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Abstract
Accurate prediction of the ionization potential and electron affinity energies of small molecules are
important for many applications. Density functional theory (DFT) is computationally inexpensive,
but can be very inaccurate for frontier orbital energies or ionization energies. The GWmethod is
sufficiently accurate for many relevant applications, but much more expensive than DFT. Here we
study how we can learn to predict orbital energies with GW accuracy using machine learning (ML)
on molecular graphs and fingerprints using an interpretable delta-learning approach. ML models
presented here can be used to predict quasiparticle energies of small organic molecules even beyond
the size of the molecules used for training. We furthermore analyze the learned DFT-to-GW
corrections by mapping them to specific localized fragments of the molecules, in order to develop
an intuitive interpretation of the learned corrections, and thus to better understand DFT errors.

1. Introduction

Accurate prediction of the frontier orbital energies for molecular systems is a persistent challenge for the
computational screening [1] of new materials in the field of organic electronics [2–5], functional materials
[6], thermo-electrics [7], molecular catalysis [8] or charge donor/acceptor materials [9, 10]. Consequently,
there is a high interest in efficient and accurate computational methods to predict electronic structure
properties of molecules. However, the demands of large scale screening are often not satisfied by current
quantum chemistry methods. Density functional theory (DFT) [11], a relatively computationally ‘cheap’
quantum chemistry method, suffers from poor prediction of ionization potential and electron affinities
(errors of an order of 1 eV are normally observed) [12]. On the other hand, post-Hartree–Fock methods
such as coupled cluster [13] or configuration interaction (CI) [14] reach chemical accuracy
(1 kcal/mole= 0.0434 eV)[15], but are only applicable to the smallest molecules and scale poorly with
molecule size, ranging from O(n6) to O(n10). The O(n3.4)-scaled GW [16–21] method fills the gap between
DFT and more accurate and computationally infeasible post-Hartree–Fock methods, since numerical GW
implementations can handle molecules with hundreds of atoms and yield an accuracy of 0.1 eV… 0.2 eV for
HOMO/LUMO quasiparticle energy levels. HOMO and LUMO stand for highest occupied and lowest
unoccupied molecular orbitals, respectively.

However, high-throughput simulations using the GWmethod are still problematic for routine usage due
to its at least O(n3.4) scaling, as tens, hundreds or even thousands of processors are needed to simulate
molecules with 10–100 atoms. Here, we explore the possibility of substituting actual GW simulations by
various recently published machine learning (ML) methods [22] based on neural networks (NNs) [23],
kernel-ridge regression [24] and graph NNs (GNNs) [25–29]. The prospect of improving the absolute
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accuracy of cheaper computational methods with ML corrections has been proposed by Ramakrishnan et al
and is referred to as∆-learning [30]. It is estimated that by starting from e.g. DFT energies, ML predictions
are less prone to generalization errors [31]. GW quasiparticle energies are well suited for∆-learning as
suggested by Çaylak and Baumeier [32] since GW can be applied on e.g. DFT calculations and produce
training data for simulations or molecular screenings. A standard data set to test the performance of
molecular ML methods is the QM9 dataset that consists of about 133 885 molecules computed at B3LYP
level [33, 34].

Here, we use recently reported [35] HOMO and LUMO quasiparticle energies computed at GW level for
the entire QM9 dataset to train ML models on the difference between DFT and GW. Using GNNs, we reach a
mean absolute error (MAE) of 22 and 31 meV, respectively. Furthermore, we check if the method generalizes
towards larger molecules, by testing the ML predictions on molecules with up to 17 atoms other than
hydrogen from the GDB-17 dataset [33]. It was found that in particular DimeNet++ [36] model generalizes
very well at least up to 17 atoms, preserving the MAE of∼0.1 eV. An uncertainty of 0.1 eV would be still
sufficient considering the accuracy of the GWmethod being optimistically estimated to be also
approximately 0.1 eV.

Since ML models are often considered ‘black boxes’ [37] and in the light of recent efforts to develop
explainable artificial intelligence [38], we furthermore seek interpretable correlations in the learned
atom-wise embeddings of trained GNNs and analyze their distribution across model and hyperparameter
space, in order to provide simple human-understandable rules to estimate the effect of GW calculations, like
for example the assigned atomic delta value of oxygen atoms, which was found to lead to a systematic shift of
the delta values towards lower HOMO and higher LUMO energies.

