
Why Privacy-Preserving Protocols Are Sometimes Not Enough: A
Case Study of the Brisbane Toll Collection Infrastructure

Amirhossein Adavoudi Jolfaei

University of Luxembourg

Luxembourg

amirhossein.adavoudi@uni.lu

Andy Rupp

University of Luxembourg and KASTEL SRL

Luxembourg and Germany

andy.rupp@uni.lu

Stefan Schiffner

Berufliche Hochschule Hamburg (BHH)

Germany

Stefan@inf-bhh.de

Thomas Engel

University of Luxembourg

Luxembourg

thomas.engel@uni.lu

ABSTRACT
The use of Electronic Toll Collection (ETC) systems is on the rise,

as these systems have a significant impact on reducing operational

costs. Toll service providers (TSPs) access various information,

including drivers’ IDs and monthly toll fees, to bill drivers. While

this is legitimate, such information could be misused for other

purposes violating drivers’ privacy, most prominent, to infer drivers’

movement patterns. To this end, privacy-preserving ETC (PPETC)

schemes have been designed tominimize the amount of information

leaked while still allowing drivers to be charged.

We demonstrate that merely applying such PPETC schemes to

current ETC infrastructures may not ensure privacy. This is due

to the (inevitable) minimal information leakage, such as monthly

toll fees, which can potentially result in a privacy breach when

combined with additional background information, such as road

maps and statistical data. To show this, we provide a counterex-

ample using the case study of Brisbane’s ETC system. We present

two attacks: the first, being a variant of the presence disclosure

attack, tries to disclose the toll stations visited by a driver during a

billing period as well as the frequency of visits. The second, being

a stronger attack, aims to discover cycles of toll stations (e.g., the

ones passed during a commute from home to work and back) and

their frequencies.

We evaluate the success rates of our attacks using real parame-

ters and statistics from Brisbane’s ETC system. In one scenario, the

success rate of our toll station disclosure attack can be as high as

94%. This scenario affects about 61% of drivers. In the same scenario,

our cycle disclosure attack can achieve a success rate of 51%. It is

remarkable that these high success rates can be achieved by only

using minimal information as input, which is, e.g., available to a

driver’s payment service provider or bank, and by following very

simple attack strategies without exploiting optimizations. As a fur-

ther contribution, we analyze how the choice of various parameters,

such as the set of toll rates, the number of toll stations, and the

billing period length, impact a driver’s privacy level regarding our

attacks.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(1), 232–257
© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0014

KEYWORDS
Electronic Toll Collection, Privacy, Subset Sum Problem

1 INTRODUCTION
For the time period 2019 till 2030, it is predicted that the global

ETC market will grow at a compound annual rate of 8.3 percent,

reaching about 18.5 billion U.S. dollars by 2030 [6]. Also, in 2019,

the EU issued a directive to make ETC systems in Europe fully

interoperable [14]. Thus, a careful analysis of privacy concerns

arising from such an important technology is crucial.

Road-infrastructure vs. autonomous-device based ETC. We

can distinguish two important (post-payment) ETC technologies.

In road-infrastructure based ETC, on-board units (OBUs) mounted

inside a vehicle interact with road-side units (RSUs) to determine

tolls. In deployed systems, typically, OBUs simply send over en-

crypted user IDs when passing an RSU, which are then used by

the toll service provider (TSP) to update the user’s balance. In

(academic) proposals for privacy-preserving ETC systems, more

complex cryptographic protocols are executed by OBUs and RSUs.

Based on the user’s final balance at the end of a billing period, the

TSP issues an invoice to the user. In autonomous-device based ETC,
road-infrastructure devices such as RSUs are not needed. Instead,

the OBU determines the toll for road segments autonomously using

location and time information from GPS. The OBU and the TSP

interact in order to compute the final balance of a user. In this pa-

per, we primarily focus on (privacy-preserving) road-infrastructure

based ETC. However, as our attacks are fairly generic and only re-

quire minimal information as input (see later), we expect that they

are also applicable to disclose a driver’s (cycles of) road segments

in an autonomous-device based ETC.

