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A B S T R A C T   

Saliency models are image-based prediction models that estimate human visual attention. Such models, when 
applied to architectural spaces, could pave the way for design decisions where visual attention is taken into 
account. In this study, we tested the performance of eleven commonly used saliency models that combine 
traditional and deep learning methods on 126 rendered interior scenes with associated head tracking data. The 
data was extracted from three experiments conducted in virtual reality between 2016 and 2018. Two of these 
datasets pertain to the perceptual effects of daylight and include variations of daylighting conditions for a limited 
set of interior spaces, thereby allowing to test the influence of light conditions on human head movement. 
Ground truth maps were extracted from the collected head tracking logs, and the prediction accuracy of the 
models was tested via the correlation coefficient between ground truth and prediction maps. To address the 
possible inflation of results due to the equator bias, we conducted complementary analyses by restricting the area 
of investigation to the equatorial image regions. Although limited to immersive virtual environments, the 
promising performance of some traditional models such as GBVS360eq and BMS360eq for colored and textured 
architectural rendered spaces offers us the prospect of their possible integration into design tools. We also 
observed a strong correlation in head movements for the same space lit by different types of sky, a finding whose 
generalization requires further investigations based on datasets more specifically developed to address this 
question.   

1. Introduction 

The visual content of our surroundings can influence our perception 
and behavior in a space. This topic has long preoccupied artists (Balbi 
et al., 2016), while architects have often speculated about the visual 
impact of form on human eye movement (Arnheim, 1965, 1977). 
Through specific arrangements of architectural features (e.g., walls, 
columns, openings), or by using selected design principles (e.g., Gestalt 
principles) as well as other representation strategies (e.g., light washing, 
contrasts, shadow interplay), hierarchies can be created (or assumed) in 
a spatial composition, anticipating that attention may be drawn to 
certain elements over others, and that the observer’s gaze might be 
guided. However, these theories mostly rest on assumptions about how 

particular geometric arrangements are actually perceived (Weber et al., 
1995), which remains an open debate. 

Visual attention is crucial in defining human experience and 
behavior in an environment. Both in outdoor (Caduff & Timpf, 2008; 
Koseoglu & Onder, 2011), and indoor environments (Dong et al., 2020; 
Wang et al., 2018), landmarks, i.e., prominent spatial features in an 
environment, have been shown to be crucial in spatial legibility and 
wayfinding. The integration of visual attention into legibility research 
holds promise as demonstrated by Wang et al. (2019) whose quantifi-
cation method directly involves human gaze patterns. Elements of high 
visual attention also appear to play a critical role in our appraisal of 
environments. Landscape objects that were found to induce high visual 
attention through gaze behavior were also those reported by 
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participants when asked what they liked or disliked about the landscape 
(Cottet et al., 2018). The overall visual information present in a scene 
has also been suggested to be a defining factor in predicting human 
preference towards a landscape. Kaplan and Kaplan (1989) suggested 
four elements that can predict landscape preference, two relating to 
spatial understanding (legibility and coherence) and two relating to the 
desire of exploration (mystery and complexity). In the field of restor-
ative environments, Van der Jagt et al. (2017) found that the amount of 
important visual information in a scene (measured through the speed of 
scene categorization as natural or built) influenced cognitive restora-
tion, with scenes low in important visual information leading to higher 
restoration, which according to the authors is in alignment with the 
concept of soft fascination in the attention-restoration theory (ART) 
(Kaplan, 1995). The identification of these visually important (or 
“salient”) elements in a scene is therefore of great interest for multiple 
applications with high societal impact, be it spatial legibility, appraisal 
or cognitive restoration potential. 

Salience is defined as the quality of being particularly noticeable or 
important. This term has been adopted among vision scientists to 
describe which visual features within a given scene might attract more 
of our attention. Saliency modelling, i.e., the prediction of which visual 
features are salient, has gained a high popularity within the past two 
decades as a result of increasing capabilities in eye- and head-tracking 
technologies and advances in vision, neuroscience and computer sci-
ence, leading to increasing prediction performance (Borji, 2018). The 
overarching goal of this paper is to test and discuss the reliability and 
applicability of existing saliency models in daylit architectural design 
appraisal. For this purpose, we relied on three datasets from architecture 
and computer vision experiments and tested different types of validated 
and publicly available models. The specifics of our research objectives 
are further outlined in section 1.4. In the following sections, we will 
provide a brief review of the literature regarding saliency prediction 
modelling, its ties to visual sentiment analysis, and visual attention in 
architectural design. 

1.1. Saliency prediction modelling 

Saliency prediction models tell us where people are most likely to 
devote their perceptual and cognitive resources when they look at a 
given scene. These models can be classified as.  

- “Traditional” or “bottom-up” models, which are based on the 
assumption that human attention follows an exogenous process, and 
are driven by the recognition of low-level features such as contrasts, 
colors, directions, orientations. Such models focus on fast, involun-
tary, signal-driven and task-independent visual attention. Tradi-
tional models were the first prediction models developed for 
perspective images in the 1990s. Example of such models include the 
Itti, Koch, and Niebur model (IKN) (Itti et al., 1998) and the 
Graph-Based Visual Saliency model (GBVS) (Harel et al., 2007).  

- “Deep-learning” (DL) models, which are built from dataset of 
existing viewing logs (a.k.a., benchmarks) through machine learning 
methods relying on convolutional neural networks (CNNs). As they 
rely on training based on existing data, the generalizability of these 
models when applied to new types of image stimuli, remains an 
outstanding issue. Examples of such models include DeepGaze I and 
II (Kümmerer et al., 2014; Kümmerer et al., 2016) and Sal-CEDN 
(Kroner et al., 2020). 

The performance of saliency models is determined by comparing the 
prediction with ground truth maps. 

Ground truth maps are constructed from the aggregated viewing 
logs of multiple observers, ignoring any temporal fixation information. 
Both saliency prediction and ground truth are presented as pixelated 
images (i.e., “maps”) with values ranging from 0 to 1, where high pixel 
values represent a higher probability of fixations. Ground truth maps 

result from participants’ observations of scenes. Participants are usually 
asked to look in a “free-viewing” manner (without questions about the 
images) at a given image, a. k.a., the visual stimuli shown on a screen. 
For perspective images, the viewing time is often very short, ranging 
from 2 to 5 s (Borji & Itti, 2015; Bylinskii et al., 2015) and common 
methods to record the participants visual attention usually rely on 
camera-based eye- or head-trackers of varying degrees of precision and 
intrusiveness (e.g., from webcams to wearable eye trackers). The 
emergence of immersive virtual environments (IVE) utilizing Head 
Mounted Displays (HMD) brought new opportunities to both displaying 
the visual stimuli and to recording participant’s attention. For these 
360◦ (or omnidirectional) images, the viewing time is typically around 
30 s per scene (Rai et al., 2017; Sitzmann et al., 2018). The recording is 
based on eye and/or head tracking sensors, usually integrated directly 
into the HMD. 

For omnidirectional images, the ground-truth maps are eventually 
converted to equirectangular representations. As such, the procedure 
used to develop the models and to assess their reliability remains based 
on 2D information (same as for perspective images). This operation 
however comes with distortions, as straight lines become curves and as 
the upper and lower extremities of the scenes – which are “points” in a 
360◦ environment – become “lines” once converted to equirectangular 
maps. These distortions are commonly accounted for in the treatment of 
visual information. Raw head- or eye-tracking data are then commonly 
post-processed to distinguish saccades (e.g., rapid head or eye move-
ments) from fixations, with multiple possible approaches for this 
filtering. In addition, these recording methods by default reduce visual 
attention to a series of points, but since attention occurs over regions, 
researchers typically apply two-dimensional Gaussian filters, resulting 
in smooth pixel maps (Bylinskii et al., 2016). These protocols have 
proven to be reliable in terms of visual attention compared to real-world 
conditions (Foulsham et al., 2011). 

