding.

dhard
j =

{
0,

∣∣dj
∣∣ < κ

dj,
∣∣dj
∣∣ ≥ κ

If soft thresholding is applied, the coefficient is also dismissed if its absolute value is
smaller than κ. However, if the absolute value is larger than κ, it is shifted towards zero by
subtracting κ.

dsoft
j =

{
0,

∣∣dj
∣∣ < κ

sign(dj)(|dj| − κ),
∣∣dj
∣∣ ≥ κ

Following thresholding, the remaining coefficients are used to reconstruct the signal [33,37].

am−1 = G∗am + H∗dm (9)

PSDefoPAT applies DWT to the entire times series after extreme outliers have been detected
and replaced. The wavelet used for DWT is the third Daubechies wavelet. For the noise
reduction step, we decided to use soft thresholding because it provides a smooth and
continuous time series after signal reconstruction [39].

The effect that noise reduction has on displacement time series can be observed in
Figure 2 on the example of MP F and MP G.
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Figure 2. Original (black) and de-noised displacement time series of (a) MP F and (b) MP G.
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3.1.2. Estimation of the Seasonal Component

After reducing the noise level of the time series, the next step to establish a best-fitting
time series model is to estimate the periodic component ŷp. Displacement time series with
a periodic component are often related to the varying water content or temperature of a
material. Sine functions are typically used to approximate such phenomena.

ŷP = β0 · sin(2π · β1(t− β2)) (10)

where t is the predictor variable, and β0, β1, and β2 are the regression coefficients. They
represent the amplitude β0, frequency β1, and temporal offset β2 with respect to a usual sine
function of the modeled time series. PSDefoPAT uses a non-linear least squares approach to
fit a sine function to the data points of a given time series. However, this approach requires
an initial value for the frequency of the time series.

Fisher’s test [40] is a well-known significance test designed to detect periodicities
of unknown frequency in a given time series. The null hypothesis H0 of Fisher’s test
assumes that the amplitude β0 of the time series is zero and the signal yi only consists of
Gaussian noise.

H0 : β0 = 0 (11)

The alternative hypothesis H1 assumes that the time series contains a deterministic periodic
component with an unknown frequency.

H1 : β0 6= 0 (12)

The g-statistic is used as a test statistic for this hypothesis. The statistic is defined by the
spectral estimate I(ω) evaluated at Fourier frequencies ωi [41].

g =
max1≤i≤q I(ωi)

∑
q
i=1 I(ωi)

with q =
N − 1

2

(13)

The P-value is formally defined as the probability of obtaining a value from the test
statistic at least as extreme or more extreme than the one derived from the data under the
assumption that the null hypothesis is true. The value indicates if the data support the null
hypothesis sufficiently or not. If the P-value surpasses a predefined level of significance
α, the null hypothesis is accepted, and if it is smaller, the null hypothesis is rejected [42].
Typical values for α are 0.1, 0.05, and 0.01. For PSDefoPAT, the threshold is set to 0.05,
meaning that the likelihood of the data to support the null hypothesis is less than 5%. The
probability resulting from a g-statistic g∗ for a specific peak can be calculated as follows [41]:

P(g ≥ g∗) = 1−
q

∑
i=0

(−1)i q!
i!(q− i)!

(1− i · g∗)q−1
+ (14)

Before Fisher’s test is performed on the periodogram of a given time series, the time
series is de-trended, i.e., a linear regression model is subtracted from the time series. This
step eliminates the presence of the trend component in the periodogram. Afterward, if
Fisher’s test identifies a peak in the periodogram with a P-value lower than 0.05, and the
associated period is larger than the smallest possible period and smaller than the time
interval the time series covers, a sine function is fitted to the de-trended time series. An
additional hypothesis test is performed to evaluate if model ŷP explains the de-trended
time series sufficiently.
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The null hypothesis H0, in this case, assumes that regression model ŷP does not
sufficiently describe the relationship between the data points of the de-trended time series
and predictor variable t.

H0 : β0 = β1 = β2 = 0

H1 : at least one β j 6= 0
(15)

The test statistic F0 is calculated to determine whether the null hypothesis is rejected or
not. The sum of squares due to the regression model SSR, the sum of squares due to the
residual error SSE, the number of data points N, the number of predictor variables η, and
the degree of freedom for the regression model τ define the F0-statistic.

F0 =
SSR(N − η)

SSE · τ (16)

The F0-statistic is used to determine the P-value, which equals the area under the curve of
the F-distribution between value F0 and infinity. If the P-value does not exceed the specified
level of significance α, the null hypothesis is rejected [42]. The threshold is set to 0.05 for
PSDefoPAT. In the case of MP E and MP G, the significance test only confirmed a periodic
component for MP G. The fitted sine function and the de-trended time series of MP G are
presented in Figure 3a.

If Fisher’s test identifies a significant period and the subsequent hypothesis test on
the fitted sine function results in a P-value lower than 0.05, the predicted values of the
periodic component are subtracted from the de-noised time series. The resulting time series
is referred to as de-seasonalized.
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Figure 3. (a) De-trended and de-noised displacement time series (black) and fitted sine function (blue)
for MP G, and (b) de-seasonalized time series (black) and the identified segments (blue) for MP F.

3.1.3. Estimation of the Trend Component

The last step in determining the best-fitting model for any time series in PSDefoPAT is
estimating the trend component. This component describes the long-term evolution of a
time series. Three different regression models are considered: (1) linear, (2) quadratic, and
(3) piecewise linear trend models.

