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1 Introduction

Higgs boson pair production is a crucial process to obtain deeper insight into the symmetry
breaking mechanism of the Standard Model (SM). For this reason, it is one of the most
important processes studied in detail at the Large Hadron Collider at CERN and similarly
at its High Luminosity upgrade which will begin operation within this decade. The main
SM production mechanism for Higgs boson pairs is via gluon-gluon fusion and a number
of higher-order corrections have been computed, mainly in the context of QCD. As far
as electroweak corrections are concerned comparatively very little is known. First steps
have been taken in refs. [1, 2]. In ref. [1] the two-loop box diagrams have been considered
where a Higgs boson is exchanged between the massive top quarks. It has been shown
that a deep expansion in the high-energy limit leads to results for the form factors which
are valid in a large part of the phase space. In ref. [2] top-quark Yukawa corrections
have been considered, partly in the infinite top quark mass limit. Electroweak corrections
proportional to the Higgs self-couplings have been considered in ref. [3] using a numerical
approach. In the present work we compute the complete NLO electroweak corrections as
an expansion in the large top quark mass limit, including sub-leading terms up to 1/m}°.
The corresponding corrections in the case of QCD have been computed in refs. [4-6].



A similarly important process at the LHC is the production of a Higgs boson in asso-
ciation with a jet. As for Higgs boson pair production the dominant production channel is
gluon-gluon fusion, with the partonic process gg — gH. NLO QCD corrections have been
considered in a number of works: in the large-m; limit [7], in the high-energy limit [8-10]
and numerically, including exact dependence on m; [11-13]. NNLO corrections have even
been computed in the infinite top quark mass limit [14-18]. NLO electroweak corrections
via massless bottom quark loops have been computed in ref. [19], and the corrections in-
duced by a trilinear Higgs coupling in the large top mass limit have been recently calculated
in ref. [20]. In this work we compute, for the first time, the full NLO electroweak correc-
tions involving virtual top quark loops. We consider all sectors of the Standard Model and
perform an expansion for large m; up to order 1/m$. Furthermore, we provide analytic re-
sults for the NLO QCD corrections, again expanded up to 1/m¢. These expressions will be
of interest for cross checks of numerical results and for the construction of approximation
formulae involving expansions in different limits.

Calculations in the electroweak sector of the Standard Model are in general much more
complicated than in the strong sector since many different mass scales are involved. For
the case of QCD corrections it has been shown (see, e.g., refs. [21-23]) that precise approx-
imations can be obtained by combining expansions performed in different regions of the
phase space. This motivates developing these techniques beyond QCD to the electroweak
sector of the Standard Model. In this work we take a first step in this direction by consid-
ering the region in which the top quark mass is larger than all other kinematic invariants.
While the radius of convergence of such an expansion is limited only to small values of
the centre-of-mass energy, the results will serve as benchmarks for cross checks of other
expansions or for numerical results.

This paper is organized as follows: in the next section we define the form factors which
describe the two processes considered, and the technical details needed for our calculation
are presented in section 3. In particular, we describe the asymptotic expansion and our
renormalization procedure. Section 4 contains our results for Higgs boson pair production
and section 5 is dedicated to the electroweak corrections to gg — gH. The QCD corrections
to gg — gH are discussed in section 6. In all cases we study the influence of the higher-
order 1/m; terms on the form factors and provide our complete analytic expressions in the
ancillary files of this paper [24]. A brief summary of our findings is provided in section 7.

