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A B S T R A C T

Given the increasing number of battery electric vehicles, the availability of suitable fast-charging infrastructure
is crucial. However, designing such sites requires enough capacity in the electric power grid. A major
influencing factor on the effect of fast-charging sites on the power grid is the simultaneity factor, i.e. the share
of installed power related to the theoretical maximum power. The aim of this work is to investigate optimal
simultaneity factors for fast-charging sites depending on various influencing factors. Real-world charging data
from the biggest German operator is used in a stochastic approach via Monte-Carlo Simulation. It was found
that in most cases, fast-charging sites can be designed with a simultaneity factor of 0.5 to satisfy demand.
Applying this would reduce the effect on the power grid as well as reduce costs and time to build charging
infrastructure. In consequence, the demand of the rising electric vehicle number can be met more efficiently.
1. Introduction

The share of electric vehicles (EVs) worldwide rises constantly in
recent years. This trend is strongly driven by policy makers in their
efforts to reduce greenhouse gas emissions and is therefore likely
to continue. With increasing EV sales, the public charging networks
must expand as well. Thereby, high-power charging and thus a short
charging duration is crucial for the acceptance of electric mobility [1].

However, the additional power demand causes stress on the local
power distribution grid. The ability of the grid to include the capacity
for EV charging is a widespread concern in the general public [2–
4]. In consequence, high grid-upgrade costs are projected by recent
studies [5,6].

When evaluating the additional stress on the power grid exerted
by fast-charging sites, the so-called simultaneity factor is of great
importance: the relation between the actual available power at the site
and the theoretical maximum [7]. Preparing the grid for the theoretical
maximum and reserving the capacity all time is a great task and
official government programs are based on that requirement, e.g. in
Germany [8]. However, in reality charge point operators (CPOs) design
their charging sites with lower simultaneity factors creating lower stress
on the grid.

Aforementioned studies [5,6] use certain assumptions about the
simultaneity factor to calculate the effect of electric vehicle (EV) charg-
ing on the grid. However, the simultaneity factor depends on various
complex influence factors and not many publicly accessible charging
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data sets exist for evaluation. On the other hand, its influence can be
drastic: if charge point operators (CPOs) would design their sites with
a simultaneity factor of 0.5, the strain on the electric grid is only half
of the theoretical maximum.

This work aims to perform an analysis on the magnitude of the
simultaneity factor based on real-world data from a German CPO. The
goal is to identify appropriate simultaneity factors based on charging
demand for different scenarios. Thereby, several influencing factors
are investigated and their effect on the simultaneity factor is assessed
using a Monte-Carlo approach. To this purpose, the following research
questions are explored in this paper:

• RQ1: How do the influence factors geographic location, number
of arriving EVs, number of charging points and type of charging
station influence the performance of a charging site and the
optimal simultaneity factor 𝜓opt?

• RQ2: Can energy storage systems increase the performance of
a charging site and help to reduce the simultaneity factor suffi-
ciently to be economical?

The paper is structured as follows. After Section 2 provided a
literature review, Section 3 introduces the used methodology before
the simulation setup is explained in Section 4. The results of the
different scenarios investigated in the Monte-Carlo Simulation (MCS)
are presented in Section 5. Lastly, concluding remarks are given in
Section 6.
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2. Related work

The importance of charging infrastructure as a driver for the market
ramp-up of EVs and the associated acceptance of EVs has already
been frequently investigated in the literature. [9] investigated the
background that could lead to a reduction in the acceptance of EVs.
The analysis focuses on access to efficient charging. An additional
study [10] focuses on the impacts of costs, charging options, and
mileage for EVs as well as the customer service quality on the adoption
of EVS. [11] examines policy measures to promote the use of EVs and
charging behavior in a combined way. In this context, fast charging
stations could be identified as crucial to support and enable a high pen-
etration of EVs in the future. This is supported by numerous literature
reviews by various authors. [12], who reviewed the existing literature
and summarized the findings on the importance of the framework
conditions for the need for charging infrastructure. [13] collected and
assessed the literature on electric vehicle charging infrastructure. The
authors focused on the types of charging infrastructure that exist, the
key functions and players in the market, and the future policies needed
for a widespread expansion of EVs.