Visual attention shows known biases for both perspective and 360◦

images. For perspective images, our gaze tends to be attracted both to-
wards the center of the scene, leading to a so-called “central bias” 
(Harel et al., 2007). For 360◦ images, our gaze tends to be attracted 
towards the equator of the scene, leading to a so-called “equatorial 
bias” (Sitzmann et al., 2018). Corrections to account for these biases 
include Gaussian and Laplacian functions that are usually integrated 
within the prediction models. 

1.2. Saliency and visual sentiment analysis 

In order to understand and predict how images induce human 
emotions, recent research uses visual sentiment analysis, an extension of 
the sentiment analysis that originally focused on text, to classify the 
polarity of an image (i.e., positive or negative) (Truong & Lauw, 2017). 
Fan et al. investigated the link between visual sentiment and saliency 
with images of higher emotional potential (Fan et al., 2017, 2018) and 
found that negative sentiments were elicited by the focal region without 
a notable influence of contextual information, whereas positive senti-
ments were influenced by both focal and contextual information. In a 
subsequent study, the authors also found that altering the semantic 
content of an image (by rotating it, converting it into grayscale or adding 
blur filters) significantly altered the sentiment recorded, as participants’ 
judgments relied more on low-level features. Zheng et al. (2017) focused 
on the semantic information captured in the region of interest (instead of 
the whole picture). They found that images containing outstanding 
man-made objects or human faces, or that are indoors and closed, tend 
to express sentiment through their salient objects. She et al. (2020) also 
focused their analyses on image regions: the images were generally of 
higher emotional potential (taken from Flickr and Instagram) and the 
authors used automated image labels to annotate image regions. Their 
model was able to outperform existing ones. Based on these observa-
tions, a question arises: if only certain spatial regions (the most salient 
ones) can play a role in the observers’ sentiments, which would these 
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regions be in the context of architectural images devoid of people, ani-
mals, or other particularly salient objects? 

1.3. Visual attention in architectural spaces 

Predicting viewing patterns in architecture can provide a powerful 
aid to manipulate visual distractions, improve way finding and safety, 
and support the design of compelling spaces. Weber et al. (1995, pp. 
57–69) investigated how our visual experience is influenced by various 
formal-geometric characteristics (e.g., size, contrast, direction, symme-
try, closure) and how these factors alter visual attention. Participants 
were shown photographs of simple architectural arrangements on a 
computer screen while their head were kept immobile and their eyes 
recorded with a camera. The authors concluded that elements indicating 
spatial depth receive special attention, that redundant elements draw 
less attention than solitary shapes, and that obliquely oriented shapes 
are more attractive that vertically and horizontally oriented objects. 
Fifteen years later, Hasse and Weber (2012) displayed façades on a 
computer screen and used a remote eye tracker with the aim to link 
aesthetic judgment to viewing behavior. They found that the composi-
tional balance of a facade (that may or may not rely on symmetrical 
arrangements of shapes and openings) affected judgments of interest, 
but not judgments of beauty. Hollander et al. (2019), Noland et al. 
(2017) and Hollander et al. (2020) relied on similar methods to evaluate 
visual preferences of urban scenes and of ornament in design, and 
showed a tendency for longer fixations in more complex traditional 
designs. 

The interplay between light, shadow, and architectural features have 
long been considered central in forming the identity of a space (Corrodi 
& Spechtenhauser, 2014) and people’s experience of it (Köster, 2004; 
McCarter & Pallasmaa, 2012; Steemers, & Ann Steane, 2012). Architects 
use tools such as computer renderings or scale models to test the inter-
action of light and space in their designs and to share these design in-
tentions with their clients (Leslie, 2003). Research in both real (Parpairi 
et al., 2002) and virtual environments (Rockcastle et al., 2017a) 
consistently shows that people appreciate variability in the daylight 
conditions indoors, while studies using projections (Abboushi et al., 
2019) and virtual reality (Chamilothori et al., 2019; 2022b) show that 
the composition of light patterns in a space influences impressions of 
interest, and that the presence of large sun patches in one’s field of view 
in a social context can even induce physiological responses. Being able 
to predict visual attention in architectural interiors, particularly in 
relation to its lighting conditions, would greatly advance our under-
standing of space features that drive human experience and behavior. 
Nevertheless, visual attention has scarcely been studied in relation to 
lighting. Vincent et al. (2009) who noted that light sources are highly 
visible but rather uninformative, questioned our visual attraction to 
these elements. In this study, which examined eye movements towards 
photographs depicting outdoor scenes at dusk with artificial light 
sources, the authors found that luminance contrast and light sources 
played a minor role in human fixations and that observers were more 
likely to look near lights rather than directly at them. They also noted 
that the visual system commonly neglects highly visible cues in favor of 
less visible object information. However, this study was conducted using 
photographs of primarily outdoor scenes at dusk, which raises questions 
on the transferability of the results in real daylit environments where the 
human visual system is likely to be influenced by greater light levels. In 
line with this comment, Sarey Khanie et al. (2017) examined eye 
movements of participants under real conditions with the sun in their 
field of vision. In that study, the authors observed that participants were 
disturbed by glare and that they tended to avoid the brightest area, 
particularly during visually demanding tasks. Although relevant for 
visually uncomfortable conditions, these results do not address the effect 
of lighting on saliency in comfortable conditions, which thus remains to 
be explored. Furthermore, while lighting is a key aspect of architectural 
composition for emphasizing certain spatial features, none of the 

identified studies, with the exception of Sarey Khanie et al. (2017), have 
examined how light and daylight may affect our visual attention in in-
door scenes. 

Saliency prediction models have been applied in a number of studies 
related to the built environment. These include the utilization of bottom- 
up models to quantify the visual impact of photovoltaics on facades (Xu 
and Wittkopf 2014), to assess the visual impact of landscapes (Dupont 
et al., 2016), and to test the impact of biophilic design on people’s 
emotion (Genetics of Design, 2020a; 2020b). In a recent study, Xu et al. 
compared four models in the context of wayfinding (Xu et al., 2020). The 
authors concluded on the benefits of using saliency models in design, 
with the most advanced models (DL) being the best performing. These 
examples highlight both the growing interest and the large range of 
possible applications of saliency models for architectural design. How-
ever, the limited number of studies and models tested so far also show 
that the implementation and applicability of saliency prediction in ar-
chitecture remains largely unexplored. In addition, to the authors’ 
knowledge, visual attention and saliency prediction have not been sys-
tematically investigated in scenes depicting interior spaces without 
people or animals, which are particularly relevant for delineating and 
understanding the influence of the characteristics of indoor environ-
ments on human experience. 

1.4. Objectives and hypotheses 

Despite its significant presence in computer science research, sa-
liency prediction modelling has not yet truly penetrated the field of 
architectural design. At the same time, architectural scenes have not 
been used to develop saliency models. These scenes present particular-
ities compared to natural images: they are typically devoid of people or 
other objects of strong salience and focus on man-made forms seen 
under specific lighting conditions. Taking these observations as a 
starting point, the objectives of this paper are to evaluate the perfor-
mance of existing saliency prediction models for omnidirectional 
architectural daylit scene and to determine the effect of daylight on 
human head movements, used as a proxy for visual attention To better 
guide our analyses, we formulated three hypotheses. 

H1. Traditional models are as reliable as pre-trained DL models when 
applied to our datasets 

By leveraging an end-to-end training with deep convolutional neural 
networks (CNNs), DL models are known to have overcome inherent 
limitations of traditional models (Borji, 2018). Nevertheless, a general 
concern of DL models is their transferability when they are applied to 
other types of image stimuli than their training dataset. The predictive 
power of models pre-trained on natural images can thus be limited for 
rendered architectural scenes that remain primarily based on spatial 
cues and do not involve very informative objects nor people. Given the 
focus of traditional models on low-level features (such as direction and 
contrast), we hypothesized that traditional and pre-trained DL models 
might be similarly reliable when applied to architectural scenes. 

