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Introduction: Human-machine interaction has raised a lot of interest in various
academic disciplines, but it is still unclear how human-human interaction is
a�ected when robots join the team. Robotics has already been integral to
manufacturing since the 1970s. With the integration of AI, however, they are
increasingly working alongside humans in shared spaces.

Methods: We conducted an experiment in a learning factory to investigate
how a change from a human-human work context to a hybrid human-robot
work context a�ects participants’ valuation of their production output as well as
their pro-sociality among each other. Learning factories are learning, teaching,
and research environments in engineering university departments. These factory
environments allow control over the production environment and incentives for
participants.

Results: Our experiment suggests that the robot’s presence increases sharing
behavior among human workers, but there is no evidence that rewards earned
from production are valued di�erently.

Discussion: We discuss the implications of this approach for future studies on
human-machine interaction.

KEYWORDS

robotics, human-machine interaction, experimental methodology, prosocial behavior,

learning factory

1. Introduction

Human-machine interaction is becoming increasingly relevant in production

environments across industries (Graetz and Michaels, 2018; Cheng et al., 2019). Thus,

the adoption and use of computer and robotic technology results in–at times drastic–

changes to employees’ work environments. In the context of manufacturing, automation

and artificial intelligence (AI) in combination with improved sensors allow so-called

cobots (collaborative robots) to work closely and safely alongside humans (International

Federation of Robotics, 2018).1 Such hybrid human-robot teams are relevant in the

1 Specifically, the International Federation of Robotics (2018) defines collaborative robots in the

following way: “The International Federation of Robotics defines two types of robot designed for

collaborative use. One group covers robots designed for collaborative use that comply with the

International Organization for Standards norm 10218-1 which specifies requirements and guidelines for

the inherent safe design, protectivemeasures and information for use of industrial robots. The other group

covers robots designed for collaborative use that do not satisfy the requirements of ISO 10218-1. This does

not imply that these robots are unsafe. They may follow di�erent safety standards, for example national

or in-house standards”.
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production workforce as they allow for improved efficiency and

flexibility compared to fully automated or manually operated

setups. Robots can work tirelessly, but changes in product design

or the workflows in a production line can still most easily be

adapted to by humans (see, e.g., Simões et al., 2022, for a review on

creating shared human-robot workspaces for flexible production).

Beyond production, hybrid human-robot teams are relevant in

the fields of medicine, service, and logistics, where they assist in

surgeries, patient care, customer service, and warehouse operations

(Hornecker et al., 2020; Beuss et al., 2021; Carros et al., 2022;

Burtch et al., 2023; CBS News, 2023). On the one hand, this raises

a lot of interest in how humans and robots will work together

effectively (Corgnet et al., 2019; Haesevoets et al., 2021) and which

features of the robots affect the human workers’ perceptions of the

robots (Terzioğlu et al., 2020). On the other hand, despite human-

machine interaction being an important subject for practitioners

and researchers alike, it still needs to be determined how robots in

hybrid human-robot teams affect human-human interaction. This

is particularly relevant in the work context because it is known to

create strong social incentives (Besley and Ghatak, 2018), norms

(Danilov and Sliwka, 2017), and can serve as a socialization device

(Ramalingam and Rauh, 2010).

The study of human-machine interaction in work

environments has garnered increasing attention in recent

years (Jussupow et al., 2020; Chugunova and Sele, 2022), focusing

on the role of incentives (Corgnet et al., 2019), team interaction

(Corgnet et al., 2019), and shared responsibility (Kirchkamp and

Strobel, 2019). However, economic research with a more specific

focus on robotics is relatively scarce. We see two main reasons for

this scarcity. Firstly, there is an assumption that human-machine

interaction is universal in that behavioral phenomena in human-

computer interaction carry over to human-robot interactions or

that attitudes toward robots elicited in surveys are meaningful

when it comes to actual decisions. There is little evidence for

tests of this assumption. Secondly, while robotics technology has

been around for decades in the industry, controlled environments

for experimental research have thus far not been available to

behavioral researchers. Using field-in-the-lab experiments in

learning factories (Kandler et al., 2021; Ströhlein et al., 2022) offers

a promising experimental paradigm for this line of research.

An important question that can be investigated in this

experimental paradigm is how prosociality between human

coworkers, central to productivity and efficiency in firms (Besley

and Ghatak, 2018), changes after introducing robots to the

workplace. With an ever-changing work environment, it is

increasingly vital for individuals to be adaptable and learn new

skills quickly to stay competitive and meet the changing needs

of their organizations. To a considerable extent, workers can

do so by sharing skills and knowledge with their coworkers.

Maintaining prosocial interaction while increasing the share of

robots in production environments is thus essential but also

demanding for organizations. We, therefore, investigate whether

robotic team members affect the prosocial behavior among their

human coworkers.

Another aspect that the introduction of robots could change

together with the work context is the meaningfulness of the work

carried out (Cassar and Meier, 2018). If they feel that they have

no impact on the eventual team output, they might perceive the

resulting income to be less valuable, which could, in turn, lead to

a higher willingness to share it with others (Erkal et al., 2011; Gee

et al., 2017). We want to test whether we can observe a reduction in

people’s valuation of their produced output, depending on whether

they work in a hybrid human-robot or a pure human-human team.

We report evidence from a field-in-the-lab experiment, i.e.,

a controlled, incentivized experiment in a lab-like environment

that contains essential elements from the field (Kandler et al.,

2021). This setup allows studying the effects of robotics on human-

human interaction in an environment that closely parallels natural

production environments–a learning factory. In our experiment,

two human participants operated two production stations at the

beginning and end of a three-station production line to produce

electronic motor components. The middle station was either

operated by two robots or by a “transfer station” that performed

the same steps but with the robots switched off and hidden. For

each component, the human participants received a team piece

rate. In addition to that monetary payment, they could earn a

chocolate bar, i.e., a material, non-monetary incentive, if they

individually completed their production step at least five times.

After the production round, we elicited participants’ willingness

to accept (WTA) for selling this material/non-monetary part of

their payoff, and they engaged in a bully game (see, e.g., Krupka

and Weber, 2013). The WTA for the non-monetary part of their

earnings allows us to test whether rewards earned in hybrid human-

robot teams are valued less than in purely human production teams,

whereas the bully game allows us to measure prosocial behavior

between our treatments.

We find suggestive evidence that humans in hybrid

human-robot teams are more prosocial toward each other

when compared to the humans in pure human-human teams.

Qualitatively, participants in our sample have a lower valuation

for the material, non-monetary part of their earnings when

they were part of a hybrid human-robot team compared to

those in a pure human-human team. Still, this difference

is not statistically significant and thus not the mechanism

driving the greater extent of prosocial behavior. Investigating

a range of controls levied in the post-experimental survey, it

seems that human workers shifted responsibility. However,

rather than shifting it to the robot, they instead shifted

responsibility away from the robot, allocating relatively

higher responsibility to themselves and the other human

participant.