The resulting impact of a high market share of EVs and thus fast-
charging infrastructure on the power grid is a known research area.
There are even studies on whether EVs and the corresponding charging
infrastructure can be used to deliberately attack the power grid [14].
Apart from such extreme situations, the impulsive and stochastic load
type induced by EVs can be challenging for the grid. [15] notes that
the load characteristics of EV loads can render conventional assessment
methods unsuitable. For this reason, the author proposes an algorithm
that captures the intertemporal response of the grid assets and enables
rapid assessment through an integrated interface. [16] focuses on the
spatio-temporal distribution of EV loads, and [17] can also be ranked
when assessing the impact of long-range EVs on the overall charging
demand, transformer load and voltage quality in a real distribution
system. However, detailed and data-based usage profiles of the charg-
ing station loads are not included. In addition, when assessing the
impact on the grid many studies base their calculations on the installed
charging power by CPOs. The fact that lower simultaneity factors are
used in practice is often disregarded and in other cases based on
assumptions because not much data is accessible on this.

When public databases are not available, the necessary load profiles
are often generated using agent-based models simulating the daily
routine of EV drivers, such as in [18]. However, the outcome from such
agent-based approaches is strongly influenced by the assumptions of the
researchers, e.g. the share of home and public charging [19].

On the other side, researchers address optimal charging site setups
from the perspective of a CPO. These setups are usually evaluated in
cooperation with peakshaving strategies where renewable energies are
used on site. A new probabilistic mixed integer linear programming
formulation for determining the optimal capacity and type of renewable
generation and energy storage was proposed in [20]. In addition, [21]
analyzed the optimal design of an EV fast-charging station taking into
account the interplay between renewable energy generation and stor-
age systems. The combined consideration of smart charging strategies
for EVs considering several charging options at the charging station
can be found in [22]. A component of significant attention is station-
ary BESSs and especially their economic viability. [23] propose an
fast charging system model that considers grid services and battery
degradation. The relation of the size of the BESS and the value of
the power contracted is evaluated in order to satisfy the needs of EVs
and meet the battery state-of-charge limits. In the simulation study
of [24], the opportunities to significantly improve the economics of DC-
fast charging stations by reducing grid charges were investigated. The
analysis results show that demand charges and electricity consumption
can be reduced by adding BESS and by using PV. In [25] it is shown,
that the application of electrical storage systems (ESS) in fast charging
2

stations can be seen as a way to reduce station operating costs of the
station and to reduce the negative impact of the electricity grid. The
authors proposed an approach for determining the optimal size of the
storage system for a fast charging station. [26] present an approach
that uses multi-objective optimization to determine the optimal energy
storage capacity for a fast charging station on a trunk road. The
results show that their proposed method maintains the voltage drop
and maintain the high peak demand with the lowest cost. Hence, [23]
and [24] conclude that current battery prices are too high for an
economical solution. However, many studies lack large data-sets and
mostly focus on the specific component of interest instead of the whole
site topology including viable simultaneity factors. Two examples for
a studies analyzing the simultaneity factor are [18,19]. Still, it is not
evaluated on a charging site level.

In consequence, this paper provides an analysis on the simultaneity
factor based on a large charging database. It will be investigated how
the charging sites can be right-sized to both meet the demand of EV
drivers and minimize the load on the electric power grid.

Nomenclature

BESS Battery Energy Storage System
CP Charge point
CPO Charge point operator
CS Charging station
CSD Charging session database
𝑑 Simulation day
𝑒 Capacity of the BESS
EV Electric vehicle
𝑘 Number of charging stations
ℎ Highway site
𝑙 Location type
MCS Monte-Carlo Simulation
𝑛 Number of EVs arriving at a CP per day
𝑝 Maximum power of the charging stations in the MCS
𝑃c,max Maximum charging power of an EV
𝑃𝐶𝑆𝑖 Maximum power of charging station 𝑖
𝑃𝑑 Power demand at the charging site
𝑃lb Lower bound of the generated charging curve
𝑃𝑇 Maximum power of the transformer
𝑞BESS SOC of the BESS
𝑞end SOC at the end of the charging process
𝑞start SOC at the beginning of the charging process
RCD Real charging data
RQ Research question
𝑆 Simulation scenario
SOC State of charge
𝑡𝑎 Arrival time of an EV
𝑢 Urban site
VRD Vehicle registration database
𝛼 Acceptable power reduction
𝛥𝜔 Performance difference between scenarios
𝛩EV Charging curve of an EV
𝜓 Simultaneity factor
𝜓opt Optimal simultaneity factor
𝜔 Share of power reduction at the site
𝜔𝑑 Share of power reduction for a day
𝜔𝑡 Share of power reduction for a minute
𝜔𝑆 Share of power reduction for a scenario

3. Methodology

3.1. Overview

The main components of a fast-charging site are the transformer
with the connection to the power grid and the charging stations (CSs),

as illustrated in Fig. 1.
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Fig. 1. Illustration of the charging site setup.