H2. Saliency prediction models are more accurate for overcast sky 
conditions than for clear sky conditions 

Daylight conditions are influenced by the position of the sun and by 
the weather, and in turn influence the visual content of a given space, 
most notably through contrasts and the interplay of light and shadow. 
The same space exposed to different daylight conditions is thus a 
different visual stimulus. As such, a model is likely to predict different 
regions of saliency for changing sky conditions. Considering how much 
the interplay of light and shadow may provide misleading visual cues for 
saliency prediction, we hypothesized that diffuse conditions might in-
crease the model’s accuracy. 

H3. There is a correlation between head movements for the same space 
under different sky conditions (i.e., undergoing daylight dynamics) 
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Our last hypothesis detaches from the performance of the saliency 
prediction models to focus on human head movements towards the same 
space across different daylight conditions, with varying presence of 
direct sunlight. Following observations on the rather uninformative 
nature of light [43], we hypothesized that head movements would be 
similar under these different conditions. 

2. Datasets 

Our study is based on three datasets of head-tracking logs that were 
collected based on 360◦ scenes shown to human participants in an IVE 
between 2016 and 2018: two datasets, which will be labelled according 
to their first author’s last name i.e. Chamilothori and Rockcastle, are 
derived from research on daylight perception in architectural spaces: 
Rockcastle from (Rockcastle et al., 2017), Chamilothori from (Chamilo-
thori et al., 2022a; Moscoso et al., 2021). The third dataset, named 
Sitzmann from (Sitzmann et al., 2018), consists of a subset of interior 
scenes from a publicly available dataset from work on saliency model-
ling. The three datasets are used to examine saliency prediction in 
grayscale indoor scenes with no objects (Rockcastle, with examples 
shown in Fig. 4(a)), in colored indoor scenes with relatively few objects 
(Chamilothori, cf. Fig. 5(a)), and in colored indoor scenes with multiple 
objects and higher levels of detail and texture, but hardly any person 
present (Sitzmann, cf. Fig. 6(a)). Table 1 further summarizes the in-
struments and experimental protocols used in each study. More details 
on these datasets are summarized in the Supplementary Material, sec-
tion 1. 

The original objective of the studies behind the Rockcastle and Cha-
milothori datasets was actually not saliency prediction but the appraisal 
of perceptual responses to variation of daylight and spaces. As such, the 
viewing duration of each scene lasted a few minutes and was made of an 
initial silent exploration period, the duration of which depended on the 
participant’s readiness in Rockcastle et al. (2017) while it was restricted 
to 30 s in Chamilothori et al. (2022a). This exploration period was fol-
lowed by a verbally administered questionnaire, answered while the 
participant remained immersed in the scene. In the present study, we 
will thus only examine the first 30 s of viewing for both datasets to 
remain within the initial exploration period. We should note that as the 
same questions were asked for each scene (in randomized order), some 
influence on the free-viewing of the scenes cannot be excluded. For the 
Chamilothori dataset, we also note that only two types of rooms were 
modeled, with variations in window size, shading geometry patterns, 
and sky type: despite these variations, there was therefore a certain level 
of redundancy between the scenes. 

3. Method 

These three datasets, comprising a total of 126 rendered interior 
scenes associated to headtracking logs, were used to evaluate the pre-
diction accuracy of existing saliency models. Overall, thirteen saliency 
prediction models as well as three maps based on mathematical signals 
were applied on these scenes, while the corresponding head tracking 
logs were used to generate ground truth maps. Both saliency models and 
head tracking logs were adapted to equirectangular representations, 
with x representing the yaw and y the pitch. For each scene, we 
compared the prediction and ground truth maps by using image-based 
correlation metrics. Fig. 1 summarizes this approach. Details about the 
selected saliency models, the determination procedure for the ground 
truth, and the metrics used for the comparisons are further detailed in 
the following sections. 

3.1. Saliency prediction models 

In this study, we examined different types of models, including 
traditional and DL models. The selection procedure started with known 
models that had already been validated, and then depended on the 

public availability of the models. This led to a number of widely used 
traditional models and publicly available DL models. Some models were 
readily available for 360◦ scenes and some were only available for 2D 
scenes. The models tested are summarized in Table 2 and each of them is 
further detailed in the Supplementary Material, section 2.1. Note that 
the DL models were all pretrained on other datasets (i.e., we did not 
train any of them with our own data). 

In addition to these models, we generated three maps based on 
mathematical signals that we used to compare the prediction accuracy of 
the models output against artificial and random signals. These signals 
comprised one Laplacian function, which was based on parameters 
identified by Sitzmann et al. (2018) as the most adequate to describe the 
equator bias (μ = − 1.30◦, β = 18.58◦), and two noise signals. These 
signals were adapted to fit the dimensions of the ground truth maps and 
are shown in Fig. 2. 

Table 1 
Description of the 360◦ datasets used in this study.   

Rockcastle Chamilothori Sitzmann 

Virtual reality 
(VR) headset 

Oculus Rift CV1 
(75 Hz) 

Oculus Rift CV1 
(75 Hz) 

Oculus Rift DK2 
(75 Hz) 

Software Oculus and Unity Oculus and Unity Oculus and Unity 
FOV 100 × 110◦ 100 × 110◦ 95 × 106◦

Headset 
resolution 

1080 × 1200 px/ 
eye 

1080 × 1200 px/ 
eye 

960 × 1080 px/eye 

Head-tracking 
(sampling 
rate) 

90 Hz (estimated) 
Log retrieved 
every 11ms. 

90 Hz (estimated) 
Log retrieved 
every 11ms. 

120 Hz. 

Eye-tracking 
(sampling 
rate) 

N/A N/A PupilLabs 
stereoscopic 
installed in HMD 
(120 Hz) 

Type of scenes Rendering from 
3D models 

Rendering from 
3D models 

Rendering from 3D 
models 

HMD 
projection 
Resolution of 
original 
image 

Cubemap (1200 
× 1200 px/ 
cubeface) 

Equirectangular 
(4320 × 2160 px) 

Equirectangular 
(8192 × 4096 px) 

Rendering 
engine or 
camera 

Radiance Radiance Unknown (most 
likely to be various 
engines) 

Tone-mapping Ward 97 Reinhard 02 (unknown) 
Scene starting 

point 
Horizon line of 
the most 
contrasted spot in 
the image 

Towards the 
window 

4 options per scene 
(90◦ changes) 

Redundancy 
(between- 
subject 
factor; each 
participant 
exposed to 
the same 
condition of a 
factor) 

Space: No (8 
types) 
Sky: Yes (2 types) 
(randomization) 

Sky: Yes (3 types) 
Space: Yes (2 
types) 
Window size: Yes 
(3 types) 
Façade geometry: 
No (6 types) 
(randomization) 

No 

Duration of 
scene shown 

>30 s.* >30 s.* 30 s. 

Number of 
scenes 

16 96 14 interior scenes 
(of 22). Subset of 
interior scenes with 
hardly any people 
on them 

Number of 
participants 
per image 
(average) 

12 10-47 (it differed 
across spaces 
because of the 
experimental 
protocol) 

44 (inferred) 

Participant 
position 

Standing Seated Seated  

* The actual viewing time was longer. For saliency purposes, we only analyze 
the head tracking logs of the first 30 s of exposure to the scene. 
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3.2. Generation of ground truth maps 

Ground-truth saliency maps are constructed from the aggregated 
viewing logs of multiple observers without accounting for temporal in-
formation. We reviewed ground truth mapping methods for studies 
conducted with an HMD (see the Supplementary Material, section 2.2) 
and decided to only rely on the Gaussian weighting method (σ = 11.7◦) 
used in Sitzmann et al. (2018). We also corrected for the distortion from 

the projection by rescaling logs on the poles to avoid distortions, based 
on the method described in Upenik and Ebrahimi (2017). 

3.3. Evaluating saliency prediction 

Metrics used to estimate saliency prediction can be classified as 
either based on location (discrete fixation) or distribution (Bylinskii 
et al., 2016). The second type was found more suitable in the case of 
head-tracking logs, where fixation regions may be less precise than with 
eye-tracking, while still relevant for informing design decisions as the 
aim is merely to determine which broad regions attract human 
attention. 

