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Abstract
In modern power systems, predicting the time when peak loads will occur is crucial for
improving efficiency and minimising the possibility of network sections becoming
overloaded. However, most works in the load forecasting field are not focusing on a
dedicated peak time forecast and are not dealing with load data privacy. At the same time,
developing methods for forecasting peak electricity usage that protect customers' data
privacy is essential since it could encourage customers to share their energy usage data,
leading to more data points for the effective management and planning of power grids.
Hence, the authors employ a dedicated Learning to Rank XGBoost algorithm to forecast
peak times with only ranks of loads instead of absolute load magnitudes as input data,
thereby offering potential privacy‐preserving properties. We show that the presented
Learning to Rank XGBoost model yields comparable results to a benchmark XGBoost
load forecasting model. Additionally, we describe our extensive feature engineering
process and a state‐of‐the‐art Bayesian hyperparameter optimisation for selecting model
parameters, which leads to a significant improvement of forecasting accuracy. Our
method was used in the context of the final round of the international BigDEAL load
forecasting challenge 2022, where we consistently achieved high‐ranking results in the
peak time track and an overall fourth rank in the peak load forecasting track with our
general XGBoost model.
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1 | INTRODUCTION

Ensuring a balance between power supply and demand is crucial
for electrical grids' stable and efficient operation. In this context,
forecasting future electrical loads plays an integral role [1]. Load
forecasting is performed for various planning horizons, from
long‐term over medium‐term to short‐term load forecasting
with annual, monthly or daily planning horizons, respectively [2].
It can additionally be classified by the aggregation level consid-
ered [3].

One essential discipline of load forecasting is peak load
forecasting. Peaks are the occurrence of the maximum load in a

specific timeframe (e.g. a day) and can be characterised by two
dimensions: peak time and peak load quantity. Peak time de-
scribes the timestepwhere themaximum load occurs, while peak
load quantity describes the maximum load measured in the
respective timestep [4]. As peaks constitute the maximum strain
on the grid, predicting the maximum load and especially the
timing of peaks is crucial for the grid stability. Yet, most ap-
proaches in the discipline of electrical peak demand forecasting
are either concerned with only predicting the peak load quantity
[5] or the peak time forecast is inferred from an overall load
forecast by considering the timewhen the predicted load curve is
at its maximum [6, 7]. As a high general prediction accuracy does
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not necessarily imply a good prediction quality concerning peak
loads and peak times [7], further research specifically about peak
times is necessary.

Another increasingly important aspect of load forecasting
is the privacy preservation of load data. By sharing the exact
load data, new potential data security vulnerabilities are
created. For instance, in case of a data leak, the load data of an
industrial firm could allow conclusions about the current
economic situation of the respective firm. Substantial industrial
customers see data security as a significant barrier to partici-
pation in load‐shifting programs, and thereby a barrier to
sharing load data [8]. Hence, to motivate industrial customers
to share their load data, participate in grid provider programs
and reduce potential vulnerabilities, it is essential to work on
privacy‐preserving methods to work with load data.

This paper combines a focus on peak time forecasting with
a privacy‐preserving Learning to Rank model in the context of
the BigDEAL Challenge 2022 [9]. In this international
competition organised by Dr. Tao Hong, Duke Energy
Distinguished Professor at UNC Charlotte and Director of the
Big Data Energy Analytics Laboratory (BigDEAL), 78 inter-
national teams competed along different tracks related to peak
load forecasting. The challenge consisted of a qualification and
a final round. In the final round, the three tracks of the chal-
lenge were targeted at forecasting peak load quantities, peak
times, and the shape of the load in a 5‐h timeframe around the
peaks. The findings presented in this paper stem from the
approach followed by Team SGEM KIT in the final round of
the BigDEAL Challenge for the track peak time forecasting.

We propose a novel approach to forecast peak times with a
Learning to Rank extreme gradient boosting (XGBoost)
model, also used for the peak time forecasting track of the
BigDEAL Challenge. We compare our results with a naive day‐
before benchmark forecast and a general state‐of‐the‐art
XGBoost‐based load forecasting model that delivers load
forecasts for every timestep. The latter model achieved the
fourth rank in the peak load forecasting track of the final round
of the BigDEAL challenge and hence can be seen as a relevant
benchmark. The Learning to Rank model only requires ranks
of loads, instead of their actual magnitude, as input. Thus, it
can be used in application areas where protecting actual load
data is highly relevant, thereby, for instance, potentially
encouraging customers to share their data with grid operators.

This paper shows that the Learning to Rank XGBoost
model yields comparable forecasting accuracy as a well‐
performing baseline XGBoost model. Furthermore, we
conduct extensive feature engineering. We investigate which
features are most important for the general XGBoost and
Learning to Rank models. Additionally, we use Bayesian
Hyperparameter Optimisation to find optimal hyperparameter
combinations.

In conclusion, we aim to make the following contributions:

� An extensive feature engineering process is described,
including the implementation of rolling averages and type‐
of‐day features, thereby significantly improving the peak
time forecasting accuracy.

� The Learning to Rank XGBoost algorithm is used for peak
time forecasting, working only with ranks of loads instead of
absolute loads as a target feature, thereby offering potential
privacy‐preserving properties. The model is compared to a
conventional XGBoost load forecasting model, from which
peak time forecasts are inferred.

� The XGBoost‐based models are optimised with a state‐of‐
the‐art Bayesian hyperparameter optimisation, enabling
further increases in prediction accuracy.

The remainder of this paper is structured as follows. In the
second chapter following the introduction, we set our study in
the context of related work. In the third chapter, we describe
our general methodology. We depict our feature engineering
process, the utilised XGBoost models as well as the regarded
metrics. In the fourth chapter, we present the BigDEAL case
study and the underlying data. Subsequently, we describe the
case study results and the achieved forecasting accuracy ac-
cording to the previously introduced metrics in chapters five
and six. Finally, in chapter seven, we discuss our results and
give an outlook to further research questions.

2 | RELATED WORK

In this section, we give an overview of related peak load and
peak time forecasting studies, with a special focus on studies
that cover privacy‐preserving features.