Fig. 2. Block diagram providing the section overview.

Each individual 𝐶𝑆 𝑖 offers electric power of 𝑃𝐶𝑆𝑖 . The power 𝑃𝑇
to operate the entire charging site then comes from the transformer.
The relation between transformer power and accumulated power of all
charging stations 𝑥 is given by the simultaneity factor 𝜓 :

𝜓 =
𝑃𝑇

∑𝑥
𝑖=1 𝑃𝐶𝑆𝑖

(1)

A simultaneity factor of 1 means all chargers are being operated
at maximum power 𝑃𝐶𝑆𝑖 and thus the transformer capacity is used
100%. The determination of the simultaneity factor 𝜓 has far-reaching
impacts, especially for the CPO as well as for the sustainable integration
of EVs in general. Setting 𝜓 too high leads to unnecessary costs for the
CPO with regard to the grid connection and to the hardware. In this
case, the consequence would be an over-dimensioning of the charging-
site and at the same time, an over-calculated capacity in the grid
and is thus associated with limitations in the charging infrastructure
expansion. On the other hand, too low values for 𝜓 mean that the
charging site is under-dimensioned. Hence, the entire demand of EVs
at the site cannot be met which means a restriction of the customers’
charging behavior and, in turn, a potential decrease in user acceptance.

In this work, optimal values for the simultaneity factor 𝜓opt shall
be identified using real charging data and a MCS. The approach is
illustrated in Fig. 2 and consists of several steps.

At first, real charging data is required for this analysis. These data
are presented in the following Section 4.1. Subsequently, the actual
analysis can be executed starting with the identification of influencing
factors on charging behavior. These are presented in Section 4.1 and
include for example the number of EVs arriving each day or the
maximum available power per charging point.

To answer the research questions introduced before, several scenar-
ios are defined in Section 4.2. With those scenarios and the influencing
factors, a stochastic simulation approach via MCS is executed, shown
in Section 4.3. Finally, the results with regard to site performance are
presented in Section 5.

3.2. Data and hardware

In this work, real charging data (RCD) is used for the simulation
to ensure realistic charging scenarios. The data was from the charging
network of EnBW in Germany and is presented in Table 1. Charging
3

Table 1
Data from a fast-charging network.

Count

Total chargers 922
Total charge points 1,437
Highway chargers 303
Highway charge points 446
Total charging sessions ∼500,000

Table 2
Assumed costs for components and grid connection.

Position Value Unit

Power station 100 [e kW−1]
Annual grid fee 18 [e (kWa)−1]
Grid connection 100 [e kW−1]
BESS ≤ 100 kWh 1,000 [e kWh−1]
BESS > 100 kWh 500 [e kWh−1]

sites clustered as highway are located in areas within five minutes of a
highway. Other charging sites are mainly positioned on urban parking
lots of retail partners such as supermarkets. The charging data consists
of information shared between the individual charging stations and the
CPO backend via the Open Charge Point Protocol (OCPP). It comprises
operating parameters, customer information and measurement values
such as current charging power.

EnBW mostly uses charging station hardware by the manufacturer
Alpitronic, called Hypercharger [27]. It is available in two versions
with a maximum power of 150 or 300 kW and has two charge-points
each. In the case of two parallel charging sessions at a singular charging
station, the maximum available power is split between the two EVs.
Since the RCD mostly originates from Hyperchargers, this hardware is
also used in the simulation presented in Section 4.

For a CPO, an important motivation to lower 𝜓 is the cost reduction
of the charging site. In order to also include the costs in the analyses,
the costs for the components presented in Table 2 are assumed. The grid
connection prices are taken from a German grid operator [28]. The life-
time for the transformer and BESS is estimated to be 20 and 10 years,
respectively. An inflation of 1.5% was defined for the calculation.