There is ample evidence that joint work on tasks creates more

prosociality (Allport et al., 1954; Chen and Li, 2009; Stagnaro

et al., 2017; Lowe, 2021). In contrast, introducing robotics into

production lines can decrease the number of work interactions

between workers and reduce the feeling of working together

toward a common goal (Savela et al., 2021). Organizations

must consider how to integrate these technologies into their

production processes optimally. Our study is a first step to

inform this consideration, focusing on the changing human-human

interaction in such environments. In addition to demonstrating

the feasibility of running lab-like experiments with state-of-the-

art production robotics in learning factories, our primary goal

is to understand whether the prosocial behavior between human
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workers changes when a robot is in the team. Our design

allows us to test whether any such change is due to a changed

valuation of the income earned, either with or without the

external help of a robot. As a secondary and more exploratory

objective, we want to understand how the robots’ teammembership

changes human workers’ attitudes toward technology and each

other.

One key advantage of our methodology is the clarity of what

the treatment is. An important design choice in experiments using

virtual automated agents is how these are framed. The use of

different frames to refer to automated agents can be problematic as

it can trigger different concepts of the “machine” that participants

are interacting with. For example, the use of the term “AI” (von

Schenk et al., 2022) or “algorithm” (Dietvorst et al., 2015, 2018;

Klockmann et al., 2022) can lead to participants having higher

expectations of themachine’s capabilities when compared to the use

of terms like “computer” (Kirchkamp and Strobel, 2019) or “robot”

(Veiga and Vorsatz, 2010). Yet, it is technically not always clear

which term to use for the programmed automated agent. This can

lead to different outcomes in the experiments, as participants may

interact with these agents differently, depending on the framing

(see, e.g., Hertz and Wiese, 2019, for the difference between

“computer” and “robot”). The different cognitive concepts induced

by the differences in the terminology could partly explain why

the experimental evidence on human-machine interaction is still

largely mixed (Jussupow et al., 2020; Chugunova and Sele, 2022).

Our methodology allows us to avoid this ambiguity, as the robots

are visible, and the interaction with them is experienced beyond

simply observing the outcome of their work.

Our paper broadly relates to three strands of the literature:

(i) human-machine or human-computer interaction, (ii) prosocial

behavior with a specific focus on fair sharing, and, as we investigate

the participants’ valuation of their income, (iii) deservingness and

the meaningfulness of work.

Research on human-machine interaction (Fried et al., 1972,

using the antiquated term “Man-Machine Interaction”) and

human-computer interaction (Carlisle, 1976) dates back to the

1970s. It has since largely focused on how the interfaces for these

interactions affect the users’ acceptance and ease of using them

(Chin et al., 1988; Hoc, 2000). Due to an ever-increasing degree

of computerization, automation, and robotization, the topic has

attracted cognitive psychologists (Cross and Ramsey, 2021) and

economists (Corgnet et al., 2019) alike.2

Jussupow et al. (2020) and Chugunova and Sele (2022) provide

excellent literature surveys on the more recent studies within

the social science methodological framework. Studies that have

received particular attention are those relating to the phenomena

of algorithm aversion (Dietvorst et al., 2015, 2018; Dietvorst and

Bharti, 2019) and algorithm appreciation (Logg et al., 2019). The

aforementioned literature surveys suggest that aversion is more

pronounced in moral and social domains, whereas appreciation

(and lower aversion) is more likely to be found when people

have some degree of control over the automated agent. Savela

et al. (2021) report evidence from a vignette study suggesting

that humans in mixed human-robot teams have a lower in-group

2 See March (2021) for a review of experiments using computer players.

identification than those in purely human teams. Similarly, in

another vignette study on service failures taken care of by either

humans or robots, Leo and Huh (2020) report evidence suggesting

that people attribute less responsibility toward the robot than the

human because people perceive robots to have less control over

the task. In the context of machine-mediated communication,

Hohenstein and Jung (2020) show that when communication is

unsuccessful in such situations, the AI is blamed for being coercive

in the communication process. Thus, it functions like a moral

crumple zone, i.e., other humans in the communication process are

assigned less responsibility.

Besides the mere focus of our study on human-machine

interaction, we also want to investigate how the presence of robots

affects the participants’ prosocial behavior, in particular, sharing.

A well-established economic paradigm for these behaviors is the

dictator game (Güth et al., 1982; Kahneman et al., 1986; Forsythe

et al., 1994).3 A participant is in the role of the dictator and

can share a fixed endowment between themselves and a passive

receiver. A particular variant of the dictator game is the bully game

(Krupka and Weber, 2013), in which both the dictator and the

receiver are equipped with an initial endowment. Beyond splitting

their own endowment between themselves and the receiver, in this

variant, dictators can even take parts of the receivers’ endowments,

allowing us also to measure spiteful behavior (Liebrand and

Van Run, 1985; Kimbrough and Reiss, 2012; Ayaita and Pull, 2022).

The closest study to ours is Corgnet et al. (2019), which, among

other aspects, also analyzes how prosocial motives change in hybrid

teams compared to traditional human work teams. They report

evidence from a computerized lab experiment in which participants

need to fill out matrices with patterns of three distinct colors.

They either form a team consisting of three human players or

two human players and a “robot.” Each team member has one

specific color they can apply to the matrix, so teams need to work

together to complete the task. They find lower performance in

mixed teams with a robot than in purely human teams and explain

this with a lack of altruism toward the robot, leading to a lower

social incentive to be productive on behalf of the team. Our design

builds on this setup but instead uses the production round as a

pre-treatment before the elicitation of prosocial behavior and the

participant’s valuation of their earned reward. The experiment in

Corgnet et al. (2019) was conducted in French, where robot can

either be a wild card for various types of machines (e.g., web

crawler translates to robot de l’indexation) or the translation of

l’ordinateur, which can also be translated to computer. Nonetheless,

even in other computerized studies run in English, the term robot

is frequently used in instructions (e.g., Brewer et al., 2002; Veiga

and Vorsatz, 2010). Calling a computer player a “robot”–or likewise

an “algorithm,” “computer,” or “automated system”–is somewhat

arbitrary. Our setting uses actual production robots visible to the

participants, allowing us to use the term “robot” with much less

ambiguity.

Another advantage of our approach is that it is a relatively

meaningful task that participants engage in. Abstracting frommore

complex interactions in the workplace over prolonged periods of

time, this parallels the nature of actual work, which is a source

3 See Engel (2011) or Cochard et al. (2021) for extensive meta-studies.
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of meaning (Cassar and Meier, 2018). Compared to abstract real-

effort tasks, this is particularly pronounced in jobs and tasks

that produce a tangible output (Ariely et al., 2008; Nikolova and

Cnossen, 2020). When a robot assists humans in this meaningful

production, it could reduce the relative meaning of each worker’s

contribution to the overall output. If workers value their income

relatively less in hybrid teams, they might be more willing to share

parts of it with others. A piece of evidence that supports this is

provided by Gee et al. (2017), who suggest that an increase in

inequality has less impact on redistribution choices when income

is earned through performance than through luck. Erkal et al.