Most load forecasting‐related studies focus on an overall
load forecast, most often through neural network‐based
methods, Support Vector Machines (SVM) or Auto‐
Regressive Integrated Moving Average (ARIMA) [10‐13].
The first advances in load forecasting were, amongst others,
made with ARIMA‐based models. In ref. [14], an hourly short‐
term electrical ARIMA load forecasting model is introduced.
Lee et al. improve the ARIMA model by using a lifting scheme
wavelet transformation to enhance the forecasting accuracy in
ref. [15]. Another way of enhancing the ARIMA load fore-
casting is suggested by the authors in ref. [16], employing a
hybrid ARIMA and SVM model, where the ARIMA model
forecasts the linear basic load component and the SVM is used
for non‐linear components.

In contrast, recent load forecasting studies mostly focus on
neural network‐based methods. In ref. [10], the authors use
Long Short‐Term Memory (LSTM) recurrent neural networks
to forecast single‐residential household loads. Also, the authors
in ref. [17] use a dual‐stage model, based on an LSTM and an
attention‐based encoder, for a probabilistic load forecasting
model. The temporal attention mechanism, in combination
with a Convolutional Neural Network, is employed by the
authors in ref. [12] as well. Another type of neural network is
suggested by the authors in ref. [13] who use a transformer
model, based on an encoder‐decoder architecture, for a multi‐
energy load forecasting problem.

For the planning and operation of modern power systems
and distribution grids, the forecasting and subsequent reduc-
tion of peak loads are essential [18, 19]. Besides the fact that
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the before‐mentioned studies are focused on an overall load
forecast, several studies emphasise the tendency of neural
network‐based approaches to underestimate peak loads [7, 20,
21]. Hence, the authors in ref. [20] adapt the LSTM cost
function to penalise underestimation of the load. The authors
in ref. [7] pursue another approach by combining LSTMs with
a dedicated peak time and peak load XGBoost forecast.
Thereby, the overall load and peak load forecasting accuracy
are improved. Also the authors in ref. [22] develop a hybrid
LSTM‐XGBoost load forecasting model. The authors state
that the XGBoost forecast could be further improved by
employing a Bayesian hyperparameter optimisation method to
find more suitable parameters. Our study implements the
suggested Bayesian hyperparameter search approach for
improving forecasting accuracy.

Haida et al. [23] were amongst the first to focus on peak
load forecasting specifically. The authors combine a trans-
formation technique to consider seasonal load changes, as well
as annual load growth, with a multivariate regression analysis.
Thereby, the authors reduce forecasting errors in transitional
seasons such as spring and fall. In ref. [21], the importance of
peak load forecasting for dispatching centres in power net-
works is highlighted. The authors focus on peak load forecasts
with a dedicated ARIMA model alongside the overall hourly
load forecast. In ref [24], the peak loads for up to 7 days ahead
were forecasted with a feed‐forward neural network, combined
with a Principal Component Analysis for factor extraction.
Besides peak loads itself, also forecasting the time of peak
loads plays an essential role. The authors in ref. [25] show that
significant improvements in overall load forecasting accuracy
can be reached by focussing on peak time forecasting. Within
the study, the load demand time series is decomposed into low‐
frequency components. Then, a peak load binary variable is
derived from the value at risk concept, with the aim of
improving forecasting accuracy during peak times. Finally, a
deep belief network is trained to forecast future loads. We
remark that there are—to the extent of our knowledge—no
studies solely focusing on predicting peak times.

Another research stream in smart grid research deals with
implementing privacy‐preserving methods. In ref. [26], the
authors discuss two potential privacy protection schemes for
short‐term load forecasting: model‐distribution predictive
control (MDPC) and load‐level, in combination with support
vector regressions. The study concludes that the MDPC has a
slight negative impact on forecasting accuracy for smaller ag-
gregations of loads, which diminishes with higher aggregation
levels. On the other hand, the load‐levelling approach manages
to improve load forecasting accuracy. Another privacy‐
preserving load forecasting approach is presented in ref. [27],
where load forecasting models of residential customers are
trained on distributed smart metres and handled locally. Then,
only the forecasting outputs are reported to the cloud through
fog nodes. The authors in ref. [28] are suggesting a privacy‐
preserving model for electricity theft detection by adding
Gaussian noise to the consumption data of customers before
applying a Convolutional Neural Network, aiming to achieve a
balance of customer privacy and model accuracy.

A further important concept in privacy‐preserving fore-
casting research is differential privacy [29]. In the context of
differential privacy, noise is added to the input data until it can
no longer be used to confidently predict which individual
delivered the underlying data. In ref. [30], differential privacy is
granted by adaptively controlling the gradients of training data,
combined with a framework to allocate privacy budgets. Le
et al. introduce a novel, privacy‐preserving adaption of the
XGBoost framework for federated learning [31]. The authors
use a secure matrix multiplication method and a noise
perturbation approach in a separate model. In a comparable
approach, in ref. [32], a combination of federated learning and
differential privacy is utilised for short‐term load forecasting.
One outcome of the study is that increasing the number of
participating consumers not only leads to enhanced forecasting
results but also to potentially too high computational costs,
especially for complex neural network architectures. Also, in
ref. [33], a federated learning model for privacy‐preserving
forecasting of distributed energy resources, such as solar PV,
EV storage or flexible loads, is developed. The authors validate
their study with 1000 IoT nodes and show that the approach
can be used for grid services such as predicting curtailment
events or load swings. A recent advance of federated learning
models for privacy‐preserving forecasting has been made in
ref. [34], where a hierarchically federated model exploits all
underlying datasets while enabling information exchange of
users with similar load patterns. The state‐of‐the‐art model
enables a significant improvement in forecasting accuracy over
benchmark models while maintaining a high fault tolerance.
For a better balance between privacy and data quality, in ref.
[35] a two‐step model is suggested. In the first step, a
distributed perturbation method is applied on the underlying
high‐frequency load data. In the second step, through a private
noise distribution protocol, noise elements are distributed over
the smart metres of individual customers. In a case study, the
authors show the utility of the data is maintained, while pre-
serving the privacy of users. Also the authors in ref. [36]
investigate the impact of differential‐privacy on forecasting
quality, underlining that for some methods the introduction of
differential‐privacy leads to significantly worse forecasts.