4. Simulation setup

4.1. Influencing factors

To choose 𝜓opt for a fast-charging site, the demand at the charging
stations must first be assessed. Overall, the demand is defined by
arriving EVs that need to be charged. Thereby, the distribution of their
arrival times 𝑡𝑎 decides how many parallel charging sessions take place
simultaneously. The distribution of arrival times for the simulation runs
can be extracted from RCD presented in Section 3.2.

The actual amount of power required by a single EV at a given time
depends on the EV model specific charging curve 𝛩EV. The curve in
turn depends on the state of charge (SOC) values 𝑞start at the beginning
and 𝑞end at the end of the charging process, each can be taken from
the RCD. The distribution of EV models is publicly accessible from the
official vehicle registration database (VRD) in Germany [29]. For the
sake of simplicity, it is often assumed for analyses that charging takes
place with a constant charging power over the entire charging duration.
However, the charging curve in reality is not constant but depends on
various parameters such as battery age, SOC or battery temperature.
To account for such effects, in this work a measure of uncertainty
is introduced to the charging curves. Thus, they are sampled from
a predefined probability function following the approach in [1]. The
theoretical charging curve is taken from the EV model specification
under the assumption that the maximum charging power 𝑃 is
c,max
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Fig. 3. Three exemplary charging curves of the Audi S E-tron Quattro model.
Table 3
Considered influencing factors for the power demand of a fast-charging site.

Influencing factor Variable [unit] Data origin

Arrival time 𝑡𝑎 [min] RCD
Starting SOC of EV 𝑞start [%] RCD
Final SOC of EV 𝑞end [%] RCD
EV model EV [–] VRD
Storage SOC 𝑞BESS [%] Uniform distribution
Charging curve of EV 𝛩EV Probabilistic model

available until the SOC of 𝑞 = 80%. An additional lower bound 𝑃lb
is introduced according to Eq. (2):

𝑃lb(𝑞) = 0.6 ⋅ 𝑃c,max(𝑞) (2)

𝑃lb is defined based on several measurements with real test-vehicles
where the communicated charging curve of individual vehicles were
compared to actual curves in the field. This included both summer
and winter times, whereas low charging power could especially be
observed in cold environments. The individual charging curves for each
arriving EV at the simulated site is sampled from the area between
𝑃c,max and 𝑃lb, therefore more realistic curves are achieved compared
to calculating with the theoretical maximum (see Fig. 3 for an example
and [1] for more details).

If the charging site is equipped with a BESS, the related SOC is
chosen from a uniform distribution at the beginning of a simulation
run. All considered factors are summarized in Table 3.

4.2. Scenarios

To reduce dimensions of the MCS, a set of scenarios 𝑆 is chosen
with predefined variables shown in Table 4. Thereby, the number 𝑛 of
EVs arriving at a charge point (CP) per day can take values between
2 and 15. The extreme scenario of 15 is used to account for days with
untypically high demand, such as the start of holidays.

The location-type 𝑙 of the considered charging site can be either
highway, other types and all stations in the data-set. The number of
charging stations (CSs) 𝑘 can range from 2 to 8. Note the fact that each
CS is equipped with two charge points (CPs), where the CS types are
provided with a maximum power 𝑝 of either 150 kW or 300 kW. One
cenario is simulated with an equal split of both types (mixed).

For BESSs, Li-ion batteries are assumed with a C-rate of 1 for
harging and discharging. The capacity 𝑒 is assumed to be between 0
4

nd 300 kWh.
Table 4
Overview of the scenario variables.

Scenario variable Symbol [unit] Values

EVs per CP per day 𝑛 [–] 2, 4, 8, 15
Location type 𝑙 [–] highway, urban, all
Number of CS 𝑘 [–] 2, 4, 8
Max. power of CS 𝑝 [kW] 150, 300, mixed
BESS capacity 𝑒 [kWh] 0, 75, 150, 300

4.3. Monte-Carlo simulation

To analyze the optimal 𝜓opt , the actual power demand 𝑃𝑑 of the
customers on a charging site must be evaluated. Depending on the
chosen 𝜓 , this power demand can be supplied by the charging site or
not. There are multiple factors influencing 𝑃𝑑 as shown in 4.1, and some
are subjected to uncertainty. Therefore, a MCS is performed to take the
stochastic nature of the scenarios into account, e.g. in arrival times of
EVs. For general information on MCS, refer to [30].