(2011) investigate the relationship between relative earnings and

giving in a two-stage, real-effort experiment. They provide evidence

that relative earnings can influence giving behavior and that this

effect can be reduced by randomly determining earnings. Again,

the degree to which earnings are generated through external factors

influences the degree to which participants tend to give larger parts

of their endowment away. More broadly, this raises the question

of whether an endowment entirely earned through performance

is valued more highly, as it is more meaningful to workers when

compared to an income that is (at least partially) obtained with the

help of an external factor, such as luck or a robot helping to generate

the income.

The remainder of this paper is structured as follows. In Section

2, we briefly explain our general field-in-the-lab approach and how

it is specifically conducive to research on human-machine and

human-human interaction in the presence of machines. Section 3

describes our experimental design, the main variables of interest,

as well as our hypotheses. We present our results in Section 4 and

discuss them together with an interesting exploratory finding in

Section 5. Section 6 concludes.

2. Field-in-the-lab methodology for
behavioral human-robot research

As the experiment was conducted in a non-standard

environment, i.e., neither a computerized lab experiment nor

an online experiment administered solely through the browser, we

briefly describe the learning factory environment where we ran the

experiment and the advantages this environment has for research

on human behavior when collaborating in hybrid human-robotic

teams. The more general approach is described in Kandler et al.

(2021).

The field-in-the-lab approach is an experimental method to

create real-world settings in controlled environments that mimic

the field.4 Kandler et al. (2021) suggest that so-called learning

factories are ideal for running such studies. They are intended

to teach students about the possibilities of production setups,

lean management approaches, and the capabilities of digitization

technologies in realistic factory settings (Abele et al., 2015).

Typically, these factories have a topical focus in the sense that a

4 Note that this is di�erent from the lab-in-the-field approach (Gneezy and

Imas, 2017) or artifactual field experiments (Harrison and List, 2004), which

refer to experiments that are lab-like but use a non-standard subject pool.

In contrast, field-in-the-lab experiments (Kandler et al., 2021) use standard

subject pools in malleable field-like environments like learning factories.

specific product in a particular industry can be produced. Still,

they are also designed to be malleable in the direction of the

respective training courses convened. In the case of our study, the

learning factory offered a line production of up to 10 production

stations with a modular setup, i.e., individual stations could be

replaced, moved, or left out of the production line. This allows

building a layout tailored toward anonymity–by using visual

covers and placing stations for humans apart from each other–

and toward the concrete research question–by cutting out three

stations of the entire line for the experiment and, depending

on treatment, replacing one station with robots. Combined with

data recording developed in oTree (Chen et al., 2016) or other

input methods, this allows a methodologically clean experimental

setup. As such, learning factories allow experimental economists to

observe and measure the causal impact of various factors, such as

the introduction of robotics, on human-human interactions and

how this affects social incentives in the workplace. In addition,

they allow us to assess the entire range of more traditional

economic questions, such as the impact of different types of

incentives and how they affect human behavior within the context

of hybrid human-robotic teams. Such analyses are typically hard

to conduct with happenstance or other observational data because

this data type is often unavailable and lacks a precise measure of

performance measure and social interaction.

Though laboratory experiments always contain a degree

of abstraction conducive to testing hypotheses clearly and

unambiguously, the research on human interactions with

algorithms, computers, AI, or robotics and the interaction of

humans among themselves in the presence of such technologies

faces a central challenge. It is unclear whether lab participants

understand the same thing if words like “algorithms,” “computers,”

“AI,” or “robots” are used in writing instructions. In our approach,

there is no ambiguity about the concept of a robot because

it is visible, and participants can experience what it does and

how exactly its actions affect the team outcome. Thus, besides

recreating a setup that resembles real factories and production

lines more closely, focusing on the specific aspects relevant

to the research question is only one advantage of the field-in-

the-lab approach. These infrastructures are available in many

universities across the globe (Abele et al., 2015). They offer an

opportunity for interdisciplinary research into human-machine

and human-human interaction in the presence of machines

with industry-standard robotics while maintaining substantial

experimental control. Finally, the work in the learning factory

produces a tangible and potentially meaningful product.

3. Experimental design

We begin by describing the production task. Then, we

introduce our two treatments and subsequently describe the stages

and procedures of the experiment.

3.1. The task and the flow of production

In every session, each participant was either in the role of

Worker 1 or Worker 2. Their task was to produce a component
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FIGURE 1

Component to be produced by the production teams.

for an electronic motor (see Figure 1). Motors of this type are

typically used in cars for various purposes, such as window lifters,

seat adjusters, or automated boot lids.

For each production step, Worker 1 used a station with a press

(from hereon Station 1) to press two clips (Figure 2A) and two

magnets (Figure 2B) into one pole housing (Figure 2C). Worker 1

was equipped with a sufficient supply of clips, magnets, and pole

housings at Station 1. Worker 1’s production step involved placing

the clips and magnets into the designated, so-called “nests” of the

press, placing the pole housing on top with the opening facing

down, and executing the lever of the station’s press to join the

individual parts.

After completing this production step, Worker 1 placed the

resulting intermediate product onto a conveyor belt to hand it to

Station TR (transfer or robot station).

At Station TR, an armature shaft with a ring magnet

(Figure 3A) was placed into the prepared pole housing, and a brush

holder (Figure 3B) was put on top, closing the pole housing and

keeping the armature shaft in place.

Worker 2 at Station 2 took the resulting intermediate product

after this step and screwed a worm gear (Figure 4A) onto the thread

of the armature shaft. Subsequently, Worker 2 put the gearbox

(Figure 4B) onto the pole housing and fastened it with two screws.

Like Worker 1, Worker 2 was equipped with sufficient wrought

parts (worm gears, gearboxes, and screws) to be able to produce

throughout the production round.

From hereon, we will refer to a complete component as a final

product. Once this final product was produced, Worker 2 placed it

into a plastic box. The box, in turn, needed to be placed into a shelf

with slides, where it was counted toward final production.5

5 Note that for both workers, it was hardly possible to hand in intermediate

or final products in a bad quality. Bad quality and non-completion (i.e.,

simply handing the raw/input materials into the shelves) were almost

indistinguishable. As such, we only counted pieces of good quality as

incomplete intermediate products could not be processed any further. This

essentially never happened in the production round.

3.2. Treatments

The production flow can be seen in Figures 5A, B. Station

2 was automated in both treatments, but it differed in the

degree of automation and the visibility of the robots. For the

sake of exposition, we introduce the Robot treatment first before

describing the control group (NoRobot).

In the Robot treatment, shown in Figure 5A, Station 2 consisted

of two KUKA KR 6 R900 robots (see Supplementary Figure 2

in Appendix E for a 3D model). These robots are pick-and-

place robots that are equipped with light barriers as sensors

for incoming intermediate products.6 Worker 1 placed each

intermediate product on the conveyor belt after producing it. The

conveyor belt transported the intermediate product to Robot 1.