Moreover, by comparing the learning curves, we find better accuracy for delta learning on QM9 with
little data compared to directly predicting GW energies. A MAE of 70 meV can be achieved on QM9 using a
feed-forward deep NN and RDKit fingerprints[39], which is technically much simpler than GNNs. From a
practical point of view, delta-learning is an attractive approach because DFT simulations are computationally
cheap, and can be used for high-throughput screening, while aiming for GW accuracy.

2. Results and discussion

2.1. Dataset
Dataset generation is described by Fediai et al [35]. Properties of interest learned here are HOMO and LUMO
energies, computed at GW level. Eigenvalue self-consistent GW simulations were performed using PBE DFT
as a starting point (ev-GW@PBE) as implemented in cp2k [40]. HOMO and LUMO were computed using
the augmented correlation-consistent (aug-cc) basis set family extrapolated to the basis set limit [41].

2.2. ML
The learning curve in figure 1 evaluates and compares the performance of typical literature-known ML
models for the direct prediction of DFT and GW orbital energies. We trained a set of Kernel ridge regression
models on different molecular representations, namely the Coulomb matrix [42], the Spectrum of London
and Axillrod–Teller–Muto potential [43] and the Bag of Bonds representation [44]. We used a Laplacian
kernel with a small regularization and a hyper-parameter optimized gamma-value as implemented by the
scikit-learn [45] python package. We computed the representations with implementations in the QML [46]
and DScribe [47] python package using default values and the corresponding size and atom species present in
the QM9 dataset. For graph models we chose the well-known SchNet [48] and DimNet++ [36, 49] graph
convolutional model as implemented in kgcnn [50]. Hyperparameters are chosen according to literature-
published values and are given in detail in the SI. All models reach the respective benchmark literature values
for the original QM9 dataset in figure 1(a).

Whereas kernel-based methods are in principle fast in learning, they do require a large amount
of memory to invert the full kernel matrix. Possible alternatives to reduce memory consumption are sparse
kernel or support vector methods, but which were not used in this work. In contrast, NNs or GNNs are slower
in learning, even when trained on a GPU, but require less memory and are typically much faster in prediction.

The learning curves in figure 1 suggest that the ML-model performance behaves similarly on all datasets
for the multi-task objective of simultaneously predicting orbital energies of HOMO, LUMO and GAP (the
model is predicting the gap as one of its output but the GAP labels are simply the difference between HOMO
and LUMO energies). The learning curves in figure 1(b) are slightly less steep than the learning curves for the
original DFT data. However, this may be also attributed to a non-optimal set of hyper-parameters or the
distribution of target values. The GNNs SchNet and DimNet++ performed best for both DFT and GW
energies for large amounts of training data. With little data, kernel methods trained on specialized
representations could outperform graph networks under certain conditions.
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Figure 1. Learning curve for kernel ridge regression (KR) based on the Coulomb matrix (CM), the Spectrum of London and
Axillrod–Teller–Muto potential (SLATM) and the Bag of Bonds (BOB) representation as well as for SchNet and DimeNet++
graph neural networks (GNN). Fully connected neural networks (NN) are also trained on molecular fingerprint vectors (FP) that
do not include geometric information. The test mean absolute error (MAE) of combined HOMO, LUMO and gap is plotted
versus the training set size. Panel (a) shows the MAE values for a model that predicts directly the original DFT labels computed
with a B3LYP functional as a baseline. In panel (b), the corresponding MAE of the direct prediction of the GW@ PBE energies are
shown. In contrast to that, the model used in panel (c) only predicts the energy difference between GW and DFT with PBE
functional, and the MAE values for GW energies are shown.

For delta-learning the ML-model predicts the difference of the quasi-particle energies of GW in the basis
set limit and the corresponding DFT orbitals:

∆= EGW− EDFT.

Note that in the GW reference calculations of Fediai et al [35] both GW and DFT are computed with PBE
functional in contrast to the original QM9 DFT labels of Ramakrishnan et al [34] which used the B3LYP
functional.

The MAE of delta prediction, which is also the MAE of GW from delta predictions given DFT labels, in
figure 1(c) is lower compared to the error of the direct GW predictions in figure 1(b) for all models and
training set sizes.

We want to point out that fewer training samples in figure 1(c) are required (even 100–1000) to achieve
GW accuracy compared to figure 1(b), which reflects the advantage of the delta learning approach as
suggested by Ramakrishnan et al [30]. This opens the prospect to generate a dataset of orbital energies for
molecules of practical relevance, and to perform screening tasks using the combination of DFT and ML
models with GW accuracy. In contrast to more expensive post-Hartree–Fock methods, GW can still be
applied to large molecules relevant for example as organic semiconductors [51].