Linear or quadratic regression models can also be referred to as first- and second-
degree polynomial regression models. In general, a k-degree polynomial model can be
written as follows:

ŷT = β0 + β1t + β2t2 + ... + βktk (17)

where β j denote the regression coefficients; t, the predictor variable; and ŷT,i, the predicted
data points. The number of regression coefficients is set to two for a linear regression model.
Thus, the equation can be written as follows:

ŷT = β0 + β1t (18)
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The first- and second-degree polynomial regression models are fitted to the presented data
points using ordinary least squares (OLS). The idea is to minimize the squared difference
between the measured data points yi and the data points ŷT,i predicted by the regression
model [42].

N

∑
i
(yi − ŷT,i)

2 =
N

∑
i
(yi − (β0 + β1 · ti))

2 (19)

The procedure is to first estimate a linear regression model, test for its significance, and
only estimate the other regression models if a linear relationship between the data points
and the predictor variable t could be established. The significance test is performed with
an F0-statistic. The level of significance α is set to 0.05, meaning that the likelihood for the
data to support the null hypothesis is less than 5%.

A quadratic regression model is fitted to the collected data points only if the linear
regression significantly explains the relationship between the data points and the predictor
variable. In order to determine if the additional term of the quadratic regression model
contributes significantly to the explanation of the collected data points, another hypothesis
test is performed. In this case, the null hypothesis H0 assumes that the contribution of the
term in question is not significant and can be removed from the regression model.

H0 :β j = 0

H1 :β j 6= 0
(20)

Student’s t-statistic is used as the test statistic for this hypothesis test instead of the F0-
statistic. The t-statistic is defined by the ratio of the regression coefficient β j and the
associated diagonal element of the variance–covariance matrix Cjj.

tj =
β j

Cjj
(21)

The contribution of the term in question is considered significant if the associated P-value
of the tj-test statistic is lower than a predefined level of significance α. Here, the P-value is
defined as the sum of the area underneath the curve of the t-distribution between |tj| and
infinity, and −|tj| and negative infinity [31]. The procedure for PSDefoPAT is to accept the
quadratic regression model as the preliminary trend model if the P-value is less than 0.05.
If not, the linear regression model is accepted as the preliminary trend model.

The last regression model to be estimated is a piecewise linear model, also referred
to as piecewise linear representation (PLR). A PLR represents a given time series with N
data points as a sequence of K straight lines [43]. The transition point between the two
segments is referred to as a change point (CP). A PLR with only one CP cp1 can be written
as follows [44]:

ŷi =β0 + β1t + β2(t− cp1)δ

with δ =

{
0, t < cp1

1, t ≥ cp1

(22)

In order to estimate the PLR of a given time series using a non-linear least squares approach,
the number of segments and the location of the associated CPs need to be determined
beforehand. Both can be determined using a time series segmentation algorithm. In the
literature, a distinction is made between online and offline algorithms. Online algorithms
do not have access to the entire time series to produce the best PLR, because they allow data
points to be added to the time series in parallel to the execution of the algorithm. On the
other hand, for offline algorithms, the time series remains unchanged during the execution
of the algorithm, and all data points are taken into consideration to find the best PLR [45].

Keogh et al. (2004) [43] sorts online and offline algorithms in three categories: (1) sliding-
window, (2) top-down, and (3) bottom-up algorithms. Algorithms that fall in the category
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sliding window are considered online algorithms because they do not factor in all the data
points of the time series while determining the boundaries of the segments of the PLR.
sliding-window algorithms start with the first couple of data points of the time series as
the first segment and keep adding data points until the deviation of the approximated
segment from the time series exceeds a user-specified threshold. The last added data point
is removed and used to form a new segment.

In contrast, top-down and bottom-up algorithms are offline algorithms. Both require
the entire time series to determine the boundaries of the segments. A top-down algorithm
starts with the assumption that the entire time series is one segment. If the linear approx-
imation of the segments deviates more than the user-specified threshold from the time
series, the time series is divided into two segments. Afterward, each segment is recursively
tested and further divided until the PLR fulfills the user-specified criterion. bottom-up
algorithms, on the other hand, start with the finest possible segmentation of the time
series and then merge adjacent segments as long as the resulting PLR does not surpass a
user-specified criterion.

Further, there are three different ways to formulate the concrete task of all segmenta-
tion algorithms:

(1) Generating the best PLR for the given time series with K segments.
(2) Generating the best PLR of the given time series so that the maximum error of each

approximated segment does not exceed a user-specified threshold.
(3) Generating the best PLR of the given time series so that the maximum combined error

of all approximated segments does not exceed a user-specified threshold.

We implemented all three types of time series segmentation algorithms with a com-
bination of the first and third formulations of the problem in mind. The first formulation
of the task was used so that the number of segments used for the PLR could be limited.
Additionally, the choice to use the third instead of the second formulation of the problem
in combination with the first one was derived from the goal of PSDefoPAT to find the
best-fitting model of the entire time series and not individual segments. The tool uses the
mean squared error to evaluate the segmentation. In Figure 3b, the estimated segments
of the time series of MP F are marked with blue lines. The procedure for PSDefoPAT
is to compare the PLR of the given time series to the previously estimated preliminary
trend model. For this reason, the Schwarz–Bayesian Information Criterion (BIC), which
is a parameter that evaluates the goodness-of-fit of the regression model in question, is
calculated. It is based on the sum of squared residuals or errors, which tends to minimize
for more complex models. However, in contrast to criteria such as the adjusted coefficient
of determination R2

adj or the Akaike Information Criterion, it penalizes severely for adding
complexity to the regression model and thus avoids over-fitting. The BIC can be calculated
as follows [31]:

BIC = ln
[

SSE
N

]
+

η · ln(N)

N
(23)

where N is the number of data points and η is the number of predictor variables. The
regression model with the lowest value for the BIC is selected as the final trend model.

