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Abstract
Individual travel behavior, such as mode choice, is determined to a distinct degree by the respective portfolio of available
mobility tools, such as the number of cars, public transit pass ownership, or a carsharing membership. However, the choice
of different mobility tools is interdependent, and individuals weigh alternatives against each other. This process of parallel
trade-offs is currently not reflected in typically used sequential logit models of agent-based travel demand models. This study
fills this research gap by applying discrete choice and neural network models on a synthetic population to model multiple
mobility tool ownership simultaneously. Using data from a national household travel survey, both model types approximated
the given target distributions of mobility tools more accurately than the sequence of three corresponding logit models.
Owing to its greater flexibility, the tested shallow and deep neural network exhibited higher predictive accuracy than simulta-
neous discrete choice models. The results indicated that neural networks with only one hidden layer were more robust and
easier to formulate and interpret than deep networks with three hidden layers. Finally, the flat neural network was applied to
a different synthetic population resulting in equally accurate results.
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Ownership of mobility tools, including the ownership of
a car, of a public transit pass, or membership of a car-
sharing provider, strongly influences a person’s mobility
behavior. It determines mode choice to a great extent
because only if a person owns a car, for example, can he
or she consider it an available mode. Therefore, to
address, for example, the question of how individual
motorized transport can be reduced and more environ-
mentally friendly alternatives (public transport, sharing
services, etc.) simultaneously strengthened, it is not suffi-
cient to focus only on mode choice behavior, but also on
the choice of mobility tools. Therefore, precise modeling
of mobility tool ownership in travel demand models
(TDMs) is essential to simulate actual mobility behavior
reliably.

In research, primarily agent-based TDMs are used for
this purpose. In contrast to aggregated approaches, these
offer the advantage of considering individual characteris-
tics of agents and thus mapping the interrelationships on
individual mode choice decisions. Consequently, agent-
based TDMs also model the ownership of mobility tools
at the level of the individual. This information, in turn,
influences the individual choice sets of agents in their
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mode choice, thus contributing to a more realistic model-
ing of mobility behavior.

The consideration of mobility tools in TDMs is not a
new field. Internationally, car ownership, in particular,
has been modeled for quite a long time, as has the owner-
ship of public transit passes in German TDMs. In con-
trast, the consideration of membership models of new
mobility service providers such as carsharing has received
little notice in recent years. However, the current state of
the art in TDMs is to model the ownership of each mobi-
lity tool separately. Consequently, the order in which
individual mobility tools are modeled determines which
information can be included in subsequent mobility tool
ownership models. In reality, however, decisions are not
necessarily made sequentially and independently of each
other, but rather ownership of a car is weighed against
ownership of a public transit pass, for example.

Therefore, our work aimed to develop a mobility tool
ownership model that reflects the ownership of cars, the
ownership of a public transit pass, and membership of a
carsharing provider as a simultaneous decision. As the
modeling environment, we used the agent-based TDM
mobiTopp. Different modeling approaches were applied,
and the models’ results were compared with each other.
First, simultaneous modeling approaches were estimated
based on discrete choice theory, widely used in transpor-
tation research. Second, simultaneous approaches based
on machine learning (i.e., neural networks) were devel-
oped, which is a new technique in modeling mobility tool
ownership.

This paper is organized as follows. First, we overview
existing modeling approaches for mobility tool owner-
ship. Second, we briefly introduce the agent-based TDM
mobiTopp we applied in our study. Third, the data used
for the model estimation are described. Fourth, the devel-
opment of discrete choice and machine learning (ML)-
based modeling approaches are explained. Consequently,
the models’ results are compared, and the results of the
approach with the best model fit are interpreted. Finally,
we show the applicability of the selected model to a dif-
ferent study area and give our conclusions.

Literature Review

Car ownership models have been subject to extensive
research since the 1990s (1, 2). However, introducing
mobility tools as a generic concept and modeling multi-
ple mobility tools only emerged gradually at the turn of
the millennium. From the beginning, mainly simulta-
neous modeling approaches of mobility tool ownership
were followed. However, these were not part of agent-
based TDMs.

Among the first authors who studied multiple mobility
tools in a simultaneous decision model were Simma and

Axhausen in 2001 (3). To this day, far-reaching findings
on mobility tools can be traced back to their research.
The authors’ study was the first to demonstrate a nega-
tive impact of car availability on public transit passes.
They applied a simultaneous equation model to survey
data from Switzerland, Germany, and the Netherlands.
Commitment to one mobility tool significantly increased
its modal use and decreased the use of other modes. Scott
and Axhausen applied a bivariate ordered probit model
to the number of cars and public transit passes in the
household to demonstrate a substitution effect between
them (4). Because of that substitution effect, Vovsha and
Petersen emphasized that individual, closely linked mobi-
lity tools should be modeled together in one modeling
step (5). Yamamoto concluded that for modeling bundles
formed from car, motorcycle, and bicycle ownership, the
structure of the multinomial logit model (MNL) could
best represent bundle decisions (6). Similar to Beige and
Axhausen (7) and Vovsha and Petersen (5), the authors
had difficulties finding an adequate nesting structure.
Axhausen and Beige (7, 8) applied an MNL, a nested
logit model (NL), a cross-nested logit model (CNL), and
a multivariate probit model (MVP). The MVP applied to
six mobility tool bundles better represented the interac-
tions between these bundles through correlated error
terms. The correlated error terms of bundles are highly
significant, which was the authors’ justification for using
the MVP and the simultaneous modeling approach. This
increased explanatory potential manifested in a notice-
ably higher coefficient of determination, R2, than the
logit models, especially the CNL. In addition to ‘‘tradi-
tional’’ mobility tools, modeling carsharing membership
was first done by Becker et al. in 2017 (9). The authors
considered carsharing membership to be part of a portfo-
lio of multiple mobility tools from which individuals
simultaneously choose in a single underlying decision
process. The results suggest that in cities where carshar-
ing is available, it should be considered as a mobility tool
in the decision-making processes to be modeled.

