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Abstract

The study of causes and effects in large systems such as meteorology, biochemistry,
finance, and sociology plays a critical role in predicting future developments and pos-
sible interventions. In the last decades, several new techniques and algorithms have
been developed to discover causal structures in multivariate quantitative datasets.
Yet, solely determining causal structure from observations is challenging and often
yields ambiguous results. Additional knowledge from other sources is likely to be
beneficial.

Recently emerging large-scale language models are showing impressive results in the
field of natural language processing (NLP). One task in the field of NLP is to extract
causal relations from text. Combining these with causal discovery algorithms could
be advantageous.

This bachelor thesis investigates the combination of causal structures from quantita-
tive and qualitative sources. A feasibility study was conducted on two datasets; (1) a
biochemistry flow cytometry dataset and (2) a self-collected financial dataset. Dur-
ing this process, a common framework was developed that enables the combination
of both sources. Considerations and problems were monitored and improvements
suggested. A focus laid upon visualizing the evidences with different Python and R
libraries.

In principle, it is possible to combine both domains. However, it was found, that a
lack of training data for causal relation extraction exists. Knowledge graphs with
an underlying ontology need to be leveraged to account for lexically different terms
of the same entity. To improve the results from the qualitative data, it would be
advantageous to extract events rather than causal relations.

This thesis makes a valuable contribution to the study of integrating quantitative and
qualitative causal knowledge by applying various methods to two distinct datasets
from different domains. Furthermore, it addresses a research gap, as there is limited
existing literature in this specific area to the best of my knowledge.
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1. Introduction

The introduction is split up into the sections Motivation 1.1, Related Work 1.2, Goal
of this Thesis 1.3 and subsequently Structure of this Thesis 1.4.

1.1 Motivation

Whether it is biochemistry, the global warming, stock markets or (mis-)information
flow, all can be modelled as systems of variables that interact with each other. In
the field of biochemistry, it might be proteins, for global warming it is wind speed,
temperature and precipitation. Stock markets can be modelled by observing stock
prices and revenue, while the spread of information or misinformation can be moni-
tored via social networks. However, for a deeper understanding, the question arises
of ”What causes what?” It is the question of cause and effect, that researchers in the
field of Causality try to answer. The knowledge can be used to make predictions
about the future or hypothetical interventions. Yet, it is difficult to infer causal
knowledge. In particular, when it is only possible to observe the system, and not
conducting various interventions for testing purposes. This leads to limitations of
algorithms that try to infer such causal knowledge solely by observations.

The use of additional knowledge could be helpful to overcome these limitations.
One source that has hardly been used by machines so far is natural language in the
form of text. This is a challenging task, as language is often vague and ambiguous.
Given for example the sentence: ”The cat crosses the street. On the other side, it
has some time to rest.”What is meant with ”it”? Is it the cat or the street? For us
humans, the answer is obvious. However, a machine might have some problems with
it. Therefore, trying to automatically extract meaningful knowledge is difficult.

The field of research is named Natural Language Processing (NLP). In the past,
developers tried to find a solution with different methods, that were either rule-
based or based on statistical machine-learning methods. These worked decent in the
specific areas they were made for. However, the development was time-consuming
and domain knowledge was necessary to annotate the rules or prepare the features.

In recent years, transformer-based language models were introduced. ChatGPT
is probably the most prominent one. These models are pretrained on extensive
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amounts of unlabeled data to get an understanding of language. Afterwards, they
can be fine-tuned on specific tasks. The extraction of causal relations from text is
one application, they can be used for.

Combining these extracted causal relations with the causal structures derived from
the quantitative algorithms could provide new meaningful insights. This will be
investigated in this bachelor thesis. Related work with a similar notion will be
presented in the next section.

1.2 Related Work

World Modelers [29] is a program developed by the Defense Advanced Research
Projects Agency (DARPA). Its goal is to unify qualitative causal analysis with quan-
titative models to provide a better understanding of current crises to analysts. They
mention as an example and use case the necessity to better understand the influences
and dynamics that affect food insecurity crises. To accomplish that, they built a
pipeline consisting of several subsystems that will be explained in the following.

The main part of the system is called CauseMos. It offers a human-machine inter-
face with several workflows to make use of qualitative and quantitative data. The
extraction of causal relations, events and statements from text is done by several
subsystems. They extract found information in a rule or pattern based way, ground
it to an ontology and assemble it together. Another subsystem leverages quantita-
tive data. Analysts can register their own model and have the possibility of adding
parameters and metadata to it.

CauseMos then merges all the information and creates a semi-quantitative computa-
tional model, which can be used to analyze scenarios and interventions. This is done
in the last group of subsystems; the inference engines. They can model interactions,
study the dynamics of the system and estimate uncertainties or trends.

The system provides a thorough approach that includes the acquisition, assembly,
analysis, and inference of knowledge.

Weaknesses are, that the offered ontology is only useful for food insecurity crises.
That makes it very specific. Due to the rule and pattern based readers, the portabil-
ity is limited and there is a risk, that causal relations of very domain specific topics
are overlooked. [29]

The work of Kang et al. [34] focused on explaining the cause of an event in time
series data from text. The target time series data used in their paper was stock and
polling data. They utilized the day-to-day popularity and sentiments of N-grams of
tweets, blogs and news articles to calculate time series data. The Granger causality
score between time series data generated from N-grams and the target time series
was calculated to determine the best k textual features.

To build a chain of causation to explain the event further, they created a knowledge
base graph, called CGraph. The causal graph was augmented with the help of
the external knowledge base Freebase. To find a useful path between the target
and source node, an algorithm was used that searches backwards from the effect to
possible causes.
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Additionally, to help with the lexical strictness of language, they trained a neural
network, which they called neural reasoner. It consists of two LSTM layers and a
multi-layer perceptron in between. The neural reasoner was trained by traversing
CGraph, after it was initialized by word embeddings from word2vec.

The model was tested with several tasks. One of it was to forecast stock and polling
data. It is evident, that the root-mean-squared error (RMSE) is lower, when textual
features are considered in addition to the target’s past time series.

It is a comprehensive work, which they accomplished. That is, because of the knowl-
edge base they built, the neural network they trained and the attempt to even ex-
plain the events with a causal path. However, it would have been interesting to see
a different algorithm next to Granger Causality. Additionally, they did not incorpo-
rate any other information contained in tweets, as for example the time they were
published [34].

[8] tried to unify information of biochemical reactions in cells. This information
comprises causal paths of biochemical reactions. The classic approach to retrieve
knowledge about these processes is to design low-throughput controlled experiments.
This pathway knowledge is then collected in interaction databases. However, there
is a newer data-driven approach that directly infers graphical models from measure-
ments. Both approaches have advantages and disadvantages.

They created an application ”CausalPath” that maps the data-driven information
to curated human pathways. It can detect potential causal links with a graphical
pattern search. Links to literature is provided as well.

To leverage the knowledge from the databases, they manually curated 12 graphi-
cal patterns and extracted with these 28517 prior relations. A ”causal conjecture”
was defined to pair prior knowledge with the data-driven measurements in a logic-
based way. Additionally, statistical measurements were implemented to increase the
interpretability of the results. They provided an example:

1. Through the curated patterns, they detected from the prior knowledge that GAB1
can help to cause MAPK3.

2. Both were correlated on the data-driven side. CausalPath chose then the result
as a possible explanation and provided a subgraph with the dependencies.

They summarized, that the data-driven side provides context-specific correlation,
while the literature provides the causality. These will then be combined with the
causal conjecture and the two statistical measurements.

[8] tested this method on three studies.

CausalPath leverages a lot of knowledge that is stored in these databases. Therefore,
it is useful for building mechanistic models, grounded on already existing knowledge.

A downside is, that CausalPath cannot infer new causal connections. Because of dif-
ferent contexts, cell types and disease models, they stated that it is very challenging,
which of the described relations are applicable.
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1.3 Goal of this Thesis

The goal of this thesis is to investigate the combination of quantitative and qual-
itative causal knowledge. This is understood as feasibility study, where different
approaches and methods will be tried.

Overall, it will be focused on developing a common framework for this task that
can be applied to different domains. Occurring problems and considerations will
be monitored during this process. Notably, there will be an emphasis on the vi-
sualization of causal evidence and structures. Additionally, a comparative analysis
between qualitative and quantitative results will be conducted to further enhance
the investigation.

The structure of this thesis will be explained in the succeeding section.

1.4 Structure of this Thesis

This feasibility study will be conducted on two datasets. Both of them contain
qualitative and quantitative data. The first one is a flow cytometry biochemistry
dataset, while the second one is a self-collected financial dataset.

However, first, an introduction into the fields of Causality and Relation Extraction
is provided in chapter 2.

Afterwards, both datasets the investigations conducted will be presented in chapter
3 and chapter 4. Each dataset has its own methodology, implementation, result
and discussion section. Each of these sections is split up into a part concerning the
quantitative data, the qualitative data and the combination of both. This thesis
ends with chapter 5 Conclusion & Outlook.



2. Background

In the following chapter necessary background knowledge is explained. The back-
ground is separated into three sections. Basics of Causality 2.1, where basic assump-
tions about causality and causal discovery algorithms will be elaborated. Consecu-
tively, in section 2.2 utilized time-independent and time-dependent algorithms are
presented. Lastly, in section 2.3 used relation extraction and deep learning models
are explained. This includes word embeddings, the concept of attention, transform-
ers and recent language models, like BERT variations and GPT models.

2.1 Basics of Causality

In this section, an introduction into the field of Causality is provided.

Causality can be described as the impact that an event has upon another event.
When both are causal related, the influencing event is called Cause, whereas the
influenced event is named Effect [39]. For example, given two events A and B, such
that A causes B. In order for B to occur, it is necessary that A took place. However,
it is not necessary that B arose to let A occur. This makes it inherently different to
variables that are correlated to each other.

The field of causality can be split into two main tasks. The first is Causal Discovery.
It tries to infer causal structure from observational data. The second is Causal
Inference, which tries to quantify the impact of variables onto each other [39]. This
thesis focuses on causal discovery.

Notations

In the following, several definitions are made that are necessary to better understand
needed assumptions and subsequently the causal discovery algorithms used in this
thesis.

The structure of causal relations can be visualized with a graph G = (V,E). V
represents a set of nodes and vertices, while E is a set of edges. Each edge can either
be directed, undirected or bi-directed. For example A → B, A − B or A ↔ B.
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A and B are said to be adjacent [39]. The terms directed edge and arc are used
interchangeably in this thesis

Given two nodes U, V ∈ V, U is called parent of V , if U → V . V is the child of U .
The set of parent and child nodes of a node U is denoted as Pa(U) and Ch(U) [39].

A (directed) path between two nodes in G is a distinct, non-repeating sequence of
V1, . . . Vn with pairwise consecutive (directed) edges between them. V1 is called an
ancestor of Vn, while Vn is a descendant of V1. The set of ancestors and descendants
of a node V is denoted as An(V ) and De(V ), whereas V ∈ An(V ) and V ∈ De(V ).

A collider is a variable, in which adjacent edges point into. For example A →
B ← C, where B is a collider. The difference is a non-collider, that can either be
a mediator (· · · → B → . . . ) or a common cause (· · · → B ← . . . ). However, it
depends on the path, what role a node takes [18].

A direct graph is acyclic, if there is no directed path from V to U and U to V . It is
then named Direct Acyclic Graph (DAG) [39].

The connectivity of a graph can be expressed in terms of d-separation and d-
connection [18]. A path p d-connects U and V given a conditioning set C ⊆
V \ {A,B} if and only if all colliders on p are in C or have a descendant in C
and no non-colliders of p are in C. An explanation to this is, that when conditioning
onto a collider, an association is created. This bias is called Berksonś fallacy [55].
U and V are d-separated, if there are no d-connecting paths between them, which
can be denoted as U⊥V .

A set of random variables X = (X1, . . . , Xp) and a DAG form a Bayesian Network,
if

P (X) =
∏
X∈X

(P (X|Pa(X))) (2.1)

P (X) represents the joint distribution. This network depicts the probabilistic re-
lations between the variables X, where vertices represent the variables, while edges
show the conditional dependency between them.

However, there is no a priori reason for P (V) to constrain the possible graphs [18].
Though, there are the following two principles that are used to connect probabilistic
relations with causal relations. Together, they ensure that d-separation is equivalent
to (conditional) probabilistic independence.

(1) The Causal Markov Condition (CMS) declares that every vertex X ∈ X is
”[. . . ] probabilistically independent of its non-descendents given its parents [. . . ]”
[18, p. 83]:

X ⊥⊥ NonDe(X)|Pa(X) (2.2)

Unmeasured common confounders or a selection bias are examples that would violate
this assumption.
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(2) The Causal Faithfulness Condition (CFS) states that, if a variable U is indepen-
dent of V conditioned on a set C, that U⊥V given C. This is rather a simplification
measure and can be easier violated, as it just have to exist causal connections that
do not exhibit a dependence [18].

Another assumption often applied is Causal Sufficiency, which states that there are
no unmeasured common causes that effect vertices X.

With this knowledge, it is now possible to explain the different causal discovery
algorithms that were used in this thesis.

2.2 Causal Discovery Algorithms

Causal discovery algorithms aim to learn causal structure. These can be classified
in constraint-based and score-based algorithms [39]. Former use independence tests
to find a set of edge constraints before distinguishing the direction of the edges by
applying some rules. Latter utilize a relevance score to value different graphs and
optimizing them.

Another way of classifying causal discovery algorithms is by the data, they are
applied to. Cross-sectional data is the first type. This is data that is collected
through simultaneous observations. Thus, there is no time, that can be used as an
additional constraint, such that A has to be occurred before B. The algorithms
used on this type are time-independent. The second type of data is time-series data,
which does not have the disadvantage of the first type. For example, if there is an
undirected edge between A and B, it is safe to state that past → future [39].

2.2.1 Time-Independent Algorithms

In the following section are three time-independent algorithms described, that were
used in this thesis. PC and FCI are both constrained-based algorithms, while Tabu-
Search is score based.

2.2.1.1 PC Algorithm

The PC (named after the developers Peter Spirtes and Clark Glymour [33]) algo-
rithms relies on the faithfulness assumption. It works in two steps. In the first
step searches the algorithm for the skeleton of the graph. The skeleton of a graph
comprises all edges without a direction. In the second step, these directions are
oriented.

To find the skeleton, the algorithm starts with a fully connected undirected graph.
For each pair of adjacent nodes U and V , the algorithm tests the independence
conditioned on an adjacent subset C ⊆ X, such that U ⊥⊥ V |C. If a subset exists
that causes independence, the connection between U and V is removed [39].

To orientate the edges, three rules are applied:

1. Given that there are three nodes U , V , W ordered such that U − V −W . Since
U and W are not adjacent, the following can be stated: If U ⊥⊥ W |C and V /∈ C,
a collider is constructed U → V ← W . This structure is called a v-structure.
The complete assumption works, because of Berkson’s fallacy. If V ∈ C and it



8 2. Background

Figure 2.1: Two graphs, left graph meets the causal sufficiency assumption, whereas
the right not [14]. Both variables U and V are colliders (X → U ← Z and Y →
V ← Z), if conditioned solely on them, this would infer associations X − Z and
Y − Z, resulting in a new dependency between X and Y .

is conditioned upon C, given that the triple is a collider, this would result in a
dependency between U and W . In this case, all three other variants are possible,
that is, U → V → W , U ← V ← W and U ← V → W . This is, because all three
belong to the same Markov equivalence class [18].