3.1.4. Evaluation of the Best-Fitting Model and the Residual Component

After estimating the best-fitting model, the sum of the trend and periodic components,
it is necessary to evaluate the quality of the selected model. How well the model reproduces
the data points of the given time series is referred to as the goodness-of-fit. Two common
parameters for the goodness-of-fit are the root mean squared error (RMSE) and the mean
absolute error (MAE). The parameters can be calculated as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (24)
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MAE =
1
N

N

∑
i=1
|yi − ŷi| (25)

where N is the number of data points yi of the given time series and ŷi represents the
data points predicted by the selected model. Minimizing either parameter yields the best-
fitting model in case of normally distributed errors. In the case of a Laplacian-like error,
minimizing the MAE provides the best results. Thus, both parameters are reasonable first
choices to evaluate the selected model [46].

Another parameter that describes the goodness-of-fit of a time series model is the
already mentioned parameter adjusted coefficient of determination R2

adj. Earlier in this

section, it was stated that using R2
adj leads to over-fitting, which is why it is not used in

the context of model selection within PSDefoPAT. However, its typical range, between 0
and 1, caters to an intuitive analysis of the goodness-of-fit of the estimated models in a
spatial context. The closer the value is to 1, the better the fit. The parameter is calculated
as follows:

R2
adj = 1− SSR(N − 1)

SST(N − η − 1)
(26)

where η denotes the number of predictor variables in the time series model, N is the number
of data points, and SST is the total sum of squares [47]. The estimated best-fitting models
of MP E and MP G are presented in Figure 4 with the associated RMSE as upper and lower
error margins. Their R2

adj values are 0.997 and 0.828, respectively.

(a) (b)

Figure 4. De-noised time series (black), estimated best-fitting model (green), and associated error
margins (blue) for (a) MP F and (b) MP G.

3.2. User Interface

Figure 5 shows the user interface of PSDefoPAT. Both the manual and automated
versions of the tool can be operated with the interface. It is structured into three areas. The
first area is located in the upper left corner of the interface. The output area is used to
display the mean deformation velocity of the MPs in the data set. The second area, in the
lower left corner, provides the user with a number of different functions, e.g., selecting an
MP to analyze or starting the automated processing of the entire data set. The user has the
opportunity to conduct the time series analysis of selected MPs themselves in the area of the
interface located on its right side. Input on, e.g., outlier detection or change point detection
for a PLR of the time series can be provided. More information on the manual processing
of selected MPs can be found in Evers et al. (2021) [14]. In case the automated processing of
the entire data set is selected, the user has to provide initial input on the following:

(1) The maximum number of segments to be used in the PLR of the time series.
(2) The maximum error used to estimate the segments of a PLR.
(3) The type of segmentation algorithm to be used.
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Figure 5. The user interface of PSDefoPAT showing the components of a fully processed displacement
time series.

Once the parameters are set, they are valid for the entire data set. For the case studies
presented in Section 4, we opted for the top-down segmentation algorithm and a maximum
number of segments of three. The error threshold for time series segmentation was set to 1

2
the standard deviation of the de-seasonalized time series.

As for the computational time needed, using the automated process, a small data set,
such as the one covering Fehmarnsund Bridge with 9447 MPs, takes roughly a few minutes
to be processed. A larger data set, on the other hand, such as the one covering the area of
Campi Flegrei with 324,228 MPs, needs a few days to be processed.

4. Demonstration Cases

In this section, we will demonstrate the capabilities of PSDefoPAT with the help of
four exemplary case studies:

(1) Campi Flegrei.
(2) Volturno Coastal River Basin.
(3) Parapeiros-Peiros Dam.
(4) Fehmarnsund Bridge.

Each case study was chosen to incorporate a different mechanism driving the observed
ground surface deformation. Additionally, attention was paid to selecting areas of different
extent and with varying types of land use, which can result in various MP densities.

The region of Campi Flegrei is a densely populated area affected by volcanic activ-
ity, alternating phases of inflation and deflation [48,49]. The associated ground surface
deformation can be observed over an area of roughly 224.9 km2. The second case study
is the Volturno Coastal River Basin. The area is characterized by smaller settlements and
agriculture. The surface deformation, subsidence, and possibly a periodic deformation
are linked to the consolidation of deposits, urbanization, and groundwater extraction in
this area [50]. The affected area extends over roughly 39.2 km2. While the first and second
examples cover larger areas, the third and fourth examples deal with smaller areas. The
third example is the recently finished Parapeiros–Peiros Dam. The area under observation
amounts to roughly 1.1 km2. Here, consolidation of the building and foundation material
is expected. However, since the dam body is not homogeneously built, deformation rates
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may vary greatly [51]. The last example is Fehmarnsund Bridge. The bridge was selected
because we expected to observe a periodic deformation signal associated with temperature
variations over the course of the year.