The sequential approach is found less frequently in lit-
erature. Early researchers include Beige and Axhausen in
2004, who first applied a sequence of three MNLs to
model three mobility tools (driver’s license ownership,
car ownership, and transit pass ownership) sequentially
(10). The influence of the exogenous mobility tool vari-
able in the respective subsequent models was consider-
able. However, most transport-related TDMs consider
mobility tool ownership in a sequential approach based
on different discrete choice models (DCMs). Hillel et al.,
for example, modeled the driver’s license, number of cars
per household, and public transit pass ownership with
MNLs in the agent-based model SIMBA MOBi (11).
However, they stated an insufficient accuracy at the
regional level for modeling driver’s license ownership
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and the number of cars per household by the sequential
logit approach., Horni et al. give additional insights into
the sequential modeling procedure in the agent-based
TDM MATSim (12).

Recently, there has been a trend toward using ML
models to analyze individual choice decisions. Most ML
models for decision modeling in transportation planning
deal with the mode choice decision. For the modeling of
mobility tools, only car ownership has been represented
to a small extent in ML models to date. Paredes et al.
compared the prediction accuracy of several ML models
to that of an MNL (13). The classification task was to
predict the number of cars (0, 1, and 2+). The authors
emphasized the importance of preprocessing the dataset
for ML models, all of which had higher predictive accu-
racy than the MNL tested. In ML models, depending on
the type used, the rules for classifying households are
said to have little to no transparency. Wang et al. com-
pared 102 ML models and three DCMs using three data-
sets, three sample sizes, and three output variables (mode
choice, car ownership, and trip purpose) (14). An MNL,
NL, and mixed logit model were applied for the car own-
ership model. The top 10 ML models for car ownership
had at least 11% higher accuracy than the best logit
model, MNL. Therefore, Wang et al. are among several
researchers advocating the increasing use of ML models
in transportation modeling (14).

Axhausen and Beige were the first researchers to build
bundles from mobility tools to be able to equip agents in
TDMs with multiple mobility tools based on a simulta-
neous decision model (7, 8). Most authors prefer this
simultaneous approach in research to the sequential
approach for modeling multiple mobility tools with
DCMs. The variety of differently formulated DCMs
proves the effort and assumptions that are necessary
before modeling. However, the observable tendency
toward the increased use of ML models in transportation
modeling, and its lacking application in microscopic
TDMs, encourage the use of ML models for the simulta-
neous modeling of mobility tool ownership and compar-
ing their power with corresponding DCMs.

Agent-Based Travel Demand Model
mobiTopp

For the present study, we used the open-source software
mobiTopp to analyze the effects of a simultaneous mobi-
lity tool ownership model. mobiTopp is an agent-based
TDM. Therefore, every person in a designated planning
area is modeled as a single entity with individual charac-
teristics (15). The travel demand simulation of each agent
is based on a distinct activity program, which determines
the time and duration of each activity an agent performs
during the simulation period (16). The program itself is

generated and executed within the framework. For the
simulation period of one week, an agent chooses a desti-
nation for each activity in the corresponding activity pro-
gram. Subsequently, a mode to get to the destination is
chosen. For the representation of choice behavior,
DCMs are applied, which guarantees autonomous,
situation-dependent decision making (17).

The framework of mobiTopp consists of two modules:
a long-term and a short-term module. The core of the
long-term module is the generation of a synthetic popula-
tion. Based on household travel survey data, households
and persons or agents are generated so that aggregated
statistics according to age and gender distributions, and
so forth, are met. Moreover, the agents’ workplaces or
locations of educational institutions are determined as
fixed locations. Further characteristics of the synthetic
population are modeled separately. Of particular interest
in this study was the modeling of the mobility tools,
which also takes place at this stage within mobiTopp.
First, the number of cars per household is modeled
mainly based on household characteristics. Second, a
binary logit model is applied to decide whether an agent
owns a public transit pass, considering sociodemographic
characteristics but also, for instance, the number of cars
in an agent’s household. Third, additional mobility tools,
namely the membership of a carsharing, bikesharing, or
e-scooter provider, are determined by distinct binary
logit models. All characteristics determined in the long-
term model remain fixed over the entire simulation
period.

Simulation of the agents’ activity-based mobility beha-
vior takes place in the short-term module. During the
simulation period, the activity program of each agent is
executed chronologically and simultaneously, and desti-
nation and mode choice models are applied. However, as
only the long-term module is of interest in this study, we
refer to a more detailed model description in research
undertaken by Mallig et al. (18), Briem et al. (19), or
Mallig and Vortisch (20).

mobiTopp has been applied successfully to several
planning areas. In this study, we used the latest applica-
tion of mobiTopp in the city of Hamburg, Germany,
and surrounding areas. However, we focused on the city
area, in which about 1.8million persons are represented.
As an indicator of the transferability of the developed
approach, we also refer to the application of mobiTopp
in the region of Karlsruhe, Germany, representing about
2.1million persons.

Data

This study used data from the national household travel
survey Mobility in Germany (MiD) from 2017 (21), from
which 14,666 respondents could be selected for the city
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of Hamburg. However, because of missing responses for
relevant endogenous and exogenous variables and the
exclusion of individuals under the age of 14, only 6,328
observations on individuals in 4,982 different households
could be used for further model development. The three
mobility tools and thus dependent variables of interest
were car availability, carsharing membership, and public
transit pass ownership. In this study, the latter was
defined as a ticket that allows users to use public trans-
port in a specific area for at least 1 month, usually at no
marginal cost, in return for a one-time payment. Owing
to the design of the personal questionnaire, it was impos-
sible to define car ownership. Instead, car availability
was used based on responses to the household question-
naire. A car was considered available to a person if the
household owned at least one car and the person was at
least 18 years old. In our model, a person was a carshar-
ing member when he or she reported having a member-
ship of at least one carsharing provider. In total, 75.4%
of all persons in our dataset stated that they had a car
available, whereas only 15.4% were considered to be car-
sharing members. About a third of the respondents in
Hamburg claimed to own a public transit pass.