2. If there is a directed edge between U and V , while V −W holds but not U −W ,
then V −W is oriented into V → W . This is, because a directed edge from V ← W
would deduce a new v-structure, although they should have been already found in
the first step [33].

3. If there is a direct path between U and V and an undirected edge between them,
it is oriented as U → V . This is to preserve the acyclic character of the graph.

This algorithm works well as a benchmark. However, it is limited, since it assumes
causal sufficiency. That means that it does not allow latent variables [39].

When applied to the left graph in figure 2.1 to test whetherX and Y are independent,
only the adjancies of both variables have to be tested, resulting in X ⊥⊥ Y |V, T . If
causal sufficiency can not be assumed, the node Z has to be tested as well, which
results in X ⊥⊥ Y |U, V, Z. However, Z is not in a subset of adjancies of X and Y .
PC will miss that [14].

The following algorithm is going to solve this problem.

2.2.1.2 FCI+ Algorithm

The FCI (Fact Causal Inference) algorithm is a generalization of the PC algorithm,
as it allows arbitrary many latent variables [33]. Therefore, the assumption of
causal sufficiency is not necessary. Yet, faithfulness is still required. It belongs
to constraint-based algorithms.

It has the same two steps, as the PC algorithm has. The first step is equal to the
PC algorithm, that is, a skeleton is inferred, and v-structures are found with the
colliders. However, the second step is different. Given U, V ∈ X, the method tests
possible d-separations such that U ⊥⊥ V |Z. If there is a W ∈ Z that d-separates U
and V , the edge is removed.

The FCI algorithm introduces new edge representations, to account for the unmea-
sured confounders [39, p. 8]. For two variables X, Y ∈ X

� X → Y represents, that X causes Y ;
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� X ↔ Y represents that there are unmeasured confounders from both variables;

� X◦ → Y represents that either X causes Y or that there are unmeasured
confounders from both variables;

� X ◦−◦Y can represent, that either X causes Y , Y causes X, unmeasured con-
founders between both variables or X causes Y and unmeasured confounders
and vice versa.

The FCI+ variations is an implementation with a different method to retrieve the
set of variables that d-separates both variables U and V . This results in a (possibly)
improved running time [14, 33].

2.2.1.3 Tabu Search Algorithm

The Tabu-Search algorithm belongs to score-based approaches. They can be sepa-
rated into two parts: (1) A scoring metric that evaluates potential Bayesian networks
and (2) a search procedure to carefully investigate the space of possible networks
[10].

The goal is to optimize the following likelihood function

LL(G;D) =
∏
d∈D

P (d|G) (2.3)

where G represents a graph, while D is the underlying dataset. To prevent over-
fitting, too complex graphs are penalized at the same time with a regularization
term.

Tabu Search is an extension of the Hill Climbing algorithm. Hill Climbing tries
to find the best solution of a search space S, by randomly generating one possible
solution and searching in a defined neighborhood for an improved solution. This
does not guarantee an optimal solution, since the algorithm can get stuck at a local
maximum [10].

Tabu Search tries to improve that problem with an adaptive memory, that saves
recently evaluated solutions. This should prevent cycling and potentially leads the
algorithms to solutions that are not as ”close” to the current one. The downside is,
that it can cause the search process to stagnate and might prohibit attractive moves
[10].

2.2.2 Time-Dependent Algorithms

In this section, utilized causal discovery algorithms for time-series data are intro-
duced. The first one is the Granger causality [23], while the second one is PC -
Momentary Conditional Independence (PCMCI) [48].

Though, first a few additional notations:

A time-series graph is defined as G = (V×Z,E) for a multivariate process X. Each
node in the graph is viewed at each time t ∈ Z. This graph is then defined to a lag
of τmax.
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A connection between variables looks like this

X i
t−τ → Xj

t (2.4)

with X i
t−τ , X

j
t ∈ G.

2.2.2.1 Granger Causality

The overall idea of Granger causality is, that X granger causes Y , if predicting Y
based on bast values of X and Y performs better, as solely by using Y [39]. The
logic behind this is, that something unique in the past of X exists, that the past of
Y does not contain [48].

This results in the following auto-regression:

Yt =
τmax∑
j=1

aτYt−τ +
τmax∑
τ=1

bτXt−τ + εt (2.5)

m represents the maximum number of lags (e.g. days) to be used, while aτ and bτ
are the contributions to the prediction and ε represents a white Gaussian noise. bτ
should be statistically significant for any lag between τ = 1 . . .m, to let X granger
causes Y .

Disadvantages are that the algorithm assumes that the system is linear stationary
and when pairwise applied, it might yield ambiguous results in terms of direct and
mediated causal relations [6].

2.2.2.2 PCMCI Algorithm

The PCMCI is based upon the PC algorithm designed to deal with nonlinear and
linear dependencies, but not with latent variables [39]. It is based upon the PC
algorithm for time-independent data.

In a first phase, the algorithm searches for a skeleton in an iterative way. It conditions
on all subsets S of P(Xj

t ) of X
j
t and tests

X i
t−τ ⊥⊥ Xj

t |S (2.6)

If both variables are not independent, the variable Xt−τ is removed from the set
[48]. In the PCMCI algorithm, this was used for the first step with a marginal
adjustment, that is that only the condition subset S with the largest association is
tested.

In a second phase, the MCI test is applied. It conditions additionally on the parents
of X i

t−τ such that

X i
t−τ ⊥⊥ Xj

t |P(X
j
t \,P(X i

t−τ )) (2.7)

This method further determines causal relationships between different timestamps.
However, this accounts to autocorrelation and a well-controlled false positive rate
[48, 39].
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2.3 Causal Relation Extraction

An import role in the domain of natural language processing (NLP) plays informa-
tion extraction (IE). Its goal is to retrieve structured information from unstructured
text in form of semantically defined entities and relationships [24].

An entity is the most basic unit of information [42]. It often refers to a real-world
object. Usually, entities are tagged or labeled, to categorize them into groups. For
example, Siemens (ORGANIZATION ), Olaf Scholz (PERSON ), the Brandenburg
Gate (LOCATION ) or France (GEO-POLITICAL-ENTITY ). The whole process
of extracting these entities is named Named Entity Recognition (NER).

These entities often occur in relationships. For example in the sentence:
”[Olaf Scholz]PERSON is chancellor of [Germany]GPE.”The relation in this case would
be HEAD OF GOVERNMENT. This information is often stored as tripe (h, r, t),
whereas h and t depict the entities, while r is the respective relation [7]. This would
result in (Olaf Scholz, HEAD OF GOVERNMENT, Germany). The process of re-
trieving the entities including the respective relations is called Relation Extraction
(RE).

These triples can be saved in a Knowledge Base (KB) and later be used to create a
knowledge graph. An example is illustrated in 2.2. The edges show relations, while
entities are presented as nodes.

Figure 2.2: Depicted is a simple knowledge graph.

Though, before creating such KBs, it can be useful, to construct an underlying on-
tology [43]. There are various definitions to what an ontology is [26]. [25, p. 1]
defines an ontology as ”[. . . ] explicit specification of a conceptualization”, whereas a
conceptualization is an ”[. . . ] abstract, simplified view of the world [. . . ]”. This defi-
nition will be used in the following, since the paper explicitly mentions as application
the sharing of knowledge among AI systems.
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A possible ontology for the example in figure 2.2 is presented in figure 2.3. Though,
there are different possible ontologies with different grades of refinement. For in-
stance, the entity ”Germany” could be classified as ”Geo-Political Entity”, as ”Coun-
try”or as ”Federal Republic”. With the help of an ontology, entities can be grounded
and structure can be inferred. For example, since Germany is a country and therefore
has a capital, it is very likely that France has a capital as well. Another advantage
of a KB is, that it can be queried, by following the edges [43]. An example of an
existing KB is DBpedia [37].

Figure 2.3: A possible ontology.

Amore specific form of RE is Causal Relation Extraction. In this case, the focus lays
upon finding cause-effect relations including underlying entities e1 and e2, whereas
the occurrence of e1 leads to the occurrence of e2. Another difference is, that causal
relation extraction is usually a binary classification task. However, general RE is a
multi-classification problem [65]. The term RE will be used in the following to refer
to causal relation extraction.

The resulting triples (e1, r, e2) can be saved in a Causal Knowledge Base, from which
a causal knowledge graph can be constructed. The difference to a general knowledge
graph is, that edges depict causal dependencies between entities, e.g. e1

causes−−−→ e2
[28]. In the following, when referred to a KB, a causal knowledge base or a causal
knowledge graph is meant. Both terms, knowledge base and knowledge graph, are
often used interchangeably [43].

Causality in text occurs in varies forms: (1) Explicit and (2) implicit causality, as
well as (A) intra-sentential and (B) inter-sentential causality [65].

(1) Explicit causality is depicted by explicit causal connectives, e.g. hence, because
of, as, since, but also causal verbs, e.g. break, kill, influence, resultive phrases and
if. . . else. . . constructions [65].
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(2) Implicit causality is different, as it either has an ambiguous causal connective,
like after, before, later or none, e.g. Eating a balanced diet contributes to overall
good health. Usually, background knowledge is necessary to validate whether a causal
statement exist [65].

(A) In inter-sentential causality, the cause-effect pair occurs in one sentence, whereas
in the case of (B) intra-sentential, the causality continues over several sentences [65].

It exists different approaches to RE. These can be categorized into (1) knowledge-
based approaches, (2) statistical machine-learning (ML) based approaches and (3)
deep-learning (DL) based approaches (see fig. 2.4)[65].

Figure 2.4: An overview of different RE approaches [65].

(1) Knowledge-based systems are dividable into pattern-based and rule-based sys-
tems. Former are systems that define a graphical pattern or orientate around key-
words. Sentence structure analysis can be undertaken as well, to extract causality.
Latter applies some set of algorithms on the structure of the sentence. These kinds
of systems are viewed as straightforward and relatively simple. However, they need
a lot of preparing by experts and when the data is versatile, perform poorly [65].

(2) Statistical ML-based approaches do not need as much preparation. Usually, a set
of features is generated from the textual data, before applying an ML algorithm onto
it, e.g. Support Vector Machines, Conditional Random Fields or logistic regression.
They normally perform better than knowledge-based systems. Yet, the portability
is limited, as well-prepared features are necessary [65].

(3) Deep learning-based systems overcome the need to generate features, as DL
models map those directly into low-dimensional input vectors. For example Convo-
lutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long Short-
Term Memory Neural Networks (LSTM) or Gated Recurrent Units (GRU) can be
named. Lately, transformer-based pretrained models like Bidirectional Encoder Rep-
resentations from Transformers (BERT) [16] appeared. DL approaches have the ad-
vantage, that less focus on feature preparation is necessary and the portability to
other tasks or domains is easier done. On the downside, large corpora are needed
for training and extensive computational resources are required [65].

In the following, a focus on transformer based systems will be taken, as they play a
crucial role in this thesis.

2.3.1 Transformer

Transformers are DL models, that were first proposed by [61] in 2017. By the time
then, the state-of-the-art models for sequence transduction were based on LSTMs
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or GRUs, which process inputs in a sequential order. This makes parallelization
impossible. Transformers solve this issue, by simultaneously processing the input.
This allows for parallel training and better understanding of contextual knowledge.
Figure 2.5 shows the overall architecture of a transformer. However, before explain-
ing in-depth the functionality of transformers, it is necessary to better understand
the concepts of Tokenization, Word Embeddings and Attention.

Figure 2.5: Transformer Architecture [61].

Tokenization

A first preparation step comprises the tokenization process. It splits up a sequence
of characters into meaningful units, named tokens. For example the word aren’t
can be tokenized into aren’t, aren|t, arent or are|n’t. It depends on the model, how
tokens are generated. Word2Vector uses tokens on word level, whereas BERT uses
WordPiece [64] and GPT models Byte Pair Encoding (BPE) [60, 59]. However, in
the following, the terms words and tokens are used interchangeably, as for example
in [5].

Word Embeddings

In order to let AI models utilize text, it is necessary to convert words into a machine-
readable format. One way of doing that, is by converting words into word embed-
dings. These are fixed-length, dense and distributed vector representations of words
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[5]. This enables mathematical operations, such as addition, subtraction, distance
measures or similarity calculations. Additionally, these vectors can be used as input
to AI models. For example Word2Vec [38] or GloVe [44] were trained to generate
word embeddings. Consecutively, resulting vectors can be used to calculate new
relationships, such as a city and the country it belongs to, for example France is to
Paris as Germany is to Berlin [38] or king − queen = man− woman [44].

However, each of these models only allows one vector per word. This causes issues,
when lexically similar words are used in a semantically different way, such as in the
sentences: ”The man was accused of robbing a bank” and “The man went fishing by
the bank of the river”. This lead to models, that take the contextual information
into consideration, such as ELMo (Embeddings from Language Models) [45]. Each
word is assigned a vector, that is the result of the entire input sentence.

Subsequent models are BERT and GPT, upon a special focus lays, as those models
were used in this thesis.

Attention

Since transformers rely solely on attention mechanisms, it is important to understand
this concept first, before subsequently explain transformers [61].

It was first proposed by [9] in 2016. The task was to build a machine translation
model out of an encoder-decoder architecture. An encoder takes an input sentence
and converts it into a feature vector. This feature vector is then utilized by a decoder
to generate a new sentence. This comes with an issue, as the encoder has to compress
all necessary information into that feature vector. [9] introduce an extension to the
model, by implementing an attention functionality into the model. This is done in
the following way:

(1) The encoder, which is a bidirectional RNN (biRNN) generates a hidden state
hj for each word x in the input sentence (x1, . . . , xTx). These words are usually
combined into a vector c such that

c = q([h1, ..., hTx]) (2.8)

whereas q is a non-linear function.

(2) Normally, the decoder would take this hidden state to predict the next word yt
given the context vector c and all previously predicted words (y1, . . . , yt−1). However,
with the attention mechanism it exists one ci context vector for every target word
yi. The context vector is computed as

ci =
Tx∑
j=1

αijhj (2.9)

αij is the indirect result of a feedforward neural network called alignment model,
which is jointly trained with the other components of the system [9]. αji depicts
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the importance of the hidden state hj to the previous hidden states si−1, the next
hidden state si and the generation of yi. With this attention mechanism learns the
decoder which parts of an input sentence are important, in generating a new word
correctly.

The attention mechanism of transformers is build upon the one here explained. How-
ever, more background knowledge is necessary. Therefore, in the following trans-
formers will be further explained, before talking about attention again.

Transformer

Transformers consist of several encoder and decoder layers. Each of these layers con-
tain a self-attention mechanism (fig. 2.5). This is marginally different to the former
explained attention concept, because it relates in this case to different positions of
the same input sequence [61] that is currently under procession.

Each layer in the encoder has two sub-layers, whereas the first is a multi-head self-
attention layer, while the second is a fully connected feedforward neural network.
They produce an output dimension of dmodel = 512.

The decoder contains additionally a third sublayer, which is used to perform a multi-
head attention over the output of the encoder. The first sublayer in the decoder is
masked to ensure, that it cannot self-attend to subsequent positions.

