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A Colorimetric Label-Free Sensor Array of
Metal–Organic-Framework-Based Fabry–Pérot Films for
Detecting Volatile Organic Compounds and Food Spoilage

Kuo Zhan, Yunzhe Jiang, Peng Qin, Yunlin Chen, and Lars Heinke*

The unambiguous detection and classification of volatile organic compounds
(VOCs) are crucial in many fields. For using VOC-sensing to explore the
alteration and spoilage of food, very inexpensive sensors are desired. Simple
colorimetric sensors seem highly attractive for these applications. Here, a
label-free, colorimetric sensor array made of metal-organic-framework-based
(MOF-based) Fabry-Pérot (FP) films is presented where the signal read-out is
performed either by their optical spectra or by pictures taken with a
smartphone camera. Exposing the FP-MOF-films to various VOCs causes a
reversible shift of the photonic pattern, where the magnitude of the shift
depends on the VOC type, its concentration, and the MOF structure. The
application of machine- learning- algorithms on the sensor data allows to
identify the VOCs with a high classification accuracy (92% at 100 ppm). It is
shown that the sensor array read-out can also be performed with a common
smartphone camera, also precisely classifying the VOC analytes. Moreover,
fresh and spoiled food, like milk and meat, is distinguished by its head space.
Thus, the study presents a very inexpensive platform of small colorimetric
sensors that allow determining the quality, alteration, and spoilage of food,
and it may contribute to realizing smart labels and intelligent packaging.

1. Introduction

Food spoilage is usually correlated with the exposure of differ-
ent molecules, which belong to the large group of volatile or-
ganic compounds (VOCs).[1–4] Often, the human olfactory sys-
tem, i.e., our nose, can detect these VOCs and we can detect
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whether the food or drinks are eatable
or rotten. Examples are rotten eggs that
expose hydrogen sulfide (with a dis-
tinct odor) and spoiled milk that exposes
VOCs like alcohols and acetone.[5,6] Con-
suming spoiled food may possess a se-
vere health concern and it is estimated
that thousands of people suffer illness
and die annually due to the consump-
tion of rotten food products.[7] Apart
from the health concern and the indi-
vidual misfortune that the food cannot
be consumed, food spoilage presents se-
vere (macro-)economic damage. It is esti-
mated that roughly one-third of the food
produced for humans is wasted, lost or
spoils, which amounts to more than one
billion tons of food every year.[8,9] The
usage of expiration dates, use-by- and
best-before-dates provides an orientation
for the consumer when the food may
(start to) spoil. However, using such an
inflexible date (and the misinterpreta-
tion of the meaning) results in the dis-
posal of significant amounts of edible
food products.[10,11] As solution, smart

labels and intelligent packaging that provide the consumer the
information of the food spoilage are suggested (regardless of the
expiration date), so that no unspoiled food is disposed.[12–14] This
may save huge amounts of valuable resources. The key compo-
nents of such smart labels are inexpensive sensors. The very low
price of the sensors, which is fundamental for an economic ap-
plication, excludes the usage of any technical signal transducer.
Thus, an optical signal read-out, which can be performed by a
common smartphone (that most people constantly carry with
them), seems promising. Moreover, the sensor system must be
stable, robust, and non-toxic.

Food spoilage often goes along with the exposure of VOCs and
complex VOC mixtures. To identify the VOCs, the usage of sen-
sor arrays is promising.[15,16] Ideally, the individual sensors in the
array possess different affinities and selectivities, so that the data
of the entire array allow the classification of the VOC or VOC
mixture (although each sensor may have a low chemical speci-
ficity). In contrast to sensor arrays based on gravimetric transduc-
ers or conductance changes,[17–20] colorimetric sensor arrays do
not require any extensive signal transduction setup.[21–24] More-
over, they can be minimized and are extremely energy-saving.[25]
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Ideally, the colorimetric sensor arrays produce a composite pat-
tern of colorimetric responses as a unique optical “fingerprint”
for each analyte.[26] So far, colorimetric sensor arrays have fo-
cused on utilizing dyes and pigments as responsive materi-
als, which are the labels probing the chemical reactivity of the
analytes.[27–30] However, these labels operate typically not re-
versible, so repeatable sensing is not feasible. This is caused
by the strong intermolecular interactions between the sensor la-
bels and the analytes, often based on ionic bonding, covalent or
coordination bond formation, and Brønsted or Lewis acid-base
interactions.[31] To date, realizing a label-free, repeatable, and re-
versible colorimetric array-based sensor to detect and identify di-
verse analytes remains a significant challenge.