For delta learning we trained GNNs such as SchNet and DimeNet++ which will be analyzed more
closely in the following. The multi-task model predictions for DimeNet++ are shown in figure 2. The model
of DimeNet++ in figure 2 is set up with 4 convolutional layers, expansion of the input into 7 spherical and 6
radial Bessel basis functions, an embedding size of 128 and a range cutoff of 5 Å. Training was performed
with the moving-average ADAM optimizer with a learning rate of 1× 10−3 and an exponential decrease over
872 epochs and a warm-up phase of 3000 steps.

The results in figure 2 shows that the MAE is better for each task than the direct prediction of GW orbital
energies in figure 1. Therefore, delta predictions for GW based on comparably cheap DFT calculations can
serve as a post-processing step to obtain more realistic energies for screening tasks [52].
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Figure 2. Delta predictions of DimeNet++, which was trained on the difference of DFT and GW orbital energies in the basis set
limit using the PBE functional. A histogram on the right shows the distribution of residues for delta prediction.

ML approaches in materials science are often criticized for the lack of interpretability. Their complexity
makes them a black box from a human perspective. By analyzing the trained model, we seek to find
interpretable results that could give us information to understand the difference or the contribution of GW
with respect to DFT. For example, the non-locality of orbital energies and more specifically of the GW-DFT
delta values can be indirectly probed by checking the ML model performance as a function of the effective
field of view defined by the convolutional units. With effective field of view, we denote the radius within
which information can be exchanged between atoms in the message passing phase of deep GNNs [28], before
in the global pooling step all atomic contributions are summed up.

The degree of locality or the necessary range of information being passed to correctly reproduce the delta
values are visualized in figure 3. We trained SchNet on the difference of DFT to GW energies with an
embedding dimension of 128 and a varying depth from 1 to 12 layers. The interatomic distance of the SchNet
interaction block was expanded in a Gaussian basis of 100 bins over 20 Å and a sigma of 0.4 Å for all models.
The cutoff, however, restricting the interaction or message passing range was varied between 1.5 and 15 Å. It
is to note that the effective field of view for deep convolutional models is a combination of window size and
depth, since multiple message passing steps lead to a longer path information can travel on.

We find that having a bond range of about 5 Å is required to achieve good model performance for
SchNet. For the 1 layer SchNet model, the MAE continues to decrease until the maximum distance present in
the dataset is reached. For deeper models this seems not necessary and the MAE slightly decreases with depth
even for fully connected molecules.

Although figure 3 shows that the learned GW-delta prediction of SchNet requires non-local information
exchange, it can be instructive to analyze the (local) atomic and structural contributions to the difference of
DFT and GW. This can help to find some interpretation on which groups or atoms cause larger shifts to GW
orbitals as fitted by the ML model and therefore helps to understand what local environments lead to which
DFT errors compared to GW. Most GNNs, including SchNet and DimeNet++, obtain the final graph
embeddings from node-level embeddings which are aggregated by a sum- or mean-pooling operation. In the
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Figure 3. (a) The mean absolute error (MAE) of SchNet and DimeNet++ for multi-task delta prediction is plotted as a function
of the cutoff range for atom interactions for models of different depth, i.e. the number of convolutional layers, varying between
one and 12 layers. The predicted delta-values measure the deviation from DFT (PBE) to GW (PBE) energies for HOMO, LUMO.
(b) Histogram of corresponding interatomic distances present in the QM9 dataset. The gray curve represents the histogram on
the log-scale of the right axis.

case of SchNet and DimeNet++, the final node or atom-embedding is a single value which is averaged for
each molecule, or in other words, the output delta prediction is a mean of atom-wise delta-predictions. In
figure 4, we plotted the distribution of atomic delta values generated for the QM9 dataset.

We observe different non-standard distributions for each atom species, increasing or decreasing the
average energy delta. While some overall aspects of the atom-wise corrections are consistent across models
and hyperparameters and allow for interpretable analysis, there are also variations in the specific
distributions dependent on the model and its parameters since we do not expect the ML models to converge
to a unique global minimum but rather to a good, probably close-lying local minimum.

This means that the distribution of delta contributions depends on the model’s decision to assign atomic
energies based on the messages exchanged with its neighborhood. In the following we give a short discussion
on the experimental findings.

Both SchNet and DimeNet++ show a broader distribution of atomic delta values for shallow models of
e.g. figures S1.1 and S2.3 compared to figure 4. This is either due to the reduced long-range interaction or the
reduced number of parameters of the model.