Transformers use a generalized attention method. It consists of a query and a set
of key-value pairs. There are different methods to calculate these values together.
In case of the original transformer, it was undertaken with the Scaled Dot-Product
Attention [61].

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2.10)

dk is the dimension of queries and keys, while dv depicts the dimension of values.
Though, both dimensions are often equal. The softmax function maps the result of
the dot product z0 . . . zdmodel−1

divided by the constant to values between 0 and 1,
such that

∑
zi = 1. Consecutively, these values will multiplied with the value vector

V The ith position of the resulting vector represents the attention that the model
pays to the ith input position.

[61] introduced the concept of multi-head attention. In this case, queries, values and
keys receive an additional dimension h (fig. 2.6). This means, that each input word
has h query and key-value pairs. These values are subsequently concatenated and
multiplied with another weight matrix, to receive the final result. The advantage is,
that the model has the possibility to attend to information from different represen-
tation subspaces. Just using one head would result in the average of these different
representations. For each element, query, key and value exists a weight matrix, that
is going to be trained.

This attention method is implemented in three different ways. (1) In the encoder-
decoder attention layer, the queries are received from the previous decoder layer,
while the encoder generates the key-value pairs. This functionality enables the
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decoder to attend to every input sentence, similarly to the method introduced by
[9]. (2) The encoder applies self-attention. Queries and key-value pairs come from
the previous layer in the encoder. (3) The decoder is similar to the encoder. However,
it is ensured that the decoder only attends to recent or the current position. Greater
positions are masked by setting the values to −∞.

Figure 2.6: Multi-head attention [61].

[61] used as well learned word embeddings. Though, they do not specify, which
method they leveraged. Additionally, they injected positional information into the
model, as it lost its positional knowledge, that for example RNNs or LSTMs have
by nature.

2.3.2 Language Models

Language Models are AI models that try to predict future tokens or missing tokens
in text [70]. In the recent years, it was noticed that the capability of these systems
increases, when more parameters were introduced. The development of transformers
led to the first small-scale language models like BERT with 340 million parameters
[16]. Large language models are systems that have approximately more than ten
billion parameters, e.g. GPT-3 or LLaMA among others.

Subsequently, a basis to utilized language models is provided.

2.3.2.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a language
representation model proposed by [16]. They utilized only the encoder blocks of
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a transformer. The model was pretrained and can be fine-tuned on down-stream
tasks, such as text classification, NER or RE among others. In fact [16] constructed
two models, BERT-base and BERT-large. The former model contains 12 encoder
blocks, a hidden size of 768 and 12 attention heads, while the latter contains 24
encoder blocks, a hidden size of 1024 and 16 attention heads. This results in 110
million parameters for the base version, while the large version comprises 340 million
parameters.

WordPiece [64] was utilized as tokenization method. It contains a vocabulary of
30000 tokens. If a word is unknown, it gets broken down into subtokens.

The model was trained on unlabeled data with two methods. (1) Masked language
modeling (MLM), where 15% of the tokens were masked, and the model had to
predict the missing tokens. (2) Next sentence prediction (NSP), where two sentences
are presented to the model and it had to decide, whether the second sentence is a
successor of the first one.

With both methods, BERT learned a contextualized representation of words [19].

The training corpus comprised the BooksCorpus (800 million words) and English
Wikipedia (2500 Million words).

BERT achieved state-of-the-art results on several benchmark datasets. However,
many other models were later trained that, that specialize in different tasks. In
the following, three BERT derived models will be briefly introduced, that are later
utilized in this thesis.

BioBERT

BioBERT [35] is a BERT model that was specifically trained on a biomedical text
corpus, comprising 18 billion additional words. The training process did not differ
from the original construction.

It achieves increased F1 scores on biomedical NER and RE.

SpanBERT

[32] pretrained SpanBERT. This model focuses on a better representation and pre-
diction of text spans. The training differed from the one of BERT in three ways. (1)
They utilized span masking. Instead of randomly masking single tokens, a complete
span of tokens is masked with a mean of 3.8 words. (2) Span Boundary Objective
(SBO), where a masked span has to be predicted by the next surrounding start and
end boundary tokens. (3) They removed the NSP with two sentences, and replaced
it with single sequences of up to 512 tokens.

The model was pretrained on the same corpus as BERT.

They yield mostly improved results on several benchmark datasets over the original
BERT model.
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RoBERTa

RoBERTa (Robustly Optimized BERT Approach) was introduced by [36]. They
investigated the effects of different hyperparameters to the performance of BERT
and optimized them.

They amount of training data was increased from originally 16 GB to 160 GB.
Furthermore, they also changed the MLM procedure, as they created the masking
dynamically during the training and included 10 different maskings per training
sample. Additionally, [36] removed the NSP objective from training, since results
showed that this training step does not improve the performance of the model.
Last, the training batch size and the overall training steps were increased. This
was all combined to create a new language model, RoBERTa, that contains 355
million parameters and achieved improved results over BERT on several benchmark
datasets.

2.3.2.2 GPT

This thesis utilized GPT-3.5 text-davinci-003 by utilizing the OpenAI API. Yet,
for the better understanding, a brief introduction into GPT-1 is provided, before
describing GPT-3 and subsequently introducing GPT-3.5.

GPT (Generative Pretrained Transformer) was first introduced by [47] in 2018. The
first model was named GPT-1, which is based on transformers. However, they
utilized the decoder part of it. 12 layers were stacked upon each other with a hidden
state size of 768 and 12 attention heads. 512 tokens were chosen as maximal input
length. These tokens were tokenized with a bytepair encoding vocabulary with a
size of 40000.

During the pretraining, the model tries to optimize the following likelihood function

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (2.11)

where U = (u1, . . . , un) is a corpus of tokens, Θ represents the parameters of a
neural network and k the size of the context window. This means, that these neural
network parameters were searched, such that the next token ui is predicted correctly,
depending on the previously k tokens. In contrast to BERT, only the left context
is considered. This model is of autoregressive nature, what makes it especially good
at generating text.

Subsequently, the model can be fine-tuned by maximizing the function

L2(C) =
∑
(x,y)

logP (y|x1, . . . , xm) (2.12)

C represents a labeled dataset with m input tokens and a label y.

It was trained on the BooksCorpus dataset, which amounts to approximately 4.5
GB of data, while comprising 117 million parameters.
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GPT-3

GPT-3 [12] is the second successor of GPT-1. It was trained on 570 GB of text and
contains up to 175 trillion parameters. The architecture is just slightly different to
the one of GPT-1. Differences are, that the initialization process is modified, pre-
normalization is included and reversible tokenization was implemented. The model
shows significant improvements in few-shot settings. These are tasks, where the
model is not fine-tuned, but is only provided a few examples up until zero examples
in case of zero-shot settings. In some tasks, it reaches almost the state-of-the-art
results of fine-tuned models.

GPT-3.5 text-davinci-003

This model is a successor of InstructGPT [3], which is based upon GPT-3. Instruct-
GPT is trained to follow an instruction in a prompt and provide a suitable response.
This behavior was implemented by leveraging a training method called Reinforce-
ment Learning from Human Feedback (RLHF). Human labelers rank responses to
provide feedback to the model. Regrettably, OpenAI did not publish a paper about
text-davinci-003, but state that is an improved version over InstructGPT [40].

2.3.2.3 XLNet

The developers of XLNet [67] tried to mitigate disadvantages of models like BERT
that use bidirectional encoders and autoregressive models like GPT. They reasoned,
that the MLM training method in BERT results in a discrepancy between pretraining
and fine-tuning, as masked tokens do not appear in real applications. Additionally,
the model assumes that these tokens are independent, given the unmasked tokens.
Having said, that autoregressive models have the disadvantage that they are only
trained unidirectional. However, many bidirectional context information is often
required in down-stream tasks.

XLNet tries to solve these issues, in particular through a new pretraining method
called Permutation Language Modeling. For a sequence of length T , there are T !
possible permutations. In the usual autoregressive models, the next word xt would
depend upon the previously t− 1 tokens. The likelihood function is then factorized
in a given order. This order is, in the case of XLNet permutated. It is not the
sequence order that gets ”shuffled”. By incorporating this, the model learns the
context better, but is still of autoregressive nature.

Their large model has the same amount of parameters as BERT-large with about 340
million. The model was trained on 130 GB of training data. They achieve state-of-
the-art results on several datasets, with better scores than RoBERTa. XLNet yields
also better results than BERT, when trained on the same corpus that BERT was
trained on.



3. Example 1: Flow Cytometry
Dataset

In short: The dataset presented in the following chapter deals with molecules. It is
useful to investigate the combination of causal structure with it, because a true-graph
exists. The overall idea is, to leverage a language model, that is able to extract causal
relations and later combine these with the quantitative received causal structure.

In the following, a brief introduction to the background of this first dataset is given
and why it was chosen to be further investigated in the context of combining quanti-
tative and qualitative causal structures. It is avoided to provide a too deep biological
integration in the overall context, as there is a lack of in-domain knowledge. Addi-
tionally, the data itself and what it represents will be described. This all is located
in section 3.1 Dataset.

Annotation was necessary, because the dataset contains only quantitative data.
Stated sources of Sachs et al. [51] are examined to gather qualitative causal data.
This process is explained in section 3.2 Annotation.

The various approaches undertaken are then presented in 3.4 Implementation before
outlining the results and discussion in each respective section 3.5 and 3.6.

3.1 Dataset

The dataset was collected by Sachs et al. [51] who investigated signaling pathways
on cellular level. These pathways work by modified molecules, which trigger other
molecules in a cascading way. Subsequently, a reaction occurs in cells.

By then, knowledge of these pathways were an aggregation of the results of indi-
vidual studies, which mainly considered and investigated only single signals but not
complete paths [51]. However, this does not thoroughly account for the complex-
ity of those processes, especially in terms of inter-pathway cross-talk. The systems
have to be looked at as multivariate networks. To accomplish that, flow cytometry
was measured to quantify multiple molecules in a cell. Causal dependencies were
determined by interventions to inhibit or stimulate the modification of molecules in
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these signaling pathways. Sachs et al. [51] utilized score-based Bayesian networks
for modelling the resulting networks, as they are able to account for the probabilistic
and nonlinear dependencies. The nodes represent molecules, while the edges indicate
causality.

The advantage of this dataset is, that a true-graph exists. After application of
the Bayesian network, they compared the resulting edges with those described in
literature. Thus, the true-graph can be used as a guide, while research is conducted
how and under which circumstances the comparison with literature can be automized
and whether it is possible to leverage the textual causal knowledge to enhance the
true-graph.

The dataset consists of two sub-datasets. One, that contains general observations
(853 samples), while the other one contains interventional data (5400 samples). 11
phosphorylated proteins (Raf, Mek, PLCγ, Erk, Akt, PKA, PKC, P38, Jnk) and
phospholipids (PIP2, PIP3) where measured.

A brief excerpt of the dataset is seen in table 3.1 and 3.2. In the former, each
sample represents the quantitative amount of the individual molecule simultaneously
measured in cells by flow cytometry, while in the latter, this is discretized. Here,
the additional column INT (interventional) shows, which of the molecules was either
inhibited or stimulated.

This data was analyzed with the Bayesian network structure inference algorithm
resulting in the graph visible in figure 3.1. Dashed edges were not found by the
algorithm. According to Sachs et al. [51] this is due to the constraint, that Bayesian
networks have to be acyclic. The remaining edges are reported at least once in differ-
ent papers, with one exception between PLCγ and PIP3. The direction of this edge
was wrongly inferred, though they did not explain why this happened. The algo-
rithm found indirect connections. For example the causal path PKC → Raf → Mek
is well known in literature. The algorithm successfully found a connection between
Raf and Mek, although Raf was not perturbed by [51]. In certain instances, success-
ful inference of indirect connections was achieved, even though they were mediated
by unmeasured molecules.

Raf Mek PLCγ PIP2 PIP3 Erk Akt PKA PKC P38 Jnk
26.4 13.2 8.82 18.3 58.8 6.61 17 414 17 44.9 40
35.9 16.5 12.3 16.8 8.13 18.6 32.5 352 3.37 16.5 61.5
59.4 44.1 14.6 10.2 13 14.9 32.5 403 11.4 31.9 19.5

Table 3.1: First three samples of the observational cytometry sub-dataset [51].

Raf Mek PLCγ PIP2 PIP3 Erk Akt PKA PKC P38 Jnk INT
1 1 1 2 3 2 1 3 1 2 1 8
1 1 1 1 3 3 2 3 1 2 1 8
1 1 2 2 3 2 1 3 2 1 1 8

Table 3.2: First three samples of the interventional cytometry sub-dataset [51].

Since this thesis focuses only on retrieving causal structure from observational data
and does not investigate interventions of systems, only the observational dataset
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Figure 3.1: True-graph constructed by the Bayesian network structure inference al-
gorithm with confidence > 0.85, created by [52]. Missed edges are represented as
dashed lines. The edge between Plcg and PIP3 should be reversed.

will be further used. However, by doing that, it will not be possible to reproduce
the true-graph solely by observations. For readers interested in the interventional
dataset, detailed information and analysis can be found in the appendix.

3.2 Annotation

Above described dataset only comprises quantitative data. Thus, it was necessary
to extend that with annotated qualitative data. Therefore, abstracts of cited works
were reviewed to find reported edges and directions of the network. This was under-
taken manually, as there were reasonable 23 papers mentioned by Sachs et al. [51].
One was not publicly available (PIP3 → PIP2). Doc id, title, abstract, relevant
span, entity-1, entity-2, direction, cause, effect, search connection, entity-1 (alter-
native), entity-2 (alternative), source and availability were collected into an Excel
table, see table 3.4 as example. Alternative names of the entities were included,
because there are sometimes different abbreviations used for the same term.

Not every mentioned causal connection could be found in the stated literature. This
might either be due to little experience in reading papers of this domain or because
the connection was not referenced in the abstract. In the latter case, that would
mean that the connection can be found in the body of the source. However, using a
manually chosen paragraph would disturb the comparability, as in an abstract the
information is usually denser, than in some text passage.

See table 3.3 for more information.
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Connection Influence Path Annotated
PKC → Raf PKC → Ras → Raf not found
PKC → Mek PKC → Raf → Mek found
PKC → Jnk PKC → MKKs → Jnk found
PKC → P38 PKC → MKKs → P38 not found
PKC → PKA PKC → cAMP → PKA not found
PKA → Raf PKA → Raf found
PKA → Mek PKA → Raf → Mek found
PKA → Erk Unknown found
PKA → Jnk PKA → MKKs → Jnk found
PKA → P38 PKA → MKKs → P38 found
Raf → Mek direct found
PKA → Akt PKA → CaMKK → Akt found
Mek → Erk direct found
Plcγ → PIP2 direct found
Plcγ → PIP3 direct (reversed edge) found
PIP3 → PIP2 precursor-product unavailable
Erk → Akt direct or indirect found

Table 3.3: Search connection and influence paths of the dataset. Information about
where the phosphorylation happened was removed. Plcγ → shows the reversed in-
ferred edge by the algorithm.

3.3 Methodology

Two approaches were attempted to extract causal relations from text. In the follow-
ing, the overall ideas and top-level mechanics will be explained. For better clarity,
the content is divided in subsequent subchapters: Qualitative Data 3.3.1, Quantita-
tive Data 3.3.2 and Combination 3.3.3. The resulting framework is presented in the
Combination section.