Apart from using responsive dye molecules, the color of a ma-
terial can also be changed by photonic effects. A Fabry–Pérot (FP)
cavity is a thin film with a thickness in the order of the wave-
length of light between two parallel surfaces, (partially) reflecting
the light.[32,33] The color of the FP cavity is controlled by the thick-
ness and the optical density of the film. Since the uptake of guest
molecules change the optical density, FP-films can also be used as
colorimetric sensors.[34,35] Traditionally, FP-films are made of in-
organic materials or polymers.[34,36] For applications as advanced
sensors or sensor arrays, the FP-films should be made of diverse,
highly porous materials with large specific surface areas, well-
defined crystalline structures and designed chemically function-
alities. Moreover, the materials need to be transparent. Thin films
of metal–organic frameworks, MOFs,[37,38] are a material class
which seems ideally suited for such tasks.[39–41] MOFs consist of
metal nodes connected by organic ligand molecules. MOF pos-
sess many unique properties, such as high specific surface areas,
very diversified structures and tailorable functionalities.[42] As a
result, MOFs and MOF arrays were explored for various sens-
ing applications.[43–46] For FP-based sensing, the MOF material
needs to be prepared in the form of thin film. By making the
MOF films in a layer-by-layer fashion, surface-mounted MOFs
(SURMOFs) are prepared, which typically show a homogeneous
morphology with a high degree of structural order and a low de-
fect density.[47] To date, SURMOFs were used in gravimetric sen-
sor arrays based on quartz crystal microbalance.[48–50] Moreover,
SURMOFs and other MOF films were also used in photonic 1D
crystals (Braggs stacks) sensors.[51–53] Single homogenous MOF
films were also used as FP-cavity, where the refractive index (RI)
increases with the VOC uptake, working as a single optical gas
sensor.[54,55] However, since only single FP-sensors were used,
different analytes (also at different concentrations) could not be
discriminated. Colorimetric sensor arrays based on MOF-based
FP-cavities have not yet been presented.

Here, we present colorimetric label-free sensor arrays based
on MOF films in Fabry-Pérot (FP) cavities. The sensor arrays
are made of MOF films with different structures, which are Zn-
based MOFs (ZIF-8[56] and Zn2(BDC)2(dabco)[57,58]) and also ex-
tended by Cu-based MOFs (HKUST-1,[59] Cu2(BDC)2(dabco)[58]

and Cu2(BDC)2(BiPy)[58,60]). (ZIF stands for zeolitic imidazo-
late framework, HKUST for Hong Kong University of Science
and Technology, BDC for benzene-1,4-dicarboxylic acid (tereph-
thalic acid), dabco for 1,4-diazabicyclo[2.2.2]octane and BiPy for
4,4′-bipyridine.). We chose popular MOF structures with a high
porosity and a good thermal and chemical stability. The MOF
pores are connected by a 3D pore system, allowing the fast mass