For our own study, we used the Pearson correlation coefficient (CC) 
(linear correlation coefficient), a statistical measure of the strength of 
association between two variables, following previous work by Sitz-
mann et al. (2018) and Gutiérrez et al. (2018). CC calculates the cross 
correlation between the predicted saliency and the ground truth maps 
after normalizing the maps (pixel value - mean value of the pixels of the 
map/SD) and ranges from − 1 (perfectly inversely correlated) to 1 
(perfectly correlated). High absolute values indicate that both maps 
have similar values at the same locations. 

As stated previously, our natural head behavior leads to a strong 
equatorial bias, which can be reinforced by the weight that the HMD 
adds to the head. Both ground-truth and saliency output maps are likely 
to show their upper and lower image regions as less visually attractive, 
which implies “easy-to-correlate” regions. To address this limitation, we 
decided to apply the CC on both the full image as well as on the central 
third of the equatorial image region (Fig. 3 right), which represents an 
angle of 30◦ above and 30◦ below the equator. The equatorial region of 
the image includes nearly all the non-black region of the scene generated 
through the aforementioned Laplacian fit (Fig. 3, left). 

3.4. Statistical analysis 

We reported the results by saliency model and/or type of saliency 
models for each dataset. The main results are reported as average CC 
which is commonly used in saliency prediction literature (Borji, 2018). 
In earlier stages, we had considered using the Similarity metric and the 
Kullback-Leibler divergence but we excluded following initial tests 
(more details in Supplementary Material, section 2.3). We used statis-
tical tests to assess the difference in average CC obtained across models 
and group of models (e.g., traditional models vs. DL models). As such, 
CC is the dependent variable and the models or group of models are the 
independent variables. We relied on the Shapiro-Wilk test to assess the 

Fig. 1. Summary of the workflow in the present study: we computed the saliency maps from the equirectangular scenes which we compared to the ground truth maps 
that were extracted from the head tracking logs. 

Table 2 
Saliency prediction models and baseline images tested in this study.  

Model type Projection type Name Reference 

Traditional Perspective (2D) 
(Directly applied) 

(1) IKN (Itti et al., 
1998) 

(2) GBVS (Harel et al., 
2007) 

(3) MSSS (Achanta & 
Süsstrunk, 
2010) 

(4) BMS (Zhang & 
Sclaroff, 2013) 

Omnidirectional 
(Adapted to 360◦

projection) 

(5) BMSeq(a) 

(6) BMS360(b) 

(7) 
BMS360eq(a, b) 

(Lebreton & 
Alexander, 
2018) 

(8) 
GBVS360eq(a, 
b) 

(Lebreton & 
Alexander, 
2018) 

Deep learning 
(DL) 

Perspective (2D) 
(Directly applied) 
Pretrained on 2D datasets 

(9) Sal-CEDN 
(10) UNISAL 
(11) DeepGaze 
II 

(Kroner et al., 
2020) 
(Droste et al., 
2020) 
(Kümmerer 
et al., 2016) 

Omnidirectional (Pre- 
trained/adapted to 360◦

projection) 

(12) SalNet360 (Monroy et al., 
2018) 

Omnidirectional 
(Developed for/pre-trained 
on 360◦ stimuli) 

(13) SaltiNet (Assens Reina 
et al., 2017) 

Baseline 
images (not 
models) 

NA (14) Laplacian  
NA (15) Noise-1  
NA (16) Noise-2   

a We used “eq” to indicate to the inclusion of an equatorial prior in the al-
gorithm. Equatorial prior correction involves the identification of a “line of 
horizon” of the scene (that can be below/above 0◦). 

b The original models (GBVS (Harel et al., 2007) and BMS (Zhang & Sclaroff, 
2013)) were adapted to a 360◦ projection by (Lebreton & Alexander, 2018). 
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normality of the data. For non-parametric data, we used the 
Mann-Whitney test (comparison involving two groups), the Kruskal 
Wallis one-way analysis of variance (comparison involving more than 
two groups), and the r effect size for the Wilcoxon two-sample rank-sum 
test. For the comparisons between groups, we used a significance level of 
α = 0.05. We relied on Ferguson’s thresholds for interpretation of the 
strength of association (for both CC and r), where 0.2 is considered as a 
small association, 0.5 a moderate association and 0.8 a strong associa-
tion (Ferguson, 2009). 

4. Results 

4.1. Qualitative observations on ground truth and saliency prediction 
maps 

The ground truth map (based on the participant’s head movements 
for the chosen extraction model) and the series of saliency prediction 
maps (based on the image stimuli for the different saliency models 
selected for this study) were produced for a set of 7 scenes (4 different 
spaces with sky variations), taken from the three datasets. Examples are 
provided in Figs. 4, Figs. 5 and 6 for selected scenes in the Rockcastle, 
Chamilothori, and Sitzmann datasets, respectively, and in the Supple-
mentary Material, section 3. 

Overall, we note that both the ground truth and the saliency maps 
feature blurry bright regions on a black background. These so-called 
regions of interest are often difficult to identify as they spread over 
different spatial elements. This can be partially explained by the fact that 
we examine head and not eye movements (hence wider Gaussians). We 
also usually observe a strong equatorial bias (horizontal central direc-
tionality) in the regions of interest, which is a result of human physi-
ognomy and is implemented in both the ground truth map extraction 
and most of the saliency models. Regions of interest generally tend to 
include the scenes’ brightest areas (e.g., windows or shading), but 
sometimes include unexpected regions (e.g., focused on bare walls). 

Looking more specifically at the saliency prediction models, we 
first note that the earlier models (IKN, MSSS, GBVS and BMS) are 
generally driven by the brighter and high-contrast regions. BMS and 
GBVS embed the expected center bias, which can help the prediction but 
will not be as powerful as an equatorial bias for our data, while MSSS is 
the only model displaying sharp shapes from the original picture 
(instead of blurry regions). For all these models, the shades and shading 
patterns on the floor in the Chamilothori dataset are generally predicted 
as salient regions. 

The adaptation of the 2D models GBVS and BMS to the 360◦ envi-
ronments has led to notable changes compared to their original maps. By 
examining the output of GBVS360eq and BMS360eq, we see that the 
adaptations of these models are generally less pixelated (i.e., have an 
increased resolution), more contrasted (i.e., have fewer gray regions) 
and include an equatorial bias embedded into the maps. The scripts 
available for the adaptation of BMS allowed us to separate the impact of 
the 360◦ reprojection and of the added equator prior. BMS360 is closest 
to the original image but with continuity added between the right and 
left ends of the image. BMSeq also has this feature but the predictions 
generally appear slightly more compressed around the equator. Finally, 
the variations of BMS can sometimes also bring artefacts (cf. Fig. 6(h), (i) 
and (j) for the Sitzmann scene where the white square in the center left of 
the scenes was not present in the original BMS output Fig. 6(f)). 

The DL models developed for the 2D stimuli clearly show a central 
bias with a reduced region of interest on the edges (including the left and 
right borders), yet the salient regions (white) remain thin around the 
equator. These prediction maps overall appear more contrasted (less 
gray) than the maps from the traditional models. UNISAL leads to a 
cloudier and blurrier output, followed by Sal-CEDN and DeepGaze II. 
DeepGaze II can sometimes appear sensitive to objects (e.g., furniture 
elements are prominent in Fig. 6). 

Finally, DL models developed for the 360◦ stimuli surprisingly 
display less equatorial bias than many other models. SalNet360 is based 
on a cubemap extraction and we can see the shape of the cubemap parts 
(i.e., squares) on all predictions (these are very visible on Fig. 4(n) for 
instance). In addition, the identified salient regions in each square do 
not appear to be continuous with those in the adjacent square. SaltiNet 
was developed directly on 360◦ images and shows a good continuity of 
the salient regions. We can identify the location of windows and notable 
objects on these otherwise very blurred outputs, which spread over two 
thirds of the height of the image (centered on the equator). 