We can observe that many past privacy‐preserving
methods focus on adding noise to the underlying data, for
example, the hourly loads, sometimes at the cost of worse
forecasting accuracy. Another possible approach to change the
underlying data could be the transformation of actual loads to
less sensitive ranks of loads, which can then be used to forecast
peak times, for example, through the Learning to Rank method
introduced by Chapelle et al. [37]. The Learning to Rank
method has been applied with the XGBoost method [38], but
not in the context of peak time forecasting. The trans-
formation of loads to ranks could yield one big advantage over
more sophisticated methods: it is likely to be easier for end‐
users to implement and comprehend, which, as various
studies have shown, is essential for the adoption of novel
technologies and smart grid applications [39‐42].

Our study fills two essential gaps in research. In the context
of the BigDEAL Challenge, we primarily focus on the peak
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time forecasting task, which has only been discussed to a small
extent in prior research. Furthermore, we provide a detailed
examination of suitable features for the peak time forecasting
problem. Second, we employ the Learning‐to‐Rank XGBoost
algorithm to forecast peak times. We are analysing its perfor-
mance compared to benchmark approaches, which use actual
loads instead of ranks of loads. Thereby, we make an essential
contribution to privacy‐preserving peak time forecasting.

3 | METHODOLOGY

This section aims to provide a comprehensive overview of the
methodology used in the BigDEAL Challenge to forecast peak
load times and quantities. First, we give an overview of our
general forecasting framework. The following subsections
describe the respective steps, beginning with our feature en-
gineering approach. Then, we express our utilised models and
our Bayesian Hyperparameter Optimisation. Finally, we intro-
duce the metrics used to evaluate the performance of the
previously engineered models.

3.1 | Forecasting framework

The final stage of the BigDEAL challenge consisted of several
rounds, each including their respective historical load and
temperature observations. For the to‐be‐forecasted time hori-
zon, only temperature data was given. In the first step, we
enrich the given dataset through extension with additional
features, which are explained in detail in the following section.
The colour of the arrows indicates which data is used as input
for the respective steps. All the next steps use fully feature‐
engineered data. We distinguish between two model types: a
dedicated peak time model and a general load forecasting
model. The latter serves as a solid, well‐performing benchmark
and reflects the predominant approach in the existing literature
to infer the peak load and peak time forecast from the whole
daily forecast [5, 6]. Both model types are described in

Section 3.3. For the peak time models, we differentiate be-
tween an XGBoost model with standard parameters and a
model with tuned hyperparameters. The overall hyper-
parameter tuning approach is introduced in Section 3.4. The
forecasts are then evaluated according to the metrics defined in
Section 3.5.

Overall, the utilised forecasting framework can be struc-
tured as depicted in Figure 1.

3.2 | Feature engineering

Feature engineering describes the process of creating repre-
sentations of the raw data that can improve the models'
effectiveness. For a high prediction quality, adequate feature
engineering is essential, with the effect of feature selection
surpassing that of selecting different models in many cases
[43]. Below, the different feature engineering techniques used
to transform the input data are described:

3.2.1 | Type‐of‐day features

Type‐of‐day features are variables that are created by catego-
rising dates, for instance, in groups of working days and non‐
working days. Past studies have shown that type‐of‐day fea-
tures can improve the overall forecasting accuracy when added
to the feature set [44]. Hence, we added binary variables for
determining whether the day is a weekday, holiday, preceded, or
followed by a holiday, respectively. In addition, the weekday as
well as month and day of the month are provided to the model
as input after a sine and cosine transformation.

3.2.2 | Sine and cosine transformation of cyclical
features

Past studies, such as refs. [7, 45] have shown that the sine and
cosine transformation of cyclical features, such as the hour or

F I GURE 1 Graphical overview of the research approach.
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weekday, result in high feature importance and are therefore
essential features for electrical load forecasting. The advantage
of the sine and cosine transformation lies in a better repre-
sentation of the cyclical variables, for example, allowing the
model to learn that 11 PM is closer to 2 AM than 8 AM.
Hence, we implement sine and cosine features for hour,
weekday, and month. For the hour, we additionally implement
a 2� and 4� sine and cosine, which repeats two and four
times, respectively, per day. We apply the sine and cosine
transformation by calculating the number of past timesteps
since the beginning of the respective seasonal period, for
example, a day or month, scaled to a range between 0 and 2π.

3.2.3 | Relative changes of features

For every continuous feature, relative changes up to the past
24 h in one‐hour increments are calculated and used as addi-
tional input features. This is based on the hypothesis that the
rate of change in those features might affect the resulting load
pattern, especially if those changes happen suddenly. The
formula for the calculation of relative change Gτ,T of feature τ
and the time frame tf in every time step t is calculated in
Equation (1):

Gτ;tf ¼
τt − τt−tf

τt−tf
ð1Þ

3.2.4 | Rolling averages

Since the selected model predicts the respective timesteps
independently of each other, one potential drawback could be
its difficulty in considering dependencies over multiple time-
steps. Furthermore, as described in ref. [46], it is also essential
to include lagged temperature features in the load forecasting
model due to the thermal inertia of buildings. Therefore,
rolling averages are calculated for all temperature features over
different time frames ranging from 1 to 192 h. For up to 10 h,
this is done for every interval length. Above, only the rolling
average for 12, 15, 18, 24, 36, 48, 96 and 192, respectively, are
calculated. The calculation of the rolling average RAτ,tf,t for
temperature feature τ and time frame tf at timestep t is
described in Equation (2).

RAτ;tf ;t ¼
1
tf

Xtf

n¼1
τt−n ð2Þ

Rolling average features have shown a high feature
importance in previous research where ensemble‐based pre-
diction models were used on time series data, for example, in
ref. [47]. We, therefore, calculate a “DiffToRollingAverage”
(dRA) data point for every rolling average to detect deviations
of the underlying temperature feature from the rolling average,
as described in Formula (3):

dRAτ;tf ;t ¼ RAτ;tf ;t − τt ð3Þ

3.3 | Prediction models

As mentioned in Section 3.1, two different XGBoost‐based
models are trained to predict the load in every timestep of
the test set. The first model is a general load prediction model
that forecasts the load of every hour in the respective period.
From the forecasted load patterns of the general model, the
peak times are inferred to serve as a benchmark for the second
model to compete against. The second model is a dedicated
peak prediction model, which is based on a novel approach to
forecast peak times by employing a Learning to Rank XGBoost
model. First, the XGBoost algorithm is presented in general
since both used models are based thereon. The following two
sections describe both peak load forecasting models in greater
detail.