3.3.1 Qualitative Data

For this task, the idea was to leverage a language model, that could extract causal
relations from above-mentioned abstracts. In a subsequent step, the extracted en-
tities should be grounded to an ontology, to handle inaccuracies or synonyms. Be-
cause of the little domain-specific expertise, knowledge-based and machine-learning
based methods were dismissed. Complicating matters was the difficulty in finding a
dataset for training purposes, that includes labeled entities and relations of a similar
type. According to the decision-tree of [65], a deep-learning approach was pursued.
With that and because of the recent upcoming of language models like BERT, it
was believed that the constraint imposed by the scarcity of data was mitigated to a
sufficient degree. Two of these models should be fine-tuned, so that the first model
extracts protein entities, while the second one classifies the relation.

This is called the traditional ”pipeline” approach, which is admittedly not state-
of-the-art, as it contains several drawbacks: possible errors from the NER model
propagate to the RE model, resulting in an increase of misclassified relations, an im-
balance of classes, as the class ”no relation”will dominate, an increase in complexity
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docid 27
title Inhibitory cross-talk by cAMP kinase on the calmodulin-

dependent protein kinase cascade
abstract The calmodulin-dependent kinase (CaM-K) cascade, a

Ca2+-triggered...
relevant span PKA gave rapid phosphorylation in vitro and in cells of

recombinant CaM-KK, resulting in 50- 75% inhibition of
CaM-KK activity, part of which was due to suppression
of CaM-binding by phosphorylation of Ser458 in the CaM-
binding domain.

entity1 PKA
entity2 CAMKK
direction 1
cause PKA
effect CAMKK

search connection PKA to AKT
entity1 alternative -
entity2 alternative PKB, Rac

source https://ohsu.pure.elsevier.com/en/publications/inhibitory-
cross-talk-by-camp-kinase-on-the-calmodulin-dependent–2

available yes

Table 3.4: Sample of self collected qualitative data from Wayman, Tokumitsu, and
Soderling [63] cited by Sachs et al. [51]. The complete causal path contains PKA
→ CAMKK → AKT. The connection between CAMKK → AKT was described in a
consecutive sample. CAMKK is an unmeasured molecule, which acted as interme-
diary.

due to many possible entity pairs and a confused classifier, when entity pairs belong
to several relations simultaneously [69].

But, since this thesis’ goal is not to build a state-of-the-art model and the RE model
has to be a binary classifier distinguishing between cause and no cause mitigating at
least the last concern, a pipeline approach was more appealing and straightforward.

With the GENETAG dataset [58], the named entity recognition task should be
accomplished. It comprises 15000 annotated sentences with proteins and genes,
sourced from MEDLINE database. The self-annotated textual samples serve for
learning the relation extraction task, although the sample size is too little. A differ-
ent biomedical RE dataset could not be found.

For the grounding of the extracted entities, the decision was made to use the ontology
included in the TRIPS parser [4]. It was the most appropriate one in terms of
simplicity and coverage.

3.3.1.1 BioBERT Approach

The decision was made in favor of BioBERT [35], as this is a BERT model specif-
ically pre-trained on large-scale biomedical corpora, with increased F1 scores in
named entity recognition (NER) and relation extraction (RE) in the biomedical
field compared to standard BERT.
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BioBERT has been fine-tuned on the GENETAG dataset. To increase the training
speed, GoogleColab was used [22]. The results were not promising. Because of that,
the RE model was dismissed.

3.3.1.2 GPT-3.5 Approach

The second approach conducted was to utilize GPT-3.5 text-davinci-003 by using the
API of OpenAI. This model is based on GPT-3. It has 175 billion parameters [41],
when BioBERT, which is based on BERT-base has 110 million [16]. While training,
GPT-3 has seen more data than BERT, why it might deliver more accurate results in
the area of biomedicine. According to Ye et al. [68], text-davinci-003 has promising
skills in RE under zero-shot conditions, which is good, when having a limited amount
of data.

A prompt text was created to establish a causal pathway between two specified
protein molecules. The goal was to provide the identified path in a concise format,
where the causing protein and affected protein are separated by a ”>” sign. Sub-
sequently, the entities were anchored using the TRIPS system, yielding satisfactory
results. However, caution is warranted due to the inherent tendency of GPT models
to occasionally generate fictitious information.

3.3.2 Quantitative Data

[51] showed in their work a graph solely constructed from observational data, to
demonstrate the importance of interventional data. The approach is to recreate this
as closely as possible without expecting to yield better results.

To facilitate this replication process, the R library bnlearn was utilized. This library
offers a range of helpful functions specifically designed for this task. Additionally,
the documentation provided by the library includes an example demonstrating how
the graph was constructed [52], which served as a reference and was closely followed
during the replication process. As a baseline, FCI is executed on the observational
dataset, utilized from the R library pcalg. This algorithm was chosen, because it
accounts for unconditioned confounders.

3.3.3 Combination

After constructing the quantitative and qualitative derived graphs separately, the
approach was to finally compare them, by utilizing the R libraries iGraph and bn-
learn. The previous steps and the combination process result in the framework
illustrated in figure 3.2.

Several graphs were compared with respect to its nodes and arcs. Additionally,
true-positive, false-positive and false-negative edges were calculated and plots of the
resulting graphs were constructed.

3.4 Implementation

Subsequently, the implementation process will be described with focus on the most
challenging or creatively solved tasks. Again, divided into the sections Qualitative
3.4.1, Quantitative 3.4.2 and Combination 3.4.3.
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Figure 3.2: Constructed framework for the combination of causal structures derived
from qualitative and quantitative data in the field of biochemistry.

3.4.1 Qualitative Data

This section is split up into the approach conducted with BioBERT (section 3.4.1.1)
and consecutively the one with GPT-3.5 in section 3.4.1.2.

3.4.1.1 BioBERT Approach

Via the Hugging Face API, BioBERT v1.1 [17] and GENETAG [11] data was down-
loaded into the GoogleColab environment. The data was shortly analyzed before
partitioned into train, validate and test sets. The sentences are tagged by the Part-
of-Speech (POS) scheme. Proteins and genes have the tag NEWGENE. This was
utilized to create a BIO-scheme. Since BERT uses the word-piece tokenizer, some
words are broken up into sub-words. A function was programmed, to align the
BIO-scheme with these tokens.

Furthermore, a Datasequence and BertModel class were constructed, followed by
the creation of a training loop function. This function was executed for 5 epochs,
employing a learning rate of 5 · 10−3 and a batch size of 2. The evaluation function
produced satisfactory results. However, it became apparent that the model was
infeasible for practical use, due to inaccurate results.

3.4.1.2 GPT-3.5 Approach

In a subsequent attempt, the utilization of GPT-3.5 text-davinci-003 via the OpenAI
API was explored. To initiate this process, a prompt, as shown in Listing 3.1, was
formulated. However, due to the inaccurate results of the NER model, the objective
was adjusted slightly. The goal became to validate the quantitative reasoning of
the network using qualitative data. Consequently, text-davinci-003 was tasked with
identifying the causal path between two pre-defined molecule entities.

f"What is the causal pathway between {row.From} and {row.

To} in the following paragraph? Link the found chain

by ’>’ signs :"

Listing 3.1: Prompt, that was send to GPT-3.5. row.From and row.To belong to
the iteration over a pandas.DataFrame, where both denote cells of the respective
protein molecules.
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<ekb >

<input type="text">

<paragraphs >

<paragraph >

AKT phosphorylation

</paragraph >

</paragraphs >

</input >

<TERM >

<type >ONT::GENE -PROTEIN </type >

<name >AKT </name >

</TERM >

</ekb >

Listing 3.2: Simplified TRIPS response to the request ”AKT phosphorylation”, saved
as XML.

The temperature parameter was set to 0.0 to minimize the randomness of the replies.
The results were split up and saved in a pandas.DataFrame. In a second step, this
now existing extracted entities should be grounded to the ontology of the TRIPS
system.

Replies of TRIPS were saved into an XML file. Simplified structure is visible in
listing 3.2.

The content of the <name> tag was used for further processing. After testing the
original molecules, measured by Sachs et al. [51], the permitted types were restricted
to those listed in succeeding enumeration.

� ONT::GENE-PROTEIN

� ONT::PROTEIN-FAMILY

� ONT::GENE

� ONT::PROTEIN

� ONT::GENE-FAMILY

� ONT::CHEMICAL

Next, the causal paths were simplified by merging consecutive occurrences of the
same entities, resulting in the consolidation of these sequential instances into a
single entity.

Last but not least, two functions were programmed to make the graph iGraph and
ggdag compatible by generating two literals, that the respective libraries are able to
process. Both were saved into a .txt file to import them later into R.
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3.4.2 Quantitative Data

In the following, the observational data was used and later compared with the true-
graph.

The data was loaded into R. As a baseline, a simple FCI+ algorithm was run on the
observational data with α = 0.01 and gaussCItest() to test for independence.

Next, the observational dataset was briefly analyzed. Every molecule concentration
is skewed, mostly close to zero. In a scatter plot, it is visible that the molecule
relationships comprise linear and non-linear dependencies, visible in 3.3. Thus, an
approach with Bayesian networks was attempted [52].

To begin, the observational dataset underwent a discretization process utilizing an
iterative method [27], already incorporated within the bnlearn package. This ap-
proach yielded superior preservation of pairwise information compared to quantile
or interval discretization techniques.

5000 random networks were created. This was undertaken with the function
random.graph(), seen in listing 3.3. Next, a tabu() search was conducted, be-
fore the strength of the probabilistic relationships with custom.strength() was
measured. Last, the network was averaged, containing only the significant edges.
This was done with the function averaged.network(), while leaving the signifi-
cance threshold parameter blank. By default, bnlearn offers a statistical way of
determining a suitable value. The resulting threshold was determined to be 0.358.

3.4.3 Combination

The network derived from the qualitative data was imported into R and a comparison
between the graphs were performed. Comparing the qualitative graph with some
quantitative graph was done by graph.intersection().

When evaluating differences and similarities between quantitative derived graphs,
the function compare() from bnlearn was used. This offered a superior view, because
it is directly visible, how many true-positive, false-positive and false-negative arcs
exists. This was not possible with the qualitative network, as the set of vertices is
different to the quantitative graphs.

To address the inconsistencies in the ontology results, a manually constructed sim-
plified graph was created. This graph was then compared to a modified version of
the true-graph, in which molecule names were adjusted by capitalizing letters or
making other minor changes, such as converting PIP-2 to PIP2 or Akt to AKT.

3.5 Results
In this section, the results will be presented. It is structured in the previous order.
First, the qualitative derived results will be shown in section 3.5.1. Second, a view
on the quantitative results in section 3.5.2 is provided, before the chapter ends with
the results obtained from the combination process in section 3.5.3.

3.5.1 Qualitative Data

The following section is separated by the conducted approach. Results obtained
from the BioBERT approach are depicted in subsection 3.5.1.1, while results from
the GPT-3.5 model are presented in subsection 3.5.1.2
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(a) The histogram of each molecule.

(b) Scatter plot of the molecules.

Figure 3.3: Distribution and scatter plot of the molecules.
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nodes <- names(dsachs)

start <- random.graph(

nodes = nodes ,

method = "ic -dag",

num = 5000,

every = 100

)

netlist <- lapply(

start ,

function(net){

tabu(

dsachs ,

score = "bde",

iss = 10,

start = net ,

tabu = 200

)

}

)

cus.strength <- custom.strength(netlist , nodes = nodes)

avg.observational <- averaged.network(cus.strength)

Listing 3.3: 5000 random networks were randomly generated. The network space
was investigated by Tabu search. IC-DAG refers to a certain method to randomly
generate Bayesian networks. Only one random generated DAG every 100 iterations
was kept, to ensure that they are different. BDE is short for Bayesian Dirichlet
equivalent, ISS to imaginary sample size and tabu (argument) to the length of the
list used in the tabu() function. Afterwards, the strength of the relationships was
calculated, before averaging the network to its signifcant edges.
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3.5.1.1 BioBERT Approach

On the qualitative side, the first approach conducted was to train a NER BioBERT
model. It achieved an accuracy of 80.1% on test data. However, the model was not
usable. An anecdotal evidence is provided in table 3.5. Various other samples were
examined, demonstrating similar outcomes.

Sample Multiple single-stranded cis elements are associated with
activated chromatin of the human c-myc gene in vivo.

Tokens Multiple, single, -, stranded, c, ##is, elements, are, associ-
ated, with, activated, ch, ##roma, ##tin, of, the, human,
c, -, my, ##c, gene, in, v, ##ivo, .

Labels O, O, O, O, O, O, O, O, O, O, O, O, O, O, B, I, I, O, O,
O, O, O, O, O, O, O

Extracted Entities ##tin, of, the
True Entities human c-myc gene

Table 3.5: Sample no. 13 of the GENETAG test set. Generated tokens are visible in
the second row. Labels are in the BIO-format. Last, the (falsely) extracted entities
compared with the actual entities.

3.5.1.2 GPT-3.5 Approach

The next approach was to utilize GPT-3.5 text-davinci-003. This yielded the graph
in figure 3.4a. Next to it is a simplified network, that was created from hand with
similar named nodes merged. This was done to demonstrate the influence, the
ontology can have on the output. For example RAF-1, RAF-B and RAF are merged
into one node. The original graph contains 36 nodes and 53 edges. The manual
simplification reduced these to 29 and 42.

In figure 3.5, similarities between the true-graph, the qualitative graph and the
simplified graph are visible. That means arcs that are contained in both graphs.
Differences between the true-graph and qualitative graphs are visible in the appendix
section A.2.2. That are arcs from the true-graph, that were not found by GPT-3.5.

Out of the 17 arcs present in the true-graph, the following 4 arcs were identified in
the non-simplified comparison:

� PKA → JNK

� PKA → RAF

� RAF → MEK

� ERK → Akt

Comparing the simplified graph, this extends to the following 7 arcs out of 17:

� PKA → JNK

� PKA → RAF
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(a) Graph extracted from GPT-3.5 text-davinci-003. It contains
36 nodes and 53 edges.

(b) Simplified graph by hand to demonstrate the influence of the
ontology. It contains 29 nodes and 42 edges.

Figure 3.4: Qualitative Graphs
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� RAF → MEK

� ERK → AKT

� PKA → P38

� PKC → PKA

� PKC → RAF

3.5.2 Quantitative Data

From a quantitative standpoint, scatter plots and histograms are visible in figure
3.3a and 3.3b. The distribution of the molecules is non-Gaussian, exhibiting a left-
skewed pattern with the majority of concentrations around zero. The relationships
among the molecules encompass a mixture of linear and non-linear dependencies,
which are visible in cases such as Erk and Akt or Erk and Jnk for linear associations,
and PIP2 and Jnk or PKC and P38 for non-linear connections.

The results from the FCI+ algorithm are visible in figure 3.6. Its skeleton comprises
8 true-positive (TP), 0 false-positive (FP) and 9 false-negative (FN) edges. When
considering directions, the similarities reduce to 0 TP, 8 FP and 17 FN.