In general, the simulation calculates the power demand 𝑃𝑑 from the
𝑛 arriving EVs over the course of a day 𝑑. Depending on chosen 𝜓 ,
𝑃𝑇 is determined which is defines whether the demanded power 𝑃𝑑
can be met. At the same time, however, it follows that EVs may also
be limited in terms of charging power if the charging stations cannot
supply the entire demanded power 𝑃𝑑 . The share of power reduction 𝜔
is calculated as follows:

𝜔 =
𝑃𝑑 − 𝑃𝑇
𝑃𝑇

. (3)

The time-step used in the MCS is one minute, therefore for each
minute 𝜔𝑡 can be calculated. The average power reduction on the whole
simulated day 𝑑 is called 𝜔𝑑 and the average on the whole scenario 𝜔𝑆 .

Before the MCS starts, the scenario 𝑆 must be defined by the
variables introduced in Section 4.2. One central factor is the number
of arriving EVs 𝑛, for which the corresponding arrival times and SOC
values must be sampled from the respective distributions. This is called
the initialization phase and is explained in Algorithm 1.

Algorithm 1 Initialization of influencing factors in the MCS.
for 𝑖 in 𝑛 do

draw 𝐸𝑉𝑖 from corresponding VRD
generate 𝛩EV from the corresponding model
draw 𝑡𝑎,𝑖 from RCD
draw 𝑞start,i from RCD
draw 𝑞end,i from RCD

end for
draw 𝑞BESS from uniform distribution

After the initialization process, the input factors are defined and the
load curve for the simulation day can be obtained, starting at midnight
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Fig. 4. Exemplary load curve for one day as a result from the MCS with 𝑆(𝑛 = 15, 𝑙 =
𝑎𝑙𝑙, 𝑘 = 8, 𝑝 = 150, 𝑒 = 0) and an applied simultaneity factor of 𝜓 = 0.5 giving 𝑃𝑇 = 600
kW.

(𝑡 = 0 min). The simulation first assigns arriving EVs to the respective
charging points at the site. If possible, charging points where the EVs
can charge with maximum power are selected.

Subsequently, the charging process is simulated for each minute
𝑡, i.e. the demand of all EVs shall be met by the CSs. The power
split algorithm of the CS on the individual CPs is considered as well,
as explained in Section 3.2. If a BESS is installed at the site, power
shortage of the site can be mitigated by the battery. Thus, the BESS is
used to charge EVs if 𝑃𝑑 > 𝑃𝑇 and recharges itself in times of 𝑃𝑑 < 𝑃𝑇 .
Therefore, 𝑞BESS is updated every minute.

Algorithm 2 Load curve calculation.
while 𝜔𝑑 not converged do

for 𝑖 in 𝑑 do
for 𝑡 ≤ 1440 do

allocate EVs arriving at 𝑡 to chargers
simulate charging process on site
terminate charging of EVs leaving at 𝑡
update 𝑞BESS

end for
calculate 𝜔𝑑,𝑖

end for
end while
calculate 𝜔𝑠
If vehicles reached their individual 𝑞end, they terminate charging and

leave the site thus freeing the CP for subsequent arrivals. After reaching
midnight again (𝑡 = 1440 min), the simulation stops and 𝜔𝑑 is obtained.

The whole process is repeated until a convergence of 𝜔𝑆 is reached
ollowing standard MCS methodology [30]. In consequence, the con-
ersion criterion determines whether the simulation of an additional
ay 𝑑 + 1 changes the value of 𝜔𝑆 significantly. Before the conversion
riterion is checked, a minimum of 𝑑 = 50 simulations is executed.
hen, additional simulations are executed until these additional results
hange overall 𝜔𝑆 less than 0.0005. 𝜔𝑆 then represents the final result
or the defined scenario.

The complete process is illustrated in Algorithm 2. An exemplary
llustration of a resulting load curve from the MCS is shown in Fig. 4.
t shows the total power demand of all vehicles combined 𝑃𝑑 on every
inute of the simulation day.