To apply trained or estimated decision models based
on the survey data to the synthetically generated popula-
tion of mobiTopp, the exogenous independent variables
of both datasets had to be matched. Therefore, only the
survey variables that were also available for the synthetic

agents could be used for training, estimation, and
testing. Figure 1 provides some basic summary statistics
of the sociodemographic variables for the N = 6, 328

respondents.
Categorical variables were recoded into dummy vari-

ables for all models. Economic status was a calculated
variable determined by the equivalized income based on
household size and income.

Model Estimation

Although in research as well as in application DCMs
from the field of statistics are state-of-the-art in the mod-
eling of mobility tools, ML models have been increas-
ingly encountered in various disciplines in recent years.
Both model classes are suitable for representing individu-
als’ decision making and will be applied in this section to
evaluate their potential to simultaneously model mobility
tool ownership in TDMs. To represent simultaneity in
the decision-making process and because individuals
may own more than one mobility tool, 23 = 8 bundles
were formed based on three individual mobility tools.
For these bundles, the following notation were used:

� None: No mobility tool
� Car: Car availability
� CS: Carsharing membership
� PT: Public transit pass

Figure 1. Sociodemographic characteristics used in model application.
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� Car+CS: Car availability+Carsharing membership
� Car+PT: Car availability+Public transit pass
� CS+PT: Carsharing membership+Public transit

pass
� All three: Car availability+Carsharing member-

ship+Public transit pass

Discrete Choice Models

Discrete choice theory goes back to McFadden (22, 23)
and was further developed by Ben-Akiva (24), among
others. From this class of models, the widespread MNL,
NL, and CNL were applied to the modeling object of this
study, using the Apollo package in R for implementation
(25). For all three DCMs, the eight defined bundles of
mobility tools represented mutually exclusive and collec-
tively exhaustive choice alternatives. Despite the several
advantages of the MNL model, such as its theoretical
soundness and mathematically simple and comprehensi-
ble analytical structure, the main concern of the MNL
remained the potential violation of the independence
from irrelevant alternatives (IIA) property. The IIA
property was not likely to be valid as some mobility tool
bundles were closer substitutes than others. Allowing for
correlations between the utilities of alternatives in com-
mon nests, the NL and CNL models have been suggested
and widely established (24, 26, 27). In an exploratory
approach, an expedient nest structure with the three nests
‘‘Car, Car+CS,’’ ‘‘Car+PT, All’’ and ‘‘CS, PT, and
CS+PT’’ was identified for the NL.

Contrary to several other nest structures, this structure
yielded reasonable nest coefficients and a satisfactory
approximation of the actual benchmarks of the mobility

tools. In the CNL, the bundles with only one mobility
tool were located on the first level. On the next level,
combined mobility tool bundles were connected to the
higher-level nests if the bundle contained the depicted
mobility tool of the nest. Since bundles belonged to mul-
tiple nests in the CNL, this model could model a more
flexible correlation structure than the NL. Figure 2 illus-
trates the structure of both models and presents a sum-
mary of relevant statistics.

In the DCMs, all numeric and categorical variables
were dummy-coded. Table 1 shows how many depen-
dent variables were included in the utility functions of
the different simultaneous models and the sequential
submodels. For the simultaneous DCM, the number of
dummy-coded variables differed from bundle to bun-
dle. Similarly, a different number of variables were
used in the multiple utility functions of the sequential
model. For details on the car ownership model as part
of the sequential DCM, we refer interested readers to
Barthelmes et al. (28).

Neural Networks

Neural networks (NNs) are an ML method from artifi-
cial intelligence. These mimic the physiology and func-
tioning of the human brain. The aim is to simulate how
‘‘the human brain processes information’’ (29), which is
why NNs are suitable for reproducing the decisions of
real people for artificially generated agents. In recent
years, a steady increase in ML concepts for decision anal-
ysis has been observed in several fields, including busi-
ness, biology, and transportation.

In the transportation sector, ML models are increas-
ingly challenging the McFadden-based class of DCMs.

Figure 2. Structure and main results of estimated discrete choice models.
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In research, both approaches are applied to individual
decisions and compared with respect to several criteria,
for example, predictive accuracy, interpretability, and
robustness (14, 30–32). ML models achieve their super-
iority over DCMs in particular owing to the low prepro-
cessing effort, no structural assumptions being necessary,
no nest structure requiring specification in advance, the
consideration of nonlinearities, and the inclusion of all,
and thus also correlated, variables as inputs. Therefore,
users do not need expertise, domain-specific knowledge,
or experience to specify a decision model with utility
functions. Owing to this high flexibility and predictive
power, the class of ML models represents a legitimate
alternative to DCMs to model the decision of mobility
tool ownership simultaneously.

To balance overfitting and underfitting, complex
problems require complex models and simple problems
require simple models. According to the universal
approximation theorem, an NN with only one hidden
layer containing a finite number of neurons can approxi-
mate any continuous function with reasonable accuracy,
whereas more complex NNs are used in various applica-
tions today (33, 34). Since ML models have not been
applied to multiple mobility tools to date, two extremes
of NNs with respect to the complexity of the network
structure were applied to the modeling object: a simple
shallow NN (SNN) and a wide, deep NN (DNN).

The SNN was implemented using the CARET pack-
age in R, and the DNN using the advanced keras pack-
age (35, 36). Both the SNN and the DNN had 21
neurons in their input layer and eight neurons in their
output layer, representing the eight bundles of mobility
tools. The SNN, as shown in Figure 3, had one hidden
layer with 24 neurons.