Privacy concerns. TSPs, often private companies, store sen-

sitive information to charge drivers. This data typically includes

drivers’ identities and home addresses, wallet balances being the

total toll drivers owe to the TSP by the end of a billing period, and

the locations and times drivers pass toll stations. Naturally, privacy

concerns arise due to the fact that such sensitive user data is in the

hands of (private) TSPs. The work [32] provides an overview of the

resulting privacy issues. For instance, a TSP could misuse the data

to infer drivers’ movement patterns and places of interest. Also,

third parties, including law enforcement agencies and insurance

companies, may try to persuade the TSP to get access to the data

232

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0014

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

for prosecution or commercial purposes. This demonstrates that

the collected data could be misused for purposes beyond billing

drivers.

PPETC leaking minimal information. To address these is-

sues, several privacy-preserving ETC (PPETC) schemes have been

proposed so far, e.g., [2, 10, 15, 31, 34] (cf. Section 10 for an overview).

Such schemes aim to disclose only the minimal information to the

TSP necessary to charge drivers but protect the anonymity and

unlinkability of a driver’s transactions. Typically, this includes the

drivers’ identities, home addresses, and final wallet balances, which

are needed to issue invoices at the end of a billing period, as well

as a database of anonymous and unlinkable transaction records

(each containing at least location and time information
1
) which are

provided by the RSUs.

Research question: real-world privacy provided by PPETC.
As privacy protection in current PPETC schemes does not mean

that there is no information leakage at all but certain minimal

information (required to ensure the core functionality) is still leaked,

it is interesting to see if this information is already sufficient to

violate privacy in a practical scenario. Besides the information

leaked by the protocols, the deployment of a PPETC scheme in a real-

world scenario also fixes certain parameters and provides additional

background information which is all relevant to a driver’s privacy:

the pricing scheme, number of toll stations, road infrastructure

information, statistical data about driver behavior, etc. To the best of

our knowledge, the impact of such information on the “real-world

privacy” of a PPETC scheme has not been thoroughly analyzed

yet. A driver’s privacy certainly depends on the complexity of the

subset sum problem (SSP) [28] which, in our case, is concerned

with finding toll prices that add up to a driver’s wallet balance

(monthly total toll). By solving the SSP, an adversary can learn

the toll stations a driver passed during a billing period [2, 15, 34].

Although the general SSP is NP-complete, there are variants that

can be solved in polynomial time [33]. Moreover, we can expect

that in a real-world scenario, the parameters relevant for its time

complexity (number of toll prices) will usually be small values.

Our Contribution. In this paper, we provide evidence that a

driver’s privacy may not be preserved in general when a PPETC

system is used to replace an existing ETC in practice. We do so by

focusing on Brisbane’s ETC infrastructure as a case study, using its

real parameter settings (set of toll rates, number of toll stations), real

statistical data (distribution of wallet balances, maximal number

of visited toll stations), and real background information (road

infrastructure).
2

Our attacker is weaker than the one typically considered by

PPETC schemes, the latter being the TSP colluding with all RSUs,

as it exploits less information: it does not require the transaction

records provided by RSUs as input. In fact, the minimal information

used by our adversary is, e.g., available to the payment service

provider (e.g., Apple Pay [1]) or bank of a TSP’s customer. This

makes our attacks generic and broadly applicable.

1
If a transaction between an OBU and an RSU takes place, the RSU is at least aware of

its own location and the current time.

2
Note that we did not conduct a privacy analysis dedicated to Brisbane’s current ETC

protocols. However, our generic attacks also apply to their current system. Stronger

and more efficient attacks, taking their actual protocols into account, might be possible.

We present two generic attacks. The first one, we call “toll station

disclosure attack” (TSD), is a variant of the presence disclosure

attack [36]. It tries to discover the toll stations visited by a driver

during a billing period as well as the number of visits. The second

attack, called “cycle disclosure attack” (CD), aims to identify the

cycles made by a driver during a billing period as well as their

frequencies. A cycle starts and ends at the driver’s home location

and passes through one or more toll stations. In comparison to

the first attack, the adversary discloses more information (e.g., the

order in which toll stations are visited) since the cycles already

include the visited toll stations. The first attack is based on solving

a variant of the SSP. The second attack exploits the output of the

first one.