. Results

.1. Performance measure

For a given scenario 𝑆, the simulation is executed for 𝜓 ∈ [0.1, 0.2,
5

, 0.9]. By defining an acceptable threshold 𝛼 for 𝜔𝑆 values, a CPO
an subsequently obtain the optimal simultaneity factor 𝜓opt for the
espective scenario. An exemplary result can be seen in Fig. 5 where
= 0.01 was chosen, which means 1% power reduction is acceptable

n average.
𝜓opt then represents the intersection between 𝛼 and 𝑆. In this

xample, apparently setting up a charging site with 𝜓opt = 0.5 results
n enough power supply while at the same time not over-sizing the
ardware. In the following of this work, 𝛼 = 0.01 is used as a threshold

as well.

5.2. Evaluation of input data

Since the real charging data (RCD) is available with highway labels,
one of the first questions is whether the chosen inputs differ between
highway and urban sites. For the variables 𝑡𝑎, 𝑞start and 𝑞end the respec-
tive probability density functions can be seen in Fig. 6. Arrival times
are distributed very similar in the two site categories as well as starting
SOCs. A decreased tendency toward higher 𝑞end values in highway sites
can be identified.

5.3. Charging site performance

As explained in Section 4, the output of the MCS is the share of
power reduction for the different scenarios �̃�𝑆 , while a scenario 𝑆 is
defined by the variable values from Table 4. By comparing the results
to 𝛼, the optimal simultaneity factor 𝜓opt can be identified for each
scenario 𝑆. For that purpose, a total of 319 352 days in 1944 scenarios
were simulated and compared. Because of the high number of results,
only the most important ones are presented in the following of this
section.

Location-type of the charging site: First, the effects of the geo-
graphic location of the charging site on the performance of the charging
site and the related optimal simultaneity factor 𝜓opt are analyzed
(RQ1). In Section 4.1, it was shown that the input variables differ only
marginally with the major difference being 𝑞end. To see whether that
has an effect on the result, an exemplary comparison can be seen in
Fig. 7. For the selected scenario, the difference between the location
types is barely visible.

To investigate whether that holds true for all scenarios, the perfor-
mance difference

𝛥𝜔 = |𝜔𝑆1 − 𝜔𝑆2| (4)

between all results with 𝑆1(𝑛, 𝑙1 = ℎ𝑖𝑔ℎ𝑤𝑎𝑦, 𝑘, 𝑝, 𝑒 = 0) and 𝑆2(𝑛, 𝑙2 =
𝑟𝑒𝑠𝑡, 𝑘, 𝑝, 𝑒 = 0) was calculated. The outcome can be seen in Fig. 8.
Thus, the influence on the location type on 𝜓opt of a fast-charging site
is insignificant. For this reason, the input data for all locations 𝑙 = 𝑎𝑙𝑙
are used in all further analyses. This led to a larger data base and thus
to more robust results.

Number of CSs and EVs: Subsequently, the correlation as well as
the effect of the number of charging points per charging station and
the number of EVs on the performance of the charging site (RQ1) will
be presented. Intuitively, an increasing number of charging stations 𝑘
leads to a lower 𝜓opt , while a higher number of arriving EVs 𝑛 leads to
a higher 𝜓opt . An example 𝑆𝑘1(𝑛 = 8, 𝑙 = 𝑎𝑙𝑙, 𝑝 = 150, 𝑒 = 0) with varying
𝑘 is presented in Fig. 9, where the intuition on the dependency of 𝑘
and 𝜓opt is confirmed. Highest 𝜓opt values are obtained with only two
charging stations. The typical asymptotic shape of the curves shows by
accepting larger values of 𝛼, a CPO could reduce 𝜓opt even further with
the risk of more customer annoyance.

A general trend visible can be confirmed for all scenarios 𝑆𝑘2(𝑙 =
𝑎𝑙𝑙, 𝑝 = 150, 𝑒 = 0) by looking at Fig. 10. In addition, the second
hypothesis of a correlation between 𝜓opt and number of EVs 𝑛 is visible.
Notably, only the extreme scenario of 𝑛 = 15 results in 𝜓opt > 0.6.
However, when installing 8 charging stations 𝜓opt = 0.6 is sufficient

again.
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Fig. 5. Exemplary MCS result for a scenario set 𝑆(𝑛 = 8, 𝑙 = ℎ𝑖𝑔ℎ𝑤𝑎𝑦, 𝑘 = 4, 𝑝 = 150, 𝑒 = 0).
Fig. 6. MCS input variables for highway sites (subscript h) and urban sites (subscript
u) in the RCD.