This robot placed an armature shaft (Figure 3A) with a mounted

ring magnet (Figure 2B) in the intermediate product. It then

automatically traveled to the next robot, which mounted the brush

holder (Figure 3B) on the intermediate product. The robot then

released the resulting intermediate product onto the conveyor

belt, transporting it to Experimenter 2. Experimenter 2, after

having it picked up from the conveyor belt, immediately placed

the intermediate product into the shelf to the left of Worker 2.

Processing at Station TR took 54 s for an intermediate product

produced by Worker 1 before it arrived in the shelf to the left of

Worker 2. Both workers could see the robots and the conveyor

belt. However, they could not see each other or any of the

experimenters.7

In the NoRobot treatment, shown in Figure 5B, the robots were

switched off and surrounded by partition walls and thus were not

visible to the participants.8 The conveyor belt operated outside

these partition walls. It transported the intermediate product from

Experimenter 1 to Experimenter 2. Thus, Station TR was still a

(partially) automated station. Worker 1 placed each intermediate

product on the conveyor belt after producing it. After Experimenter

2 picked up the intermediate product from the conveyor belt, a

timer was started, and the intermediate product was processed

by Experimenter 2 for Worker 2. When the timer showed 28 s,

Experimenter 2 placed the intermediate product into the shelf to

the left of Worker 2.9 Added to the time of the conveyor belt (26

s), this was the time the robots in the Robot treatment needed for

their production step, which led to the same time gap between

the completion of a work step of the participant at Station 1 and

6 Note that these robots, though resembling a human arm, have not

been further anthropomorphized, which is known to improve the human

perception of robots (Terzioğlu et al., 2020).

7 Due to the setup in the learning factory, we had to implement the layout

such that Worker 1 had the robots in their peripheral view throughout,

whereas Worker 2 would only see them if they turned, e.g., for picking up

a part from the shelf to their left.

8 Put di�erently, we did not deceive participants by using the robots in both

treatments at Station TR.

9 The raw time of the conveyor belt to transport the intermediate product

from experimenter 1 to experimenter 2 is 26 s, thus adding to 54 s with

experimenter 2’s timer.
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FIGURE 2

Production inputs for participants in the role of Worker 1 at Station 1. (A) Clips. (B) Magnets. (C) Pole housing.

FIGURE 3

Production inputs for Station TR. (A) Armature shaft with ring magnet. (B) Brush holder.

FIGURE 4

Production inputs for Worker 2. (A) Worm gear. (B) Gearbox.

the provision of an intermediate product to the participant at

Station 2.10

Due to the time that elapsed between the first part produced

by Worker 1 and the first intermediate product that arrived at

10 Note that in the NoRobot treatment, we told participants in the role of

Worker 1 that we would provide Worker 2 with an intermediate product that

is equipped with an armature shaft and a brush holder 54 s after they turn

in their intermediate product. We neither told them that this was done by

Experimenter 2 nor did we claim that it is the identical intermediate product.

This allowed us to also use pre-mounted intermediate products for Worker

2 in this treatment.

Worker 2, Worker 2 started their 10 min with a 90-s offset to

Worker 1.

3.3. Stages

The experiment comprised four stages: Stage 1 consisted

of instructions and a practice round, Stage 2 was the 10-min

production round, Stage 3 consisted of two decision tasks, and Stage

4 was the post-experimental survey. In the following, we describe

each stage in more detail.

In Stage 1, participants were brought to their stations and

received general instructions about the experiment and specific

instructions concerning the production step and their stations
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FIGURE 5

Setup of both treatments. (A) Robot treatment. (B) NoRobot treatment. Team members and experimenters are depicted with ellipses, stations, and
shelves with rectangles. The light gray ellipses for the robots in (A) represent their switched-o� state in this treatment. Station TR comprised both the
robots and the conveyor belt in the Robot treatment and only the conveyor belt in the NoRobot treatment. Thick black lines represent visual covers,
thick gray dashed arrows indicate the flow of production, thick gray lines represent solid walls, and the thin dashed line around Station TR depicts the
conveyor belt with arrows indicating the direction of movement.

on a tablet computer. They also received instructions on how

to handle their station.11 These instructions used GIF animation

pictures.12 Subsequently, participants completed a practice round

in which they had 3 min to produce a maximum of two

intermediate products (Worker 1) or final products (Worker 2)

with their station. Worker 2 was provided with two pre-mounted

intermediate products to do so. Throughout the practice round, all

instructions regarding the respective station and production steps

were visible on the practice round screen. There were no incentives

in this stage. After this practice round, participants had to answer

a series of control questions before entering the production round,

in which they carried out their production steps for the rewards.

Stage 2 consisted of the 10-min production round. We

described the task and flow of production in the previous

subsection. After 10 min, the production round ended, and Stage

2 concluded. Each participant received 65 ECU (corresponding

to e0.65 at the end of the experiment) for each final product

produced by their team and a chocolate bar if they individually

produced more than five intermediate products (Worker 1) or

final products (Worker 2). Thus, both workers earned the same

monetary reward from the production round but earned the

chocolate bar individually. We did so to avoid a single slow worker

resulting in losing both observations for the ensuing Becker-

deGroot-Marschak Mechanism (Becker et al., 1964, from hereon

BDM).

For Stage 3, participants were brought to a table to allow

the experimenters to clean and set up the stations for the next

11 Participants also received a brief description of what the other

participant was doing and that the other participant would receive the same

incentives.

12 The static photos used in the figures of this article are identical to the

ones used in the instructions.

participants. In this stage, participants had to complete three

decision tasks.

For the first decision task, the material part of their payment

(the chocolate bar) was placed on their table. We used a 100 g milk

chocolate bar from a popular brand that cost around e 1 at the

time of the sessions.13 Subsequently, we elicited the participants’

willingness to accept (WTA) for selling this item back to the

experimenter using the BDM. Participants were asked to state a

price r in the range of 0 to 200 ECU at which they would be

willing to sell the chocolate bar. A random draw p from a uniform

distribution between 0 and 200 ECU determined a price. If the

participant’s reservation price was lower than that draw (r < p), the

chocolate bar remained at the table at the end of the experiment,

and the participant received the price p randomly drawn by the

computer. If the participant’s reservation price was higher than

or equal to that draw (r ≥ p), the participant would keep the

chocolate bar at the end of the experiment and would not receive

any additional ECU from this decision-task.14

In the second decision task, participants decided whether to

give a part of their monetary payment to their human teammember

or to take some of their team member’s monetary payment away.

This is the bully variant of the dictator game, as described in

Krupka andWeber (2013). Remember that both workers earned the

same amount of ECU in the production round within teams. Yet,

across production teams, the accumulated amounts of ECUdiffered

as they produced different numbers of final products. Thus, this

13 A picture can be found in Appendix B, together with the instructions.

14 Additional to instructions on the mechanism, participants could also

gain an intuition with a virtual tool on the preceding instructions page. They

could enter a fictional WTA, and a fictitious price would be randomly drawn

from between 0 and 200 ECU. Subsequently, the resulting outcome was

described. Participants could do this as often as they liked.
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decision was programmed to be relative to the earned endowment

from the production round to make it salient one more time that

they worked toward a common goal in the preceding production

round. The highest amount a participant could take away from

their human team member was 50% of the earned endowment.