The displacement time series for each case study were obtained from the EGMS as their
Basic products and cover the time between February 2015 and December 2021. However,
the specific time period may vary depending on the orbit of the S1 SAR images used to
derive the advanced DInSAR products. All displacement rates are measured in the LOS of
the sensor; i.e., a negative displacement represents a movement away from the sensor, and
a positive displacement indicates a movement towards the sensor.

4.1. Campi Flegrei

Campi Flegrei is an active volcanic caldera in South Italy, west of Naples. Histor-
ical evidence indicates volcanic activity in the area for the past 50,000 years, with the
last eruption in 1538. Geodetic measurements, however, to monitor ground surface de-
formation associated with volcanic activity have only been conducted since 1905. The
measurements document a period of deflation until 1950, followed by three episodes of
uplift: (1) 1950–1952, (2) 1969–1972, and (3) 1982–1985. GNSS and DInSAR campaigns in
recent years revealed that after a period of no significant ground surface deformation, the
area has been subject to uplift again since 2011. In the 1950s, the period of unrest was
not accompanied by felt seismicity. However, in more recent episodes, the magnitude of
seismic events has progressively increased. The ground surface deformation and seismic
events were also accompanied by other indicators of volcanic activity, such as degassing. It
is unclear if the current unrest is a precursor for an eruption and, if so, when the eruption
will take place [48,49].

Figure 6a shows the area as an optical image from 2019 obtained by Google Earth.
Figure 6b presents the mean deformation velocities of 324,228 MPs in the area. The mean
deformation velocity is given in the LOS, i.e., a negative (dark blue) velocity indicates a
movement away from the sensor, and a positive (dark red) is a movement towards the
sensor. Here, the limits of the color bar are set to −20 mm

a to 20 mm
a , some measurements of

individual MPs may be larger. Notably, there is a movement towards the sensor depicted
at the center of the map with a circular form. The mean velocity at the coastline is at least
20 mm

a and lessens inland with a minimum velocity of 0 mm
a .

(a) (b)

Figure 6. Area of Campi Flegrei as (a) an optical image obtained from Google Earth and with (b) its
mean deformation velocity in the LOS provided by the EGMS.

Since the mean deformation velocity neglects the temporal behavior of the deformation
and assumes a linear movement, we further analyzed the data with PSDefoPAT. Our tool
assigns each MP in the AOI a best-fitting time series model based on its displacement time
series. Selected features of the estimated models are visualized in Figures 7 and 8. Figure 7a
indicates if the selected time series models include a periodic component (magenta) or
not (cyan). In the case of Campi Flegrei, most MPs in the active deformation area (see
Figure 6b) possess time series models that include a periodic component. This varies for
MPs located outside of or at the active deformation area’s edge. The amplitude of the



Remote Sens. 2023, 15, 4646 15 of 26

periodic component is presented in Figure 7b. The largest amplitudes are observed at the
coastline and then decrease inland.

(a) (b)

Figure 7. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP at
Campi Flegrei showing (a) whether or not the time series model has a periodic component and (b)
the amplitude of said periodic component.

(a) (b)

Figure 8. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP at
Campi Flegrei depicting (a) the model type of the trend component and (b) the adjusted R2 value as a
measure of the goodness-of-fit.

The type of regression model selected for the trend component is displayed in Figure 8a.
A distinction is made between linear (cyan), quadratic (yellow), and piecewise linear (red)
regression models. MPs with no trend are colored in dark blue. Figure 8a indicates that
the overall deformation pattern of Campi Flegrei can be split into two distinct clusters. The
first cluster concentrates on the coastline and exhibits a piecewise linear long-term trend.
The second cluster forms a semi-circle around the first cluster and extends more inland.
Most MPs located in the area of the second cluster follow a quadratic long-term trend. For
MPs outside the active deformation area (see Figure 6b), the choice of the regression model
for the trend component varies with no apparent pattern. A look at the adjusted R2 value
depicted in Figure 8b shows that this area is associated with lower adjusted R2 values,
indicating a not sufficiently good fit of the model to the data. Two MPs were chosen to
illustrate the compliance of the selected models with the given displacement time series.
MP A is located in Area I (marked in Figure 6a) on the coastline, while MP B is located
in Area II. The de-noised time series and the selected model of both MPs are presented
in Figure 9. MP A follows a piecewise linear trend with a change point after 1038 days.
The deformation velocity increases from 68.03 mm

a to 92.75 mm
a . In addition, the time series

of MP A contains a periodic component with an amplitude of 22.14 mm and a period of
1952 days, i.e., roughly five years. However, the proportion of the slopes of the piecewise
linear trend to the amplitude of the periodic component begs the question of the geophysical
relevance of the periodic component. Even though the results of Fisher’s g-test and the
following hypothesis test on the significance of the fitted sine function show that the periodic
component is relevant from a time series analysis point of view, Fisher’s g-test resulted
in a P-value of 5.42 ·10−64 for the significance of the period, and the likeliness that the
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periodic component holds no significance to the data points was estimated to be less than
1% ( P-value = 1.08 ·10−96 ).

(a) (b)

Figure 9. De-noised displacement time series (black) and estimated best-fitting model (green) with
the RMSE as the error margin (blue/red) for (a) MP A in Area I and (b) MP B in Area II.

The time series of MP B has a quadratic long-term trend and no seasonal component.
Their displacement time series models are listed in Table 1. They are in good agreement
with the measured time series provided by the EGMS. Their R2

adj values are 0.996 and
0.998, respectively.