We evaluate our attacks based on information and statistics from

the Brisbane ETC setting. This evaluation shows that our attacks

achieve considerably high success rates. More precisely, the first

attack achieves a success rate of 94% and the second one a success

rate of 51% for 61% of the drivers. Although these success rates

are already pretty high and answer our research question, we ex-

plore certain heuristics to further improve them by assessing the

plausibility of solutions to the underlying SSP or removing implau-

sible solutions. Note that exploiting transaction records, in addition,

may (only) lead to better success rates or stronger attacks (but also

to a stronger attacker model), which we leave as future work. As

a further contribution, we study how certain parameter choices

(toll rates, number of toll stations, length of billing period) affect

the success rate of our attacks and give some recommendations to

transportation system engineers based on our findings.

2 BACKGROUND
Here, we define various terms needed for our study.

Transaction: The transaction 𝑒 is a tuple consisting of a toll

location (𝑙𝑜𝑐), toll price (𝜏) and time (𝑡), i.e., 𝑒 = ⟨𝑙𝑜𝑐, 𝜏, 𝑡⟩. The set
𝑇 = {𝑒1, 𝑒2, . . . , 𝑒𝑜 } consists of all transactions made by all drivers

within a billing period. All the transactions are anonymous.
Billing period: The billing period is a system parameter fixed

by the TSP and denoted by \ . It consists of a starting time and

an end time. All transactions in this interval belong to the set of

transactions associated with this billing period.

Toll station’s identities:We define the set of identities of all

toll stations/points as 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑙 }.
Toll price: This is a parameter fixed by the TSP. We define the

set of toll prices as 𝑃 = {𝜏1, 𝜏2, . . . , 𝜏𝑙 }, where 𝜏 𝑗 ∈ D is a fixed toll

fee that is assigned to toll station 𝑠 𝑗 . This study focuses on static

toll pricing schemes with fixed prices, in contrast to dynamic toll

pricing schemes where toll fees vary based on factors like the day

of the week or time of day.

Graph: The map of a city, including toll stations and toll roads,

is represented by a directed graph as 𝐺 = (𝑉 , 𝐸). In graph 𝐺 , 𝑉

represents the toll stations, i.e., 𝑉 = 𝑆 . Each edge represents a toll

road. The graph may include other information available on the

city’s map, such as the distance between two toll stations.

Set of frequencies: The frequency 𝑓𝑗 is the number of times a

driver visits the toll station 𝑠 𝑗 in a billing period. We define the set

𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑙 }, where 𝑓𝑗 ∈ N0 is the frequency corresponding

233

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

to toll station 𝑠 𝑗 . Note that N0 is a set of non-negative integers, and
𝑓𝑗 = 0 means the driver has not visited the toll station 𝑠 𝑗 .

Drivers’ identity: The set 𝐼𝐷 = {𝑖1, 𝑖2, . . . , 𝑖𝑛} denotes a subset
of unique identities (e.g., passport number) of TSP customers. This

information is needed to associate a monthly toll fee (wallet) with

its corresponding driver’s identity and home address in order to

issue an invoice at the end of a billing period. For simplicity, we

assume that each customer coincides with the driver who uses the

TSP’s services. Hence, each identity 𝑖 ∈ 𝐼𝐷 can be linked with both

a driver and a customer. Assuming that each driver only uses one

fixed vehicle, each 𝑖 can be associated with the driver’s vehicle.

This assumption is valid if an OBU inside a vehicle is fixed and

cannot be attached to another vehicle. Hence, there is a one-to-one

relationship between the identity 𝑖 and a driver/customer and its

corresponding vehicle.