This number resulted from an exploratory analysis of
different widths of the network. Twenty-four neurons in
the hidden layer achieved the slightest deviations on the
test dataset concerning cross-validation and meeting the
target distribution of mobility tool bundles after

application to the synthetic population. In a similar
approach, layer widths of 100, 80, and 60 were deter-
mined for the three hidden layers of the DNN.
Additionally, dropout rates of 0, 0.2, and 0.3 were tested
and applied to layers of the DNN. To incorporate nonli-
nearity, the activation function used in the hidden layer
in the SNN was the logistic sigmoid function, and the
rectified linear unit function (ReLU) in the DNN. The
latter was used in the DNN to prevent the problem of
vanishing gradients. Combinations of the ReLU function
required the hidden layers of the DNN to consist of a
higher number of neurons.

The softmax function represented the activation
function of the output layers of both networks. As
shown on the right in Figure 3, the softmax function
was applied to calculate probabilities in output layers
of classification problems with more than two labels.
The cross-entropy function was used as a loss function.
It measured the performance of a classification model
whose outputs were probability values between 0 and
1. Combining this loss function with the softmax acti-
vation function in the output layer has the advantage
that the output values of an NN can be interpreted as
probabilities. Moreover, the value of the cross-entropy
loss function can be interpreted as a negative log-
likelihood value. Thus, the log-likelihood value of a
DCM can be compared with the value of the cross-
entropy loss function in an NN. The loss function of
the converged SNN had a significantly lower loss func-
tion value of 7,279.35 than the best logit model, the
NL, with a value of 7,905.51. This higher model good-
ness of fit to the data can be attributed to the flexible
modeling capabilities of the NN.

The stochastic gradient method is an optimization
algorithm to minimize the cross-entropy function.
Further development of the gradient method, the
‘‘Adam’’ optimization algorithm, showed a slightly
higher deviation from the target distributions with other-
wise identical hyperparameters. The backpropagation

Table 1. Overview of the Dependent Variables in the DCMs

Variable Sim. DCMs: variable type Seq. DCMs: variable type

Alternative specific constant Constant Constant
Household size Up to four dummy-coded variables Up to three dummy-coded variables
Household type Up to four dummy-coded variables Up to three dummy-coded variables
Household income Up to five dummy-coded variables Up to four dummy-coded variables
Age Up to four dummy-coded variables Up to five dummy-coded variables
Employment Up to nine dummy-coded variables Up to nine dummy-coded variables
Sex Binary Binary
Bicycle ownership Binary Not used
Car driving license Binary Binary or not used
Car and/or transit pass ownership na According to modeling sequence

Note: DCM = discrete choice model; Sim. = simultaneous; Seq. = sequential; na = not applicable.
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method minimizes the cross-entropy loss function by
adjusting the weights. Using this gradient descent proce-
dure, the weights from the last to the first layer were
optimized to minimize the difference between the calcu-
lated output of the NN and the correct label. These pro-
cesses enabled learning in the true sense. For the SNN,
the learning rate and the decay parameter were set to
default values. For the more complex DNN, additional
hyperparameters could be set in the package used, pri-
marily to accurately approximate the given target distri-
bution of the household survey MiD used.

Finally, from the eight probabilities calculated by the
NNs, a bundle of mobility tools was assigned to each of
the over 1.6million agents older than 14 years. The calcu-
lated probabilities formed the base for a cumulative dis-
tribution function, in which a mobility tool bundle with
a higher probability covered a greater proportion of the
function’s definition span between 0 and 1. Afterwards a
random number was drawn between 0 and 1, the same
range as the distribution function. Based on the random
number the distinct mobility tool bundle was assigned.
The same procedure was also applied for the DCMs.

Results and Discussion

In this section, we will first compare the goodness of fit
of the previously presented models with regard to their
accuracy in modeling mobility tool ownership. Second,
further insights into the interpretation of the SNN are
given. Finally, we apply the ML model to a different
study area and analyze the results.

Comparison of Models’ Goodness of Fit

The models were assessed by comparing the deviation of
the distribution of the predicted mobility tool bundles of
the synthetic population of Hamburg from the given tar-
get distribution based on the reported characteristics in
MiD 2017 of Hamburg’s citizens. Key results of this
comparison are presented in Table 2. The last row repre-
sents the benchmark or true distribution against which
the models were tested. According to the sequential logit,
the results of the calibrated and the uncalibrated model
are presented. Although the latter refers to the raw esti-
mated logit, in the calibrated approach, the model’s

Figure 3. Shallow neural network of mobility tool bundle ownership.
Note: I = input; H = hidden; O = output; B = bias.
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parameters were adapted to meet the distribution of the
three single mobility tools—Car, CS, and PT—not only
overall but also in meeting the distributions of incorpo-
rated influencing factors such as age and gender. The
calibration was also done sequentially for each of the
mentioned mobility tools.

The two models developed in this work that most
accurately approximated the target distribution of the
MiD were the DNN and the SNN. The summed devia-
tions were 11.9% and 14.6%, respectively. All three
simultaneous logit models performed differently.
However, all of them underestimated the proportion of
agents without mobility tools and with public transit
passes. Although the MNL and CNL had slightly higher
deviations than the SNN, the predicted probabilities of
the NL had a comparatively high inaccuracy of 23.2%.
It was to be expected that a simultaneous modeling
approach would outperform an uncalibrated, sequential
model. However, the high deviations of the existing
sequential logit model in the uncalibrated version, which
resulted from the maximum likelihood estimation proce-
dure, were striking. The exceptionally high share of car
availability and low share of public transit pass owner-
ship in the uncalibrated sequential logit model may be
related to the modeling order: in the first step, car owner-
ship was modeled at the household level, which had a
significant negative impact on public transport pass at
the second modeling level. Only by calibration does the

sequential logit model achieve an accuracy exceeding the
simultaneous models. However, this manual intervention
requires substantial effort. The availability of reliable
target distributions is mandatory, and it aligns a model
to a specific case, which may restrict its applicability in
another (regional) context. For both NNs, the best effort
was put into estimation and validation, but no further
calibration was performed for the NNs or for the simul-
taneous DCMs. Therefore, those models should be com-
pared in the first instance with the uncalibrated
sequential logit model. All developed models underesti-
mated the proportion of agents without mobility tools
and overestimated the proportion of agents with car
availability, except for the overall inaccurate NL. This
overestimation may be related to the definition of car
availability as a mobility tool.