3.3.1 | Extreme gradient boosting (XGBoost)

XGBoost was introduced by the authors in ref. [48] and has
been proven as a highly efficient and accurate model for
regression and classification tasks. In the load forecasting
context, approaches based on XGBoost have often out-
performed other models, as shown in refs. [49, 50]. The model
is based on an ensemble of classification and regression tree
weak learners. Furthermore, the quadratic objective function is
simplified through a second‐order Taylor expansion, which
yields enhanced runtimes and limits overfitting.

3.3.2 | General XGBoost load prediction model

The general load prediction model consists of an XGBoos-
tRegressor that predicts the load for each timestep of the test
set individually. Then, for every day d in the test set, the
timestep t of the highest load Pmax is taken as peak time pre-
diction td;Pmax, as depicted in Equation (4)

td;Pmax ¼max Pd;t;…;Pd;T
� �

ð4Þ

Hereafter, this model is referred to as XGBP (XGBoost
Pattern). We are also considering a hyperparameter‐optimised
version, which is called XGBPH hereafter. The XGBPH
model also served as a model for the peak load and shape
prediction tracks of the BigDEAL challenge.

3.3.3 | Learning to Rank XGBoost peak time
model

The idea of the proposed Learning to Rank XGBoost peak
prediction model is the essential characteristic of a peak, which
is the highest load in the considered timeframe, such as a day.
In other words, if the loads of a day were ranked by descending
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load, the peak would always have rank one. Thus, we propose a
model that learns to rank the timesteps of a day. Since the
Learning to Rank model is working with day‐wise ranks as a
target variable instead of loads, it requires less sensitive data
than traditional approaches. The initial idea of the Learning to
Rank model was first described by Chapelle et al. [37].

The Learning to Rank model requires a transformation of
the target variable from load to rank. Every load P on a day d
can be mapped to a rank r, which ranges from 1 to 24:

Pt
d; r

t
d

� �� �
ð5Þ

A rank r of 1 represents the peak load, while rank 24 stands
for the lowest load occurring on a certain day d.

In Figure 2, the load is transformed into day‐wise rankings
of the respective timesteps by descending load for an exem-
plary time series consisting of 2 days with three timesteps per
day.

The previous target variable, “Load,” is discarded and not
used by the model. The peak time model thus learns with a
different target variable than the general load prediction model.
The input features remain unchanged. For the prediction of
ranks, for every possible rank R a score is calculated based on
comparisons of the timesteps in each day. For a detailed
description of the score calculation methodology, we refer to
ref. [37]. The scores can, in turn, be sorted and turned into
rankings for each day.

The prediction of our proposed models is thus day‐wise
rankings for all timesteps in the test set. In the final trans-
formation step, the timestamp associated with rank one is
selected as the peak time for each day. As stated in the over-
view, we do not only consider one single Learning to Rank
peak time model but different variations of it. This leads to two
dedicated peak time models that are investigated: XGBR
(XGBoost Ranker), a plain XGBoost Ranker without hyper-
parameter tuning and XGBRH (Learning to Rank XGBoost
hyperparameter tuned), where hyperparameter tuning using the
methodology defined in the next section is applied to improve
the model.

3.4 | Bayesian hyperparameter tuning

Hyperparameter tuning is a crucial task in machine learning
and describes the practice of optimising the parameters of the
selected model in order to obtain a higher prediction quality. It

has been shown that in several cases, baseline models could be
improved by hyperparameter adjustments of existing models
than by inventing new models [51]. There are several ap-
proaches to hyperparameter tuning, including using Bayesian
optimisation, as proposed in ref. [52], which belongs to the
class of automated hyperparameter tuning. In automated
hyperparameter tuning, the model is considered to be a black
box function that, given validation data, returns a score, which
generally is the chosen error metric to be optimised. The goal
of the optimissation is to find hyperparameters that minimise
this error. Contrary to the Bayesian optimisation method,
traditional optimisation approaches are not suited for this kind
of optimisation problem. Bayesian optimisation leverages
Bayes theorem for selecting parameters to be evaluated in the
true objective function by using a probability model of the
objective function, which is, in turn, based on sample data
from previous iterations. For a more comprehensive intro-
duction to the general principles of Bayesian optimisation for
hyperparameter tuning, we refer to ref. [53].

Bayesian optimisation leads to a significant improvement of
hyperparameters with only a few iterations [53], making it both
effective and time efficient. Especially time efficiency played a
role in selecting this approach as the time for obtaining a pre-
diction and, thus, also for hyperparameter tuning was limited in
the competition the approach was developed for. Furthermore,
several studies in the load forecasting field have shown thatmore
accurate predictions can be reached by using Bayesian optimised
model parameters [54‐56].

Our implementation of the Bayesian optimisation hyper-
parameter selection model is depicted in Figure 3. The
approach is based on two major parts: an optimiser and a
hyperparameter evaluation function that is minimised over the
course of the iterations.

The optimiser describes the Bayesian optimisation model
with its parameters as well as the search space. For the opti-
misation model itself, we use the Bayesian optimisation pack-
age [57]. Table 1 depicts the chosen parameters of the
optimisation model. The model is initialised with 10 random
points and runs for 100 iterations. The parameters alpha,
which is used for the internal Gaussian process, and kappa,
which controls the relation between exploitation and explora-
tion, are set as specified in the table. For reproducibility, a
random seed is used.

F I GURE 2 Exemplary visualisation of the target transformation for
2 days with only three timesteps. F I GURE 3 Structure of hyperparameter optimisation.

6 - SEMMELMANN ET AL.