4.2. Overview of prediction accuracy per model 

We computed the average CC obtained for each dataset and model. 
The results are detailed in Table 3 for both the full image and the 
equatorial image regions. This table is supplemented by Figs. 7 and 8 
that represent boxplots of the CC for each model and dataset for the full 
and equatorial image regions, respectively. Given the difference in 
testing conditions and sample size for each dataset, we analyze the re-
sults for each dataset separately. 

The models show a wide spread of average CC, ranging from 0.20 to 
0.78 for the full images, and of 0.12–0.70 for the equatorial image re-
gions. Only a few models reached an average CC of 0.5 (moderate cor-
relation) for the centered image region for the Chamilothori and Sitzmann 
datasets. None of the models reached 0.8 (high correlation), not even for 
the full image. The model that performs the best (i.e., that reached the 
highest CC across the datasets and image region) is BMS360eq, a model 
originally based on Gestalt principles and which considers colors, is 
adapted to 360◦ stimuli and includes an equatorial prior. The lack of 
color in the Rockcastle scenes can explain the poor performance of the 
model on this data set. BMS360eq is followed by GBVS360eq and 
BMSeq. In other words, traditional models encapsulating spatial visual 
cues (such as BMS and GBVS) and further adapted to 360◦ stimuli are 

Fig. 2. Laplacian function, noise signal (two types) applied on a 2:1 image format.  

Fig. 3. Regions of interest (full image and equatorial region) on which we also 
apply the CC metric. 
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able to obtain the highest CC with the ground truth. The models further 
show a better performance on the Chamilothori and Sitzmann datasets, 
which can be explained by the colors, textures and objects present in the 
scenes (which are taken into account in most of the saliency models) 
and, possibly, by the more rigorous free visualization period (thus closer 
to the procedure used for the creation of the models) than the one behind 
the Rockcastle dataset. 

Overall, the saliency models performed better when applied to the 
full image, which is expected considering the matching of the darker 

upper/lower image regions between the ground truth and the pre-
dictions for many models that incorporate the equatorial bias. Similarly, 
yet quite surprisingly, we found that the Laplacian signal is able to 
surpass most models and appears as one of the best performing models 
when considering the full image regions. This higher correlation is 
reduced as soon as we only consider the central part of the image. For 
this reason, and to avoid inflating the conclusions of this analysis, the 
output of the equatorial image region is the primary one being discussed 
in the next sections when testing the hypotheses related to the saliency 

Fig. 4. Original stimuli, the ground truth map and the output of the saliency prediction maps for a scene from the Rockcastle dataset. Saliency prediction 
model outputs are indicated with colors corresponding to the type of model and projection: traditional 2D models (directly applied) (yellow), traditional models 
adapted to omnidirectional projection (green); deep-learning 2D models (directly applied) (red) and deep-learning omnidirectional models (blue). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

C. Karmann et al.                                                                                                                                                                                                                               



Journal of Environmental Psychology 92 (2023) 102110

8

models’ predictive performance (Sections 5.3.1 (H1) and 5.3.2 (H2)). 
That said, both the full image and the equatorial image region were 
systematically analyzed for each hypothesis to ensure that no unex-
pected findings would emerge from their comparison. Numerical results 
are reported for both the full images and the equatorial region images. 

4.3. Hypothesis testing 

H1. Traditional models are as reliable as pre-trained DL models when 

applied to our datasets 

For this hypothesis, we group the saliency models in two groups: 
traditional models and DL models (pre-trained on natural image data-
sets). Considering the difference in sample size and stimuli type, we 
analyzed each dataset independently. A Shapiro-Wilk test revealed the 
non-normality of this data, leading us to apply a non-parametric Mann- 
Whitney test. The difference between the two groups of models was 
statistically and practically significant with a small effect size only for 
the Chamilothori dataset (see Fig. 9 and Table 4). For the Sitzmann 

Fig. 5. Original stimuli, the ground truth map and the output of the saliency prediction maps for a scene from the Chamilothori dataset. Saliency prediction 
model outputs are indicated with colors corresponding to the type of model and projection: traditional 2D models (directly applied) (yellow), traditional models 
adapted to omnidirectional projection (green); deep-learning 2D models (directly applied) (red) and deep-learning omnidirectional models (blue). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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dataset and for the equatorial image regions, results show a significant 
difference with a small effect size. Interestingly, this difference in pre-
diction performance did not follow the same direction for the two 
datasets: the Chamilothori dataset showed a higher prediction accuracy 
for traditional models while the Sitzmann dataset showed a higher pre-
diction accuracy for DL based models. Following the qualitative obser-
vations, spatial objects such as furniture might have been identified as 
most salient in DL models. Yet, the dominance of the windows and 
shading patterns shows that a bottom-up traditional model will be more 

reliable for the Chamilothori dataset. DL models highly depend on the 
type of images they were trained, which can explain their poorer per-
formance on the set of images tested in the present study. 

H2. Saliency prediction models are more accurate for overcast condi-
tions than for clear sky types 

This hypothesis was tested on the equatorial image region only, using 
the Chamilothori dataset (n = 32 scenes) and the CC between ground- 
truth and saliency maps for each model, for every sky type (n = 3, see 

Fig. 6. Original stimuli, the ground truth map and the output of the saliency prediction maps for a scene from the Sitzmann dataset. Saliency prediction 
model outputs are indicated with colors corresponding to the type of model and projection: traditional 2D models (directly applied) (yellow), traditional models 
adapted to omnidirectional projection (green); deep-learning 2D models (directly applied) (red) and deep-learning omnidirectional models (blue). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 10). Although the Rockcastle dataset also included variations in sky 
type, the sample size was too limited (n = 8) to be meaningful and was 
not included in the analysis. 

Considering the non-normality of the data and that sky type was a 
between-subjects factor in the original experiment, the effect of sky type 
on prediction accuracy (CC) for each model was examined with 

Table 3 
Average correlation coefficients (CC) (absolute values) for each model and dataset for the full images and the equatorial region of the images. Moderate correlations 
(>0.5) are highlighted for legibility.  

Model type Projection 
type 

Model 
acronym 

Full images Equatorial region of the images 

Rockcastle n =
16 

Chamilothori n =
96 

Sitzmann n =
14 

Rockcastle n =
16 

Chamilothori n =
96 

Sitzmann n =
14 

Traditional 2D IKN 0.25 0.18 0.29 0.19 0.25 0.30 
GBVS 0.40 0.65 0.47 0.24 0.64 0.33 
MSSS 0.25 0.30 0.20 0.12 0.29 0.16 
BMS 0.24 0.62 0.26 0.17 0.64 0.21 

360◦ BMSeq 0.50 0.74 0.61 0.24 0.69 0.48 
BMS360 0.45 0.69 0.57 0.18 0.66 0.46 
BMS360eq 0.53 0.78 0.66 0.26 0.70 0.53 
GBVS360eq 0.56 0.75 0.55 0.24 0.70 0.35 

Deep learning 
(DL) 

2D Sal-CEDN 0.44 0.56 0.59 0.28 0.44 0.46 
UNISAL 0.47 0.58 0.62 0.24 0.49 0.50 
DeepGaze II 0.37 0.33 0.51 0.28 0.25 0.46 

360◦ SalNet360 0.28 0.37 0.51 0.14 0.40 0.53 
SaltiNet 0.49 0.45 0.49 0.18 0.41 0.39 

Baseline images NA Laplacian 0.70 0.61 0.62 0.45 0.38 0.45 
Noise-1 0.00 0.00 0.00 0.00 0.00 0.00 
Noise-2 0.00 0.00 0.00 0.01 0.00 0.00  

Fig. 7. Boxplot of correlation coefficients (CC) of each model and dataset considering the full image.  