2 Form factors for gg — HH and gg — gH

21 gg—~ HH

The amplitude for the process

9(q1)g(q2) — H(qs3)H (qa) (2.1)



can be decomposed into two Lorentz structures A{"” and A4” which we define as

1
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Here ¢;; = g; - q¢; with @ =q¢ =0and ¢ =q¢} = m%{. pr is the transverse momentum of
the final-state Higgs bosons, given by
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with the Mandelstam variables

s=(q+q)?, t=(q1+a3)°, u=(q1+qu)’. (2.4)
Using these definitions we introduce the form factors F; and Fy as
M = e g, MM = e ey 6 XE s (LAY + FRALY) (2.5)

where a,b are adjoint colour indices, ngHH = Gras(u)Tr/(2V27), Tr = 1/2, GF is
Fermi’s constant and as(p) is the strong coupling constant evaluated at the renormalization
scale . We decompose the functions F} and Fj introduced in eq. (2.5) into “triangle” and
“box” form factors. Fi has contributions with zero, one and two s-channel Higgs boson
propagators whereas Fy only has box contributions. Thus we write

3m? m2 -
F = H2 <Ftri + 4H2 Ftri) + Fhbox1
5 —miy 5 —mi;

Fy = Fyoxo - (2.6)

In order to obtain this decomposition it is important to re-write the factors of s which occur

in the numerators during the calculation using s/(s —m?%) = 1+m?% /(s —m%). Note that

at two loops Fiyi is not the same as the form factor for single Higgs boson production (as is

the case for QCD corrections), since loop corrections to the HH H vertex also enter here.
We define the perturbative expansion of the form factors as

F=rpO %W pao | @ pon (2.7)
e 7T

where « is the fine structure constant and the ellipses indicate higher-order QCD and
electroweak corrections.

In section 4 we discuss the results for the squared matrix element constructed from
the form factors Fii, Ftri, Foox1 and Fyoxo. Analytic results for the leading-order form

factors (Ft(r?), Fégzd and Fégza) are available from [25, 26]. Two-loop corrections to Fég;(ll)
and Fég;é) originating from the exchange of a virtual Higgs boson have been computed in

ref. [1] in the high-energy limit.
In figure 1 we show sample one- and two-loop diagrams contributing to gg — HH. At
two-loop order we have:



Figure 1.
wavy and curly lines correspond to scalar particles, fermions, electroweak gauge bosons and gluons,

respectively.

b i Ly

(g-4)

o one-particle irreducible box and triangle diagrams,

(g-5)

One- and two-loop Feynman diagrams contributing to gg — HH. Dashed, solid,

e one-particle reducible diagrams with a one-loop correction to the HH H vertex or a

one-loop self-energy correction to the Higgs propagator of a one-loop g9 - H — HH

diagram,

e one-loop tadpole corrections to one-loop diagrams.

At two-loop order there are also contributions without top quarks which are not sup-

pressed by small Yukawa couplings. In these contributions the gluons couple to light quarks

and the connection to the final-state Higgs bosons is mediated via Z bosons. An example

is given by diagram (g-1) in figure 1 if a light quark runs in the fermion loop. In our

expansion these contributions formally contribute to the m? term, however in this work we

do not compute such diagrams; they can be computed following the approach of ref. [19].



Figure 2. One- and two-loop Feynman diagrams contributing to gg — gH. Dashed, solid, wavy
and curly line correspond to scalar particles, fermions, electroweak gauge bosons and gluons, re-
spectively. Diagrams are also shown which contribute to the NLO QCD corrections.

2.2 gg —~gH

The amplitude for the process

9(q1)9(q2) — 9(q3)H (q)

can be decomposed into four physical Lorentz structures [8]!

AP =gl AL = g'Pqy
1
AL = gl A = igted.
The corresponding four form factors Fi,..., Fy are defined through
. 4
Mabc — fachggg E1,4€2,0E3 Z FiAéWp,
i=1

(2.8)

(2.9)

(2.10)

We note that A4"” differs from ref. [8] by the factor of 1/s, which we introduce such that all four form

factors are dimensionless.



where c is the adjoint colour index of the final-state gluon, XogggH is given by

X888t — 9l/4 Jara (1u)Gr as(i) (2.11)

and the perturbative expansions of the form factors are defined as in (2.7). The Mandelstam
variables are defined as in eq. (2.4); the only difference with respect to gg — HH is that
here ¢3 = 0 and p?p = ut/s. Sample Feynman diagrams for gg — gH are given in figure 2.
The classification is similar to gg — HH, we again include all one-particle reducible and
all tadpole contributions. Note that for the QCD corrections, we also include the one-loop
self-energy corrections to the gluon propagators and the one-loop vertex corrections to the
triple-gluon vertex of the one-loop diagrams. The corrections to the quartic-gluon vertex
do not appear at the two-loop order of this process.