The highest amount they could give to their team member was

100% of their earned income from the production round.15 They

could choose any integer value between (and including) those ECU

boundaries.16 At the end of the experiment, one worker’s decision

was randomly chosen with equal probability to be implemented for

payoffs.

In the third and final decision task, we elicited social value

orientation with the incentivized six-slider task described in

Murphy et al. (2011). At the end of the experiment, one of

the workers was chosen randomly with equal probabilities, and

one of this worker’s six sliders was randomly chosen with equal

probabilities to be payoff-relevant.17

Stage 4 comprised a survey containing questions on context-

related attitudes, the allocation of responsibility for the team

output, conventional economic attitudes and preferences, and

demographics. Participants received 250 ECU for this stage,

irrespective of their responses.18

3.4. Procedures

The sessions were run at the Learning Factory for Global

Production at the Institute of Production Science (wbk) at the

Karlsruhe Institute of Technology (KIT). The experiment was

conducted in German, where the word Roboter has very similar

connotations to the English word robot. The exchange rate was

1ECU = e0.01. The average session lasted 41min, and participants

earned e13.03 on average (including the flat payment of e2.50 for

the survey and the selling price in the BDM if participants sold),

and the chocolate bar for producing more than five units in case

participants did not sell it in the BDM.19 Participants from the

KD2Lab Pool (KD2Lab, 2023) were recruited via hroot (Bock et al.,

2014), and the experimental software was programmed using oTree

(Chen et al., 2016). Due to the availability of only one experimental

production line, i.e., one station for Workers 1 and 2, respectively,

15 Given that we used the team production as stakes, this guaranteed that

no participant could earn a negative payo� from this task.

16 Similar to the BDM, participants could familiarize themselves with

that decision and try di�erent potential amounts. A slider was displayed

with the actually possible amounts as the endpoints. For any amount

chosen, the consequences of that choice for both participants were shown,

assuming that the participant was randomly assigned the role of the dictator.

Participants could only make their actual decision after having chosen to

leave this page.

17 All random draws during the experiment were independent of each

other.

18 The experimental instructions for all stages can be found in Appendix B.

19 No participant failed to cross the threshold of five intermediate products

(Worker 1) or final products (Worker 2). This was intentional to obtain

su�cient data for our analysis. The experimental software would have

skipped the BDM task in that case.

and only one station with KUKA Robots, we ran 24 sessions

with two human participants for each treatment. This results in

a total sample of 48 participants. Throughout the experiment,

participants had a table bell they could ring in case they needed

assistance or wanted to ask clarifying questions. Upon arrival,

participants were immediately led to separate tables (spatially

separated and surrounded by visual covers), and eventually, they

exited the learning factory through different exits. Thus, our setup

did not allow for interaction between workers before, during, or

immediately after the experiment other than through the tasks

described above.

3.5. Hypotheses

As argued above, evidence suggests that the change from purely

human to hybrid human-machine teams can influence the social

context of human interaction (Corgnet et al., 2019; Savela et al.,

2021). Participants in our experiment are not colleagues for a

prolonged amount of time. Thus, in line with previous research

(Allport et al., 1954; Chen and Li, 2009; Stagnaro et al., 2017; Lowe,

2021), we implemented a production round where they had to work

toward a common goal and made team performance salient. In

this production round, we administered our treatment. From the

perspective of any one of the workers, this also changes the salience

of their coworker’s human identity. With the robot in the (relative)

out-group, the robots’ presence in the team could strengthen the

human team members’ in-group identity (Akerlof and Kranton,

2000; Abbink and Harris, 2019), leading to increased prosociality

between the human workers.20

Hypothesis 1. The robots’ presence in a production line increases

the share transferred in the bully game.21

Our literature discussion also suggests that when external

factors are involved in attaining income, people change their

willingness to share with others (Erkal et al., 2011; Gee et al., 2017).

Thus, individuals may be more likely to share an income generated

with the help of robots in a task. Since individuals do not feel as

personally responsible for income generated through such external

factors, one reason might be that they do not value it as highly and

thus are more willing to share it with others. Our second research

question is thus whether a worker’s valuation for their production

output changes depending on the team context. Work is a source

of meaning (Cassar and Meier, 2018). Compared to abstract real-

effort tasks, this is particularly pronounced in jobs and tasks

that produce a tangible output (Ariely et al., 2008; Nikolova and

Cnossen, 2020). We hypothesize that the robot in the team saliently

diminishes the relative meaning of each worker’s production step

20 The presence of machine players in economic paradigms is also known

to result in more rational behavior (March, 2021). In our context, that would

mean higher amounts taken in the bully game. Yet, the literature reviewed

focuses mainly on how humans act toward the machine players and not the

human players.

21 The hypothesis in our preregistration was formulated in terms of the null

hypothesis: “The presence of robots in a production line does not influence

the share transferred in the bully game”.
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to the overall output. Therefore, we implemented a non-monetary

part of income that could be earned in the production round

to measure a change in participants’ income valuation between

treatments by eliciting their WTA for this part of their payoff.

Hypothesis 2. The robots’ presence in a production line reduces

the WTA for the individually earned payoff.22

The experimental design and the hypotheses were preregistered

at aspredicted.org.23

We are aware that beyond the valuation of the income earned,

other factors, e.g., attitudes toward technology, experience with the

production environment, and demographic factors, may play a role

in the prosocial behavior, and thus leave the investigation of the

controls we collected for exploratory investigation in the discussion

of potential further mechanisms.

3.6. Main variables of interest and
estimation strategy

Our primary interest is in the behavior in the bully game. We

define the variable Share transferred that ranges from −50 to 100%

for the amount transferred between the two workers according to

the decision of each participant.24 That is, if a participant decided

to take a part of the earnings from the other participant in the

team, Share transferred would be negative. In contrast, it is positive

if a participant decided to give a part of their own earnings to

the other participant in the team. To investigate behavior at the

extensivemargin, we also create the variable Share categorical that is

equal to 3 if Share transferred is strictly positive, equal to 2 if Share

transferred is equal to zero, and equal to 1 if Share transferred is

strictly negative. The variable Robot is our treatment dummy. It

equals one if the participant was in the robot treatment and zero

otherwise. We keep track of Individual production, the number

of completed production steps by a participant in either role, and

Team production, which is the number of final products produced

by the production team.25 Worker 2 is a dummy equal to one if the

participant was in the role of Worker 2 in the production line and

zero otherwise, i.e., if the participant was in the role of Worker 1.

Production in trial round is the number of work steps completed in

the trial round. This number can only range from zero to two as

this was the maximum number of intermediate products (Worker

22 The hypothesis in our preregistration was formulated in terms of the null

hypothesis: “The presence of robots in a production line does not influence

the WTA for the individually earned endowment”.

23 The preregistration number is #87128, and the document can be found

at https://aspredicted.org/NVY_4CZ.