Table 1. Time series models for the displacement time series of MPs A–H.

MP Periodic Component Trend Component R2
adj Mean

Velocity

MP A 22.14 mm · sin( 2π
1952d (t− 112d)) {

−12.47 mm + 68.03 mm
a t, |t| < 1038d

−12.47 mm + 68.03 mm
a t + 24.71 mm

a (t− 1038d), |t| ≥ 1038d

0.996 83.9 mm
a

MP B - 6.77 mm
a · t + 0.31 mm

a2 t2 − 0.2 mm 0.998 9.1 mm
a

MP C 7.93 mm·sin( 2π
2325 d (t− 2399 d)) 5.81 mm

a t + 0.14 mm
a2 t2 − 16.53 mm 0.982 −2.3 mm

a

MP D 4.75 mm·sin( 2π
2327d (t− 353d)) 6.98 mm

a t + 0.19 mm
a2 t2 − 6.98 mm 0.979 −6.5 mm

a

MP E - −32.01 mm
a t + 0.67 mm

a2 t2 − 5.38 mm 0.997 −27.1 mm
a

MP F - {
−3.19 mm− 4.74 mm

a t, |t| < 876d
−3.19 mm-4.74 mm

a t− 1.09 mm
a (t− 876d), |t| ≥ 876d

0.903 −1.9 mm
a

MP G −5.35 mm·sin( 2π
374d (t− 141d)) {

1.56 mm− 2.25 mm
a t, |t| < 540d

1.56 mm− 2.25 mm
a t− 0.67 mm

a (t− 540d), |t| ≥ 540d

0.827 0.6 mm
a

MP H 3.93 mm·sin( 2π
360d (t− 161d)) {

1.77 mm + 0.09 mm
a t, |t| < 1536d

1.77 mm + 0.09 mm
a t− 2.64 mm

a (t− 1536d), |t| ≥ 1536d

0.828 −0.9 mm
a

The two MPs have in common that their deformation velocity increases during the
observation period, which is information not depicted in the mean deformation velocity
map (Figure 6b). In addition, PSDefoPAT revealed that the active deformation area (see
Figure 6b) can be split into two distinct clusters that follow different trends. The difference
in the type of trend indicates that the acceleration of the surface deformation happens
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more abruptly for the MPs in the first cluster at the coastline compared with those in the
second cluster.

4.2. Volturno River Coastal Plain

The Volturno River Coastal Plain is located in the Italian Region Campania north of
Naples. It is one of the largest alluvial plains of the Italian peninsula and is subject to
subsidence. The deformation is mainly associated with the consolidation of the fluvial and
palustrine deposits forming the alluvial plain due to the lithostatic load. Human activities
such as water exploitation and urbanization are additional factors that may locally influence
the deformation. Both tourist and residential housing experienced a severe increase over
the last three decades, affecting both the load due to construction and water-pumping
activities. Additionally, a slight uplift can be observed in the east of the area, which relates
to tectonic activities [50].

Figure 10a depicts the area as an optical image acquired in 2019 and obtained from
Google Earth. Figure 10b shows the mean deformation velocities of 40,279 MPs located in
the area in the LOS of the sensor. The range of the color bar is again set to −20 mm

a (dark
blue) to 20 mm

a (dark red). The area at the center of the map in Figure 10b is subject to a
movement away from the sensor with a mean velocity of at least −20 mm

a .

(a) (b)

Figure 10. Area of the Volturno River Coastal Plain as (a) an optical image obtained from Google
Earth and with (b) its mean deformation velocity in the LOS provided by the EGMS.

Since the mean deformation velocities do not provide any information on the tem-
poral deformation pattern of the region, we further analyzed the data set with PSDe-
foPAT. Selected features of the estimated time series displacement models are visualized in
Figures 11 and 12. Figure 11a shows if the selected regression models include (magenta) a
periodic component or not (cyan). Figures 10b and 11a indicate that most MPs in Area III
(marked in Figure 10a) have a periodic and a trend component. MPs in Area IV (marked
in Figure 10a) do not seem to have a significant long-term trend component since their
mean velocity in Figure 10b depicts them in green, indicating no or only small movements.
Figure 11a, however, reveals that MPs located in Area IV have a periodic component, and
consideration of Figure 11b shows that the associated amplitude ranges from 1 mm to
5 mm.
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Figure 11. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP
at the Volturno River Coastal Plain showing (a) whether or not the time series model has a periodic
component and (b) the amplitude of said seasonal component.
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Figure 12. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP at
the Volturno River Coastal Plain depicting (a) the model type of the trend component and (b) the
adjusted R2 value as a measure for the goodness-of-fit.

The regression model of the trend component is presented in Figure 12a. Our tool
mainly selected, in the case of the Volturno River Coastal Plain, a quadratic trend. Only the
north-western corner of the region is characterized by piecewise linear trends. Figure 12b
shows that this region is also characterized by lower adjusted R2 values, indicating a lower
goodness-of-fit for the selected time series models.

Two exemplary MPs were selected to highlight specific features revealed by PSDe-
foPAT. MP C is in Area III, and MP D is in Area IV. Both areas are marked in Figure 10a.
Their displacement time series and estimated time series model are shown in Figure 13.
Both MPs follow a long-term quadratic trend and have a periodic component. The am-
plitude of the periodic component of MP C is 7.93 mm, while the amplitude of MP D
amounts to 4.75 mm. The goodness-of-fit values for the selected models are 0.982 and 0.979,
respectively. Their displacement time series models are listed in Table 1.