Table 3 shows the accuracy of selected models for the
most striking sociodemographic characteristics. The
accuracy rates represent the deviation of the models—
applied to mobiTopp’s synthetic population—in compar-
ison to the target values of the MiD for the distribution
of the selected sociodemographic variables. In this sense,
0.00% would represent a perfect fit for the correspond-
ing distribution of a sociodemographic characteristic.
The deviations presented are averaged over all mobility
bundles.

An analysis of the variables presented and the remain-
ing variables argued for the predictive accuracy of NNs.

Table 2. Model Comparison with respect to Target Mobility Tool Distributions for Hamburg

Models None (%) Car (%) CS (%) PT (%) Car+CS (%) Car+PT (%) CS+PT (%) All three (%) Deviation (%)

SNN 11.0 41.8 2.4 14.4 6.2 15.9 4.4 3.9 14.6
DNN 10.1 38.2 2.3 16.4 6.4 16.9 5.3 4.4 11.9
CNL 9.7 38.6 4.5 13.6 7.5 15.4 6.1 4.6 16.6
NL 9.1 35.0 2.9 13.5 14.7 14.0 5.0 5.8 23.2
MNL 10.0 41.7 2.5 14.2 6.2 17.1 4.7 3.6 16.2
Seq. logit (uncalib.) 10.8 44.7 2.0 6.9 9.4 15.4 2.8 8.0 34.0
Seq. logit (calib.) 14.0 37.3 2.3 17.2 6.2 14.8 5.0 3.2 3.0
Target MiD 14.3 37.3 3.1 17.4 5.8 13.9 4.8 3.4 na

Note: CS = carsharing membership; PT = public transit pass; SNN = shallow neural network; DNN = deep neural network; CNL = cross-nested logit

model; NL = nested logit model; MNL = multinomial logit model; Seq. = sequential; uncalib. = uncalibrated; calib. = calibrated; MiD = Mobility in Germany;

na = not applicable.

Table 3. Model Comparison Concerning Agents’ Age, Sex, and Household Income

Models SNN (%) DNN (%) MNL (%) Seq. logit (uncalib.) (%) Seq. logit (calib.) (%)

Age 3.25 3.45 4,73 6.11 5,84
Sex 2.50 2.63 2.13 4.38 3.38
Household income 3.95 3.59 4.88 9.85 6.37

Note: SNN = shallow neural network; DNN = deep neural network; MNL = multinomial logit model; Seq. = sequential; uncalib. = uncalibrated; calib. =

calibrated.
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The SNN most accurately approximated the target dis-
tributions of sociodemographic characteristics of the
eight mobility tool bundles across all characteristics. The
MNL, as the most accurate simultaneous DCM, had, on
average, an insignificantly lower precision than the
SNN. The uncalibrated logit model clearly missed the
target distributions within the eight mobility tool classes
for the displayed sociodemographic characteristics, as
well as on average. Although the calibrated sequential
model obtained the best overall accuracy according to
the target distribution of all mobility tool bundles, Table
3 shows that the calibrated model was lacking in meeting
the structural sociodemographic patterns within each
mobility tool bundle. Therefore, no significantly higher
accuracy was achieved by calibration. These still high
deviations indicated inconsistency within the mobility
tool classes. In an agent-based model, the most striking
benefit is to be able to depict such structural differences,
which the current calibrated logit model seemed to do
worse than the simultaneous approaches, specifically the
NNs. Furthermore, during the calibration process, a lot
of effort was made to align the model with the overall
target distributions of all mobility tool bundles, also
respecting the sociodemographic characteristics within a
mobility tool, as described before. For the simultaneous
approaches, this effort was not made. Nonetheless, the
models showed significantly better results, leading to the
assumption that simultaneous modeling of mobility tool
ownership may better reflect sociodemographic patterns
even though the overall accuracy may be lower.

In summary, the NNs outperformed the simultaneous
DCMs and the sequential logit model and exhibited high
sociodemographic consistency within mobility tool bun-
dles. Although the DNN had a slightly higher accuracy
than the SNN, its disadvantages as a more complex
model included the increased effort required to find an
adequate combination of hyperparameters for the given
problem, the observed high sensitivity to changing hyper-
parameters, and the tendency toward overfitting (14, 37).
The SNN exhibited greater robustness to changes in the
number of neurons, more straightforward interpretabil-
ity, and a low risk of overfitting. As a simply constructed
network, it was suitable for the comparatively simple
classification task in our study. However, were the com-
plexity to increase by adding hidden layers, combining
neurons with nonlinear activation functions across multi-
ple hidden layers would lead to models that could not be
evaluated with a mathematical formula. For the sequen-
tial logit model, extensive calibration of the model was
necessary. However, within the eight mobility tool bun-
dles, there were still significant inconsistencies with
MiD’s sociodemographic control variables in the sequen-
tial DCM. Therefore, the validity of the hierarchical
approach of the sequential logit, which considered causal

relationships between mobility tools in only one direc-
tion, was questionable, as the order in which each mobi-
lity tool was modeled influenced the information that
could be used in subsequent mobility tool models.
Simultaneous models differently consider causal interac-
tions between mobility tools in both directions: all mobi-
lity tools can influence each other because the decision
on all mobility tool bundles is taken at the same time in
one model, reflecting each other’s dependencies.

According to Janiesch et al., for the selection of the
appropriate model, several factors, not solely the models’
accuracy, have to be considered (37). Based on the over-
all accuracy, the DNN performed best, followed by the
SNN, and then the simultaneous MNL. Considering the
advantages of the SNN over the DNN in our study, as
described before, we decided to favor the SNN as the
model with the second-best performance in the course of
our study. Although the simultaneous MNL was a sim-
pler model, its performance was worse than the SNN.