 25152947, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/stg2.12137 by K

arlsruher Institution F. T
echnologie, W

iley O
nline L

ibrary on [14/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In addition to selecting a model, a search space needs to be
set for its hyperparameters. As all of our models are XGBoost‐
based, they have a shared search space. It is presented in Ta-
ble 2, where for each hyperparameter that is optimised, the
upper and lower boundaries are defined. The parameter max
_depth is discreet and thus rounded before use. We derive the
parameters from past XGBoost‐based load forecasting studies
[7, 58, 59].

As depicted in Figure 3, in each iteration, the optimiser
calls the hyperparameter evaluation function with a set of
hyperparameters and validation blocks. The hyperparameters
are selected by the optimisation function and thus differ in
each iteration. The validation blocks constitute the time frames
used by the hyperparameter evaluation function for calculating
the model's evaluation metric. We use the whole year 2017 as a
validation block to get parameters for an overall robust model.

In the second part, the hyperparameter evaluation function
is used to determine the performance of the model for the
hyperparameters of the current iteration. For each validation
block, the respective model is trained on all available data with
time stamps preceding the validation block. Subsequently, the
model's performance is evaluated on the validation block. This
is performed for each validation block individually, leading to
three‐fold cross‐validation. The function returns the average
score over the three blocks. The evaluation metric employed
varies depending on which model type is evaluated. For general
prediction models, the mean absolute percentage error for the
true and predicted loads for each timestep is used. For the
dedicated peak time prediction models, the score is based on a
daily MAE‐based metric, defined in Section 3.5. In the last
step, the hyperparameters are selected based on the best scores.
For every different Local Distribution Company (LDC), a
dedicated hyperparameter tuning run has been conducted.

3.5 | Metrics

In the following, we present the used metrics for the evaluation
of our peak time forecasting models.

3.5.1 | Accuracy

In many studies, for example, in ref. [60], peak time forecasting
is considered to be a classification task. The reasoning for this
is that a peak time forecast is only of use if it predicts the exact
time of the peak load event. Thus, accuracy, which is in many
cases used to evaluate binary classifications, is a popular metric
to evaluate peak time forecasts. The accuracy metric P is
defined as in Equation (6):

PðActual¼ PredictedÞ ¼
Tpþ Tn

N
ð6Þ

with Tp and Tn being the amount of correctly predicted
positive and negative labels, respectively. N constitutes the total
amount of predictions. Hence, accuracy measures the share of
correct predictions.

3.5.2 | Mean Absolute Error (MAE)

As a second error metric, we calculate the Mean Absolute
Error (MAE), which punishes wrong predictions linearly to the
distance to the true prediction of the respective day. It is
calculated as the mean of day‐wise the absolute deviations of
the predicted from the true peak time, as depicted in
Equation (7):

MAE ¼
1
D

XD

i¼1
jtd;Pmax;pred − td;Pmaxj ð7Þ

with D being the considered amount of days and td;Pmax;pred and
td;Pmax being, respectively, the predicted and the actual peak
time of day i.

3.5.3 | BigDEAL Peaktime Metric (BDPM)

We also evaluate a dedicated metric, which was introduced in
the context of the BigDEAL challenge, called BigDEAL
Peaktime Metric (BDPM). The BPDM is a modified version of
a cumulative absolute error that punishes higher deviations
more strongly by introducing a punishment factor. At the same
time, it is capped for deviations greater than 5 h. In its original
form, the error is cumulated over the whole considered
timeframe. To ensure comparability over test blocks with
differing lengths, we decided to norm this error by the number
of days considered. Our normed version of the BDPM is
defined in Equations (8) and (9):

TABLE 2 Hyperparameter search space.

Hyperparameter Lower bound Upper bound

max_depth 3 10

learning_rate 0.01 1.0

Subsample 0.5 1.0

min_child_weight 0.5 5.0

colsample_bytree 0.5 1.0

TABLE 1 Configuration used for the Bayesian optimisation.

Parameter Value

init_points 5

Nitre 100

gp_alpha 10−10

Kappa 1.5

Seed 112

SEMMELMANN ET AL. - 7
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BDPM ¼
1
D

XD

i¼1
f jtd;Pmax;pred − td;Pmaxj
� �

ð8Þ

with

f ðrÞ ¼
r for r ≤ 1
2 ∗ r for 2 ≤ r ≤ 4
10 for r ≥ 5

8
<

:
ð9Þ

4 | CASE STUDY

The previously described methodology was applied on the data
set provided by the initiators of the BigDEAL Challenge 2022.
The data set comprises historical load data of three U.S.
neighbouring local distribution companies (LDCs), along with
temperature data from six weather stations in the same region.
Initially, data from 2015 to 2017 was provided in hourly res-
olution. Then, during the final round, data for 2018 was pro-
vided in six subsequent iterations, which serve as test blocks
for the model evaluation and as basis for the hyperparameter
optimisation.

4.1 | Exploratory data analysis

The given data set is structured as an hourly time series. Each
row has a timestamp containing a year, a date and hour. The
feature variables consist of the weather data columns T1 up to
T6 and the timestamps. When analysing the weather data, it
becomes visible that the pairwise correlation between the
columns is extremely high and in no case smaller than 0.95
which fits to the assumption that the weather stations are
located close together.

For the load of the LDCs, three different target variables,
LDC1, LDC2 and LDC3 are given. No unit of measurement is
provided for the target variables. The respective loads of the
LDCs are forecasted separately. In Figure 4, the distribution of

the values of the target variables is depicted. We can observe
that the loads of the different LDCs vary significantly in
magnitude, with LDC3 having by far the largest loads. Despite
these differences in magnitudes, the LDC columns are highly
correlated. The lowest pairwise correlation observed is 0.91. As
there still are variations between the different LDC load pro-
files, predicting and evaluating multiple LDCs can be consid-
ered some form of additional cross‐validation of the model.