Fig. 7. Performance curves for scenario sets 𝑆𝑙(𝑛 = 4, 𝑘 = 4, 𝑝 = 150, 𝑒 = 0) with varying
𝑙.

Fig. 8. Boxplot representing the difference in 𝜔𝑆 between scenario sets with 𝑙 =
ℎ𝑖𝑔ℎ𝑤𝑎𝑦 and 𝑙 = 𝑢𝑟𝑏𝑎𝑛 for all scenarios with 𝑒 = 0.
6

Fig. 9. Performance curves for scenarios 𝑆𝑘1(𝑛 = 8, 𝑙 = 𝑎𝑙𝑙, 𝑝 = 150, 𝑒 = 0) with varying
𝑘.

Fig. 10. 𝜓opt for scenarios 𝑆𝑘2(𝑙 = 𝑎𝑙𝑙, 𝑝 = 150, 𝑒 = 0).

The simultaneity factor of a charging site also has a big impact
on the cost calculation. For a charging site with 𝑛 = 8 and 𝑘 = 4,
𝜓opt = 0.5 would be acceptable which means 𝑃𝑇 = 300 kW instead of
the full 600 kW in the 𝜓 = 1 case. Taking the cost assumptions from
Table 2, initial costs can be reduced by 60,000e for the power station
and grid connection with additional savings of 5400e in annual grid
fees. Naturally, such savings grow more important when adding them
over several sites within the network of a CPO. From the perspective
of a grid operator, the above reduction in 𝑃𝑇 means 300 kW less load
on the local grid.

Charging station type: In the section above, the relation between
𝜓opt , 𝑛 and 𝑘 was shown for 150 kW chargers. In the following, the
dependence of the performance curve (and thus the simultaneity factor)
on the type of charging station is explained. It is likely that increasing
maximum power of the hardware leads to decrease in 𝜓opt . Thereby,
also a mix of the charger types is possible, where the considered
charging site consists out of 𝑘

2 150 kW charging stations and 𝑘
2 300 kW

charging stations. Since more powerful charging stations are more
expensive, it is of interest how much 𝜓𝑜𝑝𝑡 can be reduced by using
bigger chargers.

Since the application of fewer charging stations 𝑘 represents the
scenario with the highest values for 𝜓opt , 𝑘 = 2 was selected for

presentation in Fig. 11. For comparison, the already known results for
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Fig. 11. 𝜓opt for scenarios 𝑆𝑝(𝑙 = 𝑎𝑙𝑙, 𝑘 = 2, 𝑒 = 0) with varying 𝑝.

Fig. 12. Performance curves for 𝑆𝑒1(𝑛 = 15, 𝑙 = 𝑎𝑙𝑙, 𝑝 = 150) with varying battery
apacity 𝑒 and number of charging stations 𝑘.

= 4 and 𝑑 = 150 kW are shown additionally (Fig. 10). As expected,
igher charging power leads to lower 𝜓opt . In the scenario with 𝑛 = 15,
opt can be reduced by 0.3 if one of the chargers offers 300 kW. Note

hat maximum site power 𝑃𝑇 depends on the maximum power of the
ndividual chargers (see Section 3.1).
Battery storage: Here, the effects of BESSs on the charging site

erformance will be analyzed (RQ2). Installing a BESS at the charging
ite allows peakshaving and thus the opportunity for reduced 𝜓opt
eading to lower costs for a CPO. Fig. 12 shows an example for scenarios
𝑒1(𝑛 = 15, 𝑙 = 𝑎𝑙𝑙, 𝑝 = 150) with varying battery capacity 𝑒 and charging
tations 𝑘.

As expected, with larger capacity 𝑒, the value for 𝜔𝑆 decreases and
onsequently also 𝜓opt . Thereby, by comparing the different battery
izes to the 𝑒 = 0 scenario, the peakshaving ability of the batteries
ompared to a conventional site are visible.