In figure 3.7b, the network resulting from 5000 random graphs, searched by tabu()

on the observational data is shown. It has 8 TP, 1 FP and 9 FN edges, when
comparing the skeleton with the true-graph. When the directions are taken into
account, the similarity decreases to 4 TP, 5 FP and 13 FN edges.

3.5.3 Combination

Tables 3.6 and 3.7 present the comparative analysis of the networks. In their paper,
[51] constructed a graph solely based on observational data. The results from this
graph in comparison to the true-graph are visible in the tables as well. Additionally,
it is visualized in figure 3.7a.

A comparison with the qualitative graph was not possible this detailed, because the
set of nodes is different to the qualitative graph.

True-Graph Sachs Observational FCI+ Observational
TP 17 9 8 8
FP 0 1 0 1
FN 0 8 9 9

Table 3.6: Comparison of the skeletons.

True-Graph Sachs Observational FCI+ Observational
TP 17 0 0 4
FP 0 10 8 5
FN 0 17 17 13

Table 3.7: Comparison of edges and its directions.
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(a) qualitative graph.

(b) Manually simplified qualitative graph.

Figure 3.5: Intersections of the true-graph with the qualitative and qualitative sim-
plified graphs.
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Figure 3.6: Graph yielded from the FCI+ algorithm, executed on the observational
data.

3.6 Discussion

As a brief reminder, the goal of this thesis was to investigate, whether a common
framework can be developed that enables the combination of qualitative and quan-
titative sourced causal structures. On this way, problems and considerations are
monitored.

The following section is divided into the Qualitative Data 3.6.1 and the Quantitative
Data 3.6.2. The combination process with the true-graph is included in the former
section.

3.6.1 Qualitative Data

This section is split according to the two approaches conducted: BioBERT in sub-
section 3.6.1.1 and GPT-3.5 in subsection 3.6.1.2.

3.6.1.1 BioBERT Approach

At first glance, the NER BioBERT model looks promising, as it yielded an accuracy
of 80.1% on test data, that was never seen before. However, upon personal review,
the results were not usable.

One reason for the high accuracy might be, that the data is highly biased, with an
overwhelming amount of tokens tagged as OUTSIDE in BIO-scheme. Thus, the
model might have learned to predict very few times, rather randomly, a BEGIN or
IN tag, but most of the time an OUTSIDE tag.
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Adding complexity to the situation, the annotators [58] have chosen a broad defi-
nition for gene and protein entities, encompassing genes, proteins, RNA, domains,
complexes, sequences, and fusion proteins. They argue, that NER tasks are in-
herently challenging due to the ambiguous nature of genetic nomenclature. Conse-
quently, the dataset may not have been suitable as it covers a wide scope. Never-
theless, a different dataset could not be found, especially with annotated relations.
This poses a bottleneck.

3.6.1.2 GPT-3.5 Approach

The results yielded from GPT-3.5 text-davinci-003 only confirm 4 arcs. When man-
ually simplified, 7 arcs match out of 17 from the true-graph. One has to consider,
that 4 connections were not annotated and searched by the model. That comprises
the following influence paths:

� PKC → Ras → Raf

� PKC → MKKs → P38

� PKC → cAMP → PKA

� PIP3 → PIP2

When comparing these connections with the graph, visible in figure 3.4b, it is likely,
that PKC → P38 and PIP3 → PIP2 are not found because of that. This would
increase the found edges to 9 out of 17.

However, overall the result is not satisfying. There are four possible reasons for that:

(1) This setting was a zero-shot setting. The model did not have any fine-tuning on
the dataset. This is still challenging. Especially in such a specific area of knowledge.

(2) The text-davinci-003 model was constructed primarily for text generation pur-
poses. Consequently, one explanation for the density of the graph could be that
when faced with uncertainty, the model tends to err on the side of providing more
rather than fewer extracted entities. Furthermore, it is acknowledged that the model
occasionally fabricates information to fulfill user expectations, which poses a risk.
This went so far, that the model replied implicitly derived causes or effects. When
testing these effects, it became eminent, that it happened mostly when searching
without constraints for causality in text. Thus, text-davinci-003 was tasked with
finding the causal connection between the two given molecules, rather than search-
ing for it freely. Though, this causes the limitation, that an overall idea of possible
connections has to be present, that the model tries to confirm.

(3) The true-graph is a rather shallow, generalized example to investigate the poten-
tial of Bayesian networks, by [51]. It is likely, that there are more molecules playing
a role in signaling pathways, that [51] did not account for. However, these connec-
tions were investigated more closely in the referred papers, resulting in a different
refinement. One example for this is the influence path PKC→ Ras→ Raf. Ras has
not been measured by [51], therefore it does not exist in the true-graph. Though,
text-davinci-003 discovered the connection correctly (figure 3.4b). In this case, Ras



38 3. Example 1: Flow Cytometry Dataset

blocks the connection and misleads the comparison. That the arc exists anyway is
just caused by the path PKC → Raf → Mek.

(4) It is evident, that the used TRIPS parser was not reviewing and simplifying
enough. For example, the node RECEPTORS is not a specific protein. Still, TRIPS
categorizes it as ONT::PROTEIN. Regrettably, the system of proteins and lipids
is not easy understandable. Therefore, it was not possible to leverage a different
ontology.

3.6.2 Quantitative Data

When comparing the pairwise quantitative sourced graphs, it is evident that there
is a higher degree of similarity when only considering the skeleton. This outcome
was expected. The graph skeleton constructed from observational data is slightly
worse, compared to the FCI+ baseline. This is, because the connection P38 → Jnk
is falsely identified as significant.

Though, when considering the directions, Tabu search does find more TP and less
FP/FN edges, compared to the FCI+ algorithm. This is also an improvement, when
compared to the results yielded from [51] on the observational data. Tabu search
seems to be better in this case, compared to the annealing search algorithm used by
[51].

However, it is still far away from the true-graph. This underlines the importance of
interventions and interventional datasets.

Limitations

There are two limiting factors:

(1) It was already explained, that one has to provide the model the entities, between
which a causal connection should be found. This is to avoid a too large searching
scope and to minimize the extraction of possible fabricated or implicit deducted
entities.

(2) The numerous and ambiguous abbreviations and different terms, that account
for the same or very similar entity. This problem occurs for example in PIP2, PIP-2,
PIP2 or Phosphatidylinositol-4,5-bisphosphate and several others [1]. This makes it
very difficult to consent on the same term.

Improvements

A first step for improvement would be to leverage a specific and more powerful
ontology, than the one included in the TRIPS system. Another approach to improve
the results is to change the underlying model. For example by using GPT-4 or finding
a suitable dataset and fine-tuning another language model on this task. By doing
so, the noise might be reduced furthermore.

On the quantitative side, it would be necessary to consider interventional data to
improve the results. This is shown in the appendix A.2.1.
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(a) Found graph from [51] on observational data only.

(b) Graph resulting from Tabu search, run on the observational
data.
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(a) Comparison between the true-graph and the graph generated
from FCI+.

(b) Comparison between true-graph and Tabu search on obser-
vational data.

Figure 3.8: Visualized comparison between the true-graph and the graphs generated
by FCI+ and Tabu search. Black arcs represent TP, blue-dashed arcs FN and red
FP.



4. Example 2: Financial Dataset

In short: The upcoming utilized dataset is self-collected and comprises again quali-
tative and quantitative data. It will be investigated, how qualitative and quantitative
received causal structure can be combined. For the qualitative part, four language
models were fine-tuned. These language models were consecutively included in a
self-constructed application, that analyzes the financial qualitative data for causal-
ity. It was named CausalExtraction Linker (CE Linker). Subsequently, these found
connections will be combined with the causal structure received from the quantitative
data.

In section 4.1, an introduction to the dataset will be presented. The overall concept
and the methods employed will be further explained in Methodology 4.2, which will
be divided into subsections: Qualitative Analysis, Quantitative Analysis, and the
Combination of both methods. The Implementation 4.3 will follow the same struc-
ture as in Methodology but will provide more detailed information on challenging
tasks encountered during the implementation process. The obtained results will be
presented in the Results 4.4, and subsequently elaborated in the Discussion 4.5.

4.1 Dataset

The dataset used here consists of both qualitative and quantitative data, which has
been self-collected from a total of 30 companies. These companies are categorized
into three countries: Germany, the United States, and China. Specifically, there are
12 companies from Germany, 12 companies from the United States, and 6 companies
from China. The selection of these companies took into account various factors,
including the representation of different industries, the public prominence of the
companies, and a balanced distribution across the three countries.

Nevertheless, an imbalance was inevitable, primarily due to challenges encountered
in identifying suitable Chinese companies. These companies needed to meet certain
criteria, such as being publicly traded in the United States and having sufficient
public attention to generate public analyst reports. However, factors such as the
ongoing trade conflict between the United States and China, as well as Chinese
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protectionism, posed challenges in this regard and had to be considered during the
selection process.

Determining the country affiliation of a company was based on its place of domicile
or previous companies that have been merged into the current entity (e.g., AIRBUS
SE). The complete list of corporations is visible in table 4.1.

Sector Company Symbol Country #
Technology Baidu, Inc. BIDU China 21
Technology Tencent Holdings Limited TCTZF China 8
Technology Microsoft Corporation MSFT USA 161
Technology Apple Inc. AAPL USA 229
Technology SAP SE SAP Germany 8
Energy Exxon Mobil Corporation XOM USA 96
Energy PetroChina Company Limited PCCYF China 4
Energy RWE Aktiengesellschaft RWNFF Germany 2
Financial Services The Goldman Sachs Group, Inc. GS USA 20
Financial Services Deutsche Bank Aktiengesellschaft DB Germany 13
Insurance The Allstate Corporation ALL USA 4
Insurance Allianz SE ALIZF Germany 5
Aviation The Boeing Company BA USA 57
Aviation American Airlines Group Inc AAL USA 13
Aviation Deutsche Lufthansa AG DLAKF Germany 5
Aviation Airbus SE EADSF Germany 11
Healthcare Johnson & Johnson JNJ USA 25
Healthcare Bayer Aktiengesellschaft BAYZF Germany 5
Healthcare Fresenius Medical

Care AG & Co. KGaA
FMS Germany 2

Consumer Goods The Procter & Gamble Company PG USA 20
Consumer Goods JD.com, Inc. JD China 13
Consumer Goods PDD Holdings Inc. PDD China 13
Consumer Goods Henkel AG & Co. KGaA HELKF Germany 6
Automotive General Motors Company GM USA 20
Automotive Geely Automobile

Holdings Limited
GELYF China 4

Automotive Volkswagen AG VLKAF Germany 10
Defence Lockheed Martin Corporation LMT USA 22
Defence Rheinmetall AG RNMBF Germany 4
Chemicals Dow Inc. DOW USA 18
Chemicals BASF SE BFFAF Germany 6

Table 4.1: Companies in this dataset. Downloaded analysis reports are denoted in
column #.

Share prices from these companies were gathered between 01.09.2022 and 28.02.2023,
resulting in 6 months of time-series data (see fig. 4.1). For foreign companies
(non-U.S. companies), the F-shares were chosen over American Depositary Receipts
(ADRs, Y-shares), as they are usually more liquid [2]. The time-series data was
collected via the free API from Alpha Vantage Inc. [20].
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Figure 4.1: Overview over the stock prices.

824 analysis reports of these corporations, published during the same time period
were retrieved by crowd-sourced financial markets’ website Seeking Alpha [53]. A
different, more professional source of textual knowledge could not be used, because
of payment barriers.

Subsequently, this dataset was investigated on causality and later combined.

4.2 Methodology

In the upcoming section, the high-level ideas and conducted methods will be ex-
plained. The section Qualitative 4.2.1 contains the concept and utilized tools to
fine-tune four language models and the basic ideas behind the developed program,
that applies these models. Afterwards, the quantitative approach will be described
in section 4.2.2 before ending this chapter with more information about the combi-
nation process in section 4.2.3.

4.2.1 Qualitative Data

Overall Idea

The overarching objective was to develop causal connections among analysis re-
ports from diverse companies to later combine and compare them with connections
established by the causal discovery algorithms, deployed on the quantitative data.

To analyze the qualitative data, a pipeline approach was employed. This decision
was based on the factors previously discussed in section 3.3.1.

Subsequently, the following concept was chosen for the qualitative side:

1. A sentencizer splits up text into sentences.
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2. A so-called text categorizer (TextCat) will act as a binary classifier, deciding
whether a sample contains causality.

3. In positively labeled samples, a so-called span categorizer (SpanCat) will search
for spans that can be classified as either REASON or RESULT.

4. Next, each span will be investigated for entities, that can be labeled as PROD-
UCT, ORGANIZATION, LAW or other relevant categories. This will be
achieved with a standard NER model.

5. Last, a causal connection is going to be established between e.g. Company
A and Company B, if the following criterion is met: Entities extracted from
a REASON labeled span from Company A are found in a RESULT labeled
span from Company B.

Figure 4.2: Basic idea, how two companies should establish a connection.

Though, this approach imposes some limitations:

It is important to emphasize that this process does not guarantee a causal connection
between Company A and Company B. For instance, if the sample includes a reason
that is unrelated to Company A, whose report is being analyzed, a causal connection
cannot be established. In such cases, if the resultmatches with Company B, it would
inaccurately imply a causal connection. However, because the analysis is written
about Company A, it is safe to say, that there has to be at least some connection.

Additionally, the date published will not be taken into account, because it is unclear,
when the extracted spans are located timewise. It might be possible, that the analyst
talks about some past event or about an event that might happen in the future.
Distinguishing, when a certain event happens seemed too challenging. However, the
publishing date will be saved already, to be able to later account for that.

Training of the Pipeline

A well-suited dataset was identified that can be used to train the pipeline models:
the fine-grained causal reasoning dataset developed by [66]. It consists of annotated
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Figure 4.3: Diagram of the pipeline. Three SpanCat models exist, because it was
tested which would deliver the best results. All three performed almost equally well.
So they are interchangeable.

samples, originated from 6786 financial article reports, published between December
2020 and July 2021. Though, included were only U.S. listed companies.

This dataset can be further divided into sub-datasets for causality sentence classifi-
cation, cause-effect event pairs and causal question-answering pairs. Only the first
two were utilized.

The first one comprises 21046 positive and 29979 negative samples. Positive samples
are those, that include at least one cause-effect pair. Out of these, 846 contain more
than one sentence. The second dataset consists of 18457 uni-causal and 3017 multi-
causal text spans. Labels distinguish between CAUSE, ENABLE and PREVENT.
First can be understood as necessary and sufficient, while second means sufficient but
not necessary and the last one, that both cannot exist at the same time. However,
this will not be part of this task and each label was treated as CAUSE.

Both incorporate several industries, including communication services, consumer
cyclical, financial services and some more.

Training the models for the TextCat and SpanCat task was undertaken with Google
Colab Pro [22] and Python library spaCy [56]. This library offers a comprehensive
environment for the development of natural language processing pipelines and to
fine-tune custom models. The main idea is, that several (custom) models, called
”components” can be added to one pipeline object. When processing text, these
components then label tokens in regard to their task. A diagram of the pipeline is
seen in figure 4.3.