Apart from the timestamps, weather features are the only
feature variables that are initially provided. Figure 5 depicts the
relationship between the observed average LDC loads and the
average temperature features. The relationship between tem-
perature and load appears to be non‐linear, with both high and
low temperatures being associated with a high load. This in-
dicates the use of electricity for both heating when cold tem-
peratures occur as well as cooling when the temperature is
high. We can underline that observation also from a statistical
point of view: the overall Pearson correlation between the
average temperature measurements and average LDC load
measurements is quite low at 0.063. However, when we only
regard all observations during temperature measurements
below 60, the correlation is strongly negative at −0.87: the
lower the temperature, the higher the loads. When we only
regard the remaining observations at temperature measure-
ments above 60, the correlation amounts to 0.87.

On the described data set, feature engineering following
the methodology introduced in Section 3.2 was performed.
This increased the number of input features to over 350. 16 of
those features are related to the timestamp, that is, cyclical
features, while the remaining features constitute various
transformations of the respective temperature features.

4.2 | Train‐test splits

The train‐test splits in this work are based on the iterations of
the final round of the BigDEAL Challenge 2022. As training
data, all observations preceding the first date of the respective
test set are used. Notably, the time frames of the test sets vary
in length, requiring forecasts ranging up to 3 months ahead. We

F I GURE 4 Distribution of Local Distribution Company (LDC) loads,
which serve as target variables.

F I GURE 5 Relation between average temperature measurements and
LDC loads.

8 - SEMMELMANN ET AL.
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consider six different test sets, four of which have a length of
2 months, while the others have a length of 1 month and
3 months, respectively. All test sets are in the year 2018. The
exact time frames are depicted in Table 3.

4.3 | Model variations

In the following, we compare different variations of the
XGBoost model, as described in our methodology. We
compare our results with a naïve benchmark model that simply
takes the day‐before peak time as forecast, as in ref. [61]. In
Table 4, the setup of the different models is shown. First, we
introduce a baseline, regression‐based XGBoost model called
XGBP*, which is only trained with given data, without any
feature engineering or hyperparameter tuning. Second, we
introduce the baseline XGBoost model XGBP, which is
trained with enriched feature‐engineered data, but only with
standard parameters instead of Bayesian‐optimised parameters
per test. Third, we add to the XGBP model the Bayesian‐
hyperparameter optimisation, which yields model XGBPH.
The first three models are all delivering a general load forecast
for every timestep in the respective test set, from which the
peak time forecast is inferred, as described in the Methodology.
The XGBPH model served as a model for the daily peak load
forecast and the overall load forecast during the BigDeal Peak
Time challenge. For the daily peak load forecast, the model
achieved an overall fourth rank amongst all competitors.

The two last models, XGBR and XGBRH are based on the
previously introduced Learning‐to‐Rank XGBoost algorithm,
which uses as input ranks of loads instead of absolute loads
and which yields a forecast of daily ranks of loads. The
XGBRH utilises Bayesian‐optimised hyperparameters.

4.4 | Bayesian‐optimised hyperparameters

As described in our methodology, we conduct a Bayesian
hyperparameter optimisation, based on test data of 2017, for
every LDC. In Table 5, we show the resulting hyperparameters
for the XGBPH and XGBRH models for each LDC. We can
observe that within the respective models, hyperparameters
tend to go in the same direction. However, comparing the
general load XGBoost model XGBPH and the Learning to
Rank XGBRH model, we see significant differences. The max
depth is around 5 for every general LDC model, while it is
between 8 and 9 for the ranked models. The learning rate, as
well as the subsample, are lower for the ranked models.

5 | RESULTS

We evaluate the different model variations, based on the six
test blocks, for all three LDCs. For every scenario, we evaluate
the peak time forecasting performance according to the Ac-
curacy, the Mean Absolute Error (MAE) and BigDeal Peak
Time Metric (BPDM).

In Figure 6, the actual load of LDC3 for an exemplary day in
the first test set is depicted alongside the forecasts of the three
general load prediction models XGBP*, XGBP and XGBPH.
We can observe that all three models roughly match the shape of
the daily load curve, with two peaks, one in the morning and one
in the evening. The higher peak lies in the evening at 23:00. The
plot shows a tendency that is later also confirmed in absolute
results: XGBP*, the model without an enriched, feature‐
engineered data set, has difficulties in forecasting accurate ab-
solute load values, whereas the two remaining models match the
load pattern better. From each general load forecast, the highest

TABLE 4 Model variations investigated in this study.

Model Feature engineering Regression‐based Rank‐based Hyperparameter

Baseline (day‐before peak time) No No No No

XGBP* No Yes No No

XGBP Yes Yes No No

XGBPH Yes Yes No Yes

XGBR Yes No Yes No

XGBRH Yes No Yes Yes

TABLE 3 Test sets used in the case study.

Test set no. Start date Length (months)

1 2018/01/01 2

2 2018/03/01 3

3 2018/06/01 2

4 2018/08/01 1

5 2018/09/01 2

6 2018/11/01 2

TABLE 5 Hyperparameters for XGBPH and XGBRH and
respectively LDC1/2/3.

Hyperparameter XGBPH XGBRH

max_depth 5/5/5 8/9/8

learning_rate 0.15/0.11/0.07 0.019/0.03/0.046

Subsample 0.97/0.96/0.95 0.53/0.63/0.54

min_child_weight 3.58/3.49/3.64 1.63/4.81/4.36

colsample_bytree 0.77/0.72/0.80 0.52/0.82/0.62

SEMMELMANN ET AL. - 9
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forecasted load is inferred as peak time forecast. Here, only the
hyperparameter optimised model XGBPH manages to forecast
the actual peak at 23:00 accurately.