The distribution of HOMO delta energies of carbon and hydrogen shows roughly a single component
centered at zero, whereas the distribution of LUMO features two components which map the distribution of
target delta values. Interestingly, we find a systematic shift of delta values assigned to oxygen towards lower
HOMO and higher LUMO values across all models and hyperparameters (compare figures S1 and S2). In
contrast, the distribution of fluorine changes depending on the model type but remains comparable across
hyperparameters within one model type. The difference of oxygen and fluorine has its origin in the dataset
itself. Since fluorine atoms are only bound to carbon atoms, its influence on the delta value can be either
attributed to the respective carbon atom or the fluorine atom itself, so the model can assign the delta energy
contribution either to a carbon atom that is connected to fluorine, or to fluorine that is connected to carbon.
This ambiguity can only be resolved if more perfluorinated structures are added to the training data.

Therefore, it is instructive to generate a more refined view which can be achieved when further separating
the atomic contributions of figure 4 into their chemical environment. For example, the chemical
environment of a carbon atom is defined as the set of neighboring atoms and their respective bond types, i.e.
single, double or aromatic bond. All possible combinations occurring in the QM9 dataset are too extensive to
show here, but can be found in the SI. The distribution of all chemical environments for each atom in QM9
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Figure 4. Learned distribution of atomic contributions to the delta prediction between DFT and GW as predicted by
DimeNet++ for QM9. For HOMO, LUMO and gap the distribution has been centered around zero and therefore shifted by the
constant values of−3.1 eV, 1.9 eV and 5.1 eV for HOMO, LUMO and gap, respectively. The probability density function (PDF) is
plotted as a function of delta for each atomic species in QM9 in (a) for HOMO, (b) LUMO and (c) gap. DimeNet++ was trained
with a cutoff of 5 Å and depth 4.

is plotted in the SI (figures S5–S8). In figure 5, we plotted selected groups for HOMO, LUMO and gap. The
distribution for a specific chemical group, i.e. the set of bond neighbors, clearly differs from the simple
atom-wise delta distribution. As expected, with increasing resolution of the substructure, the distribution of
delta values gets more diverse for each central atom. We can identify more trends in the distribution of
chemical groups for the central atom across models and hyperparameters like the shift towards positive
deltas for aldehydes (figures S3 and S4). Other consistent observations include that nitrile groups (across all
models, see figure S3) have substantially underestimated LUMO energies requiring positive corrections of up
to 1–2 eV, while amine groups have slightly overestimated LUMO energies in DFT and thus need slightly
negative corrections. This presumes that there is a preferred assignment in a local fit of the true GW delta
corrections. However, since there is no unique global solution due to the ambiguity to distribute the atomic
delta contributions, there are also considerable variations in some chemical environments (like e.g.
isobutylene), but since trained GNNs need to recover the correct molecular delta value by being restricted to
atomic delta contributions, and no distribution is forced upon on the loss function, the learned distribution
should be related to the task, if the model generalizes well. For example, in bad-performing models, the
deviations are typically more pronounced with regard to a group of accurate models (e.g. comparing the
accurate models in figures S3.2, S3.3, S4.1 of high similarity with inaccurate models of figures S3.1, S3.5 of
larger deviations). Nonetheless, the presented data offers insight into the model’s fitted solution of
attributing atomic delta corrections for the QM9 dataset.

2.3. Generalization to larger molecules
It is known that very often ML models trained on datasets such as QM9 do not generalize very well to larger
molecules. Here we want to test the delta ML model trained on QM9 to predict the HOMO, LUMO and GAP
energies as a three dimensional target for a set of organic semiconductors. To this end, we have chosen
molecules from the chemical universe database-project [53] named GDB-17 [33] that consist of 166 billion
organic small molecules with up to 17 atoms of C, N, O, S, and halogens. This dataset is the successor of the
previously published GDB-11 [53] and GDB-13 [54] dataset with molecules up to 11 and 13 atoms,
respectively. More specifically, we took a certain subset of 50 million molecules from the GDB-17, the
GDB-17-Set, as generated in Ruddigkeit et al [33], available online, and further selected 100 molecules of
every size (i.e. different counts of non-hydrogen atoms), starting from size 10–17. To achieve a uniform
sampling of the molecular space for every molecular size, molecules were represented as RDkit fingerprints
[39], 100 centers were found using k-means clustering, and for every center the closest molecule (in the sense
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Figure 5. The distribution of atomic delta contributions for the LUMO orbital, depending on their chemical environment, as
predicted by DimeNet++ for QM9. The probability density function (PDF) is plotted for selected groups of carbon, nitrogen
and oxygen. The total atomic contribution from figure 4 is plotted as a dashed line (not to scale). The chemical structure is given
as an inset. DimeNet++ was trained with a cutoff of 5 Å and depth 4.

of Euclidean distance) is finally selected and used for as a test set. Molecules with halogens were excluded
from consideration.