transfer through the pores. Moreover, the synthesis procedure
for preparing thin homogenous films of these MOFs with a low
defect density are explored. Based on the two Zn-based SUR-
MOFs, we constructed a non-toxic FP-MOF-sensor array. The
colorimetric array in combination with UV–vis spectroscopy is
able to reversibly detect various VOCs at low concentrations with
limit of detections (LODs) in the order of 10–50 ppm. Using sim-
ple machine learning algorithms to analyze the data, the sensor
array can distinguish the VOCs (methanol, ethanol, acetone, 1-
propanol, m-xylene, and hexane) with very high classification ac-
curacy. The sensor array works fully reversible with response and
recovery times of less than 1 min. Even more important, avoiding
lab equipment and using only the digital camera of a common
smartphone also allows to detect and classify the different VOCs
precisely. We demonstrate that taken pictures of the colorimet-
ric sensor array allows to explore the spoilage of food, classifying
unspoiled and spoiled milk. In addition to the Zn-based-MOF
arrays, the concept was also demonstrated for Cu-based-MOFs,
where it was used to detect and discriminate various VOCs and
to classify the spoilage of meat products.

2. Experimental Section

2.1. Synthesis of FP-SURMOF Films

The SURMOF films were prepared in a layer-by-layer fashion,
as outlined in Figure 1. The substrates (silicon with native sili-
con oxide for ZIF-8 and 11-mercapto-1-undecanol-functionalized
gold thin film on silicon for Zn2(BDC)2(dabco) and for the Cu-
based MOFs) were alternatively immersed in the ethanolic so-
lutions of the metal nodes and of the linker molecules, see
Supporting Information. The metal nodes were Zn(NO3)2·6H2O
or Cu(CH3COO)2·H2O with a concentration of 0.2 mm. The
linker molecules were 2-methylimidazole (for ZIF-8), BDC and
dabco (for Zn2(BDC)2(dabco)), BTC (trimesic acid for HKUST-1),
BDC and dabco (for Cu2(BDC)2(dabco)), and BDC and BiPy (for
Cu2(BDC)2(BiPy)) with a concentration of 0.1 mm. The synthe-
ses were performed with a dipping robot[61] with 50 cycles each.
On top of the MOF films, platinum films of ≈2 nm thickness
were sputtered by a Sputter Coater MED020. The Pt film acts as
a mirror, resulting in the FP-film.

2.2. Sample Characterization

X-ray diffraction (XRD) analysis was performed using a Bruker
D8-Advance diffractometer with a Bragg-Brentano (𝜃–𝜃) geome-
try with a wavelength of 𝜆 = 0.154 nm. The (111) peak of the gold
substrate was used as a reference, verifying the correct sample
height.

UV–vis reflection spectra were recorded with an Agilent Cary
5000 spectrometer and UMA unit. The wavelength resolution
was set to 0.1 nm. The spectra were recorded in reflectance with
an angle of 30° to the surface normal. The position of the re-
flectance peak wavelength was determined by fitting a Gaussian
function to the data in a range of ≈20 nm. In addition to the eval-
uation of the wavelength of the reflectance peak as sensor signal,
the intensity of the reflectance peak (in a range of 5 nm around
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Figure 1. a) The fabrication process of the FP-SURMOF-sensors. b) Sketches of the MOF structures, see labels. c) X-ray diffractograms of the ZIF-8
film (left) and of the Zn2(BDC)2(dabco) film (right). The X-ray wavelength is 0.154 nm. The experimental data are in red, and the patterns calculated for
the targeted structure are shown in black. The experimentally observed diffraction peaks are labeled. d) SEM images of the ZIF-8 film (left) and of the
Zn2(BDC)2(dabco) film (right). The cross-sections of the broken sample are shown.
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the reflectance peak maximum) was also tested as a sensor re-
sponse.

Infrared spectral analysis was performed with a Fourier Trans-
form Infrared Reflection Absorption Spectrometer Bruker VER-
TEX 80. The spectra were recorded with an incidence angle of 80°

with respect to the normal.
Scanning electron microscopy (SEM) images were recorded

with a TESCAN VEGA3 tungsten heated filament scanning elec-
tron microscope. The samples were coated with a thin Pt film to
avoid charging effects. The sample was imaged under high vac-
uum conditions and using an acceleration voltage of 20 kV.