Fig. 8. Boxplot of correlation coefficients (CC) of each model and dataset considering the equatorial image region.  
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Kruskall-Wallis tests. Results show that sky condition influenced pre-
diction performance for the traditional models MSSS, BMS, for all the 

traditional models adapted to 360◦ projection (which performed best in 
the Chamilothori dataset), and for the DL models UNISAL and SaltiNet 
(Table 5). Pairwise comparisons between the three sky types per model 
were conducted with Mann-Whitney U-tests (Fig. 11 and Table 6). We 
observe a tendency for models to perform better (higher CC) in scenes 
with an overcast sky or a clear sky with a high sun position compared to 
clear sky with a low sun position. This difference in prediction perfor-
mance is statistically significant (p < 0.001) or most traditional models, 
including their adaptation to 360◦ environments (for GBVS and BMS). 
For DL models developed for 2D images, the best prediction was found 
for scenes with clear sky with high sun angle for UNISAL (compared to 
both other conditions) and Sal-CEDN (compared to overcast sky). For DL 
models developed for 360◦ images, a small but significant increase in 
prediction accuracy was found for overcast sky compared to clear sky with 
low sun angle for SaltiNet. 

To conclude, most models performed better in scenes with an over-
cast sky or a clear sky with high sun position than with a clear sky with low 
sun position, which depict large shadows and high contrasts that seem to 
be falsely interpreted by models. These findings partially confirm our 

Fig. 9. Boxplot of correlation coefficients between the ground truth and the saliency models grouped by type of the models and datasets considering the equatorial 
image region. 

Table 4 
Pairwise comparison of correlation coefficients between the ground truth and the saliency models for the traditional vs. deep learning models for the full and 
equatorial image regions.    

Traditional models Deep learning models Comparison 

N M Mdn SD N M Mdn SD ΔM p-value r (effect size) 

Full images Rock. 128 0.40 0.43 0.19 80 0.41 0.44 0.19 − 0.01 0.64 0.03 (negl.) 
Cham. 768 0.59 0.66 0.24 480 0.46 0.48 0.18 0.13 <0.0001 0.33 (small) 
Sitz. 112 0.45 0.47 0.23 70 0.54 0.57 0.17 − 0.10 <0.01 0.19 (negl.) 

Equat. Region Rock. 128 0.21 0.18 0.14 80 0.23 0.20 0.15 − 0.02 0.31 0.07 (negl.) 
Cham. 768 0.57 0.64 0.22 480 0.40 0.41 0.22 0.17 <0.0001 0.37 (small) 
Sitz. 112 0.36 0.37 0.21 70 0.50 0.52 0.19 − 0.13 <0.0001 0.30 (small) 

N: sample size (number of images), M: mean, Mdn: median, SD: standard deviation, ΔM: difference in mean, p-value: statistical significance (p < 0.001 highly sig-
nificant; p < 0.01 significant; p < 0.05 less significant; ns: not significant), r: effect size. 

Fig. 10. Rendering of a space from the Chamilothori dataset lit by three sky conditions: overcast (left), clear sky with high sun position (center), and clear sky with 
low sun position (right). 

Table 5 
Results of the Kruskal Wallis test on the effect of sky type on prediction accuracy 
per saliency model.  

Model Model Type chi-squared (χ2) p-value 

IKN Traditional – 2D 1.922 0.38 
MSSS Traditional – 2D 27.146 < 0.0001 
BMS Traditional – 2D 24.739 < 0.0001 
GBVS Traditional – 2D 4.0381 0.13 
BMS360 Traditional – 360 21.192 < 0.0001 
BMSeq Traditional – 360 32.637 < 0.0001 
BMS360eq Traditional – 360 34.887 < 0.0001 
GBVS360eq Traditional – 360 18.108 < 0.001 
DeepGazeII Deep-L-2D 0.69354 0.71 
Sal-CEDN Deep-L-2D 4.0276 0.13 
UNISAL Deep-L-2D 7.4841 < 0.05 
SalNet360 Deep-L-360 1.566 0.46 
SaltiNet Deep-L-360 6.6679 < 0.05  
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hypothesis, as models performed better in scenes with overcast sky 
conditions compared to clear sky with low sun position (as hypothe-
sized), but compared to scenes with a clear sky and high sun position. 

H3. There is a correlation between head movements for the same space 
under different sky (i.e., daylight) conditions 

To test this hypothesis, correlation coefficients (CC) were calculated 
between ground truth maps across different sky types for each unique 
space: in this case, a high CC will suggest a strong similarity in head 
movements between different sky types. The Rockcastle dataset included 
two sky types leading to a comparison between two groups, while the 
Chamilothori dataset included three sky types leading to three compar-
isons between two groups. The results (here shown for both the full and 
equatorial image regions) are presented in Table 7 (Rockcastle dataset) 
and Table 8 (Chamilothori dataset). 

As shown in Table 7, the mean CC was 0.67 with a standard deviation 
of 0.12 and a minimum correlation of 0.55. However, when looking at 
the equatorial image regions, the CC decreases substantially, which 
suggests that the high CC was mainly due to the less salient upper and 
lower image regions (a typical consequence of the equator bias) which 
matched across sky types (see example in Fig. 12). The small CC ob-
tained for the equatorial image regions leads us to conclude on rather 
different head moving patterns across sky types for this dataset. 

Examining Table 8, we can see that the mean CC was superior or 
equal to 0.90 across the three comparisons for the full images and su-
perior or equal to 0.87 for the equatorial image regions. The first quartile 
remained nearly equally high (CC ≥ 0.88), suggesting that despite 
changing light conditions, the façade remained the area of focus. Even 
looking at equatorial image regions, the correlation coefficient between 
ground truth maps across different sky types for one unique space 
remained strong (the first quartile was of CC ≥ 0.84). These high cor-
relations (see example in Fig. 13) may be explained by the scene 

variations within the experimental procedure, where the external façade 
was intended to be dominant: the shadows in the space (resulting from 
the façade variation) may thus not have altered the head direction as 
much as expected. To conclude, the strong correlations do suggest 
highly similar head movements across sky types for the same space in 
the Chamilothori dataset, which would confirm our hypothesis for this 
dataset. 

5. Discussion 

5.1. Methodological assumptions 

This evaluation required us to take decisions on the pre-processing of 
the raw data and on the choice of evaluation metrics. Fully immersive 
360◦ environments require scenes to be adapted and projected within 
the headset. We constructed out ground truth data based on cartesian 
coordinates (x, y, z), that we transformed to equirectangular coordinates 
(yaw, pitch), which leads to unavoidable deformations on the poles (the 
“nadir” of the scene is a point in the 360◦ environments and is a line in 
the corresponding equirectangular images). We addressed this defor-
mation by rescaling the logs on the poles to avoid distortions based on 
the method described in Upenik and Ebrahimi (2017). Additional de-
formations related to the projection method can also be introduced in 
the models. We notably observed this inconsistency in SalNet360 
(Monroy et al., 2018), where the extraction of data from cubemap 
projections led to the “stitching” of the cubes together, resulting in 
observable discontinuities of the salient regions at the edges. 

Head movement was used instead of eye movement to determine 
visual attention, as it was the only view behavior data available. 
Although the literature has shown good correlations between head and 
eye movements (Sitzmann et al., 2018), testing further the similarity of 
the two signals would be beneficial. The obtained ground truth maps, 

Fig. 11. Boxplot of correlation coefficients between the ground truth and the saliency models for the Chamilothori dataset (n = 32 unique spaces) grouped by type of 
sky: overcast sky (“overcast”), clear sky with high sun position (‘clearhigh’) and clear sky with low sun position (“clearlow”). Considering equatorial image region. 
The statistical significance levels shown on the plot are p-values resulting from the pairwise comparison between type of sky, where: **** (p < 0.0001), *** (p <
0.001) are considered highly significant; ** (p < 0.01) significant; * (p < 0.05) less significant and “ns” not significant. 
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which show extreme equator bias, raise questions about whether the 
changes in pitch (i.e., looking up and down) might have been greater if 
we had considered eye in addition to the head movements. While trying 
to determine the most appropriate ground truth mapping method, and 
given the numerous methods available, we should also note that the 
search for the best saliency prediction model often has to be accompa-
nied by a search for the best ground truth as well: in other words, 
optimization has to take place at two levels (Droste et al., 2020; Küm-
merer et al., 2016; Reddy et al., 2020, pp. 10241–10247). Obviously, 

this double optimization effort may lead to additional adaptations of the 
Gaussian functions and fixation filtering algorithms, which can be 
questioned because this can also deviate from human attention patterns. 
One should therefore be aware that the pre-processing of the data 
inevitably involves biases. 