This case study illustrates that our tool is capable of revealing active deformation
areas, e.g., Area IV, previously not noticeable in the mean deformation velocity map, since
it also considers a periodic component for the time series model.
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(a) (b)

Figure 13. De-noised displacement time series (black) and estimated best-fitting model (green) with
the RMSE as the error margin (blue/red) for (a) MP C in Area III and (b) MP D in Area IV.

4.3. Parapeiros–Peiros Dam

The third example is a recently finished infrastructure element whose functionality
and structural health is crucial for its region. Parapeiros–Peiros Dam, also called Asteri
Dam, is located south-west of Patras on the Peloponnese Peninsula in Greece. The dam
body is a 75 m high and 760 m long earth-fill embankment dam that impounds the water of
the Parapeiros and Peiros Rivers to supply the region with fresh water. The reservoir was
designed to store up to 44·106 m3 water. The construction of the dam started in mid-2008
and, after some construction freezes, was finished in 2017. The first filling of its reservoir
started in September 2019. The dam body was expected to settle after the construction
period and during the first filling of the reservoir. The foundation and building material of
the dam was expected to consolidate due to its own weight but also due to the increasing
load of stored water [51].

Figure 14a depicts the building site, while Figure 14b shows the mean deformation
velocities in the LOS for 1251 MPs at the building site during the time from February
2015 to December 2021. The mean deformation velocities on top of the dam body in
Figure 14b show a movement away from the sensor at −20 mm

a or more. The documented
deformation is in good agreement with the expectation that the dam body was to settle
after the construction period and during the filling of its reservoir. However, the mean
deformation velocities are averaged values and do not provide any information on the
temporal progression of the settlement processes. For this reason, we analyzed the data
set with PSDefoPAT. Selected features of the resulting best-fitting models and the overall
goodness-of-fit are visualized in Figures 15 and 16.

(a) (b)

Figure 14. Building site of Parapeiros-Peiros Dam as (a) an optical image obtained from Google Earth
and with (b) its mean deformation velocity in the LOS provided by the EGMS.
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Figure 15. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP at
the building site of Parapeiros-Peiros Dam showing (a) whether or not the time series model has a
periodic component and (b) the amplitude of said seasonal component.
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Figure 16. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP at
the building site of Parapeiros-Peiros Dam depicting (a) the model type of the trend component and
(b) the adjusted R2 value as a measure for the goodness-of-fit.

Figure 15a shows whether or not the selected model has a periodic component. Cyan
denotes that no periodic component is present, while magenta signals the existence of a
periodic component. In the case of Parapeiros–Peiros Dam, only a few MPs have a time
series model with a periodic component, mostly located at the edges of the dam body.
Figure 15b displays the amplitude of the periodic component. Here, most MPs are colored
in white, indicating an amplitude of 0 mm.

Figure 16a shows the different regression model types selected for the trend component
of the displacement time series of each MP on the dam body. PSDefoPAT picks among a
linear model (cyan), a quadratic model (yellow), and piecewise linear model (red). Blue
indicates that no trend model was selected. The displacement of the MPs at the center
of the dam body close to the crest mostly follows a quadratic model, while a piecewise
linear model was selected for MPs at the edges of the dam body. Figure 16b presents the
R2

adj value as an indication of the goodness-of-fit. Notably, the models for the MPs at the
center of the downstream shoulder explain the observed displacement rates well. The
goodness-of-fit for MPs near the edges of the dam body, however, decreases. For a more
detailed view, we selected an MP at the center of the dam body and one closer to the edges
to compare their displacement time series. MP E is located in Area V, close to the center of
the crest, and MP F is located in Area VI; both are marked in Figure 14a. Their displacement
time series and the associated time series model are presented in Figure 17. MP E follows a
quadratic trend, while MP F follows a piecewise linear model. Neither one of the models
have a periodic component. The goodness-of-fit values are estimated to be 0.997 and 0.903,
respectively. Their displacement time series models are listed in Table 1.
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(a) (b)

Figure 17. De-noised displacement time series (black) and estimated best-fitting model (green) with
the RMSE as the error margin (blue/red) for (a) MP E in Area V and (b) MP F in Area VI.

Both MPs are also examples of the clusters of MPs they are associated with. Figure 16a
reveals that the active deformation area (see Figure 14b) of the dam body can be split into
two distinct clusters. The first cluster, at the center of the downstream shoulder, follows a
quadratic model, and the second cluster follows a piecewise linear model. The distinction
between these clusters indicates that the consolidation of the building and foundation
material accelerates differently over time. This might be related to the distribution and
processing of the building material, since the dam was not homogeneously built and was
subject to construction freezes, which is information that is not apparent in the mean
deformation velocity map presented in Figure 14b.

4.4. Fehmarnsund Bridge

The last example is also an infrastructure element, but in contrast to the third example,
it has already been in use for several years. Fehmarnsund Bridge, located in North Germany,
has been in use since 1963. The bridge connects the German mainland and the German
island of Fehmarn over the 1.3 km wide Fehmarnsund. The bridge accommodates both
road and rail traffic. It was designed as a high bridge with a 248 m long arched supporting
structure [52]. As with many infrastructure elements, we expected the bridge to be sensitive
to the ambient temperature and exhibit periodical deformation.