Surrounding Program

These pipeline was embedded in a python program, containing several classes to
thoroughly analyze the qualitative dataset. It was named CausalExtraction Linker
(CE Linker). In section 4.3.1, an in-dept explanation is provided.
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4.2.2 Quantitative Data

The approach involved analyzing the share prices previously collected. The ad-
justed closing price was utilized, which incorporates factors such as dividends, stock
splits, or rights offerings that could impact the nominal share price. This ensured
comparability.

No data preparation process was required since all the stocks used were officially
tradable in the U.S.

Next, the time-series data was analyzed. Initially, a baseline Granger Causality
test [23] was employed, followed by the utilization of a more advanced algorithm
called PC Momentary Conditional Independence (PCMCI) [50]. As independence
test, partial correlation was chosen. This actually assumes linear dependencies and
Gaussian noise. However, these simplifying assumptions have to be made in the
context of stock prices, because the independence test that accounts for nonlinear
dependencies is too computational extensive.

To carry out these analyses, the Python library TIGRAMITE [49] was applied,
which specializes in causal discovery within a time-series context.

4.2.3 Combination

Subsequently, the combination task, which is similar to the one already elaborated
in section 3.3.3. Though, this time only iGraph was used. The respective framework
is illustrated in figure 4.4.

The time dependency of the quantitative graph was resolved by merging the con-
nections found over the complete lag. Directed edges had the highest order meaning
that those were kept, when previously found undirected edges were dismissed.

Figure 4.4: Constructed framework for the combination of financial causal structures
derived from qualitative and quantitative data.

4.3 Implementation
In the succeeding section, the implementation process will be described. Section
4.3.1 will provide an in-depth look into the fine-tuning process of several language
models. Additionally, the program developed to leverage the resulting language
models and construct causal connections between the analyst reports is going to
be explained. The analysis of the time-series stock prices will be elaborated in
section 4.3.2, before ending the implementation section with a presentation of the
combination process in section 4.3.3.
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4.3.1 Qualitative Data

Upcoming content is quite extensive. That is why it has been divided into separate
sections. In 4.3.1.1 will be illustrated how the four language models were trained.
Hereafter in section 4.3.1.2, a detailed explanation to each constructed class for the
causal extraction from financial reports is provided.

4.3.1.1 The Extraction Pipeline

Sentencizer

A rule-based sentencizer model from spaCy was leveraged, which is fed by a spaCy
dependency parser. The text was decomposed into its sentences with this model in
a first step.

TextCat

A TextCat model classifies text, according to previously learned features.

Initially, the dataset from [66] was prepared for the training and testing process.
Since it already had a predefined train, validate, and test split, the data was merged,
shuffled, and subsequently divided into 75% training, 15% validation, and 10% for
testing purposes.

The data contains two columns. The first comprises one or multiple sentences, while
the second contains labels, whether a causal relation exists in these sentences. With
this structure, no data transformation was necessary to be able to convert it into a
spaCy readable data format. This was accomplished by the function 4.1.

First, an empty spaCy pipeline object is created with spaCy.blank("en"). The
variable db represents a DocBin object, that stores the annotated samples. The
function iterates over the samples, creating spaCy Doc objects with the adjusted
doc.cats property. Subsequently, the DocBin object is binary serialized and saved
to a file.

The files created in that way can than later be easily used by spaCy to train and
validate or test a model.

The generated data was used, to train a RoBERTa-base model on text classification.
The training process was undertaken with spaCy’s command line functionality and
an according config file. By doing it that way, spaCy elegantly coordinates the
training process in the background. The training was executed and yielded promising
results. It did not seem necessary to leverage a RoBERTa-large model. The following
hyperparameters were used:

� optimizer: Adam

� batch size = 2000 words

� max epoch = ∞ (early stopping)
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nlp = spaCy.blank("en")

def convert(data , outfile , nlp):

db = spaCy.tokens.DocBin ()

for doc , label in nlp.pipe(data , as_tuples=True):

doc.cats["POS"] = label == "positive"

doc.cats["NEG"] = label == "negative"

db.add(doc)

db.to_disk(outfile)

Listing 4.1: Function to convert the data from a .json file into a serialized spaCy
readable file.

SpanCat

A SpanCat model labels spans of text. In case of spaCy, this component consists
of two parts: A suggester function that proposes possible spans and a model, that
labels the spans [56].

Multi-causal text spans were not utilized, as it was unclear how to label the spaCy
Doc objects with more than one span that belong to each other. They make up for
approximately 14% of the samples.

The training procedure for this task was similar to the training of the TextCat model.
However, it was noticed that the data had some faults, when using it. SpaCy seems
to have problems, when annotated spans start or end in a token. That is probably,
because in this case it is unclear, whether the token belongs to the span or not.
Another cause of errors recognized is, when leading or trailing white spaces exist.
In the first case, samples were filtered out, while in the second case, the leading and
trailing white spaces were adjusted.

When this was done, spaCy Doc objects were generated again and the respective
doc.char_span adjusted.

Subsequently, three models were trained with this data. It was tested, which one
would deliver the best results. That were: RoBERTa-large, SpanBERT-large-cased
and XLNET-large-cased. RoBERTa models are by default cased. Cased models
were preferred to ensure comparability to RoBERTa models. All three displayed
satisfying results. The following hyperparameters were used:

� optimizer: Adam

� batch size = 2000 words

� max epoch = ∞ (early stopping)

� ngram suggester size = [1. . . 40]
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SpaCy NER

To extract entities from the labeled REASON and RESULT spans, a standard
spaCy pipeline was utilized, called en_core_web_lg. An existing RoBERTa-base
model for NER can then be easily added to this pipeline as a component.

4.3.1.2 CE Linker

The succeeding content describes the development of CE Linker, that applies the
training pipeline to find and extract causal connections, before connecting companies
with each other. The class diagram is visible in figure 4.5. The description will
start at the smallest component Article_Info and proceed step by step up to
Collection_Storage. The last subparagraphs briefly describes the main run.

Figure 4.5: Class diagram of the constructed qualitative knowledge analyzing pro-
gram.

Article Info

This class exists to inherit several attributes containing basic information about
analyst reports to the classes Article and Causal_Connection.

Causal Connection

A Causal_Connection object will be instantiated, if the pipeline finds a reason and
a result in a sentence. It inherits from the class Article_Info basic attributes that
describe to which article it belongs. It also contains the attribute self.doc. This
holds the same sentence, but in a format that spaCy returned, when the sentence
was processed. The advantage is, in case that the program will be extended in the
future, it is going to be faster, because these sentence were already processed.

The abbreviation ”cc” for example in print_cc(self) and get_cc(self) is short
for causal connection.
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Article

The upcoming class represents an analyst report. It is either part of an Article_Collection
object or stays for itself. Two class variables exist: relevant_labels and pipeline_dict.
Former is a list that determines, which labels are of interest. SpaCy’s NER model
contains multiple labels. But not all of them are useful to justify a causal connection.
The labels CARDINAL, MONEY and PERCENT were removed. It was expected,
that these entities are just too arbitrary. On the other hand, the following entities
were accepted:

1. DATE

2. EVENT

3. FAC (Faculty)

4. GPE (Geopolitical entity)

5. LANGUAGE

6. LAW

7. LOC (Location)

8. NORP (Nationalities or Religious or Political Groups)

9. ORG (Organization)

10. PERSON

11. PRODUCT

12. WORK OF ART

13. TIME

The other class variable called pipeline_dict contains the different models used.
It was mainly generated to pass the different pipeline models simpler.

The main method is save_cc_from_article_body(). It applies the pipeline models
to the text body. This happens by calling the function
process_text(), visible in listing 4.2. Hereafter, the labeled entities in the respec-
tive reason and result spans are extracted. If at least one entity in each span can be
found, a new causal connection is created by calling self.__new_causal_connection()

Article Collection

Article objects can be generated by an Article_Collection. This class holds sev-
eral articles that belong to one company. Its main method is named new_article_and_analysis().
When running this, a new Article object is instantiated and the method Article.save_cc_from_article_body()
will be executed. Subsequently, the newly generated object will be saved under its
ID as value in a dictionary called articles.

Possibly found causal connection in the article will be saved in the Article_Collection
object as well, because it later is of less relevance, from which analyst report the
causal connection was extracted, to connect companies with each other. Thus, in
a subsequent step, each Article_Collection can be used to establish connections
based on the causal connections between companies.
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processed_docs = []

docs = senter(text)

for doc in docs.sents:

doc_cat = text_cat_model(doc.text)

if doc_cat.cats is not None:

if doc_cat.cats["POS"] > 0.5:

doc_span = span_cat_model(doc_cat)

if len(doc_span.spans["sc "])==2:

doc_ner = ner_model(doc_span)

processed_docs.append(doc_span)

Listing 4.2: Main part of the process_text() function, that applies the pipeline
components on some text. Because the models are not necessarily the same, the
nlp.Vocab might differ. Thus, it was not possible to create a single pipeline with the
models as components. First, the senter() decomposes the text into its sentences.
Next, the TextCat model runs over the sentences. In case that the likelihood to have a
causality in the sentence is greater than 0.5, the SpanCat model searches for possible
reasons and results. If two spans are found, the NER model searches for entities.
The complete annotated sentence will than be appended to the list processed_docs
and later returned.

Collection Storage

This is the top-level class. It holds several Article_Collection objects. The main
mechanics are implemented in the methods analyze_data() and connect_companies().

The first method takes a pandas.DataFrame. In this dataframe, all analyst reports
and the respective metadata is saved row-wise. It will be iterated over it. If a new
ticker symbol is found, a new Article_Collection object is instantiated. This
consecutively executes its method new_article_and_analysis() to analyze the
current analyst report.

Once that is done, the method connect_companies() can be run. This searches
for connections between companies. Important to mention are two parameters.
The first one is named looseness. It distinguishes, under which conditions a new
connection is established. By now, it has three steps: 0, 1, 2. If 0, the found entities
of Company A’s result have to match exactly with the found entities of Company
B’s reason. If 1, at least one entity has to match in both spans. If 2, the entity’s
names are compared string-wise in order. In case that the names match with a
certain percentage, a connection is generated. The necessary threshold score is the
formerly named second important parameter, called min_string_similarity. It
was mainly introduced, because the NER model sometimes extract entities that are
actually the same, but are named slightly different, e.g. because of a genitive ”s”.

The found connection are added up and written into a pandas.DataFrame that acts
as weighted adjacency matrix.
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results = pcmci.run_pcmci(

tau_max=7,

pc_alpha=None ,

alpha_level =0.01 ,

tau_min =0

)

Listing 4.3: Execution of the PCMCI algorithm. A significane level of 0.01 was
chosen. tau_max refers to the maximum time lag. Accordingly does tau_min.
Pc_alpha=None let the algorithm decides what the best significance level during the
condition-selection step is.

This class contains also a method to create and plot a graph. Additionally, the
complete Collection_Storage can be saved to a file as pickle and load again from
a file. This was implemented, because a complete analysis of the analyst reports
took approximately a full hour.

Main Run

The several classes were tested manually. Logging and loading bars were included
to make it more user-friendly and easier to debug. Where it seemed necessary,
try/except blocks were used. Several complete runs were conducted with different
looseness values. A resulting graph will be presented in section 4.4.

4.3.2 Quantitative Data

In the quantitative analysis, the R library lmtest [31] was used to perform Granger’s
causality test [23] as a baseline. For better results, the PCMCI algorithm was
utilized. It is included in the Python library TIGRAMITE [49].

The Granger causality test was performed pair-wise, by iterating twice, in each
direction once, over the different companies. α = 0.01 was chosen. If the test
showed significance, the causal relationship was noted in an adjacency matrix.

For analyzing the data with the PCMCI algorithm, all stock prices were concate-
nated as columns into a pandas.DataFrame. As independence test, partial correla-
tion was chosen. Subsequently, the causal discovery algorithm was executed, visible
in listing 4.3.

To eliminate the time-dependency in the resulting network, a method was imple-
mented involving the iteration over different lags. In this method, undirected edges
were transformed into two arcs, one from Company A to Company B and another
from Company B to Company A. However, if a directed edge was present, such as
from Company A to Company B, only a single arc from Company A to Company
B was created.

The process of creating two directed edges when encountering an undirected edge
can be considered inaccurate. However, this step was necessary in order to facilitate
a comparison of the resulting networks using iGraph. iGraph only supports either
directed or undirected networks, and does not allow for a combination of both.
Therefore, by converting the undirected edges into two directed arcs, it was possible
to ensure compatibility with iGraph and conduct the desired network analysis.



4.4. Results 53

4.3.3 Combination

The combination of the retrieved networks was undertaken with iGraph. Though,
this time Python was used. To account for the different industries the companies be-
long to, a Python dictionary was created, that holds different RGB values. Vertices
of companies of the same industry were painted in a similar color. Additionally, a
different node shape was introduced, to differentiate between the different countries
of origin.

The similarity between the networks were calculated and subsequently plotted.

4.4 Results

In subsection Pipeline Models 4.4.1, the training results will be presented. After that
in subsection 4.4.2, the qualitative derived graph will be illustrated. The quantitative
networks will be shown in subsection 4.4.3. The chapter will end with the results
obtained from the combination process in subsection 4.4.4

4.4.1 Pipeline Models

The results from the trained models are visible in table 4.2. The outcome corre-
sponds mostly with the published results from [66]. Table 4.3 shows some examples
extracted by the pipeline. Additionally, for the sample in the last row, three entities
could be found. For the reason span, apple (ORG) was found, while for the result
span, iphone PRODUCT ) and eve jobs (PERSON ) were returned. It is noteworthy,
that these are just a few examples. Others include either none extracted span or just
one. As already mentioned, those were not further processed. A wrongly inferred
tuple of spans is the following:

� Original sample: JD.com’s relentless focus on user experience, cost and effi-
ciency has allowed us to continuously expand our user base while delivering
profitable growth.

� Extracted reason: JD.com’s relentless focus on user experience

� Extracted result: cost and efficiency

� True reason: JD.com’s relentless focus on user experience, cost and efficiency

� True result: continuously expand our user base while delivering profitable
growth

4.4.2 Qualitative Data

The text corpus was once analyzed with a looseness = 0 and looseness = 2 pa-
rameter. The qualitative graphs are presented in figure 4.6 and 4.7. The qualitative
graph with looseness = 0 contains 14 edges. The other one with looseness = 02

comprises 58 edges. However, to reduce the different necessary comparisons, in
the subsequent sections only the graph with looseness = 2 will be discussed and
further investigated. It will be referred to it as ”qualitative graph”.

The nodes with the most outgoing and incoming edges are visible in table 4.4.
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Task Model Recall Precision F1
TextCat RoBERTa-base 84.46 83.91 84.13

SpanCat
RoBERTa-large 54.00 63.80 54.00

SpanBERT-large-cased 53.10 62.40 57.38
XLNET-large-cased 54.85 62.00 58.21

Table 4.2: The results from the trained models. The SpanCat output was only con-
sidered right, when the spans exactly match.