24 Since teams have produced di�erent amounts and thus earned di�erent

budgets for the bully game, we stated our hypothesis regarding the share

that participants transferred rather than absolute amounts. The Amount

transferred ranged from −650 ECU to 325 ECU, and we report regressions

using this variable as the dependent variable in Supplementary Table 8 in

Appendix A as a robustness check.

25 Note that Individual production and Team production are identical for

Worker 2 because this worker finished the intermediate products to final

products counted toward team production.

1) or final products (Worker 2) participants could produce in the

3-min trial round.26

Our empirical strategy is as follows. For each hypothesis, we

first report a two-sided Mann–Whitney U-test to compare the

two treatments. We use the variable Share transferred for our first

hypothesis on how the robot affects prosocial behavior and WTA

for the second hypothesis on how the robot being in the team affects

the valuation of the non-monetary part of the payoff.

We estimate regression specifications to control for

demographics and the above survey measures. First, we regress

the dependent variable on only the treatment dummy to show

the pure treatment effect. We then add demographics in a second

specification. In specification three, we control for Team production

since the percentage point differences between treatments translate

into different absolute amounts transferred, and the budget for

this task depends on the amount earned. We also add Worker 2 to

account for differences between the two roles and Production in

trial round to account for differences in observed ability from the

production round. In the fourth specification, we add all survey

items related to attitudes applying directly to the environment in

the production round. In the fifth and last specification, we add

more general attitudes. We will refer to this specification as the

saturated specification and base our discussions on findings mainly

on this specification.

Unless mentioned otherwise, our results are robust to using the

absolute number of shared ECUs.We can compare the participants’

behavior with Share transferred. This way, means and coefficients

can be interpreted as percentage points. We provide robustness

checks using the absolute amounts in Appendix A. Also, we

use heteroskedasticity-robust sandwich estimators (Eicker, 1967;

Huber, 1967; White, 1980) in all regressions in the main text, but

the results using cluster sandwich estimators (Rogers, 1993) on the

team level can be found in Appendix C.

4. Results

Hypothesis 1 was that the presence of robots in a production

line does not influence the share transferred in the bully game

played with the earned endowment from the production round.

Figure 6A reveals that we cannot reject this hypothesis without

controlling for participant and team characteristics (p = 0.282,

Mann–WhitneyU-test).27 Qualitatively, contributions in the Robot

treatment were 10.597% points higher than in the NoRobot

treatment, translating into a difference of 100.542 ECU in absolute

earnings.

When considering behavior by roles in the production team in

Figure 6B, we see that most of that aggregate difference was driven

by the participants in the role of Worker 2. Here, the difference in

26 A complete description of the remaining control variables can be found

in Appendix A.

27 If we use Amount transferred this does not change (p = 0.270, Mann–

Whitney U-test). For both tests, we summed up the share or amount

transferred within each team and ran the test with twelve independent

observations per treatment. This test result is also qualitatively identical when

accounting for clustering on the team level as suggested by Rosner et al.

(2006) and Jiang et al. (2017) (p = 0.227).
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FIGURE 6

Share transferred in the bully game. (A) Across treatments. (B) Across treatments and roles. Dots represent means. Whiskers represent 95%
confidence intervals. Dashed lines indicate the boundaries of admissible choices. The dotted line provides a visual reference at zero.

the shares transferred is only 1.424% points for Worker 1 (p =

0.718, Mann–Whitney U-test), whereas it is 19.771% points for

Worker 2 (p = 0.109, Mann–Whitney U-test).

When controlling for the covariates described in our empirical

strategy, we see in Table 1 that the coefficient on our treatment

dummy is positive, irrespective of our specification. In our last and

preferred specification, participants transferred an 11.102% points

higher amount to the other participant in the Robot compared to

the NoRobot treatment.28

The distribution of shares transferred reveals that about a third

of the participants did not transfer any earnings from or to the

other participant in their team. In the NoRobot treatment, 37.50%

of the participants took a part of the earnings from the other

participant. As 29.17% of the participants in this treatment gave

parts of their earnings to the other participant, the remaining

33.33% of participants in the NoRobot treatment chose neither to

take a part of the earnings from the other participant nor to give

parts of their earnings to the other participant (in other words, their

Amount transferred or Share transferred was zero). In the Robot

treatment, 25.00% of the participants took earnings from the other

participants, whereas 41.67% gave parts of their earnings to the

other participant. This leaves 33.33% of participants in the Robot

treatment who chose an Amount transferred or Share transferred

of zero. We checked whether the higher shares of participants

choosing a strictly positive or negative transfer are driven by our

treatment.29

Table 2 reports the results from ordered probit regressions on

whether the Share transferred was strictly positive, equal to zero, or

strictly negative. Though the treatment coefficient is not significant

in all specifications, it is marginally significant in specifications (4)

and (5). Thus, the treatment effect is partially due to differences in

28 Consider Supplementary Table 8 in Appendix A for regressions on the

absolute amounts transferred.

29 Note that we considered zero-inflated and other two-step procedures,

but they are not suitable to our data.

the decision on whether to transfer at all and in which direction and

only partially due to the decision on how much to transfer.

Result 1. We find suggestive evidence that participants behave

more prosocially in the Robot than in the NoRobot treatment.

In our data, this effect is partially driven by the extensive margin

(whether they transfer any nonzero amount or not and in which

direction).

Hypothesis 2 relates to one potential mechanism to explain this

finding. Participants in the Robot treatment potentially valued the

earnings generated from the production round less than those in

the NoRobot treatment because these earnings were generated with

the robots’ assistance and not solely through their own work. The

absence of such an effect would, in turn, indicate that being in a

mixed human-robot team does not affect the workers’ perceived

value of the individually earned reward. Looking at Figure 7A,

we see that participants in the Robot treatment stated a 19.167

ECU (16.04%) lower WTA for the chocolate bar than participants

in the NoRobot treatment. Still, this difference is not statistically

significant (p = 0.298, Mann-Whitney U test).30

The direction of the difference is the same for Worker 1 (1 =

27.083 ECU or 23.83%, p = 0.384, Mann Whitney U test) and

Worker 2 (1 = 11.250 ECU or 8.98%, p = 0.743, Mann Whitney

U test), which can also be seen from Figure 7B.

In line with what can be seen from the figure, the regression

results reported in Table 3 corroborate that there is no treatment

difference in the WTA for the non-monetary part of earnings. Yet,

the coefficient is negative in all specifications, ranging between

14.584 ECU and 24.703 ECU.

Result 2. We do not find evidence for a difference in the WTA for

the non-monetary part of earnings from the production round.

30 This test result is qualitatively identical when accounting for clustering

on the team level as suggested by Rosner et al. (2006) and Jiang et al. (2017)

(0.495).
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TABLE 1 Linear regressions of the share given or taken in the bully game.