Interpretation of Results of the NN

The interpretability of NNs is highly relevant for con-
trol, transparency, trust, and the generation of new
knowledge. In DCMs, coefficients provide information
about an attribute’s influence on an alternative’s util-
ity. In NNs, coefficients cannot be read off, and the
processes within a network remain hidden from the
user, which is why complex NNs, in particular, are con-
sidered to be ‘‘black boxes’’ (30, 38). Consequently,
numerous methods have been developed in recent years
to open the black box of an NN. Accumulated local
effect (ALE) plots represent a modification and further
development of the widely applied ‘‘partial dependence
plots.’’ They overcome the strict assumption of partial
dependence plots, in which features must be uncorre-
lated. Moreover, they are much less computationally
intensive. An ALE plot calculates the change in a
class’s prediction at a location, x, when the values of a
feature change around x.

In the following, the ALE plots of the significant,
meaningful features in the SNN are analyzed. The
methods of permutation feature importance (39) and
that of Olden (40) showed the importance of the vari-
able ‘‘age’’ in the SNN. Figure 4 reveals that from the
age of 75, the probability of not owning a mobility tool
rose. The probability of only having a car available in
the household increased sharply with age. The ‘‘PT’’
and ‘‘Car+PT’’ bundles were relatively independent of
age, which was consistent with previous findings. For
young adults, the likelihood of having a carsharing
membership increased. From the age of about 50, this
characteristic had a negative impact on bundles con-
taining carsharing membership.
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In addition to age, household income had a significant
impact on the provision of mobility tools, as its high val-
ues of the feature importance methods suggest. The ALE
plots of this variable showed reasonable effects, as pre-
sented in Figure 5. For households with a monthly
income lower than around e2,500 (e1 = $1.13; year of
reference: 2017), the probability of not having a mobility
tool increased. The probability of having only a car avail-
able increased for persons with a household income up to
about e2,500, whereas the probability slightly reduced
for higher incomes. The probability of having a comple-
mentary carsharing membership in addition to a car
available followed a monotonous increasing curve with a
positive probability contribution of primarily wealthy
households with a monthly income exceeding around
e4,000. A combination of car availability and public
transit pass ownership tended to be observed increasingly
among households with incomes between e2,500, and
e7,500. For households below this range, the probability
was reduced. In lower income ranges, the probability of
owning only a public transit pass increased. It can be seen

that persons in higher-income households tended to sup-
plement an available car with personal mobility tools.

Household size must also be considered when analyz-
ing household income. The influence of not owning a
mobility tool was negative and fell steadily to 215% for
households with three persons or more compared with
the average prediction. People in households with at least
three members increasingly chose the ‘‘Car+PT’’ bundle
at an above-average rate. The ‘‘Car’’ bundle experienced
a significant increase in utility for individuals in two-
person households to more than 10% above the average
prediction for this bundle. Unsurprisingly, exclusive car-
sharing membership became less attractive for larger
households. This was similarly true for the ‘‘PT’’ bundle,
which had an increased probability for a one-person
household.

The ALEs of these variables and those not presented
here were consistent with the results of previous research
and considerations of behavioral theory. Although the
interpretability was not at the level of a DCM, the ALE
plots increased the interpretability of the NNs. Also,

Figure 4. Accumulated local effect plot for variable ‘‘age.’’
Note: CS = carsharing membership; PT = public transit pass.
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pointing out nonlinearities could help users to judge
inputs’ meaningfulness and plausibility.

Application of the Developed Method to a Different
Area

The question arises as to what extent the methodology
used could achieve comparably good results in other
study areas and under different framework conditions,
or whether the NN methodology was too strongly tai-
lored to the data of Hamburg. This investigation was an
important feature and prerequisite to confirm the results
of the approach.

After the NNs had achieved precise and consistent
results for the city of Hamburg, an NN was transferred
to the synthetic population of the mobiTopp application
in the metropolitan area of Karlsruhe, Germany, by
retraining the SNN. Only the SNN was applied, as this
model performed better than the other simultaneous
approaches and confirmed with with a lower risk of over-
fitting and greater robustness than the DNN. DCMs were

not considered as they had a worse overall performance
for the Hamburg model, and were also less capable of
precisely reflecting sociodemographic characteristics in
the mobility tool ownership decision as presented in
Table 3. Owing to restrictions in the regional aggregation
level of the previously used MiD dataset, a different MiD
dataset with less detailed sociodemographic information
had to be used to restrict the dataset to being as close as
possible to the planning area of the Karlsruhe model.
Thus, a new training and testing dataset was used for the
SNN. Compared with Hamburg, the modeled area con-
tained more rural regions, leading to a different, more
unbalanced distribution of mobility tool bundles. The
SNN was trained with a population of an area that
included 1.76million inhabitants in reality, whereas the
population of the modeling area in mobiTopp was
2.09million agents. The available sociodemographic vari-
ables differed from those in the Hamburg model because
of restrictions in the level of detail in the used dataset.
Instead of using 21 inputs, the SNN in the Karlsruhe
model learned relationships using values from 16 inputs.

Figure 5. Accumulated local effect plot of variable household income.
Note: CS = carsharing membership; PT = public transit pass.
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Adapted to the SNN of the Karlsruhe model, 19 neurons
were used in the hidden layer, again three more neurons
than the number of inputs. They again showed the slightest
deviations from the target distribution. The robustness of
the SNN’s predictive ability for mobility tool bundles
against different widths of the SNN was repeatedly
observed as changes in the hyperparameters of the SNN
provided only a small variation in its predictive ability.
The explanatory power of the SNN was also diminished
by the smaller MiD dataset of 2,517 observations in the
region of Karlsruhe. Nonetheless, compared with previous
studies that applied ML models in transport modeling, the
training data size was considered sufficiently large for both
Hamburg and Karlsruhe. In the meta dataset presented by
Wang et al., most studies used sample sizes between 1,000
and 10,000 (14). Consequently, the SNN was trained using
a smaller, more unbalanced dataset with a smaller number
of inputs that covered more than 1.76million people at the
end of 2020. However, mobility tools were assigned to
2.09million agents, and the network was evaluated using
the MiD target distribution of the area projected to cover
1.73million people in 2017.