As the molecules stored in GDB-17 are molecular graphs, represented in SMILES format, we made a
three-step procedure to obtain geometry of those molecules. First an initial conformer is guessed using RDkit
and then a conformer search has been carried out using CREST. Finally, the lowest lying conformer for each
molecule was optimized at DFT level with the 6–311G∗∗ basis set and the functional B3-LYP (Gaussian [55])
in TURBOMOLE [56, 57], mimicking the level of theory for geometry optimizations in the QM9 data set
(6–31G(s,p,d)/B3-LYP). Note that final single point calculations were performed in this work for the entire
QM9 dataset as well as the GDB-17 subset on the same level of theory. Geometries of the resulting molecules
can be found in the Supporting Information. Finally, we conducted GW and DFT calculations for the
GDB-17-Subset with the PBE functional according to Fediai et al [35].

Figure 6 demonstrates how DimeNet++model trained on the QM9 dataset generalizes to molecules
with up to 17 atoms (excluding hydrogen). While having a chemical accuracy< 0.05 eV in predicting
HOMO and LUMO for 10-atom molecules, the model accuracy degrades to approximately 0.1 eV for
HOMO and LUMO and 0.15 for gaps in case of larger molecule sizes (figure 6(c)). Considering an optimistic
estimation of GW accuracy to be 0.1 eV, the generalization to ‘QM17’ molecules is sufficiently good. Note
that a general decrease of accuracy for out-of-distribution predictions is to be expected and that improving
the generalization capability of GNNs is a main focus of current research. In practice, active learning
approaches are used to systematically extend the training data distribution and to improve the GNN
performance on the specific task at hand [58, 59].

Furthermore, figure S9 demonstrates that the Schnet model generalizes slightly worse towards larger
molecules than the DimeNet++model. There is a clear trend for increasing MAE for larger molecules, and
MAE of∼0.17 eV for HOMO and LUMO and∼0.32 eV for gaps in case of molecules with 17 non-H atoms.
Thus, being almost equally accurate for the QM9 dataset, DimeNet++ outperforms Schnet for larger
molecules. We do not have a conclusive explanation for this. There is a spread in performance for different
hyperparameters for SchNet, and we hypothesize that with a larger message passing range and sum
operations for aggregation, a change in the average number of interacting atoms can lead to shifted hidden
representation, since we find that a SchNet model with smaller cutoff radius and medium depth extrapolates
better than the best SchNet model of figure 3 having largest depth and highest cutoff radius (compare table
S1 and figure S13).

As a side remark, the SchNet model is cheaper and faster to train than DimeNet++, which requires angle
computations. Furthermore, a fully-connected NN on fingerprints can hardly generalize to larger molecules
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Figure 6. Predictions of the DimeNet++model on the delta energies between GW and DFT for molecules with 10–17 heavy
atoms, where the model was trained on QM9 only, i.e. molecules with up to 9 heavy atoms. Scatter plot for HOMO and LUMO
orbital delta energies in (a) and (b). The color map for (a) and (b) encodes the number of heavy atoms. The mean absolute error
and r2-score of the predictions is plotted as a function of the size of the molecule in (c) and (d), respectively. The legend in
(c) matches the curves in (d).

at all, as shown in figure S10. Errors of up to 0.25–0.4 eV are observed compared to the errors of 0.1 eV for
the DimeNet++model.

3. Conclusion

We applied delta ML to GW orbital energies of small molecules and tested its generalization to larger
molecules, which is a highly demanding task for screening applications in materials science. A set of ML
models was trained on the QM9 benchmark set reproducing literature performance. The prediction of delta
energies with respect to DFT orbitals was found to be more precise than directly predicting GW orbital
energies, becoming especially distinct for little training data, thus showing the advantage of the
delta-learning approach. We investigated the fitted distribution of atomic delta energies with respect to their
chemical environment, offering some interpretability and insight into ML models such as GNNs. Finally, we
tested the generalization capabilities of the ML models on larger molecules up to 17 atoms, excluding
hydrogens. We find that DimeNet++ can sufficiently generalize to larger molecules with a mean error
of<0.1 eV, on par with the approximate accuracy of GW. In summary, we believe that delta-learning can be
used in connection with GW for real-world screening applications requiring accurate orbital energies.
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