In contrast to the general load prediction models, the
ranked models are not delivering hourly load forecasts, from
which the point of time of the highest load is inferred as peak
time. Hence, they are first plotted in Figure 7, where for every
day in the first test period from January to February 2018, the
respective peak times and peak time forecasts are plotted for
LDC3. The plot follows a certain colour scheme: real peak
times are plotted in green, Learning to Rank‐based forecasts
are plotted in tones of blue and general load forecasts are
plotted in tones of red and velvet. The hyperparameter‐tuned
models XGBPH and XGBRH are plotted with higher opacity.
First, we can observe that, in general, all forecasting models
deliver a solid performance, mostly forecasting the peak time at
least at hours around the peak, if not predicting it correctly. We
assume that one reason for this is the high aggregation level of
local distribution companies, as well as the high data quality,
and that the training data covers multiple years. We can also
observe the tendency of peaks either occurring in the morning
hours around 9:00 or in the evening hours around 21:00
o'clock. We note that all XGBoost‐based forecasting models
manage quite well to forecast the peak times, even when there

is a switch from periods of morning peaks to evening peaks.
Using a recency‐based model that always utilizes the day‐
before or week‐before peak time for our forecast would lead
in case of switches from morning‐peaks to evening‐peaks to
significant losses in the MAE metric and accuracy. We also
note that the Bayesian hyperparameter‐optimised models are
consistently predicting the peak time more accurately than the
models with standard parameters. The worst performing
XGBoost‐based model is the one without a feature‐engineered
data set and without hyperparameter tuning, XGBP*.

In Table 6, the accuracies for the different models are
depicted, respectively for each LDC. First, we can observe that
all models with the feature‐engineered data are outperforming
the model with the base data set, XGBP*, by far. Second, both
Bayesian‐optimised models yield the best accuracies on average.

The same picture occurs when analysing the resulting
MAEs in Table 7. On average, the Hyperparameter‐optimised
models outperform the models without hyperparameter opti-
misation. For LDC1, the XGBRH models yield the best MAEs
on average; for LDC2 and LDC3, the XGBPH yields the best
results. All MAE values for the models based on the feature‐
engineered data set are around 1, which can be interpreted
as a mean deviation of the forecasted peak time from the true
peak time of 1 hour.

Similarly, for the BDPM in Table 8, the Bayesian
hyperparameter‐tuned models mostly outperform the standard
models, and XGBPH delivers the best results for LDC2 and
LDC3, while the XGBRH model delivers the best BDPM
results for LDC1. The average monthly BDPM values obtained
through the XGBPH model are significantly better than the
ones obtained with the XGBP* model (p = 0.016). Whereas
the average monthly BDPM results achieved by the XGBRH
model are not significantly different than the ones achieved
through the XGBRH model (p = 0.90).

This observation underlines two integral findings in our
study. First, the peak time forecasting quality is significantly
increased by our feature engineering process and the Bayesian
hyperparameter optimisation. Overall, our XGBPH and
XGBRHmodels have achieved an exceptional level of peak time
forecasting quality. With a Mean Absolute Error of just 1 h, our
performance is by far superior to the baseline case, where the
day‐before peak time is used for the forecast, resulting in aMean
Absolute Error of approximately 3 h. Second, transforming the
actual load values to ranks of loads and employing a Learning to
Rank XGBoost model does not significantly lowers the peak
time forecasting quality compared to the well‐performing, reg-
ular XGBoost model with feature engineering and hyper-
parameter optimisation, from which peak times are inferred.
Thereby, we show that a more privacy‐preserving peak time
forecasting approach does not necessarily negatively influence
the overall forecasting quality. Nonetheless, we note that the
information on the ranks of loads still contains some informa-
tion about the load data providers and could be used to identify
them. However, industrial customers could be more open to
sharing ranks of loads instead of actual load values with the grid
operator since they do not contain information about machine
utilisation and company activity.

F I GURE 6 Exemplary load forecast with XGBP*, XGBP and
XGBPH on the 13 January 2018, for LDC3. Inferred peak times marks
with triangles.

F I GURE 7 Exemplary peak time forecasts and real peak times in first
test block for LDC3.
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6 | FEATURE IMPORTANCES

In the previous section, we show that our feature engineering
process reaches significant accuracy improvements. Hence, we
are interested in investigating the average overall feature im-
portances for the XGBPH and XGBRH models through the
XGBoost feature weights. The XGBoost feature importance
weight can be explained as the number of times that a certain
feature is used in the trees of the model. The weight is then
calculated as a share of the sum of all feature weights [62].

In Figure 8, the averaged feature importance weights are
depicted for the XGBPH model. One striking observation is
that out of the 15 most important features, 14 features are

rolling averages of temperatures instead of the temperature
measurements themselves. As mentioned before, we assume
that the reason for the high importance of temperature rolling
averages is the thermal inertia of buildings. Moreover, we
observe that the most important rolling temperature features
are those which cover time spans of three to 5 h. We can also
see that some temperature measurements are relatively more
important for the models of the respective LDCs. For instance,
T5 temperature measurements seem to be more relevant for
LDC2, while T1 and T2 measurements are relatively more
important for LDC1. This might be connected to the distance
of the temperature measurement stations to the respective
LDCs: the closer the measurement stations are to the LDCs,

TABLE 6 Accuracy in percent per test set for all considered Models for LDC1/LDC2/LDC3.

Test set Baseline XGBP* XGBP XGBPH XGBR XGBRH

1 27/34/36 36/42/37 36/51/47 46/69/68 41/59/54 58/69/61

2 31/47/36 38/29/35 44/53/58 52/66/54 58/51/55 57/54/55

3 44/45/32 41/52/34 46/56/34 52/67/61 59/69/67 59/77/69

4 41/52/32 32/32/35 39/58/58 55/55/71 52/63/68 48/74/58

5 44/43/51 39/39/48 41/54/39 49/54/49 52/46/52 48/46/51

6 30/31/36 30/31/30 36/33/49 41/48/56 38/39/46 43/46/53

Average 36/42/37 36/38/37 41/51/48 49/60/60 50/55/57 52/61/58

Std 7.01/7.3/6.4 3.90/7.93/5.56 3.34/8.27/8.92 4.60/7.86/7.73 7.93/10.23/6.30 6.09/12.48/5.96

TABLE 7 MAE per test set for all considered Models for LDC1/LDC2/LDC3.