Table 4 shows the distributions of the SNN and the
uncalibrated sequential logit model compared with the
target distribution of the MiD for the mobiTopp model
in Karlsruhe. In addition, the distribution of mobility
tool bundles within the training dataset is shown in the
lower table, which was used to train the SNN. As previ-
ously stated, neither a DNN nor simultaneous DCM
were applied and are therefore not presented.

Primarily, it should be emphasized that the SNN
again showed a much higher prediction accuracy than
the uncalibrated sequential logit model. That the model-
ing area was based on the target distributions was not
congruent with the modeling area of the SNN and that
the target distributions were not to be considered exactly
could mitigate some of this discrepancy. Nevertheless,

the observable deviations of the logit model were similar
to those of the Hamburg model and were considerable.
Unlike in the Hamburg model, the highest summed
deviation resulted mainly from the overestimation of the
bundles ‘‘None’’ and ‘‘Car+PT’’ and the underestima-
tion of the ‘‘Car’’ bundle. The logit model predicted the
target distributions of mobility tools at the individual
level more precisely than in the Hamburg model. Car
availability was below the MiD control variables, and
public transit pass ownership was above. This was oppo-
sitely observed in the Hamburg model. With a deviation
of 5.8%, the SNN’s overall accuracy was above its equiv-
alent model of the Hamburg area, where the deviation
was 14.6%. In absolute terms, the most substantial var-
iations were observable for public transit passes and peo-
ple without mobility tools. In contrast to the Hamburg
model, car availability was predicted at the individual
mobility tool level with high accuracy.

In summary, it can be said that the SNN also
achieved high prediction accuracy for regions other than
Hamburg. For the synthetically generated population of
the mobiTopp model of Karlsruhe, the MiD target dis-
tributions were also approximated accurately. In con-
trast, the sequential logit model was far less precise
owing to serial maximum likelihood methods. In the
SNN, the changed framework conditions of the smaller,
less balanced dataset with a smaller number of inputs or
more aggregated information did not harm the precision
of the results. The effort in applying the SNN to other
study areas was primarily in matching the variables of
the training dataset with the variables of the agents of
the synthetic population. Based on this, the number of
neurons in the hidden layer of the SNN must be
adjusted, as well as the number of iterations, depending
on the size of the training dataset.

In addition, for transport policy makers as well as
transport researchers, it is not only of interest which

Models Car (%) CS (%) PT (%) Deviation (%)

SNN 78.2 3.5 20.5 3.9
Seq. logit (uncalib.) 74.7 2.0 22.8 11.0
Target MiD 78.1 5.0 18.1
Training data 90.0 4.1 12.5

Note: CS = carsharing membership; PT = public transit pass; Dev. = deviation; SNN = shallow neural network; Seq. = sequential; uncalib. = uncalibrated;

MiD = Mobility in Germany.

Table 4. Model Comparison with respect to Target Mobility Tool Distributions for Karlsruhe

Models None (%) Car (%) CS (%) PT (%) Car+CS (%) Car+PT (%) CS+PT (%) All (%) Dev. (%)

SNN 10.4 66.5 1.2 9.9 1.4 9.7 0.4 0.5 5.8
Seq. logit (uncalib.) 19.0 56.8 0.5 5.4 0.9 16.8 0.4 0.2 30.6
Target MiD 11.5 66.8 1.8 7.7 1.8 9.0 0.9 0.5
Training data 6.7 77.7 1.2 1.6 1.9 9.9 0.5 0.6
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model best reflects the status quo but also how it might
be used for the forecasting and evaluation of certain
mobility scenarios. This could include, among other fac-
tors, the consideration of an additional mobility tool,
but also the (politically influenced) change in the attrac-
tiveness of certain mobility tools. The simultaneous
approach results in an exponential growth of complexity,
with each additional mobility tool to be considered
owing to the combinatorial problem of building mobility
bundles. However, a researcher has to specify an expo-
nentially increasing number of utility functions when
using DCMs, whereas, for ML models, this effort can be
neglected as only the number of variables in the output
layer increases exponentially. In contrast, DCMs are
more suitable, for instance, for reflecting changes in the
attractiveness of certain mobility tools. In DCMs, para-
meters can easily be manipulated, and therefore certain
influences for a future mobility scenario could be consid-
ered. Such a direct intervention is not possible for ML
models. Both aspects have to be considered—in addition
to accuracy—by a modeler when analyzing mobility tool
ownership and be weighed and evaluated in the choice of
model type depending on the study’s objective.

Conclusion

In existing TDMs, mobility tool ownership is typically
modeled in sequential DCMs. However, literature has
already found evidence that a simultaneous modeling
approach reflects the decision process more comprehen-
sively. In the present study, we were able to reveal rele-
vant insights. Integrating a simultaneous mobility tool
ownership model (i.e., car availability, public transit pass
ownership, carsharing membership) showed greater
potential to more accurately reflect structural sociode-
mographic patterns of mobility tool ownership in TDMs
than sequential approaches. Applying ML models
offered tremendous potential to further improve the
simultaneous simulation of mobility tool ownership in
TDMs compared with uncalibrated DCMs—we showed
a generally higher overall prediction accuracy according
to the target distribution.

In addition, using the example of a synthetic popula-
tion in the city of Hamburg we demonstrated that,
according to the model’s results and the effort involved
in building the model, NNs were superior in accuracy
and flexibility to simultaneous nested logit or cross-
nested approaches. However, when applying an NN
approach to model mobility tool ownership, we found
SNNs easier to build and handle and more robust than
DNNs. Moreover, we have shown that retraining an NN
to a different study area also resulted in accurate model-
ing of mobility tool ownership, and the effort of estimat-
ing a new DCM from scratch can be avoided if the

structure of the new dataset is the same as in the initial
model.