3 Technical setup

3.1 Asymptotic expansion of the two-loop amplitudes

For the generation of the g9 — HH and gg — ¢gH diagrams and the corresponding
amplitudes we use qgraf [27]. As input we use the Lagrangian file of the full Standard
Model shipped with tapir [28], which is derived from the Feynman rules of UF0 [29].
tapir translates the gqgraf output to FORM [30] notation and generates further auxiliary
files which are useful for the manipulation of the amplitudes. The large-m; expansion is
realized with the help of exp [31, 32] which generates the corresponding subdiagrams and
maps them to various integral families.?

We apply the large-m; limit as
mi > s, t,miy,my, miy (3.1)

where no additional hierarchy is assumed among the scales on the right-hand side. This
leads to the following integral families:

o one- and two-loop one-scale vacuum integrals,

e one-loop massless triangle integrals where two external lines are massless,

« massive vertex integrals where for one external leg we have (g1 +¢2)? = s and for the
other two legs we have ¢ = ¢§ = m% (for g9 — HH) or ¢3 = 0 and ¢} = m?% (for
99 = gH),

o for the QCD corrections to gg — gH we also need massless one-loop box families
with one external mass ¢F = m%{; explicit analytic results can be found in ref. [34].

Our FORM-based setup automatically performs a reduction of arbitrary members of each
family to master integrals, which are well known in the literature (see, e.g., refs. [35, 36]).
The tadpole integrals are computed by MATAD [37] and the remaining integral families are

2See also ref. [33] for a recent discussion of the expansion of integrals contributing to H — ggg in the
large-m; limit.
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Figure 3. Asymptotic expansion of two sample Feynman diagrams. The subgraphs left of the
stars have to be expanded in the small quantities, i.e., masses, external momenta or loop momenta
of the co-subgraphs, which are to the right of the stars.

reduced by IBP reduction rules derived by LiteRed [38] which have been implemented in
FORM. Furthermore all of our reduction routines can deal with tensor integrals, avoiding
the need to construct additional projection operators. In figure 3 we show how the various
integral families appear due to the asymptotic expansion in the large-m; limit. In the
Feynman gauge we have performed an expansion of the form factors up to order 1/m;°
(1/m§) for g9 — HH (99 — gH).

In order to check our calculation, we also introduce general gauge parameters £, &
and &, for the Z and W bosons and the photon. From the technical point of view &, does
not introduce any additional complexity since no new mass scale is introduced. It drops
out after summing all bare two-loop diagrams. This is not the case for £z and &y since
they appear in combination with gauge boson masses in the gauge boson and Goldstone
propagators. Furthermore, £z and &y only drop out after renormalization. For this check
we assume

m? > £Wm12/V7§Zm2Z > SatamIQ/Va mQZ¢m%{ ) (32)

and perform an expansion which includes terms up to order 1/m¢, 1/(&wmiy,)?, 1/(£2m%)?,
1/(mZéwmi,), 1/(miézm%) and 1/(Ewmi,E2m%). To check the cancellation of £z and &y
we have to consider the combination of the bare two-loop diagrams and the counterterm
contribution from the wave function of the external Higgs boson (see also below), which
also depends on &y and €7.2 It is a welcome and non-trivial check of our calculation that
up to this expansion depth, & and &z drop out of the gg — HH and gg — gH amplitudes.

3.2 Renormalization

In the following we concentrate on the electroweak sector; for the discussion of the renor-
malization and the treatment of the infra-red divergences which occur for the NLO QCD
corrections to gg — gH we refer to section 6.