2.2.1. VOC Exposure

The samples were located inside a cuvette with a gas in/out tube
system. The gas flow inside the cuvette was controlled by two
mass flow controllers (MFCs). The gas stream of the carrier gas
(nitrogen) was divided into two streams, one stream provides
a constant nitrogen flow of 300 mL min−1. The other stream
passes through the wash bottle filled with the VOC-liquids to pro-
duce a VOC-enriched vapor stream with a vapor pressure slightly
smaller than the saturated vapor pressure. Both gas streams were
combined with fixed flow rates, controlling the partial pressure in
the final gas stream.

2.2.2. Sensor Setup for Taking Pictures with the Phone Camera

The sensors were placed in a sealed transparent Petri dish with
a gas flow going in and out (via tubes). An iPhone XR, fixed at
a distance of 40 cm with an angle perpendicular to the sample
surface, was used to take the photos.

2.2.3. Exposure to Milk and Meat Headspace

The milk samples (≈20 mL) were stored in bottles (100 mL) and
kept in the fridge (≈275 K) or in the lab at room temperature
(≈295 K), respectively. The beef meat sample (≈5 g) was stored in
a bottle (100 mL) at room temperature. For the sensing, a stream
of nitrogen flows through the bottles and then passes the sensor’s
chamber.

All experiments were performed at room temperature.

2.3. Data Analyses

Data analysis and classification were performed using standard k-
nearest neighbor (kNN), Support Vector Machine (SVM), and Ar-
tificial Neural Network (ANN) machine learning algorithms via
program codes written in Python 3 and performed in the open-
source platform Jupyter notebook. For the spectra kNN, SVM,
and ANN classification, a total of 50 data points of the intensity
value at the reflectance peak (5 nm around the reflectance peak
with the highest reflectance with a resolution of 0.1 nm) were col-
lected before and under the vapor exposure. Each data point for
analysis includes the reflectance intensities of both two FP-MOF-
film, thus each data point is a 2D vector. A total of 350 data points

were collected for the pristine sample and six odors (each for 50
points). The K value in kNN was set to 18 (which is close to the
square root of 350). The kernel function in SVM was set as lin-
ear function. The hidden layer sizes in ANN were set to ten. The
data were classified using five-fold cross validation, where 80%
of the data points (i.e., 280 points) were used as the training set
and 20% were used as the test set (i.e., 70 points).

For the kNN analysis of the photo-RGB data, a total of ten data
points of the RGB values of the photos were collected before and
after the vapor exposure. Each data point includes the three RGB
values of both two FP-MOF-film, thus each data point is a six-
dimensional vector. A total of 70 data points for analysis were
collected (for the pristine sample and the six odors). The K value
in kNN was set to eight (which is close to the square root of 70).
The data were classified using five-fold cross validation, where
80% of the data points (i.e., 56 points) were used as the training
set and 20% were used as the test set (14 points).

The outcome of the kNN, SVM, and ANN algorithm was the
grouping of the data to the different classes and the comparison
if the assignments to the classes were correct or wrong, shown
in the confusion matrix. The used KNN and ANN program code
is given in in Refs. [49,50]. The used SVM program code is given
in the Supporting Information.

3. Results and Discussion

The MOF films were prepared in a layer-by-layer fashion di-
rectly on the substrate, resulting in surface-mounted MOFs,
SURMOFs, Figure 1a. On top of the SURMOFs, a very thin
layer of platinum (with a nominal thickness of 2 nm) was
sputtered, which is reflecting but not dense, allowing guest
molecules to penetrate. First, we focus on MOFs with ZIF-8 and
Zn2(BDC)2(dabco) structures, Figure 1b. The crystallinity of the
SURMOF films was explored by X-ray diffraction (XRD). The
XRD data show that both samples are crystalline, and their struc-
tures correspond to the targeted MOFs, Figure 1c. The samples
are further characterized by infrared reflection absorption spec-
troscopy (IRRAS, Figure S1, Supporting Information), verifying
the composition of the MOF structures. The SEM images, in
Figure 1d, show that the samples have a homogeneous morphol-
ogy with a small surface roughness. The cross-section images
show that both SURMOF films are ≈500 nm thick.