Figure 18a shows the bridge in an optical image obtained from Google Earth, while
Figure 18b presents the mean deformation velocity for 9447 MPs located on and close to
the bridge. In contrast to the previous examples, the mean velocities range from −5 mm

a
(dark blue) to 5 mm

a (dark red). The coloration of Figure 18b indicates that no significant
movements at the bridge could be recorded.

(a) (b)

Figure 18. Building site of Fehmarnsund Bridge as (a) an optical image obtained from Google Earth
and with (b) its mean deformation velocity in the LOS provided by the EGMS.

Figures 19 and 20 depict selected features of the time series model assigned to each
MP based on their displacement time series utilizing PSDefoPAT. Figure 19 reveals two
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distinct clusters, Area VII and Area VIII (marked in Figure 18a), on the bridge where most
MPs have a seasonal component. Fehmarnsund Bridge is subject to thermal expansion due
to environmental influences. However, it is unclear whether the MPs between those two
areas are more likely to have a periodic component or not since they do not form a coherent
cluster. Taking into account Figure 19b, which presents the amplitude of the periodic
component, it is noticeable that the periodic components for MPs of Area VII and those
of Area VIII proceed inversely to each other. The reason for this is that the displacement
of the MPs is measured in the LOS of the sensor; therefore, one side of the bridge moves
towards the sensor, and the other, away from it, leading to inverse amplitudes for the cyclic
component. The displacement time series of MP G and MP H from both areas are presented
in Figure 21, illustrating the phase shift between the periodic components. The time series
models are listed in Table 1.
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Figure 19. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP
at the building site of Fehmarnsund Bridge showing (a) whether or not the time series model has a
periodic component and (b) the amplitude of said seasonal component.
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Figure 20. Visualization of the best-fitting time series model, selected by PSDefoPAT, for each MP at
the building site of Fehmarnsund Bridge depicting (a) the model type of the trend component and
(b) the adjusted R2 value as a measure for the goodness-of-fit.

The regression model for the trend component is presented in Figure 20a. A distinction
is made among linear (cyan), quadratic (yellow), and piecewise linear (red) models. MPs
with no trend component are marked in dark blue. Most MPs on and close to the bridge
have a piecewise linear trend model. However, it is worth mentioning that the slopes of
the segments only range between 2 and −2.5 mm

a and thus might not be relevant.
In addition, Figure 20b shows the adjusted R2 value for each regression model as an

indication of the goodness-of-fit. Notably, the MPs between Area VII and Area VIII have
a lower R2

adj value than those associated with Areas VII and VIII. The cause could be a
missed periodic component.
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(a) (b)

Figure 21. De-noised displacement time series (black) and estimated best-fitting model (green) with
the RMSE as the error margin (blue/red) for (a) MP G in Area VII and (b) MP H in Area VIII.

Overall, it can be said that the last example illustrates that PSDefoPAT can be used to
reveal relevant active deformation areas not apparent in mean deformation velocity maps.

5. Discussion

In the previous section, we demonstrated the capabilities of PSDefoPAT based on four
different case studies:

(1) Campi Flegrei.
(2) Volturno Coastal River Basin.
(3) Parapeiros–Peiros Dam.
(4) Fehmarnsund Bridge.

The examples included small- and large-scale deformation patterns, and rural and
urban areas. During the selection of the case studies, attention was also paid to the
underlying mechanism resulting in the observed ground surface deformation. Campi
Flegrei is subject to volcanic activity, alternating phases of inflation and deflation [48,49].
The Volturno Coastal River Basin is affected by both naturally occurring processes, i.e.,
the consolidation of fluvial and palustrine deposits, and human activity in the form of
water exploration and urbanization [50]. The last two examples are infrastructure elements
affected by post-building deformation in the form of settlement and thermal expansion due
to temperature variation over the course of the year.

In all cases, PSDefoPAT could reveal information on the temporal behavior of the
MPs previously not apparent in the presented mean deformation velocity maps. The
estimated displacement time series models, their R2

adj values, and the previously estimated
mean deformation velocity are presented in Table 1. The example of MP A and MP B
shows that only considering the mean deformation velocity deprives the analyst of the
information that the ground surface deformation is accelerating, i.e., the slope of the trend
component of the time series model increases, and similarly that the deformation of MP E
and MP F is decelerating, i.e., the slope of the trend component of the time series model
decreases. Comparing the mean deformation velocity of MP G and MP H with their
estimated displacement time series models shows that our tool is also capable of revealing
previously neglected active deformation areas by considering a periodic component. The
mean deformation velocity of MP G was estimated to be 0.6 mm

a , while the displacement
time series has a periodic component with an amplitude of −5.35 mm. Similarly, MP H has
a periodic component with an amplitude of 3.93 mm, and its mean deformation velocity
was estimated to be −0.9 mm

a .
Notably, presenting selected features of the estimated time series models in a spatial

context showed that PSDefoPAT can be used to divide active deformation areas into
multiple clusters of MPs that follow different time series models. This became particularly
evident in the example of the region of Campi Flegrei in South Italy and Parapeiros–Peiros
Dam in Greece. The active deformation area of Campi Flegrei was decomposed into one
area close to the shoreline that follows a piecewise linear trend and a second cluster further
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inland that follows a quadratic trend. Similarly, PSDefoPAT revealed that the dam body
of Parapeiros–Peiros Dam does not deform uniformly. MPs located close to the crest of
the downstream shoulder follow a quadratic trend, while MPs closer to the edges of the
construction follow a piecewise linear trend. This might be linked to the heterogeneous
distribution of building materials and several construction freezes the dam was subject
to [51].