3Note that the counterterm contributions of the (physical) parameters are independent of the gauge
parameters.



For the renormalization we follow the standard procedure as outlined, e.g., in refs. [39,
40]. We express our one-loop amplitudes for the form factors in terms of the parameters

e, mw,mz, Mg, M, (3.3)

where e = v/4ma, and introduce one-loop on-shell counterterms (see, e.g. egs. (143), (153)
and (421) of ref. [40]). Furthermore, we have to renormalize the wave function of the exter-
nal Higgs boson, which we also perform in the on-shell scheme (see eq. (144) of ref. [40]).

We consistently include tadpole contributions in all parts of our calculation (in the
two-loop gg — HH and gg — gH amplitudes, and the gauge boson and fermion two-
point functions needed for the counterterms). This guarantees that the top quark mass
counterterm is gauge-parameter independent. This prescription is equivalent to the so-
called Fleischer-Jegerlehner tadpole scheme [41].4

For the numerical evaluation of the form factors we transform our results into the so-
called G, scheme where the Fermi constant G and the gauge boson masses myz and my,
are the input parameters, and the fine structure constant a and the weak mixing angle Oy,
are derived quantities. (see, e.g., section 5.1.1 of ref. [40]). In this scheme it is convenient
to express the final result in terms of the variable

2
_ Gpmj

Ty = .
! 8v/272

Although we have computed the exact top quark mass dependence of all counterterm

(3.4)

contributions it is convenient to expand them in 1/m; and combine the individual terms
with the expanded bare two-loop amplitude. We do not expand the (finite) quantity Ar,
which performs the transformation from the « to the G, scheme, in the large-m; limit but
retain its exact dependence on my.

Note that the NLO electroweak corrections do not produce infra-red divergences. Thus,
already after renormalization we obtain the finite results for the form factors. This is not
the case for the NLO QCD corrections to gg — gH; the infra-red subtraction necessary
to produce a finite result is discussed in section 6. Let us also mention that our NLO
electroweak form factors do not have an explicit dependence on the renormalization scale
since all parameters are renormalized in the on-shell scheme.

4 Results for gg > HH

4.1 Analytic results

It is instructive to begin by discussing the leading contributions in the large-m; expansion,

of order m} and m?, which are present in Ft(r?’l) and Fég;(ll). Our results for the two-loop

form factors read

4 136 16m?
aFt(O’l):X$t< - ?t>+0<mg>,

oot 3 15 m%
a1 _ 4 Az 0
;Fboxl =355 +0 (mt> : (4.1)

4For a recent detailed discussion on the various tadpole renormalization schemes we refer to ref. [42].



For reference, we also provide the large-m; limit of the leading-order form factors which
are given by

R so(um).

1
FO = —5+0 (1/m?) . (4.2)

Results for Fi; and Fio have also been presented in ref. [2], in which leading m?
corrections to the ggH and ggH H vertices at two-loop order are taken into account using an
effective-theory approach, while one-particle reducible diagrams have been computed with
full m; dependence. Furthermore, all one- and two-particle reducible diagrams involving
Yukawa couplings have been considered. After extracting the m} and m? terms we find
agreement with our results. To make this comparison it is important to consider sub-
leading terms in the expansion of the LO form factors which are factored out in ref. [2] and
contain exact m; dependence.

Using the asymptotic expansion described in section 3.1 we have obtained expansion
terms up to order 1/m;°. Up to order 1/m;} we have performed the calculation for general
gauge parameters and we have verified that they drop out from the renormalized results.
The higher-order 1/m; terms have been computed only in the Feynman gauge. The analytic
expressions for the form factors can be obtained from [24].

In our analytic expressions we observe poles of the form 1/(s — 4m%)¥ where k > 0
is larger for the higher-order 1/m; terms. The origin of these terms are massive one-loop
triangle (co-)subgraphs, such as the one on the first row of figure 3 with external squared
momenta s, m% and m?. The expansion of the subgraph leads to numerators in the
triangle diagram and the 1/(s—4m?) terms result from the subsequent reduction to master
integrals. We note that the poles are spurious; for each 1/m; term the limit s — 4m%{ exists.