The reflection spectra and their corresponding CIE chromatic-
ity coordinates for the pristine (unloaded) FP-SURMOF films are
presented in Figure S2 (Supporting Information). The FP-ZIF-8
film shows values of CIEx = 0.269 and CIEy = 0.338. The FP-
Zn2(BDC)2(dabco) film shows values of CIEx = 0.429 and CIEy
= 0.408.

The sensing performance of the Zn-based FP-SURMOFs array
was tested for six VOCs as analytes. The VOCs comprise acetone
(Ace), methanol (MeOH), ethanol (EtOH), 1-propanol (PrOH),
m-xylene (m-Xy), and hexane (Hex), see Table 1. The UV–vis spec-
tra of the FP-SURMOF films in a controlled VOC atmosphere
were recorded in reflection. The reflectance spectra of the FP-
ZIF-8 and FP-Zn2(BDC)2(dabco) films, either empty (pristine)
or exposed to the saturated VOC vapors, are shown in Figure
2a and Figure S8 (Supporting Information), respectively. (The
vapor pressures of the saturated vapors are given in Table 1.)
The spectra show that the pristine FP-SURMOF films have the
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Table 1. Sensor parameters of the FP-SURMOF films.

FP-SURMOF film Wavelength sensitivity
in nm/ppm

Wavelength-LOD in
ppm

Intensity sensitivity in %/ppm Intensity-LOD in ppm

Ace (acetone) psat = 24 kPa ZIF-8 4.3 × 10−3 11.2 −4.9 × 10−3 12.9

Zn2(BDC)2(dabco) 5.7 × 10−3 9.5 −5.6 × 10−3 12.9

MeOH (methanol)
psat = 16.67 kPa

ZIF-8 8.0 × 10−3 6 −7.9 × 10−3 8

Zn2(BDC)2(dabco) 6.7 × 10−3 8.1 −6.2 × 10−3 11.6

EtOH (ethanol)
psat = 7.96 kPa

ZIF-8 6.3 × 10−3 7.6 −6.3 × 10−3 10

Zn2(BDC)2(dabco) 8.7 × 10−3 6.2 −8.1 × 10−3 8.9

PrOH (1-propanol)
psat = 2.78 kPa

ZIF-8 5.3 × 10−3 9.2 −5.5 × 10−3 11.5

Zn2(BDC)2(dabco) 5.3 × 10−3 10.2 −5.4 × 10−3 13.3

m-Xy (m-xylene)
psat = 1.33 kPa

ZIF-8 0.9 × 10−3 54.4 −1.2 × 10−3 52.5

Zn2(BDC)2(dabco) 1.0 × 10−3 54 −1.3 × 10−3 55.4

Hex (hexane) psat = 17 kPa ZIF-8 1.5 × 10−3 32 −1.5 × 10−3 42

Zn2(BDC)2(dabco) 1.9 × 10−3 28.4 −1.8 × 10−3 40

strongest reflectance peaks at 475.5 nm with a reflectance inten-
sity of 45.67% for ZIF-8 and at 476.6 nm with an intensity of
48.90% for Zn2(BDC)2(dabco), respectively.

The reflectance spectra of the FP-ZIF-8 film and the FP-
Zn2(BDC)2(dabco) film under the exposure to VOCs with small
vapor concentrations (100-400 ppm) are shown in Figures S4–
S7 (Supporting Information). Upon analyte exposure, the spec-
tra show a shift of the position and of the intensity of the re-

flectance peak. The wavelength shift of the strongest reflectance
peak versus the vapor pressure of the different analytes are shown
in Figure 2b and Figure S8 (Supporting Information). Both FP-
SURMOF films show linear dependences of the wavelength shift
of the reflectance peak and the VOC vapor concentration (0–
400 ppm), however, the proportionality factor, which is the wave-
length sensitivity (i.e., the slope in Figure 2b) varies. The wave-
length sensitivity data are given in Table 1.