Dep. Var.: Share transferred (1) (2) (3) (4) (5)

Robot 10.597∗ 10.449 12.144∗ 17.155∗∗ 11.102∗

(6.132) (6.502) (6.443) (6.718) (5.996)

Team production −2.149∗ −1.964∗ −0.617

(1.169) (0.965) (0.920)

Worker 2 −4.596 −2.518 0.862

(7.150) (8.077) (5.896)

Production in trial round −0.796 −0.232 2.221

(5.255) (5.240) (4.892)

Constant −7.432 −54.476∗ −18.110 10.704 42.088

(5.107) (32.102) (41.394) (55.789) (60.310)

R2 0.061 0.153 0.250 0.406 0.643

Observations 48 48 48 48 48

Demographics ✗ ✓ ✓ ✓ ✓

Context-related attitudes ✗ ✗ ✗ ✓ ✓

General Attitudes ✗ ✗ ✗ ✗ ✓

Robust standard errors in parentheses; ∗p < 0.10, ∗∗p < 0.05.

The complete regression results with all coefficients for all controls can be found in Supplementary Table 6. Results are robust to specifying clustered standard errors on the team level, as can be

seen in Supplementary Table 7.

TABLE 2 Ordered Probit regressions on whether Share transferred was strictly positive (3), equal to zero (2), or strictly negative (1).

Dep. Var.: Share Categorical (1) (2) (3) (4) (5)

Robot 0.347 0.379 0.480 0.982∗ 0.934∗

(0.329) (0.360) (0.358) (0.504) (0.517)

Team production −0.109∗ −0.135∗ −0.100

(0.062) (0.069) (0.070)

Worker 2 −0.187 0.121 0.744

(0.361) (0.517) (0.500)

Production in trial round 0.053 0.043 0.463

(0.301) (0.325) (0.373)

Pseudo R2 0.011 0.145 0.175 0.256 0.405

Observations 48 48 48 48 48

Demographics ✗ ✓ ✓ ✓ ✓

Context-related attitudes ✗ ✗ ✗ ✓ ✓

General Attitudes ✗ ✗ ✗ ✗ ✓

Robust standard errors in parentheses; ∗p < 0.10.

The complete regression results with all coefficients for all controls can be found in Supplementary Table 10. Results are robust to specifying clustered standard errors on the team level, as can

be seen in Supplementary Table 11.

This concludes our investigation into our preregistered

hypotheses.

5. Discussion

We found mild evidence for more prosocial behavior in

the Robot treatment compared to the NoRobot treatment. We

hypothesized that a lower valuation for the earned income

could have led to this result. While the WTA for the chocolate

bar was, on average, lower in the Robot treatment, that

treatment difference was not statistically significant. Given the

low number of observations, we cannot interpret this as evidence

for a null result. In the following, we discuss this limitation

together with other shortcomings of our design and present one

interesting finding from our sample that could be interesting for

future research.31

31 A set of further exploratory analyses on the survey responses can be

found in Appendix B.
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FIGURE 7

WTA for the chocolate bar. (A) Across treatments. (B) Across treatments and roles. Dots represent means. Whiskers represent 95% confidence
intervals. Dashed lines indicate the boundaries of admissible choices.

TABLE 3 Linear regressions of the WTA for the chocolate bar.

Dep. Var.: WTA (1) (2) (3) (4) (5)

Robot −19.167 −14.584 −15.361 −24.703 −14.700

(14.136) (14.202) (14.306) (23.473) (23.573)

Team production 1.334 1.969 1.297

(2.097) (2.331) (2.031)

Worker 2 18.476 36.707∗∗ 12.680

(14.640) (17.580) (19.322)

Production in trial round 0.210 −4.530 −11.302

(11.018) (13.624) (10.658)

Constant 119.458∗∗∗ 48.113 30.946 −0.564 84.360

(7.563) (72.088) (82.970) (143.738) (141.285)

R2 0.038 0.204 0.242 0.363 0.540

Observations 48 48 48 48 48

Demographics ✗ ✓ ✓ ✓ ✓

Context-related attitudes ✗ ✗ ✗ ✓ ✓

General Attitudes ✗ ✗ ✗ ✗ ✓

Robust standard errors in parentheses; ∗∗p < 0.05, ∗∗∗p < 0.01.

The complete regression results with all coefficients for all controls can be found in Supplementary Table 12. Results are robust to specifying clustered standard errors on the team level, as can

be seen in Supplementary Table 13.

5.1. Limitations of the experiment

We report results from a relatively small sample. This sample

size was chosen due to the intensive data elicitation process that

required a significant number of experimenters, labor hours of

assistants, and their focus when counting components. Thus, to

ensure the experiment could be adequately controlled and data

collection went smoothly, we opted for a straightforward design

with only two treatments and, thus, a smaller sample. Therefore,

our experiment is a good starting point for investigating human-

human interaction in the presence of physical and visible robots in a

natural manufacturing context. This opens the potential to, among

other things, investigate whether algorithm aversion (Dietvorst

et al., 2015, 2018) or appreciation (Logg et al., 2019) carry over

to physical robots or whether our results on the allocation of

responsibility are robust to the provision of incentives for shifting

responsibility to the robots.

Given this small sample size, however, any effects would

need to be rather large to be picked up by statistical tests. Our

experiment employed a comparably light treatment difference

from an economist’s perspective. We kept monetary and non-

monetary incentives identical across treatments, and, whereas

our treatment was administered in the production round, we

measured treatment differences in the subsequent stage that, in

itself, did not differ across treatments. Yet, the post hoc statistical

power for the tests of our two hypotheses is arguably too low to
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make our results conclusive.32 In combination with correcting for

multiple comparisons (List et al., 2019) and the resulting statistical

implications for the results of this paper, our experiment should be

seen as a starting point, demonstrating that economic experiments

in ecologically valid but yet fairly controlled environments, namely

learning factories, are feasible.

Participants received the chocolate bar if their individual

performance crossed a threshold. We implemented it this way to

allow for sampling Worker 1s even if Worker 2 was too slow to

cross that threshold. Yet, this performance is actually independent

of the robots’ productivity, at least forWorker 1. This might explain

why we see a slightly higher WTA for Worker 2 in Table 3, even

though only statistically significant in specification (4), which is

not the fully saturated specification. On the other hand, Figure 7A

instead seems to suggest that any potential treatment effect would

be lower for Worker 2 thanWorker 1, leading us to believe that the

same elicitation based on a threshold for the group performance

would not have lead to a greater difference than the one we

reported.

Our participant sample consisted predominantly of students

with some connection to engineering and manufacturing subjects

or STEM fields. As such, they are more exposed to robotics and

artificial intelligence and are likely to be keener to use technology.

More generally, students are relatively young and interact more

regularly with new digital technologies in their private lives than

other strata of society. Even though our participant pool is constant

across treatments, this would be problematic if it affected how

strongly participants perceive the Robot treatment to differ from

the NoRobot treatment. In fact, it seems plausible that we would

observe larger effects on people outside the context of a technical

university for whom production robots would be novel and

unusual.33

We cannot discuss generalizable claims from our small sample,

but we can discuss how hopeful one can be to obtain generalizable

results in future studies with larger samples and potentially in other

countries. In this study, we used a German sample, i.e., we ran

our experiment in a country with a relatively high share of GDP

attributed to the secondary or manufacturing sector. Bartneck et al.