We also point out that the m{ term presented here is not complete, since it should also
receive contributions from diagrams without top quarks, for e.g., the first diagram in figure 3
where the top quarks are replaced by light quarks. We do not compute such diagrams in
this paper. They can be computed following the approach of, e.g., ref. [19] where similar
contributions to gg — gH have been considered, or with the help of expansions as proposed,
e.g. in ref. [1].

4.2 Numeric results

For the numerical evaluation of our form factors we adopt the G, scheme and use the
following input values

my = 172 GeV , my = 125 GeV,
my = 80 GeV, mz =91 GeV. (4.3)

Furthermore, we express the form factors in terms of s and pr and introduce the parameter

_pr

Ppr Vs (4.4)
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Figure 4. Z;lg(g%{H plotted as a function of \/s. Results are shown up to order 1/m;°. The panel on
the right shows the result normalized to the m? expansion term.
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Figure 5. Z;lg(g’égl as a function of 1/s. The panel on the right shows the result normalized to the

mY expansion term.

In the following we choose p,, = 0.1 and discuss results for the squared matrix element

2 2 -
s = g5 3= g5 S M = 35 (X5)" (1 +185F) = g5 (X0
col pol
(4.5)
For the numerical evaluation of the massive two- and three-point functions we use the
program Package-X [43].

For reference, in figure 4 we show the LO contribution to Z:{ggHH as a function of /s.
Below the top quark threshold the expansion converges well, however it converges more
slowly as /s gets closer to 2my.

In figure 5 we show the NLO quantity ggﬁl){ as a function of /s. The curves include
increasing expansion depths starting from the leading term proportional to m} (which
originates from Ft(roi’l)) up to 1/m; . For the /s axis we choose values from the Higgs pair
production threshold at 2mpy = 250 GeV up to /s = 380 GeV. Note that convergence of

the expansion is not expected beyond the top quark pair production threshold at 2m,; =

~10 -
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Figure 6. Z;[g(;gi{ll){ without contributions involving a cut at /s = my +mw, see text for details. The
panel on the right shows the result normalized to the m? expansion term.

344 GeV. Below this value we observe, at first sight, a reasonable convergence. Below
Vs = 300 GeV a significant shift is obtained from the constant contribution proportional
to mY and higher order 1/m; terms are small up to 1/mg. However, the 1/m}" contribution
again provides a sizeable shift, which is clearly visible on the right panel which shows the
ratio with respect to the m{ contribution.

This behaviour is due to diagrams with a closed quark loop which contains both top
and bottom quarks, see, e.g., the second diagram in figure 3. Such diagrams contain cuts
through a top quark and W boson and thus the large-m; expansion is expected to break
down above /s = my + my ~ 250 GeV. Diagrams with such a cut contribute to both F;
and F5. To demonstrate this, in figure 6 we show the results for Z;{g(gi_% where we set all
diagrams containing a bottom quark to zero in the finite parts.” We indeed observe that
after removing these contributions the large-m; expansion converges as expected up to the
threshold at /s = 2m;. We note that the two-loop diagrams have further cuts where no
top quark is involved at /s = 2myy, 2mz, 2my. In our approach all of these are taken into
account exactly, so they do not affect the convergence of the large-m; expansion.

In view of the above discussion the validity of the leading m; terms (see section 4.1
and ref. [2]), and indeed of the deeper large-m; expansion, for a description of the elec-
troweak corrections to gg — H H is questionable. More insight will be provided in a future
publication which considers the small-¢ expansion of these diagrams in the style of ref. [23].

5 Results for gg — gH': electroweak corrections

In this section we consider the electroweak corrections to gg — gH. The QCD corrections
are presented in section 6. For the input values for numerical evaluation we adopt the
values given in eq. (4.3).