Figure 2. a) The reflectance spectra of the FP-ZIF-8 film in the atmosphere of saturated VOCs, see labels (the same colors represent the same VOC
analytes in all panels). b) The wavelength shift of the strongest reflectance peak of the FP-ZIF-8 film in different VOC vapors with different concentrations.
c) The intensity change of the strongest reflectance peak of the FP-ZIF-8 film in different VOC vapors with different concentrations. The entire UV–vis
spectra as well as the corresponding data for the FP-Zn2(BDC)2(dabco)-film are shown in Figures S6–S8 (Supporting Information). d) 2d-plot of the
intensity sensitivity (see panel c) in the sensors. The analytes are labeled.
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Figure 3. The confusion matrix for the classification of the six VOCs at a concentration of 100 ppm and the pristine (empty) state. Analyzed by a) SVM
and b) kNN. The true classes are the rows, and the predicted classes are the columns.

The changes of the intensity of the strongest reflectance peak
versus the vapor pressure of the different analytes are shown in
Figure 2c. Like the wavelength shift, both FP-SURMOF films
show linear dependences of the intensity change of the re-
flectance peak and the VOC vapor concentration. Here, the
proportionality factor (i.e., the slope in Figure 2c and Figure
S8, Supporting Information) is termed intensity sensitivity,
which also depends on the VOC type and MOF. The intensity
sensitivity data are given in Table 1. Comparing Figure 2b,c
shows that the shift of the reflectance intensity and of the
reflectance wavelength are very similar (but with opposite
signs).

The limits of detection (LODs) were calculated by the sensi-
tivity divided by three times the standard deviation, following
general recommendations.[62,63] The wavelength standard devi-
ation was determined by the variation of the peak position of
the pristine sample in three subsequent measurements. (The
values are 0.016 and 0.018 nm for the FP-ZIF-8 and the FP-
Zn2(BDC)2(dabco) sample, respectively.). The calculated LODs
for the different VOCs based on the wavelength shift, referred
to as wavelength-LODs, are shown in Table 1. The standard devi-
ation of the reflectance intensity was determined in three subse-
quent measurements. (The values are 0.021% for FP-ZIF-8 and
0.024% for FP-Zn2(BDC)2(dabco) sample.) The LODs based on

Figure 4. a) Photos of the sensor array, either in pure nitrogen (pristine) or in saturated VOC vapors, see labels. (The dotted rectangles with a size of
2.5 mm × 3 mm present the area where the RGB values were determined.) Right-hand side: FP-ZIF-8 film; left-hand side: FP-Zn2(BDC)2(dabco) film. b)
CIE-color-space diagram with the RGB values of the FP-SURMOF sensors in saturated VOC vapors. The insets are magnifications to show changes in
the sensor RGB value.
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the reflectance-intensity-change, referred to as intensity-LOD, are
also shown in Table 1. Noteworthy, the LODs determined via both
methods are similar for the same analyte. The LODs of both MOF
samples are in the range of 6 to 55 ppm for all explored analytes,
significantly smaller than 100 ppm. (This is in line with the very
high classification accuracy of the different VOCs at 100 ppm, see
below.)

The repeatability is explored by repeating the VOC expose ex-
periments, Figure S8 (Supporting Information). The data show
that the sensor exposure is fully reversible and repeatable, as a
result of the reversible VOC uptake by and release from the SUR-
MOF film.

Both sensors show different sensitivities (both, wavelength
and intensity sensitivities) for the same VOC vapor and different
VOCs exhibit different sensitivities in the same sensor, Figure 2d
and Table 1. This means, in the sensor array data, each analyte has
a characteristic vector (where the components are the intensity
change of the reflectance peak in ZIF-8 and Zn2(BDC)2(dabco)).
This vector is like the fingerprint of the VOC, allowing its dis-
crimination, see Figure 2d.