On the other hand, there is no doubt that viewing conditions in VR 
are different in nature from the conditions found in real environments. 
Beyond the issues of representation (pixel size, lack of dynamism), 
HMDs are limited in luminance range and are set to provide a visually 
comfortable environment, which is not necessarily the case in real en-
vironments where we may be disturbed and thus avoid regions of high 
luminance and glare (Sarey Khanie et al., 2017). Even though the tested 
scenes from Rockcastle and Chamilothori, initially created for a realistic 
perception of daylit spaces (Chamilothori et al., 2018), were rendered 
with software that has photometric accuracy, included tone-mapping 
correction and excluded any direct sun in the field of view (unlike 
Sarey Khanie et al. (2017) e.g.), they had not been developed for 
examining visual attention under different lighting conditions. At the 
same time, the saliency protocols commonly relying on 2D images 
screened on a computer, or on 360 stimuli viewed in VR, have also been 
neglecting the question of visual discomfort and how this could affect 
head and eye movements. The question of visual attraction in real 
conditions (where visual discomfort is not eliminated) thus deserves 
more attention in future studies. 

5.2. Bringing saliency prediction to architectural design 

As suggested by Arnheim in the context of artworks, the viewer does 
not have the simple mechanical role of recording visual stimulation 
provided by the work of art, but the fundamental task of giving meaning 
to it (Arnheim, 1965). Free observation is in itself a questionable posture 
given that humans are unlikely to be free from thoughts when looking at 
a given scene, especially in the framework of human subject testing. 
Further, the Rockcastle and Chamilothori datasets came from previous 
research on human perception to daylit architectural spaces. The pro-
tocol used in the original studies included ratings of spatial qualities (e. 
g., visual interest, pleasantness, scene complexity) occurring at the end 
of each exposure. From one scene to another, the questions were ran-
domized but remained the same and we can speculate whether these 
questions may have guided some of the thoughts (and therefore head 
movements) of the study participants. Finally, the scenes of the Chami-
lothori dataset came from multiple experiments with within-subject 
factors: a given space was viewed multiple times by one participant 

Table 6 
Post-hoc pairwise comparisons with Mann-Whitney U-tests to examine the dif-
ference in prediction accuracy between pairs of sky types (overvast, ‘clearhigh’, 
i.e., clear sky with high sun angle, and ‘clearlow’, i.e., clear sky with low sun 
angle). In this table, we only report statistically significant results following the 
main analyses in Table 5.  

Model Model Type group 1 group 2 p-value Effect size 
(r) 

MSSS Traditional – 
2D 

overcast clearhigh <0.01 − 0.37 
(small) 

Traditional – 
2D 

overcast clearlow <0.01 0.36 (small) 

Traditional – 
2D 

clearhigh clearlow <0.0001 0.61 
(moderate) 

BMS Traditional – 
2D 

overcast clearlow <0.0001 0.51 
(moderate) 

Traditional – 
2D 

clearhigh clearlow <0.0001 0.55 
(moderate) 

BMS360 Traditional – 
360 

overcast clearlow <0.001 0.45 (small) 

Traditional – 
360 

clearhigh clearlow <0.0001 0.52 
(moderate) 

BMSeq Traditional – 
360 

overcast clearlow <0.0001 0.61 
(moderate) 

Traditional – 
360 

clearhigh clearlow <0.0001 0.61 
(moderate) 

BMS360eq Traditional – 
360 

overcast clearlow <0.0001 0.62 
(moderate) 

Traditional – 
360 

clearhigh clearlow <0.0001 0.65 
(moderate) 

GBVS360eq Traditional – 
360 

overcast clearlow <0.001 0.46 (small) 

Traditional – 
360 

clearhigh clearlow <0.001 0.44 (small) 

UNISAL Deep-L-2D overcast clearhigh 0.041 − 0.26 
(small) 

Deep-L-2D clearhigh clearlow <0.01 0.33 (small) 
SaltiNet Deep-L-360 overcast clearlow 0.012 0.31 (small)  

Table 7 
Correlation coefficients of ground truth maps from human head movements when exposed to a space rendered for different sky conditions for the Rockcastle dataset.  

Rockcastle Sky1 Sky2 n(a) Mean SD Min. 1Q(b) Mdn(b) 3Q(b) Max. 

Full image Overcast Clear 8 0.67 0.12 0.55 0.59 0.61 0.68 0.90 
Equatorial region Overcast Clear 8 0.27 0.13 0.08 0.20 0.26 0.33 0.48  

(a) n: number of unique spaces tested for different sky types (note: in the original study “sky type” was a “between participant” variable). 
(b) SD: standard deviation, Mdn: median, 1Q.: 1st quartile, 3Q.: 3rd quartile. 

Table 8 
Correlation coefficients of ground truth maps from human head movements when exposed to a space rendered for different sky conditions for the Chamilothori dataset.  

Chamilothori Sky1 Sky2 n(a) Mean SD Min. 1Q(b) Mdn(b) 3Q(b) Max. 

Full image Overcast Clearhigh 32 0.92 0.05 0.79 0.91 0.94 0.96 0.98 
Overcast Clearlow 32 0.92 0.07 0.66 0.91 0.94 0.96 0.98 
Clearhigh Clearlow 32 0.90 0.08 0.53 0.88 0.92 0.96 0.98 

Equatorial region Overcast Clearhigh 32 0.90 0.07 0.71 0.88 0.93 0.94 0.97 
Overcast Clearlow 32 0.90 0.10 0.50 0.89 0.92 0.94 0.98 
Clearhigh Clearlow 32 0.87 0.12 0.33 0.84 0.90 0.94 0.98  

(a) n: number of unique spaces (including room type, window size pattern and context) tested for different sky types (note: in the original study “sky type” was a 
“between participant” variable). 

(b) SD: standard deviation, Mdn: median, 1Q.: 1st quartile, 3Q.: 3rd quartile. 
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with only some elements (e.g., façade geometry or window sizes) that 
would change across scenes. We can therefore raise the question of 
whether the visual attention was strongly linked to the elements that 
changed from one scene to another (i.e., the windows and façade ge-
ometry and their corresponding light patterns), hereby bringing one 
more influencing factor in the “free-viewing” of the scenes. 

The modelling of saliency prediction itself does not come from the 
field of design. Therefore, while the idea of being able to predict the 
visual attention of humans is both exciting and appealing in the 
framework of architectural design, such models must be examined 
critically and used with caution in this new context. First, one must 
account for which stimuli these models were originally created or 
trained, especially given that the proper application of saliency models 
on complex images may be difficult for non-experts. A workaround 
could be to integrate them into design tools made available to architects. 
However, this would bring their application even further away from the 
context in which they were developed, with clearly insufficient evidence 
right now about their actual applicability and/or relevance for this new 
context. Finally, as the performance of the models depends on the 
composition of the scenes, such, as our results show, on the lighting 
conditions in the scene, different saliency models may be needed for 
different types of spaces. On a positive note, the fact that some of the 
traditional models were found to be more effective for bare spaces (i.e., 
without people or highly informative objects) does offer promise about 
models with a reasonable prediction accuracy for design purposes in the 

future. 

5.3. Effect of sky type on head movement 

We found saliency prediction models to be more accurate for over-
cast and clear sky with high sun positions than for clear sky types with 
low sun positions. This output is not that surprising given that large sun 
patches in the space can be detected by algorithms as salient regions 
(even though they remain limited in the scene information they 
provide). 

With respect to H3 and the correlation in head movements for the 
same space with different daylight conditions, results showed that the 
outcomes for the Rockcastle dataset were different from the Chamilothori 
dataset, with the former showing low correlation, while the latter 
showed strong correlations for all considered comparisons (i.e., between 
the three sky types) for the equatorial image region. As observed in 
section 4.2, the prediction of saliency models was lowest for the Rock-
castle dataset, which we attributed partly to the minimalist nature of the 
scenes (devoid of color, texture and objects) and partly to the quality of 
the free visualization period which was not part of the original protocol 
and which depended mainly on the time needed for the participant to be 
ready to answer the questions. Given these two observations, the dataset 
of Chamilothori and Rockcastle are different and certainly the one from 
Rockcastle is the least suitable for interpretation. By contrast, the scene 
content and rendering procedure used in the study of Chamilothori et al. 