In order to study the convergence of the expansion in 1/m; we consider the squared

matrix element since the individual form factors show a divergent behaviour for s — qu

5The 1 /€ poles parts are required in order to obtain finite expressions after renormalization.

- 11 -



which is due to contributions where a gluon is present in the ¢ or u channel. In principle
one could further decompose the form factors to make this dependence explicit, however,
we prefer to consider

_ 1 1 be(2
ugggH = STZ?ZNM& C|

col pol

3 2 2FFru  2FyF5t
= o (xg=) {s[ e +F2F1*+F1Fz*}

32 t

tu
| Fa (B + F) + B3 2Ff + F) |

+ [ (B + Fa) By + By (Ff + F) |

+ {(F3+F4)F1*+F1 (Fg—i—Fi)]u}

3

H 2 ~
- 33( §5) s Ugagn (5.1)

where F}* denotes the complex-conjugate form factors. After inserting the perturbative
expansion from eq. (2.7) we obtain the LO and NLO contributions to Uggetr, which converge
for s — m?.

)

We start with the discussion of the LO corrections. In figure 7 we show oI for

p
ppr = 0.1, as a function of \/s. The right panel shows the ratio with respect to the leading
expansion term. We observe very good convergence below /s = 2m; and can safely assume
that we reproduce the exact result every time two successive expansion terms overlap.
In fact, below /s &~ 250 GeV only the first three terms lead to visible shifts and below
V/5 = 300 GeV the curve which includes 1/m$ terms (which is the order we have available

at two loops) provides a good approximation. The inclusion of 1 /m,}4 terms extends the
~(0,1),
ugggH’
due to their excellent convergence it is safe to use the expansion, including terms to 1/m}4,

convergence region even further. The one-loop form factors enter the construction of

and avoid implementing the exact, analytic leading-order expression.

NLO results for Z;{gggH in the G, scheme are shown in figure 8, again for p,, = 0.1. As
expected, we observe good convergence below the top quark threshold. In particular below
Vs & 300 GeV the higher order 1/m; terms become smaller and smaller and the approxima-
tion which includes 1/m$ terms agrees well with the 1/m¢ approximation. From the right
panel we observe that the {1/m?,1/m¢#,1/mf} terms lead an almost s-independent shift of
about {80%,20%,10%} and the 1/m$ term provides only a shift at the few-percent level.

We have compared our one-loop form factors to ref. [20] and find agreement up to
1/m}*. We also compare with the subset of NLO contributions induced by the trilinear
Higgs boson coupling considered in ref. [20], by extracting the corresponding pieces from
our bare two-loop form factors. We have compared up to 1/m? and find agreement.

Our result provides solid predictions for the energy range mpy < /s < 300 GeV and
will thus serve as an important cross check for future (analytic) calculations in different
kinematic limits or of numerical evaluations.

- 12 —
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Figure 7. Left: Z;{g(géH as a function of \/s. Right: ratio with respect to the m? expansion term.
The various colours correspond to the inclusion of different expansion terms.
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Figure 8. Z/N{g(g’glf)l as a function of \/s. The ratio with respect to the m? expansion term is shown

in the right panel.

6 NLO QCD corrections to gg — gH in the large-m; limit

A finite expression for the NLO virtual QCD corrections to gg — gH is obtained after in-
troducing counterterms for the ultra-violet poles and subtracting the infra-red divergences.

We first renormalize the strong coupling constant in the MS scheme with six active flavours.

The top quark mass and gluon wave functions are renormalized in the on-shell scheme.%

(

Afterwards we express the form factors in terms of as5) (1), with five active flavours. Finite
form factors are then obtained via the subtraction (i = 1,2,3,4)

1,0 10 1 0
Figy = Fla — 51V (6.1)

3,fin i,ren %

5The transition from the on-shell to the MS quark mass is straightforward.
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(1,0)

where F}.. are the ultra-violet renormalized form factors. The quantity Iél) on the right-
hand side of eq. (6.1) is given by [44]
“E_(Ca 26 N (e (Y
___°“" (A ) Ll 6.2
o= Tawasol\e T )\ H\E) =) 62

with g = 11C4/12 — Trn; /3, where Trp = 1/2, C4 = n. and ny is the number of massless
quarks.