For determining the accuracy of the sensor array to discrimi-
nate the VOCs, we analyzed the data with simple machine learn-
ing algorithms. To this end, we apply three classification machine
learning algorithms that are k-Nearest Neighbor (kNN), Support
Vector Machine (SVM), and Artificial Neural Network (ANN) to
identify the analytes based on the sensor data.[49,50] The accura-
cies of the data classification are shown in the confusion ma-
trix, in Figure 3. Correct classifications are shown on the matrix’s
main diagonal; misclassifications are the other values. Figure 3a
shows the quantitative identifications of VOCs at 100 ppm by
SVM, indicating a correct identification with an average classi-
fication accuracy of 91.1%. The kNN analysis, Figure 3b, shows
similar, also very good results with a slightly higher average clas-
sification accuracy of 92.0%. Confusion matrices by the ANN
analysis as well as from other concentrations (200, 300, 400 ppm,
and saturated VOCs) are shown in Figures S9–S11 (Supporting
Information). All results show very high classification accuracies,
demonstrating the sensor array of ZIF-8 and Zn2(BDC)2(dabco)
FP-films allows the classification of the six tested VOCs. Gener-
ally, a higher VOC concentration results in higher classification
accuracies, and a classification accuracy of 100% was reached for
a vapor pressure of 400 ppm and for saturated vapor pressure.

Noteworthy, the FP-SURMOF sensors show significant wave-
length and intensity shifts of the reflectance peaks, which go
along with the change of color. To employ the color changes for
the sensor performance, we place the FP-SURMOF sensors next
to each other and take pictures of the sensor array with the dig-
ital camera of a common smartphone (here we use an iPhone
XR). From the pictures (without color balance), the RGB values
were used as the sensor signal. Although the color changes are
not tremendous, the RGB values change significantly upon an-
alyte exposure, see Tables S1 and S2 (Supporting Information).
For example, the RGB values of the pristine Zn2(BDC)2(dabco)
SURMOF changes from (197,155,35) to (160,124,32) upon the
ethanol exposure.

The RGB data were analyzed by the machine learning algo-
rithms to recognize and classify the six VOCs. Figure 4a shows
the photos of the FP-SURMOF films in the different VOC at-
mospheres. The RGB values of the sensors are shown in the

Figure 5. a) The kNN confusion matrix for the classification of the six
VOCs with a saturated vapor pressure and the pristine sample. b) Pho-
tos of the sensor array in saturated MeOH vapor (three images left, red
arrow) and afterward in pure nitrogen (five images right, blue arrow). The
time between each image is ≈20 s. The dotted rectangles with a size of
2.5 mm × 3 mm present the area where the RGB values are determined.

CIE-color-space diagram in Figure 4b. It shows that the color of
the sensor changes with the VOC exposure. This means the FP-
SURMOF films show a colorimetric sensor response, where the
sensor response depends on the analyte. The RGB values of the
sensor array are shown in Table S1 (Supporting Information).

Analyzing the RGB data of the sensors shows that different
VOCs can be classified very well, Figure 5a. The average clas-
sification accuracy by using the kNN algorithm is 96.0% for
the saturated VOC vapors. Please note, this value is somewhat
smaller than the classification accuracy by using the UV–vis spec-
tra (Figure S7d, Supporting Information, 100%), but the value is
still large enough to precisely determine each VOC. The response
and recovery time are explored in Figure 5b and Figure S28 (Sup-
porting Information). The data show that ≈40 s after the begin-
ning of the exposure to the VOC (here methanol), a stable picture
with stable RGB values is obtained. For the release of the VOC,
after ≈80 s, the RGB values of the sensors are stable and coincide
with the values of the pristine sensor. The transient change of the
RGB values during VOC exposure is shown in Figure S28 (Sup-
porting Information), verifying the estimated response time.