Company Reason Result
Baidu Baidu continues growing

and expanding profitability
its stock price should in-
crease significantly in the
coming years

JD.com the Chinese New Year ap-
proaches

the company will see in-
creased demand

Microsoft the economic outlook
should improve

the Federal Reserve moder-
ates its pace of hiking in-
terest rates and corpora-
tions have more disposable
income

Apple Potential users will wait to
buy an Apple product

the unaltered appearance of
the iPhones, and because
Eve Jobs posted a meme
about it on her Instagram
Stories

Table 4.3: Some examples extracted from the pipeline.
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Figure 4.6: Found network from the causal relation extraction program. The
looseness parameter was set to 0.
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Figure 4.7: Found network from the causal relation extraction program. The
looseness parameter was set to 2
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Pos. Top Outgoing # Out % Out Top Incoming # In % In

1 AAPL 9 15.5 PDD 11 19.0
2 BIDU 8 13.8 BA 8 13.8
3 DB 7 12.1 MSF 7 12.1
4 BA 7 12.1 AAPL 7 12.1
5 GS 5 8.6 LMT 5 8.6

Table 4.4: Top outgoing and incoming nodes of the qualitative generated graph.

Pos. Top Outgoing # Out % Out Top Incoming # In % In

1 BAYZF 3 8.6 JNJ 6 17.1
2 BFFAF 3 8.6 BFFAF 3 8.6
3 DLAKF 3 8.6 DOW 3 8.6
4 HELKF 3 8.6 EADSF 3 8.6
5 JD 3 8.6 LMT 3 8.6

Table 4.5: Top outgoing and incoming nodes of the resulting graph from Granger
causality test.

4.4.3 Quantitative Data

Granger

The baseline Granger causality test yielded the network visible in figure 4.8. A lag
of τ = 7 days and a significance of α = 0.01 was investigated. The top outgoing and
incoming nodes are listed in table 4.5.

PCMCI

In figure 4.9, the network yielded by the PCMCI algorithm is illustrated. The
top outgoing and incoming nodes are presented in table 4.6. As with the Granger
causality test, a lag of τ = 7 and α = 0.01 was chosen.

A comparison between Granger and PCMCI is found in the appendix.

4.4.4 Combination

The qualitative graph was compared with the graphs resulting from the Granger
causality test and the PCMCI. The intersections are presented in the figures 4.10a

Pos. Top Outgoing # Out % Out Top Incoming # In % In

1 DOW 23 5.9 GS 21 5.4
2 GS 22 5.7 DOW 21 5.4
3 SAP 21 5.4 SAP 21 5.4
4 BA 19 4.9 MSFT 19 4.9
5 MSFT 19 4.9 AAL 19 4.9

Table 4.6: Top outgoing and incoming nodes of the PCMCI generated graph.
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Figure 4.8: Network obtained by the Granger causality test with τ = 7 and α = 0.01.
It comprises 35 edges.
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Figure 4.9: Network resulting from the PCMCI algorithm with τ = 7 and α = 0.01.
It contains 389 edges.
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and 4.10b. The graph shares 2 edges with the Granger caused graph, while it shares
34 edges with the PCMCI derived graph. In table 4.7 and 4.8, a comparison by
country and industry sector is presented. The values are relative values, because
countries and industries are unequally distributed.

∅ Edges Out and In per Country
Country # (G) % (G) # (P) % (P) # (Q) % (Q)

USA
Out .3 7.5 16.0 41.2 3.1 54.4
In 1.5 36.6 15.9 41.3 2.7 43.5

Germany
Out 1.5 37.5 10.0 25.8 0.8 14.0
In 1.9 46.3 10.4 27.0 0.8 12.9

China
Out 2.2 55.0 12.8 33.0 1.8 31.6
In .7 17.1 12.2 31.7 2.7 43.5

Table 4.7: Average out and in connections per country. Q: Granger, P: PCMCI, Q:
Qualitative

4.5 Discussion

The discussion is presented in the following chapter. As a brief reminder, the goal
of this thesis was to investigate, whether a common framework can be applied to
combine causal structures derived from qualitative and quantitative data and what
problems occur and which considerations are necessary. The chapter contains the
section 4.5.1 Pipeline Models, where a discussion to the results of the fine-tuned
models is presented. Afterwards, the qualitative and quantitative results are elabo-
rated in sections 4.5.2 and 4.5.3 before the chapter ends with a discussion about the
combination process and its result in section 4.5.4.

4.5.1 Pipeline Models

The results of the trained pipeline match with the ones yielded by [66]. Their
TextCat RoBERTa-base model achieved 84.31 F1 on test data. Best results on
TextCat delivered a RoBERTa-large model with 84.64 F1. The model fine-tuned in
the context of this work, a RoBERTa-base model achieved 84.13 F1, which is just
slightly worse.

The best SpanCat model from [66] was SpanBERT-large with 60.26 F1 on exact
match. A possible reason for their better result might be, that they did not have to
dismiss some samples because of faulty annotations. They did not use SpaCy, but
downloaded the pretrained models directly from HuggingFace. So the problematic
annotations might have stayed unnoticed. Their RoBERTa-large model achieved
56.77 F1. A comparison with the XLNET model was not possible, as they did not
decide to fine-tune it. Overall are their results similar to the ones yielded by this
work.

When looking at the brief excerpt of the labeled span, the reader can see reasonable
causal relations. However, with except to the last one, none of them could be used,
because no entities were recognized in a subsequent step.
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(a) Intersections between the qualitative derived graph and the
graph generated by the Granger causality test.

(b) Intersections between the qualitative derived graph and the
graph generated by the PCMCI algorithm.

Figure 4.10: Intersections between the qualitative graph and the quantitative graphs.



62 4. Example 2: Financial Dataset

∅ Edges Out and In per Industry
Industry Granger PCMCI Qualitative, l2

# O # I % O % I # O # I % O % I # O # I % O % I
Technology 1.0 .4 8.5 3.1 16.2 16.6 12.6 13.0 4.4 4.0 18.0 24.4
Energy 1.0 .7 8.5 5.4 5.7 6.3 4.4 4.9 1.3 1.3 5.3 7.9
Financial Services .5 .5 4.2 3.8 20.0 19.0 15.6 14.9 6.0 1.0 24.6 6.1
Insurance 2.0 1.5 16.9 11.5 8.0 9.5 6.2 7.4 .0 1.5 .0 9.1
Aviation .8 1.8 6.8 13.8 11.8 13.3 9.2 10.4 2.0 2.3 8.2 14.0
Healthcare 1.0 2.3 8.5 17.7 13.3 13.7 10.4 10.7 7.0 .0 28.7 .0
Consumer Goods 2.5 .5 21.2 3.8 13.8 11.5 10.8 9.0 1.0 3.5 4.1 21.3
Automotive .0 .3 .0 2.3 14.3 14.7 11.2 11.5 .7 .3 2.9 1.8
Defence 1.5 2.0 12.7 15.4 8.0 6.0 6.2 4.7 1.0 2.5 4.1 15.2
Chemicals 1.5 3.0 12.7 23.1 17.0 17.0 13.3 13.3 1.0 .0 4.1 .0

Table 4.8: Average out and in connections per industry. Q: Granger, P: PCMCI,
Q: Qualitative

Limitations & Improvements

In general, a pipeline approach imposes problems, in particular because of error
propagation. When the TextCat model decides in only 84% correctly and in a
subsequent step, only 56% of the spans are labeled correctly, the overall accuracy
drops significantly. Joint extraction approaches yield clearly better results [57].

When it comes to the used dataset, the reduced amount of training samples could
be improved due to faulty annotations. Despite that, multi-causal samples should
be included, since they make up for roughly 14% of the dataset of [66].

A way to improve results could be to change the underlying models and increase
the parameter size. The largest models used in the context of this thesis, next to
GPT-3.5, are XLNET-large with approximately 340 million parameters [46] and
RoBERTa-large with 355 million parameters [46]. These are to my best knowledge,
the largest existing encoder-only models. Exchanging these with another model,
potentially a decoder-only autoregressive model like GPT-3, GPT-4 or PaLM could
improve the results.

Causal extraction datasets are still sparse, as it is only a sub-topic in the relation
extraction research. This problem could be overcome with data augmentation. [15]
created a method called AugGPT on the basis of ChatGPT. It shows some prob-
lems with very specific topics, like in the medical context. Yet, for causal relation
extraction, it might be possible to utilize that.

4.5.2 Qualitative Data

One third of the nodes stood unconnected. In table 4.9, the ticker symbols and the
number of analyzed articles are presented. These reports were the only published in
the respective time span. The sparse amount of these companies might be a reason,
why there is no connection found. However, there are in fact companies with limited
reports, like Allianz (ALIZF, 5), Allstate (ALL, 4) or SAP (8), where connections
are found. So this is not necessarily a reason.
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Unconnected Nodes # Analysis Reports
RNMBF (Rheinmetall) 4

DOW 18
ALL (Allstate) 4

VLKAF (Volkswagen) 10
BAYZF (Bayer) 5
FMS (Fresenius) 2

DLKAF (Deutsche Lufthansa) 5
TCTZF (Tencent) 8
RWNFF (RWE) 2

PCCYF (PetroChina) 4

Table 4.9: Unconnected nodes of the qualitative graph and the number of analyzed
reports.

When looking at the top outgoing and incoming nodes (table 4.4), Apple is repre-
sented in both categories. A possible reason for that is, that there are 229 reports
about Apple in the dataset. However, PDD is strongly represented as well, though
here only 13 reports were analyzed.

Limitations & Improvements

(1) Analyzing a more evenly distributed collection of analyst reports would have
been beneficial. This comes hand in hand with utilizing a more professional source
for analyst reports. It is likely, that the style and the structure that those reports
are written in are more similar. This would improve the comparability between
companies and the respective established connections between these. However, an-
alyzing crowd-sourced reports does have its advantages as well. [13] investigated,
whether a connection between Seeking Alpha articles and abnormal stock returns
and earnings surprises exist. They did this, by measuring certain negative words in
articles retrieved from Seeking Alpha and using these as coefficients in a multivari-
ate regression. Published articles seem to strongly predict future stock returns and
earnings surprises. Even when controlled for effects from more professional sources
and news media.

(2) Improvements should be made, when it comes to establishing connections be-
tween companies. In this thesis, these were made, when entities from a result span
of Company A match with entities from a reason span of Company B. Though,
whether there is a real causal connection is questionable. The problem is, that an
ontology is missing, that levels the extracted spans to some common ground. For
example Wikipedia could be utilized to structure the extracted spans. Probably
even better suiting would be DBpedia [30] because of a tighter structure, that the
knowledge exists in, compared to Wikipedia. DBpedia offers currently 768 ontology
classes, that could be leveraged. Alternatively, entities could be used to traverse
the knowledge graph directly. By implementing that, possible connections could be
established, by classifying extracted entities via DBpedia before grounding these to

companies. For example iPhone 8 (Device)
brand←−−− Apple Inc. (Public Company)

could be traced back. It would probably improve the results, if only companies
would be compared, after other entities were grounded to them, as it would reduce
the noise.
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(3) Another possibility would be to self-construct a causal knowledge base. It could
be done in the following way: In a first step, the semantic similarity between spans
could be measured, for example with a Bag-of-Words model [62] or by directly
accessing the embedding vectors and measure the distance between these vectors.
Hereafter, a knowledge base could be constructed by clustering the similar text
samples. Subsequently, new spans could be grounded to the nodes of this knowledge
base, by calculating the highest semantic similarity.

(4) By now, the pipeline is only able to find inter-sentential causality with one cause-
effect pair per sentence. This is a bottleneck, as it does not account for the variety
of different causal relations.

(5) The amount of found connections should be utilized as well. The current state
is, that each causal connection is added up in a matrix. This could be used to
estimate the strength between companies. One could even go further and include the
probability of the pipeline models in the equation. The strength of the connections
could be expressed by different colors or different sizes of edges in the plots.

4.5.3 Quantitative Data

Both networks, Granger and PCMCI, were created with a lag of τ = 7 and α = 0.01.

Explaining connections that appear or do not appear from the Granger causality is
difficult. There are only 35 edges present. A pattern cannot be identified. Notice-
able is, that three U.S. companies are not connected and only one Chinese and no
German.

The graph inferred by PCMCI contains 389 edges. Many technology companies are
in the midst of the graph well-connected. However, the top outgoing node is Dow
Inc., which comes unexpected, that a chemical company has so much influence. The
same goes for Boeing. However, Goldman Sachs was expected, as financial institutes
play an important role in an economy. This matches with the average in and out
connections per industry in table 4.8. Companies from the defence, insurance and
energy sector influence and are influenced the least.

RWE, Rheinmetall and Henkel do not play a central role according to PCMCI. In
fact, most of the outer nodes are German companies (Rheinmetall, Airbus, Allianz,
RWE, Lufthansa, Volkswagen, Henkel), despite Exxon Mobile from the U.S. and
PetroChina from China, while many companies in the inner circle are U.S. com-
panies. This is noticeable from the table 4.7 as well. U.S. based companies seem
to influence and are influenced the most. However, a multiple regression would be
necessary to determine, whether the in- and outdegree of the node depends more on
the sector or the origin of the company.

Limitations & Improvements

(1) The graph created by Granger looks much sparser, compared to the PCMCI
algorithm. A reason for might be, that Granger actually assumes stationary linear
systems. This is not given, when applied to financial data. Therefore, nonlinear
dependencies are not detected. Another reason for so only 35 edges is, that the
algorithm is implemented pairwise and does not account for possible confounders or
indirect links [54, 50].
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(2) PCMCI found 389 edges. The same necessary assumptions as for the Granger
Causality were applied here, because the partial correlation independence test was
used, which only accounts for linear dependencies. [48] states, that through the
MCI test, a limited amount of false positive connections are inferred. However, this
does not explain the vast difference to the Granger causality. It is rather, because
undirected edges were converted into two directed ones, e.g. A−B ⇒ A← B∧A→
B. This is of course inaccurate. Yet, it was the only solution to compare both graphs
with iGraph, as iGraph cannot handle mixed graphs. Originally, 312 undirected
connections were detected and 101 directed. Some of them were merged together,
because they belong to the same pair of companies, but account for different lags τ .

(3) PCMCI could be improved by using Latent-PCMCI (LPCMCI) [21]. However,
this is computational extensive. Another option to account for unmeasured con-
founder would be to change the investigated companies. One could for example
choose all companies from the SDAX index. These are rather small in terms of
revenue and market capitalization and might not be too dependent from other in-
ternational companies. This could reduce the amount of confounders.

(4) It would be useful to include the strength of the connections, when the graph is
constructed. The different strength of connections could be expressed by adjusting
the width or color of the edges.

4.5.4 Combination

Granger causality combined with the qualitative graph show only two connections.
Both are not explainable.

PCMCI and the qualitative graph share 34 intersections. The arc from Boeing to
Airbus seems logic. Both financial service companies, Deutsche Bank and Goldman
Sachs, are represented. Understandable are the connections between SAP, Apple,
Microsoft and Baidu, since all belong to the technology sector. When considering the
countries of origin, the triplet Allianz, Deutsche Bank and SAP seem explainable.
JD.com, Baidu and PDD share connections as well. This is understandable. The
same goes for the cluster Goldman Sachs, Apple, Microsoft, Exxon Mobile, Boeing,
General Motors, Johnson & Johnson and Lockheed Martin. Noticeable is, that
Allstate, Dow, P&G and American Airlines do not belong to them. For Allstate
and Dow were no qualitative connections found. P&G and American Airlines are
qualitatively connected to PDD. These connections could not be confirmed with the
PCMCI algorithm.

However, The connection between U.S. defence corporation Lockheed Martin and
Chinese consumer goods company PDD appears unusual.