For illustration we present the one- and two-loop expressions for the form factors Fl(o)
and Fl(,lfil(')l) to the expansion order 1/m? and mY, respectively. Deeper expansions can be
found in the supplementary material [24] of this paper. At one-loop order we have

(s+1t)(m2 —t) g b Tmi (s +t) — tm3 (10s + Tt) + 3st(s + t)
3su B 30(s +1) (t —m3)

FO . (6.3)

my

and the two-loop expression is given by

+t)(m2 —t) 3 ) s (0t [ u
Fao _ (8 h (— = {2L (1 — ) — 9L () — 9L <>
Lfin 3su 2n. e Ebh m3 12 mi 12 mi

2

my (21s + 23t) — 23t(s + t) 9 ( s ) 9 ( t )

log? (2} +1002 (= -2
6(s +£)(t —mj) e ) e

t t t
+ 2im log (— 2) — [2 log (— 2) + 2i7r} log (1 — 2) + log? <_ u2>
+ 2imlog <— u2> — [2 log (— u2> + 2i7r} log (1 — u2>

mj, mj, m3

2 2 2 11
+ log <M> [log <— M) + log (— M) - — - 2i7r]
s U 6
11

where n. = 3 and Lis is the dilogarithm.

In figure 9 we show the NLO QCD corrections to Uggen for p,, = 0.1 as a function of
V/s. We observe a rapid convergence, even beyond the top quark threshold (although the
expansion is not expected to produce the correct result in this region). In fact, only the
1/m? terms lead to a shift of a few percent; the higher-order expansion terms are much
smaller. This behaviour can be explained by the dominance of the diagrams involving ggH
triangle contributions and the suppression of the box-type Feynman diagrams.

7 Conclusions

In this work we consider the gluon-fusion induced processes g9 — HH and g9 — gH
and compute complete NLO electroweak corrections in the large top quark mass limit and
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Figure 9. NLO QCD corrections to Z:lgggH as a function of v/s. For the construction of the squared
matrix element the infra-red subtracted form factors (eq. 6.1) have been used. The panel on the
right shows the result normalized to the m? expansion term.

present results for the form factors up to order 1/mf? and 1/m$, respectively. We discuss
the renormalization procedure in detail and compute all counterterm contributions without
assuming any mass hierarchy. Thus, this part can also be applied to expansions in other
kinematic limits or an exact (numerical) calculation.

Partial electroweak results for gg — HH are already available in the literature [1, 2];
in this work we provide sub-leading terms in the large-m; expansion.

For g9 — HH the expansion in 1/m; does not show a convergent behaviour in the
physical region 2mpy < /s < 2my. We have demonstrated that this is due to diagrams in-
volving a cut through a W boson and a top quark. If these diagrams are omitted, we observe
reasonable convergence below /s ~ 330 GeV. Despite the limited applicability of the large-
m; expansion we believe that our results serve as reference for future expansions in other
kinematic regions or exact (numerical) calculations. Despite the convergence issues, if we
assume that the order of magnitude is at least correct, in the large-m; region the electroweak
contribution provides a correction of a few tens of percent with respect to the leading order.

For the NLO electroweak corrections to gg — gH we observe very good convergence
below the top quark threshold. In particular, for /s < 300 GeV we can provide precise
predictions on the basis of an expansion which includes corrections up to 1/mf. In this
region the electroweak corrections are small, below the percent level with respect to the
leading order.

We also provide NLO QCD corrections for the four form factors needed for gg — gH
up to 1/m$. Here a rapid convergence is also observed up to the top quark threshold.
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