Fig. 13 shows all results for scenarios with 𝑝 = 150 and 𝑙 = 𝑎𝑙𝑙 for
he different site sizes. The trend visible in the example above can be
onfirmed: higher capacity 𝑒 leads to lower 𝜓opt . In the 𝑛 = 15 scenario
or small sites, installing a large battery reduces 𝜓opt by 0.6 and even
small battery leads to a reduction of 0.3 (Fig. 13(a)). However, for

ites with 𝑘 = 8 chargers, a small battery offers no advantage and the
mprovement of a large battery is reduced to 0.2 (Fig. 13(b)).

The extra battery on site induces extra costs that need to be com-
ared to the peakshaving opportunity it poses. Table 5 shows the
ndividual business cases for the presented results above using the
ssumption shown in Table 2. It can be seen that having no battery
s usually the cheapest option with one exception (𝑛 = 4, 𝑘 = 8 and
= 75).

. Concluding remarks

This work shows how the location-type of a charging site, the
umber of charging stations, the number of arriving EVs, the type of
he charging station and energy storage systems influence the choice
7

f a suitable simultaneity factor. Using a scenario-based Monte-Carlo
Fig. 13. 𝜓opt for BESS scenarios with 𝑑 = 150 and 𝑙 = 𝑎𝑙𝑙.

Table 5
Overview business case for a BESS.

Scenario variables 𝑒 = 0 𝑒 = 75 𝑒 = 150 𝑒 = 300
[e/a] [e/a] [e/a] [e/a]

n = 2, k = 2, d = 150, l = all 4,500 11,000 9,800 18,500
n = 4, k = 2, d = 150, l = all 5,700 12,100 9,800 18,500
n = 8, k = 2, d = 150, l = all 6,800 13,200 11,000 18,500
n = 15, k = 2, d = 150, l = all 9,100 14,400 12,100 19,700
n = 2, k = 8, d = 150, l = all 9,100 13,300 1,330 22,000
n = 4, k = 8, d = 150, l = all 13,600 17,800 13,300 22,000
n = 8, k = 8, d = 150, l = all 18,100 22,300 22,300 26,500
n = 15, k = 8, d = 150, l = all 27,200 36,000 31,400 35,500

Simulation, performance curves of charging sites with different char-
acteristics were generated. The results are evaluated in the following
section.

6.1. Discussion

Based on the results in Section 5, three key findings were identified.
Firstly, the location-type has negligible influence on 𝜓opt . While

the distributions of 𝑞start and 𝑡𝑎 are much alike between the different
ocation-types, the deviation between the distributions 𝑞end for different
ocation-types are not severe enough to have an influence on the
erformance of a charging site. This was somewhat surprising as a
ommon assumption in the industry is highway sites need more power
han urban sites.

Secondly, 𝜓opt decreases with increasing number of charging sta-
ions and 𝜓opt increases for an increase in arriving EVs. While that was
o be expected, the low values for 𝜓opt in the presented scenarios were

surprising. In most cases, a transformer providing only half maximum
power of the combined charging stations is enough. That even includes
situations with very high demand of 15 arrivals per day per charging
point.

Lastly, it was shown that BESS integration leads to reduces simul-
taneity factors as expected. However, in this work it was economically

not feasible. That means potential savings must increase either by
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higher prices for power grid connection or lower prices for batteries.
Both are expected in the future, i.e. BESS integration might be a good
option in the coming years.

6.2. Conclusion and outlook

This work showed the potential for reduced simultaneity factors of
fast-charging sites. Adopting it would help in the uptake of electric
vehicle charging infrastructure, because on the one hand it means
transformers can be smaller and thus power demand of grid operators
at the connections points can be lower. This helps energy transmission
and does not reserve a maximum amount of power rarely needed which
would slow down the build-up of other charging sites.

On the other hand, charge point operators can save resources when
designing fast-charging sites and are thus able to build more. This
would increase the charging opportunities for drivers and help accep-
tance of E-Mobility in total.

However, the acceptance threshold 𝛼 was set to 0.01 which influ-
nces the results of 𝜓opt . In further research, acceptable values for 𝛼
hould be investigated to possibly increase the threshold and further
ecrease 𝜓opt . Also, technological advances in charging station design
ould be integrated as well as improvements in EV charging curves.
his would reveal how stable the results of this work prove to be in the
ace of changing technology. Lastly, the analysis regarding BESS inte-
ration can be executed in more detail given the negative results of this
ublication. Changing C-rates and capacities as well as reducing prices
.g. for second life use can lead to economically feasible solutions.
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