The companies Lufthansa, Tencent, Volkswagen, Allstate, Rheinmetall, RWE, Bayer
Dow and Fresenius were already unconnected in the qualitative graph. Henkel, P&G,
Geely, BASF and American Airlines were not. However, the PCMCI algorithm does
not share any common edge with the qualitative graph.

Overall, 15 of 30 nodes have a degree greater zero.

Limitations & Improvements

(1) The main reason for companies that have a degree of zero is, that the qualitative
data is not equally distributed.
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(2) Including a measure of strength between the companies would be useful. For the
qualitative data, a combination of the amount of connection and the likelihood from
the pipeline models could be used. For the qualitative data, the strengths calculated
from the PCMCI algorithm could be utilized. They both could be standardized,
compared and merged.

(3) By now, the qualitative data does not utilize the date the article was published.
Yet, this could be some valuable information to estimate whether a condition is
possible or not. Implementing this would not be a challenge. The question is
rather how reliable this is, as there are analyst reports that talk about the past or
the future. It would be necessary to determine this. A similar question is, how
to distinguish between hypothetical scenarios presented in these articles and facts.
Event extraction is necessary to account for these concerns.

(4) A knowledge base and an ontology should be implemented. By grounding the
extracted entities and classify them by an ontology, noise would be reduced. A
knowledge base could be used to infer more connections between different types of
extracted entities. As already stated in the qualitative subsection, DBpedia could
be interesting.

(5) Using a different graph construction library would be beneficial, as iGraph only
allows for direct or either undirected edges. NetworkX is restricted in this regard
as well. Both are sometimes difficult to adjust, so that the nodes do not overlap,
and the labels are well readable. bnlearn does allow for mixed graphs. Yet, it is
required that the networks have the same node set. A method like intersection

from the iGraph package does not exist in the bnlearn library. Gephi was used as
well, to create graphs for the presentation. It allows mixed graphs and interactively
adjusting the position of the nodes was helpful. iGraph offers a direct connection to
Gephi. How well Gephi can be automized is unclear. Both was not tested.
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5.1 Conclusion

In the context of this thesis, several approaches could be investigated, on how to
combine quantitative and qualitative causal knowledge.

The research conducted in the context of the flow cytometry dataset shows, that
training data for relation extraction is still scarce. In particular for domain-specific
tasks such as biochemistry. The few-shot capabilities from GPT-3.5 resolved this
issue. However, the model extracted a substantial amount of noise at the same time.
A powerful ontology is necessary to ground these entities and make them comparable.
An adjustable refinement grade is necessary, to match with the refinement grade of
the true-graph. When manually annotated to overcome the issues with the ontology,
7 out of 17 arcs could be correctly inferred. This could increase to 9 out of 17 arcs,
once all connections were found and annotated in the abstracts. On the quantitative
side, the utilized heuristic Tabu search algorithm proved to find more true-positive
arcs, than the originally used heuristic Annealing search algorithm and the applied
causal discovery algorithm FCI+ baseline. Yet, it is evident that interventions are
necessary to fully reconstruct a causal graph purely from data, as Tabu search found
5 false-positive and misses 13 false-negative arcs. The leveraged graph libraries
iGraph and bnlearn have the weakness, that former does not enable to merge directed
and undirected graphs. Latter does not have this weakness, however, the comparison
of graphs with a different node set is not possible.

In terms of the self-collected financial dataset, a pipeline with four fine-tuned lan-
guage models was developed. To apply this pipeline, a program named CausalEx-
traction Linker was constructed, that analyzes a text corpus and consecutively infers
causal connections between companies. Yet, it is questionable whether these connec-
tions can be understood as causal. The detection and extraction of events would be
necessary to meet these shortcomings. Additionally, the application of a knowledge
base like DBPedia would have been advantageous. Extracted entities could have
been grounded, and the graph could have been utilized to draw more meaningful
connections compared to the current string comparison. A reason for unconnected
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nodes in the qualitative graph is, that the dataset text corpus is unequally dis-
tributed.

Quantitatively, the PCMCI algorithm was employed to detect causal connections
from stock prices. It found significantly more connections than the baseline pair-
wise Granger Causality test. However, nonlinear dependencies and latent variables
were not considered. Both results combined show a graph that is partially well-
explainable. Yet, unusual connections were inferred as well. Regrettably, due to
time-constraints it was not possible to utilize the inferred strengths connections and
compare them.

Similar issues as in the first dataset occurred, in terms of visualizing the evidences.
Gephi could be used. However, it is unclear how well it can be automized.

To summarize: A common framework, that is applicable to different fields could be
developed in this thesis. Yet, components of this framework have to be improved.
In particular, a knowledge base with an underlying ontology should be utilized.
Additionally, it is necessary to extract events, rather than relations. Leveraging a
more powerful causal discovery algorithm that accounts for latent variables would
be beneficial as well. Subsequently, using a joint extraction model than a pipeline
could improve results furthermore.

5.2 Outlook

With the recent emergence of ChatGPT, AI, and natural language processing in par-
ticular, has become the focus of people around the world. This results in the faster
development of language models with new capabilities. It is questionable, whether
as much data annotation will be necessary in the future, because the development
of data augmentation proceeds with these new language models. For tasks where
results do not have to be as accurate, few-shot capabilities might deliver satisfy-
ing results, making the fine-tuning process completely obsolete. This development
favors the causal extraction task and is beneficial for the more challenging event
extraction task.

The field of Causality invented several new techniques in the last decades. It is
likely that this development proceeds similarly. It is crucial to understand causes
and effects in large scaled system, as in meteorology, finance, biochemistry or soci-
ology. In situations where interventions were unethical or infeasible, deriving causal
connections from purely observational data is important.

Combining both fields could improve results furthermore. To my best knowledge, it
exists only few works that try to utilize both sources yet. There is a lot of potential
in this area.



A. Appendix

In section A.1, a more detailed description of related work is provided. Afterwards,
an analysis of interventional flow cytometry data is shown and explained in section
A.2. Additionally, plots that show not similarities, but differences of the quantita-
tive findings compared with the true-graph are provided. In context of the finance
dataset, a comparison between the Granger causality and PCMCI algorithm is shown
and discussed in section A.3. Additionally, intersections of graphs inferred from the
qualitative data, but with difference looseness parameters are presented.

A.1 Related Work in more Detail

A.1.1 World Modelers

World Modelers [29] is a program developed by the Defense Advanced Research
Projects Agency (DARPA). Its goal is to unify qualitative causal analysis with quan-
titative models to provide a better understanding of current crises to analysts. To
accomplish that, they built a pipeline consisting of several subsystems that will be
explained in the following.
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Figure A.1: World Modeler with its subsystems

CauseMos is the main part of the system. It offers a human-machine interface
(HMI) with several workflows to make use of qualitative and quantitative data. It
is possible for the user to build causal graphs which can be augmented by uploaded
literature, that is scanned for further evidence. One is also able to composite an
index based on the data and plan and simulate possible intervention.

The extraction of causal relations, events and statements from text is done by several
subsystems. The documents are first passed to the Data Analytics and Reasoning
Toolkit (DART). Here, metadata and text is extracted and passed to the readers
EIDOS, HUME and SOFIA.

EIDOS extracts entities, arguments and events before grounding them to an ontol-
ogy. It does this by a rule-based system called Odin information extraction frame-
work. HUME is similar. It can also extract causal relations and events from text.
Grounding extractions to an ontology is possible as well. Unfortunately, it is not
further described on what base the system works. SOFIA does basically the same
even though there is an important difference. SOFIA has an internal ontology which
is not completely coherent with the ontology of World Modeler. As a reason, the
authors mention that the development of SOFIA stopped, before the World Modeler
finished. Thus, the use of SOFIA in the integrated system must be made carefully.

The assembly of the extracted information is undertaken by INDRA World. It
can find relationships between statements and grounds them to an ontology. Equal
statements are merged, and the evidence is combined. Statements of the same
kind, but with a different generalization or specification degree are structured in
a so-called refinement graph. INDRA World is also able to assign a ”belief” score
between 0 and 1, depending on the found support for a given statement. This all
works incrementally. Adding more documents to the system lets INDRA World
calculate an ”assembly delta”, which shows the differences generated in terms of the
statements, connections and belief scores. It has to be enhanced, that the resulting
graph is based on qualitative data.
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Using quantitative data is done by the subsystem Dojo. Analysts can register their
own model and have the possibility of adding parameters and metadata to it. Worth-
while mentioning is, that models should have a geospatial or temporal dimension.

After registration, CauseMos utilizes these models by automatically mapping avail-
able data to concepts of a causal analysis graph. The result is a semi-quantitative
computational model, which can be used to analyze scenarios and interventions.

This is done in the last of the subsystems; the inference engines. The first one is
called Delphi. It can model interactions between concepts linked by causal relations.
As a base, it needs a causal analysis graph. When the strength of each node in the
network is known, Delphi is able to use this as a starting point for the training of a
probabilistic forecasting model. It is also possible for the analyst to specify default,
minimum, maximum edge values or even freeze some.

Second, there is DySE, which stands for Dynamic Systems Explanation. It is a
framework for the study of dynamics in a system. The DySE simulator is capable of
visualizing the influence a concept has in its graph and how the change propagates
through the network. DySE’s sensitivity and path analysis is designed to quantify
the influence of concepts on each other.

Third, World Modeler supports the use of Sensei. With this modeling engine, one
can estimate uncertainty in multivariate time series data. Once again, the base is
a causal analysis graph. Each node is modeled as a univariate time series. As a
result, the engine has the power to estimate trend and seasonality of the time series
data. This is undertaken in a step-wise manner. Mathematically, parameters and
uncertainty is assessed by using Maximum A Posterior (MAP), whilst the foundation
of the univariate time series is the Damped Local Trend (DLT) model. [29]

A.1.2 Explaining Causes from Text

The notion driving the work of Kang et al. [34] is to explain the cause of an event
in time series data from text. The target time series data used in their paper is
stock data and polling data from the 2012 US presidential election. They utilize
the day-to-day popularity and sentiments of N-grams of tweets, blogs and news
articles between 2008 and 2013 to calculate time series data. The Granger causality
score between time series data generated from N-grams and the target time series is
calculated to determine the best k textual features.

To build a chain of causation to explain the event further, they create a knowledge
base graph, called CGraph, where edges have a direction and show the causality
between entities. Six years of tweets and New York Times articles from 1989 to
2007 are used as basis. Due to low recall, the causal graph is augmented with the
help of the external knowledge base Freebase. To find a useful path between the
target and source node, an algorithm is used that searches backwards from the effect
to possible causes. This is done while the Granger causality score with the target
node is higher than a threshold.

Additionally, to help with the lexical strictness of language, they train a neural
network, which they call neural reasoner. It consists of two LSTM layers and a multi-
layer perceptron in between. The first layer acts as encoder and takes a causal phrase,
while the decoder (second layer) takes the corresponding effectual phrase. The idea
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of the multi-layer perceptron is to attend the cause to the effect by taking different
types of relations from FrameNet. The neural reasoner is trained by traversing
CGraph, after it were initialized by word embeddings from word2vec.

The model is tested with several tasks. One of them is forecasting stock and polling
data. It is evident, that the root-mean-squared error (RMSE) is lower, when textual
features are considered in addition to the target’s past time series. Another test
conducted is, how well the neural reasoner works. This is done by comparing the
predicted causes or effects with the CGraph using the BLEU metric. The neural rea-
soner with its relation attention outperforms a basic sequence-two-sequence (Se2Seq)
model trained on the CGraph and a Seq2Seq with word embedding as baselines. The
generation of explanations is evaluated as well. As there is no quantitative evalua-
tion measure for this task, humans had to annotate these explanations. As baseline,
a symbolic graph traverse algorithm is used. Here, the neural reasoner demonstrates
superior output compared to the baseline. [34]

A.2 Flow Cytometry Dataset

[51] conducted interventions to retrieve the causal structure of the molecules. This
section shows the application of the Tabu search algorithm on this dataset, to retrieve
a DAG from it.

A.2.1 Analysis of the Interventional Flow Cytometry Dataset

The interventional dataset is already discretized to three levels: 1 for LOW, 2
MEDIUM and 3 for HIGH. It comprises 5400 samples. The INT (interventional)
column shows, which of the proteins was either inhibited or stimulated (see table
3.2).

For the interventional dataset, the data was transformed into a list, where each
sample is grouped based on the molecule that was either inhibited or activated. This
list was passed again to a tabu() search function, similar to the one in listing 3.3.
As before, with custom.strength() the strength of the relationships was measured
and subsequently only the significant edges were chosen with averaged.network().

In comparison to the true-graph, the resulting network exhibits 17 TP edges, 8 FP
edges, and 0 FN edges in the skeleton. There is no change, when considering the
directions.

The graph, reasoned from interventional data yields the best results. According to
[52], the 8 FP arcs were later dismissed by [51], due to a comparable low significance.
This difference is probably caused by the fact, that [51] used a heuristic simulated
annealing search, in contrast to the here used Tabu search algorithm. This finding
strengthens the requirement to undertake interventions for the investigation of causal
structures.

A.2.2 Differences Qualitative Graph and True-Graph

Differences mean, that connections were included, that exist in the true-graph, but
not in the qualitative/ qualitative simplified graph. Thus, directed edges which were
not found by text-davinci-003.
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Figure A.2: Graph resulting from Tabu search, run on the interventional data.

TP/FP/FN FCI+ Observational Interventional
True-Graph 8/0/9 9/2/8 17/8/0

FCI+ 8/3/0 8/17/0
Observational 10/15/1

Table A.1: Comparison of the skeletons. Networks row-wise are taken as true, while
networks column-wise are than compared, resulting in true-positive, false-positive
and false-negative edges.

A.3 Financial Dataset

A.4 Additional intersections between graphs
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(a) Differences of true-graph and quali-
tative graph.

(b) Differences of the true-graph with the
manually simplified qualitative graph.

Figure A.3: Comparison of differences between the true-graph and the qualitative
and qualitative simplified graphs.
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Figure A.4: Intersections between the Granger causality test constructed graph and
the PCMCI graph. 15 edges are present.
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Figure A.5: Intersections between the qualitative derived graphs with
looseness = 0 and looseness = 2.
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TP/FP/FN FCI+ Observational Interventional
True-Graph 0/8/17 4/7/13 17/8/0

FCI+ 0/11/8 0/25/8
Observational 4/21/7

Table A.2: Comparison of the arcs. Networks row-wise are taken as true, while
networks column-wise are than compared, resulting in true-positive, false-positive
and false-negative arcs.



78 A. Appendix



Bibliography

[1] 1-Phosphatidyl-1D-myo-inositol 3,4-Bisphosphate (CHEBI:16152). url: https:
//www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI%3A16152 (visited on
05/29/2023).

[2] ADRs, Foreign Ordinaries, & Canadian Stocks. Schwab Brokerage. url: https:
/ /www . schwab . com/ stocks /understand - stocks / adrs - foreign - ordinaries -
canadian-stocks (visited on 05/29/2023).

[3] Aligning Language Models to Follow Instructions. url: https://openai.com/
research/instruction-following (visited on 06/11/2023).

[4] James F Allen and Choh Man Teng. “Broad Coverage, Domain-Generic Deep
Semantic Parsing”. In: ().
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