However, all these results were based on the compari-
son of NNs with uncalibrated DCMs. Our study also
showed that the slightest deviation from a target distribu-
tion of mobility tools was achieved for a calibrated,
sequential DCM, which emphasized the power of the pos-
sibility of calibrating DCMs. However, our study also
showed that even the calibrated model was less capable of
reflecting sociodemographic patterns between the differ-
ent mobility tool bundles than all estimated simultaneous
models. Consequently, when simultaneously modeling
mobility tool ownership in a TDM, a researcher must
weigh the possibility, but also the consequences, of cali-
brating DCMs against the flexibility and robustness of
NNs. Moreover, our study focused mainly on the models’
performance in relation to accuracy. From a practi-
tioner’s perspective other aspects, such as the models’
applicability and transferability to future mobility scenar-
ios, are also of importance. However, each of these
aspects must be weighed individually by each user accord-
ing to his or her study’s objective—our study has pro-
vided the necessary quantitative background on the
models’ accuracy performance.

In our study, even when applying the model to
another study area, we used the same data based on the
German household travel survey, MiD. In a further
application, we need to test the robustness of both mod-
eling approaches with a different database. We addition-
ally intend to specify the tested DCMs in the Hamburg
model for the Karlsruhe model to further support our
results. Moreover, we need to compare the ML
approaches with more complex DCMs, such as a mixed
logit and a multivariate probit model. As our study has
shown the benefits of ML approaches and DCMs, we
are considering applying hybrid models in the next step,
combining the advantages of both models. Apart from
those technical issues, we also need to reflect on the
effects of the different modeling results on actual mode
choice behavior.
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Püschel et al 13



Funding

The authors received no financial support for the research,
authorship, and/or publication of this article.

ORCID iDs

Jasper Püschel https://orcid.org/0000-0002-0878-9451
Lukas Barthelmes https://orcid.org/0000-0003-1122-853X
Martin Kagerbauer https://orcid.org/0000-0003-4252-7874
Peter Vortisch https://orcid.org/0000-0003-1647-2435

Data Accessibility Statement

The datasets used in this research are available from the Traffic
Clearinghouse at the German Aerospace Center (DLR).

References

1. Jong, G., J. Fox, M. Pieters, A. Daly, and R. Smit. Com-

parison of Car Ownership Models. Transport Reviews,

Vol. 24, 2004, pp. 397–408.
2. Anowar, S., N. Eluru, and L. Miranda-Moreno. Alterna-

tive Modeling Approaches Used for Examining Automo-

bile Ownership: A Comprehensive Review. Transport

Reviews, Vol. 34, No. 4, 2014, pp. 441–473.
3. Simma, A., and K. Axhausen. Structures of Commitment

in Mode Use: A Comparison of Switzerland, Germany

and Great Britain. Transport Policy, Vol. 8, No. 4, 2001,

pp. 279–288.
4. Scott, D., and K. Axhausen. Household Mobility Tool

Ownership: Modeling Interactions Between Cars and Sea-

son Tickets. Transportation, Vol. 33, 2004, pp. 311–328.
5. Vovsha, P., and E. Petersen. Model for Person and House-

hold Mobility Attributes. Transportation Research Record:

Journal of the Transportation Research Board, 2009. 2132:

95–105.

6. Yamamoto, T. Comparative Analysis of Household Car,

Motorcycle and Bicycle Ownership Between Osaka Metro-

politan Area, Japan and Kuala Lumpur, Malaysia. Trans-

portation, Vol. 36, No. 3, 2009, pp. 351–366.
7. Beige, S., and K. Axhausen. Long-Term Mobility Deci-

sions During the Life Course: Experiences With a Retro-

spective Survey. IATSS Research, Vol. 32, No. 2, 2008,

pp. 16–20.
8. Axhausen, K. W., and S. Beige. The Ownership of Mobility

Tools During the Life Course, Vol. 480. Zurich: IVT, ETH

Zurich, 2008.
9. Becker, H., F. Ciari, and K. Axhausen. Modeling Free-

Floating Car-Sharing Use in Switzerland: A Spatial

Regression and Conditional Logit Approach. Transporta-

tion Research Part C: Emerging Technologies, Vol. 81,

2017, pp. 286–299.
10. Beige, S., and K. W. Axhausen. Ownership of Mobility

Tools in Switzerland. In Arbeitsberichte Verkehrs-und

Raumplanung, STRC, Ascona, Switzerland, 2004. https://

doi.org/10.3929/ethz-a-004725913.
11. Hillel, T., J. Pougala, P. Manser, R. Luethi, W. Scherr, and

M. Bierlaire. Modelling Mobility Tool Availability at a

Household and Individual Level: A Case Study of

Switzerland. In Proc., hEART 2020: 9th Symposium of the

European Association for Research in Transportation. Eur-

opean Association for Research in Transportation, 2021.
12. Horni, A., K. Nagel, and K. Axhausen (eds.) Multi-Agent

Transport Simulation MATSim. London: Ubiquity Press,

2016.
13. infas, DLR, IVT, and infas 360. Mobility in Germany (on

behalf of the BMVI). 2019. https://www.mobilitaet-in-

deutschland.de/archive/publikationen2017.html.
14. Wang, S., B. Mo, S. Hess, and J. Zhao. Comparing Hun-

dreds of Machine Learning Classifiers and Discrete Choice

Models in Predicting Travel Behavior: An Empirical

Benchmark. arXiv:2102.01130 [cs, econ], 2021.
15. Mallig, N., M. Kagerbauer, and P. Vortisch. MobiTopp –

A Modular Agent-Based Travel Demand Modelling

Framework. Procedia Computer Science, Vol. 19, 2013,

pp. 854–859.
16. Hilgert, T. Erstellung von Wochenaktivitätenplänen für Ver-
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