Test set Baseline XGBP* XGBP XGBPH XGBR XGBRH

1 4.85/4.86/5.29 2.23/1.49/1.85 1.88/1.46/1.31 1.29/1.46/0.90 1.69/0.78/1.22 1.14/0.75/0.93

2 4.32/3.54/3.64 2.07/2.37/1.26 1.25/1.36/0.97 1.26/1.02/0.72 1.13/1.60/1.22 1.20/1.70/0.95

3 1.02/0.95/1.02 0.79/0.74/0.87 0.80/0.54/0.79 0.65/0.41/0.49 0.54/0.46/0.41 0.51/0.36/0.36

4 1.13/0.68/1.12 1.16/0.84/1.03 0.84/0.45/0.55 0.68/0.55/0.35 0.81/0.48/0.42 0.74/0.35/0.65

5 2.02/1.98/2.14 1.57/1.79/1.85 1.75/0.56/1.67 1.21/0.67/1.59 1.62/1.36/1.80 1.31/1.16/1.61

6 5.54/4.44/5.26 2.18/2.22/2.16 2.39/1.54/1.69 2.08/1.59/1.08 1.86/1.86/1.39 2.02/1.61/1.26

Average 3.10/2.72/3.07 1.67/1.52/1.50 1.49/1.09/1.16 1.16/0.95/0.86 1.27/1.09/1.08 1.15/0.99/0.97

Std 1.76/1.63/1.78 0.54/0.71/0.47 0.57/0.45/0.43 0.41/0.48/0.41 0.48/0.55/0.51 0.30/0.54/0.41

TABLE 8 BDPM per test set for all considered Models for LDC1/LDC2/LDC3.

Test set Baseline XGBP* XGBP XGBPH XGBR XGBRH

1 4.19/4.36/4.25 2.24/1.53/1.93 1.86/1.46/1.47 1.41/1.47/0.98 1.78/0.90/1.32 1.17/0.81/1.00

2 4.11/3.33/3.52 2.58/2.58/1.74 1.56/1.37/1.25 1.43/0.97/0.88 1.27/1.53/1.32 1.36/1.61/1.14

3 1.72/1.55/1.78 1.13/1.16/1.18 1.22/0.74/0.95 0.98/0.54/0.59 0.82/0.64/0.54 0.67/0.56/0.43

4 2.03/1.03/1.84 1.97/1.06/1.52 1.26/0.52/0.74 1.06/0.71/0.48 0.96/0.71/0.58 1.16/0.52/1.00

5 2.74/2.18/2.26 2.07/1.78/2.00 1.90/0.72/1.80 1.52/0.92/1.64 1.87/1.46/1.85 1.61/1.33/1.69

6 4.77/4.27/4.60 2.48/2.69/2.38 2.14/1.86 1.64 2.07/1.87/1.08 1.80/2.11/1.56 1.90/1.80/1.36

Average 3.26/2.79/2.95 2.07/1.80/1.79 1.65/1.11/1.31 1.41/1.08/0.94 1.42/1.22/1.20 1.31/1.11/1.10

Std 1.16/1.29/0.18 0.47/0.64/0.37 0.34/0.48/0.37 0.36/0.46/0.37 0.52/0.38/0.48 0.39/0.50/0.38
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the more relevant the measurements are likely to be. We see
this point especially relevant in light of our previous obser-
vation of the strong negative correlation of loads and tem-
perature for lower temperatures and the strong positive
correlation for higher temperatures. In addition, it underlines
the relevance of considering appropriate temperature mea-
surements in peak time and peak load forecasting tasks, in
settings where the temperature is connected to the respective
loads. The 15th most important feature is the 2� cosine of the
hour, which supports the claim of the authors in refs. [7, 45]
that it is reasonable to calculate the sine and cosine of cyclical
features.

For comparison, we depict the feature importance weights
of the XGBRH model in Figure 9. Again, we can see the high
feature importance of rolling average‐related features. How-
ever, for the Learning to Rank‐based models, the important
rolling average features cover longer time spans of up to 15 h.
Furthermore, we can see the high feature importance of the
“Difference of Temperature to Rolling Average” features,
especially for the 24‐h rolling average. High values of this
feature indicate temperature peaks, which could lead to its high
importance in the Ranked XGBoost model. Furthermore, we
can observe relatively lower feature importances per feature,
indicating that a wider array of features is used in the Learning
to Ranked XGBoost trees.

7 | CONCLUSION

This paper offers a novel privacy‐shielding approach to the
peak time forecasting problem for local distribution companies
by leveraging the Learning to Rank XGBoost algorithm. The
Learning to Rank model is based on ranks of loads instead of
absolute magnitudes of loads, requiring less confidential data.
To analyse the accuracy of our approach, we conducted a case
study in the context of the BigDEAL load forecasting chal-
lenge, where the peak times of three LDCs had to be fore-
casted. Furthermore, we conducted extensive feature
engineering and selected model parameters through a Bayesian
hyperparameter optimisation. Finally, we analyse the impor-
tance of the respective engineered features.

We show that the hyperparameter‐tuned Learning to Rank
XGBoost model delivers the highest average accuracy for two
LDCs and the highest MAE and Big Deal Peak Time Metric
for one LDC. For the remaining cases, the hyperparameter‐
tuned general load prediction model, which serves as a base-
line in this work and achieved the fourth rank for the peak load
forecasting track of the BigDEAL challenge, delivers the best
results. Furthermore, we show that all XGBoost‐based models
are significantly outperforming a day‐before recency‐based
benchmark model, thereby highlighting the value of
XGBoost models for peak time forecasting. Also, we show a
strong increase in forecasting accuracy by adding additional
features, such as rolling averages of temperature

F I GURE 8 Averaged XGBoost feature importances for XGBPH
models.

F I GURE 9 Averaged XGBoost feature importances for XGBRH
models.
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measurements. Future works in this field should apply the
rank‐based forecasting approach to other methods, such as
neural networks, and compare the results with the XGBoost‐
based Learning to Rank model introduced in this study.
Leveraging neural network models, such as recursive neural
networks or convolutional neural networks, might show su-
perior performance in the peak time ranking task while still
working with ranks instead of loads.

NOMENCLATURE
P accuracy
τ feature
BDPM BigDEAL Peaktime Metric
D amount of days
d day
dRA difference to rolling average
G relative feature change
MAE Mean Absolute Error
N amount of predictions
Pt
d load at timestep t of day d

Pmax peak load
r rank
RA rolling average
t time step
Tn amount of correctly predicted negative labels
Tp amount of correctly predicted positive labels
td;Pmax;pred predicted time of peak load
td;Pmax time of peak load
tf time frame
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