(2005) though show that there are no large differences in robotic

attitudes to other industrialized countries, e.g., the US, Japan, or the

Netherlands, when it comes to interaction with a robot. We see this

as an indication that researchers can more broadly gain valuable

insights from using learning factories for studies on human-robot

interaction and human-human interaction in robot-augmented

setups.

32 For Hypotheses 1, our post hoc statistical power is at 44.12% for the

non-parametric test, and for the corresponding regression analysis, this

figure is at 64.06%. For Hypothesis 2, these figures are 30.59 and 26.56%,

respectively.

33 We compared the means of age and gender in our sample as well as the

distribution of study subjects to the summary statistics of the subject pool

at the time of the experiment as well as to another experimental dataset of

colleagues and found no systematic di�erences. Thus, as far as we can infer

from these characteristics, the invitation to the learning factory did not attract

a specific, tech-savvy subset of the subject pool.

FIGURE 8

Degree to which participants allocated responsibility to the other
participant (high value) as compared to themselves (low value) for
not having produced more components. Dots represent means.
Whiskers represent 95% confidence intervals. Dashed lines indicate
the boundaries of admissible choices.

Finally, our setup did not allow for a trade-off between quality

and quantity. The production task for both Worker 1 and Worker

2 was very simple, and bad quality and non-completion (i.e.,

simply handing the raw/input materials to the shelves) was almost

indistinguishable. As such, we only counted pieces of “good” quality

because incomplete intermediate products could not be processed

any further. However, as the production steps were so simple, we

essentially never observed a product of “bad” quality.

5.2. The allocation of responsibility in
hybrid human-robot teams

We asked participants to state who or what was responsible

for team production not being greater than it actually was. The

bully game decision might have resulted from responsibility being

shifted away from one participant to the other participant, the

robot, or the transfer station, respectively. Thus, a shift in how

workers allocate responsibility between themselves and the robots

(Kirchkamp and Strobel, 2019) or even blame-shifting (Bartling

and Fischbacher, 2012; Oexl and Grossman, 2013) could be

a mechanism explaining the increased amounts transferred in

the Robot treatment.34 Overall, between a participant and the

respective human coworker, there was no pronounced difference

in the allocation of responsibility between the two treatments (p =

0.439, Mann-Whitney U test). This still holds when we consider

the two roles separately (p = 0.939 for Worker 1 and p = 0.262

for Worker 2, Mann-Whitney U tests). This can also be seen in

Figure 8.

When we consider how responsibility was divided between a

participant and the transfer station (NoRobot treatment) or the

robot (Robot treatment) in Figure 9, we see that Station TR was

34 The way we measure perceived blame or responsibility in the survey is

similar to Kirchkamp and Strobel (2019), Hohenstein and Jung (2020), and

Leo and Huh (2020).
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FIGURE 9

Degree to which participants allocated responsibility to the transfer
station/robot (high value) compared to themselves (low value) for
not having produced more components. Dots represent means.
Whiskers represent 95% confidence intervals. Dashed lines indicate
the boundaries of admissible choices.

allocated less responsibility in the Robot treatment than in the

NoRobot treatment. This is in line with Leo and Huh (2020), who

also found that humans allocate more responsibility (or as the

authors call it, “blame”) for a mistake or bad outcome to themselves

than to robots. This difference is not statistically significant overall

(p = 0.101, Mann-Whitney U test). Still, looking at the two roles

separately, we find a marginally statistically significant treatment

difference only for Worker 1 (p = 0.072 for Worker 1 and p =

0.434 for Worker 2, Mann-Whitney U tests). This might have been

driven by the fact thatWorker 1s could watch the robot throughout

Stage 2 in their peripheral view. In contrast, Worker 2 would only

see the robot when turning to get another intermediate product for

their production step.

Consider Figure 10. When we asked participants how they

would divide responsibility between the transfer station (NoRobot

treatment) or the robot (Robot treatment) on the one side and

the human coworker on the other, we found that the participants

allocated more responsibility to the other participant than the

robot.

This difference is statistically significant (p = 0.014, Mann-

Whitney U test). Looking at the two roles separately, we also find

this statistically significant treatment difference for Worker 1 but

not Worker 2 (p = 0.034 for Worker 1 and p = 0.168 for Worker

2, Mann-Whitney U tests). As with the previous response to the

allocation of responsibility, this might be due to different visual

exposure to the robot between the roles.

Note that these variables were included in the Context-related

attitudes in our regression specifications where we saw the largest

effect both in size and statistical significance of the treatment

coefficient (see Tables 1, 2).

6. Conclusion

We report evidence from a field-in-the-lab experiment in

which we varied the team composition from a human-human

FIGURE 10

Degree to which participants allocated responsibility to the transfer
station/robot (high value) compared to the other participant (low
value) for not having produced more components. Dots represent
means. Whiskers represent 95% confidence intervals. Dashed lines
indicate the boundaries of admissible choices.

team to a hybrid human-robot team. We find suggestive evidence

that the robots in our experiment changed the social context

of the work interaction, leading to more prosocial behavior

among the human workers in the bully game. We find no

statistically significant evidence that the valuation for earned

income differs between our treatments. Our data suggests that

the participants blamed themselves and the other participant

in their team more than the robot for not having produced

more in the production round. This has important implications

for future research into the diffusion of responsibility in hybrid

human-robot teams. The fact that they do not use the robots

as scapegoats for productivity issues shows a relatively high

acceptance of robots in the task. The negative reading is that people

might rely too strongly on the robots’ performance and overly

search for responsibility in their human coworkers. This could

create tensions in the long run. Future studies, investigating how

social pressure during the production round and prolonged and

more complex interaction in hybrid teams affect these behaviors,

potentially in settings in which workers need to make more

autonomous decisions during production, could answer these

questions.

Beyond the study of social interactions between humans

and income valuation in hybrid human-robot teams, our field-

in-the-lab approach (Kandler et al., 2021) offers a promising

methodology for studying various aspects of human-machine

interaction in work environments, including issues related to

“robotic aversion,” a more direct investigation of the allocation

of responsibility in hybrid human-robot teams, and the optimal

design of hybrid-team work environments. A key advantage of

this approach is its ability to replicate real-world conditions

and processes in a controlled laboratory setting. It allows

researchers to manipulate variables of interest and measure

the impact on human behavior and performance. For example,

when studying “robotic aversion,” researchers could manipulate

a robotic co-worker’s autonomy level and measure the impact

on human attitudes and behavior toward the robot. Another
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advantage of the field-in-the-lab approach is its ability to

capture dynamic interactions between humans and machines

over time. By running experiments over multiple rounds or

sessions, researchers can track how attitudes and behaviors evolve

as individuals become more familiar with their robotic co-

workers. This is particularly relevant for studying issues related

to shared responsibility and blame-shifting, as these behaviors

may change as humans become more accustomed to working

with robots.
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