Adv. Mater. Interfaces 2023, 10, 2300329 2300329 (7 of 10) © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH
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Figure 6. a) Photos of the milk-2 (at room temperature, ≈295 K) in a bottle for three days (left to right: day 0 to 3rd day) with corresponding photos
of the sensor array. The dotted rectangles with a size of 2.5 mm × 3 mm present the area where the RGB values are determined. b) The accuracy of
classifying the milk as pristine, unspoiled milk for the aging samples.

We continue and show that the FP-SURMOF sensor array in
combination with the smartphone camera can be used for practi-
cal applications. We used it to detect the spoilage of milk, which
usually goes along with the exposure of VOCs like acetone and
alcohols.[5,6,12] To this end, we exposed the sensor array to the va-
por of the milk. We compare two milk samples: While one sam-
ple was kept in the refrigerator (≈275K, milk-1), the other sample
was kept at room temperature (≈295K, milk-2). The data, which
means the RGB values of the images taken with the smart phone,
were analyzed by kNN. Figure 6a shows the milk and the sensor
array. The RGB values and the confusion matrices of the analy-
sis are shown in Table S2 and Figure S12 (Supporting Informa-
tion), respectively. Most important, Figure 6b shows the accuracy
of classifying the milk as pristine milk, i.e., unspoiled milk. While
the refrigerated milk shows no change of the sensor response, the
non-refrigerated milk shows a change of the sensor response. Af-
ter one day, the sensor signal has only a small overlap with the
pristine signal (of ≈40%) and from the 2nd day on (after 48 h),
the sensor signal has no overlap with the pristine milk and its
headspace is classified as fully different (i.e., fully different from
pristine, unspoiled milk). We term the altered milk as “spoiled”.
This is in line with a slight smell of spoiled milk that was per-
ceived by us.

For demonstrating that the concept of using MOF films in
such FP-sensor is not limited to the presented Zn-based MOFs,
we prepared a FP-SURMOF sensor array based on HKUST-1,
Cu2(BDC)2(dabco) and Cu2(BDC)2(BiPy). The data, Figures S14–
S32 (Supporting Information), show that the sensor array is able
to detect and classify six different VOCs. The LODs are ≈19 to
≈41 ppm and the classification accuracy at 100 ppm is 96.7%
by kNN. The sensor array was applied to explore and unveil the
spoilage of meat. It shows that the sensor array is able to classify
pristine and spoiled meat by its vapor (head space). In this way,
the spoilage of the food product was observed.

We would like to stress that the core component here, i.e., the
MOF structures, are very cheap and can be made in large scale
areas.[64] In the future, the substrate and top-mirror materials
(which is here made of rather expensive materials like Si, Pt, and

Au) will be substituted by cost-efficient polymeric materials.[65,66]

In practical (future) applications, the sensor production must also
be standardized resulting in films with minor deviations of the
thickness (below 1 nm) or each sensor needs to be calibrated.

4. Conclusion

We developed a label-free, inexpensive, and reversible colorimet-
ric FP-SURMOFs sensor array. Here, the sensors are based either
on non-toxic Zn-based MOF structure or on Cu-based MOFs. The
data can be analyzed either by UV–vis spectroscopy (using lab-
oratory equipment) or by the digital camera of a smart phone,
avoiding lab equipment. The FP-SURMOF sensors show a high
sensitivity, low LOD in the range of ≈10–50 ppm and excellent
repeatability for various VOCs. By using the smartphone as anal-
ysis device, a classification accuracy of over 90% was realized for
six tested VOCs. Moreover, the sensor device can be used to detect
food spoilage, demonstrated for milk and meat.

This work shows a very inexpensive platform of very small,
portable, and label-free colorimetric sensors that allows deter-
mining the quality, alteration, and spoilage of food. We foresee
that various MOF structures, going far beyond the Zn- and Cu-
based MOFs, can be used in such FP-based sensor arrays, also in-
cluding edible MOFs.[67] In that way, it may contribute to realize
simple and versatile sensors, smart labels and intelligent packag-
ing. Such versatile sensors can be used in food quality assurance
and will realize safer groceries, but also may find application in
agriculture, pollution monitoring, and medical diagnosis.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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