Overall, it can be said that PSDefoPAT can be used to reveal information relevant
to assessing the temporal behavior of numerous MPs, which would otherwise only be
performed for selected MPs and thus not allow for the interpreting of different displacement
time series models in a spatial context.

6. Conclusions and Outlook

In this paper, we outlined the operating principle of the Persistent Scatterer Deforma-
tion Pattern Analysis Tool, for short PSDefoPAT. The tool was designed to assign each MP
of an advanced DInSAR data set a best-fitting time series model based on its displacement
time series. It separately estimates a periodic component and a trend component based
on hypothesis tests. The periodic component is determined with Fisher’s test on the peri-
odogram of a given time series and fitted as a sine function. For the trend component, the
tool selects a model among the linear, quadratic, and piecewise linear regression models.
Additionally, the tool assesses the goodness-of-fit for each model in the form of the adjusted
coefficient of determination R2

adj value. PSDefoPAT can be used manually or in a fully
automatized fashion. The automatized use of the tool facilitates the analysis of large data
sets, which are becoming more available to the public due to services such as the EGMS.

Additionally, we demonstrated the capabilities of PSDefoPAT using four case stud-
ies: (1) Campi Flegrei, (2) Volturno Coastal River Basin, (3) Parapeiros–Peiros Dam, and
(4) Fehmarnsund Bridge. During the selection of the case studies, special attention was
paid to the different underlying mechanisms resulting in the observed ground surface
deformation. While Campi Flegrei is subject to a naturally occurring process, i.e., volcanic
activity, the Volturno Coastal River Basin is affected by both naturally occurring processes,
i.e., the consolidation of fluvial and palustrine deposits, and human activity in the form of
water exploration and urbanization. The other two examples are infrastructure elements
mainly affected by post-building deformation in the form of settlement and thermal ex-
pansion due to temperature variation over the course of the year. The extent of the active
deformation area and the density of MPs covering it also vary.

Nevertheless, all case studies showed that PSDefoPAT can reveal information not
apparent in the typically presented mean deformation velocity maps. We demonstrated
that the tool can reveal active deformation areas previously missed due to their periodic
nature. Additionally, the tool can also decompose an active deformation area, apparent
in the mean deformation velocity map, into multiple clusters with different temporal
deformation patterns.

Based on our findings, we want to further develop ways to display the gained in-
formation on observed ground surface deformation in ways that facilitate an intuitive
interpretation of the data for users with different scientific backgrounds. For example, one
field of application might be the study of landslides. Displaying the different features of
the estimated time series model, such as the dates of change points, can help understand
how different parts of the landslide react to environmental factors, such as rainfall.
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of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst. 2014, 15, 2883–2894. [CrossRef]

28. Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR analysis in the Pisa urban area (Italy): A case study of
subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [CrossRef]

29. Tomás, R.; Cano, M.; Garcia-Barba, J.; Vicente, F.; Herrera, G.; Lopez-Sanchez, J.M.; Mallorquí, J. Monitoring an earthfill dam
using differential SAR interferometry: La Pedrera dam, Alicante, Spain. Eng. Geol. 2013, 157, 21–32. [CrossRef]

30. Sousa, J.; Bastos, L. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Nat. Hazards Earth
Syst. Sci. 2013, 13, 659–667. [CrossRef]

31. Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons: Hoboken,
NJ, USA, 2015.

32. Neusser, K. Time Series Econometrics; Springer: Berlin/Heidelberg, Germany, 2016.
33. Walczak, B.; Massart, D. Noise suppression and signal compression using the wavelet packet transform. Chemom. Intell. Lab. Syst.

1997, 36, 81–94. [CrossRef]
34. Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999.
35. Motard, R.L.; Joseph, B. Wavelet Applications in Chemical Engineering; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2013; Volume 272.
36. Mallat, S.G. Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech, Signal Process.

1989, 37, 2091–2110. [CrossRef]
37. Cohen, R. Signal denoising using wavelets. Proj. Rep. Dep. Electr. Eng. Tech. Isr. Inst. Technol. Haifa 2012, 890, 1–27.
38. Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224.

[CrossRef]
39. Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [CrossRef]
40. Fisher, R.A. Tests of significance in harmonic analysis. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1929,

125, 54–59.
41. Ahdesmaki, M.; Lahdesmaki, H.; Yli-Harja, O. Robust Fisher’s test for periodicity detection in noisy biological time series. In Pro-

ceedings of the 2007 IEEE International Workshop on Genomic Signal Processing and Statistics, Tuusula, Finland, 10–12 June 2007;
pp. 1–4.

42. Ott, R.L.; Longnecker, M.T. An Introduction to Statistical Methods and Data Analysis; Cengage Learning: Boston, MA, USA, 2015.
43. Keogh, E.; Chu, S.; Hart, D.; Pazzani, M. Segmenting time series: A survey and novel approach. In Data Mining in Time Series

Databases; World Scientific: Singapore, 2004; pp. 1–21.
44. Malash, G.F.; El-Khaiary, M.I. Piecewise linear regression: A statistical method for the analysis of experimental adsorption data

by the intraparticle-diffusion models. Chem. Eng. J. 2010, 163, 256–263. [CrossRef]
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