Fig. 12. Example of correlation coefficient between ground truth maps across different sky types for one unique space taken from the Rockcastle’s dataset for full and 
central (or cropped) images regions. 

Fig. 13. Example of correlation coefficient between ground truth maps across different sky types for one unique space (including variations of space, window size, 
pattern, and context) taken from the Chamilothori’s dataset for full and central (or cropped) images regions. 
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(2018) included colors, textures and objects and was validated for its 
realism while the silent free-viewing period was rigorously implemented 
in the experimental protocol. The analysis conducted on this dataset 
showed a strong correlation between head movements for the same 
space under different sky types, aligning with the results from Vincent 
et al. (2009) who concluded that light sources and shadows, although 
highly visible, are not very informative, thus questioning our attraction 
to these features. 

However, in a different analysis based on a subset of the Chamilothori 
dataset (n = 3 spaces), linear mixed models were used to look at dif-
ferences (and not similarities) in the number of fixations towards the 
floor for the same space across the three different sky conditions (Kar-
mann et al., 2021) and a statistically significant difference (p < 0.05) 
was found in the percentage of fixations towards the floor when 
comparing overcast sky conditions to clear sky conditions with a high 
sun position. No significant difference was found when comparing fix-
ations across other sky types (i.e., clear sky with low sun position, where 
sun patches take over most of the floor area). This previous analysis was 
limited in its sample size, and thus additional analyses, ideally with 
other datasets as well, might be necessary to bring conclusive statements 
on the impact of shading patterns on visual attention. 

Overall, it should be noted that as neither of the Rockcastle or Cha-
milothori experimental protocols were designed to investigate correla-
tions between head (or eye) movements and lighting distribution, it 
would be premature to draw any conclusion about H3, though the an-
alyses of the present study do show the potential of the proposed 
approach to investigate this in more appropriate datasets. Our findings 
should be considered as a promising starting point to enable further 
investigations rather than as absolute conclusions about the influence of 
sky conditions on view behavior. 

5.4. Linking head-tracking with affective evaluations of the space 

The studies behind the Chamilothori dataset (Chamilothori et al., 
2022a; Moscoso et al., 2021) included questions related to participant’s 
subjective perception of the space following Russel’s circumplex model 
of affect (pleasantness, interestingness, excitement, calmness) as well as 
additional spatial features (complex, bright, spacious). In these studies, 
the sky type, space function (suggested by the furniture in the scene), 
and the type of shading patterns employed were the independent vari-
ables. While neither the sky type nor the spatial context influenced space 
impressions, the type of shading patterns influenced both the affective 
appraisal and the visual appearance of the space, e.g., rendering the 
same space more pleasant, interesting, or bright. However, in our 
ground truth data, we found a strong correlation between head move-
ments for the different types of shading patterns (as in the difference 
between sky types), suggesting that participants were very much fixated 
on the windows, no matter the shadow casted on the floor. This finding 
shows that, at least with this analysis, differences in the affective eval-
uation of the scenes were not reflected in the participants’ head 
movements. 

A different approach that is beyond the focus of this paper would be 
to derive metrics directly from head tracking data (e.g., fixation time, 
area, saccade, entropy) and link these to the recorded emotions. This 
method was used in the work of Batool et al. (2022) who studied head 
movement in relation to different types of view out and found that 
natural scenes were characterized by lower numbers of fixations and 
saccades, and longer fixation durations, compared to urban views, but 
that for both types, the most preferred scenes led to more fixations and 
saccades. Analyses relying on ground truth maps might not have 
revealed the subtleties of these outcomes, and more work would be 
needed in the future to examine the relationship between such derived 
metrics and subjective responses. 

6. Conclusion 

Saliency prediction, which provides an estimate of where, in a given 
scene, people are likely to devote their visual attention, offers a high 
potential in becoming a useful tool to inform architectural design. In 
fact, predicting viewing patterns in a space can aid environmental 
legibility, improve way-finding, support research related to spatial 
appraisal and cognitive restoration, and thus contribute to the design of 
more socially responsive spaces. At this stage, we do not know the 
reliability and applicability of existing saliency prediction models in 
daylight architectural design, and particularly in interior scenes that do 
not contain people or animals, which are known to be highly salient. The 
present study examined the performance of 11 saliency prediction 
models on rendered architectural scenes viewed in VR. The models were 
chosen based on their diversity and availability, and consisted of both 
traditional and deep-learning (DL) methods that had been developed 
and/or were adapted to perspective images and 360◦ visual stimuli. 
Three datasets of rendered scenes were used: the Rockcastle dataset, 
containing interior spaces rendered in black and white with neither 
objects nor texture, the Chamilothori dataset, containing interior spaces 
rendered in color with some furniture and texture, and the Sitzmann 
dataset, containing color rendered spaces with higher levels of detail 
and texture, but hardly any people visible for the chosen subset of 
scenes. We utilized the Pearson Correlation Coefficient (CC) between 
saliency prediction maps and ground truth maps as a measure of pre-
diction accuracy, where the ground truth maps were derived from head 
movement data collected from participants in VR. In order to account for 
equator bias, we examined both the full 360◦ scenes and the equatorial 
image region. The Rockcastle and Chamilothori datasets, initially devel-
oped for daylight research, included multiple space variations rendered 
for different sky conditions, which also allowed us, for the first time, to 
examine the effect of daylight conditions on saliency prediction per-
formance. One overarching – and unsurprising – finding was that the 
equatorial bias was very present in both the participants’ head move-
ments and in the saliency models. To address the possible inflation of 
results based on this bias, we chose to focus mostly on the equatorial 
image region ( ± 30◦ around the central horizon line) in further 
analyses. 

Saliency models developed from or adapted to 360◦ scenes 
commonly outperformed models developed for perspective images 
when applied to 360◦ scenes. The performance of traditional models, 
which focus on low-level bottom-up features such as direction and 
luminance contrasts, and of DL models, which are able to predict 
attraction towards high-level information such as objects and people, 
strongly depended on the information present in the scenes. We notably 
found that BMS360eq and GBVS360eq, two traditional models adapted 
to 360◦, were the most promising for the Chamilothori dataset. For this 
dataset, saliency prediction models also showed a significantly higher 
performance for the scenes rendered with an overcast sky or with a clear 
sky with high sun position compared to the same scenes rendered with a 
clear sky with low sun position, suggesting that the large shadows and high 
contrasts resulting from this sky type appear to be misinterpreted in 
saliency prediction, especially by traditional models. 

When we compared the truth maps for one same space illuminated 
by different types of sky, we found a strong correlation between sky 
types for the Chamilothori dataset, even when considering only the 
equatorial part of the image. This result suggests that participants did 
not substantially alter their head movements while viewing spaces 
under different types of sky, a finding whose generalization would 
require further investigations using datasets specifically generated to 
address these questions. 

Saliency modelling requires some knowledge in computer science, 
and, depending on the complexity of the models, significant computing 
power. Traditional models are the easiest and least costly. The findings 
of the present study show promising performance for some of these 
models for 360◦ colored architectural spaces with basic furniture and 
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textures, and suggest the prospect of their possible integration into 
design tools, which could further support human-centric design in 
architecture. 
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Khanie, S., Mandana, J. S., Einhäuser, W., Wienold, J., & Andersen, M. (2017). Gaze and 
discomfort glare, Part 1: Development of a gaze-driven photometry. Lighting Research 
and Technology, 49(7), 845–865. https://doi.org/10.1177/1477153516649016 

Koseoglu, E., & Onder, D. E. (2011). Subjective and objective dimensions of spatial 
legibility. Proc. - Soc. Behav. Sci., 30, 1191–1195. https://doi.org/10.1016/j. 
sbspro.2011.10.231 
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