Drivers’ home address: A subset of home addresses, associated

with 𝐼𝐷 , is denoted as 𝐻 = {(𝑖1, ℎ1), (𝑖2, ℎ2), . . . , (𝑖𝑛, ℎ𝑛)}, where
𝑖 𝑗 ∈ 𝐼𝐷 and ℎ 𝑗 in each tuple corresponds to a subscribed driver’s

identity and his home address, respectively. A driver provides the

TSP and payment provider with their home address to which in-

voices are sent.

Cycle: In this study, we consider a cycle in graph 𝐺 as a circuit,

which is a non-empty trail in which the first and last vertices are

equal [42]. A cycle includes one or more toll roads on which at least

one toll station is located. The cycle may also encompass one or

more roads without any toll stations.

Subset sum problem: The SSP is a well-known NP-complete

problem, which is defined as follows [28]. We consider the set

𝐴 = {𝑎 𝑗 : 1 ≤ 𝑗 ≤ 𝑘, 𝑎 𝑗 ∈ N0} and the value 𝑀 ∈ N0, i.e., a
non-negative integer. The aim is to find 𝑥𝑖s such that 𝑎1 · 𝑥1 + 𝑎2 ·
𝑥2 + · · · + 𝑎𝑘 · 𝑥𝑘 = 𝑀,𝑥 𝑗 ∈ N0.

Linear diophantine equation: A linear diophantine equation

is a linear equation whose solution is restricted to be integers [35].

Each variable in the equation has at most a degree of one. Equation 1

represents such equations.

𝑏1 · 𝑥1 + 𝑏2 · 𝑥2 + · · · + 𝑏𝑛 · 𝑥𝑛 = 𝑔, 𝑥𝑖 ∈ Z (1)

Solving the equation falls into integer optimization problems

where the variables take integer values [39]. The SSP can be inter-

preted as solving Equation 1, where 𝑥𝑖 , 𝑔 ∈ N0.
Wallet balance: The wallet balance is the total toll fee based on

which the TSP issues an invoice for a driver, and it should be paid

by the end of the billing period. Note that each wallet is associated

with a driver’s identity so that the TSP can charge the driver. The

driver’s wallet𝑤 is the summation of the toll prices of all visited toll

stations by the driver within a billing period. Given𝑤 , the following

linear diophantine equation holds:

𝑤 = 𝜏1 · 𝑓1 + 𝜏2 · 𝑓2 + · · · + 𝜏𝑙 · 𝑓𝑙 (2)

𝜏 𝑗 is the toll price of the toll station 𝑠 𝑗 , and 𝑓𝑗 is the correspond-

ing frequency. We define a subset of wallet balances of drivers,

associated with 𝐼𝐷 , as𝑊 = {(𝑖1,𝑤1), (𝑖2,𝑤2), . . . , (𝑖𝑛,𝑤𝑛)}, where
𝑤 𝑗 ∈ N0 is associated with a driver with identity 𝑖 𝑗 ∈ 𝐼𝐷 . For
𝑖 𝑗 ∈ 𝐼𝐷 , there is exactly one tuple with the first component 𝑖 𝑗 in𝑊 .

Trace: Intuitively, a trace demonstrates the history of the toll
stations (𝑠 𝑗) visited by a driver and their corresponding frequency
(𝑓𝑗) in a billing period. We present a trace as the set of tuples

denoted as the set 𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)}, where 𝑓𝑖 is
the frequency associated with the toll station 𝑠𝑖 . Given 𝑡𝑟𝑎𝑐𝑒 , one

or more of the 𝑓𝑗 ∈ 𝑡𝑟𝑎𝑐𝑒 may equal zero, meaning the driver has

not visited the corresponding toll station 𝑠 𝑗 . Having defined the

trace, we define the correct trace and the plausible trace.

Correct trace: The correct trace is truly made by a driver in an

ETC system. It corresponds to the toll stations visited by a driver

and the frequency of the visited toll stations during the considered

billing period.

Plausible trace: The plausible trace of a driver with wallet

𝑤 is the 𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)}, where the toll prices
associated with the toll stations inside the tuples and corresponding

frequencies satisfy Equation 2. A plausible trace is not necessarily

the correct trace but a candidate for being the correct trace. The

adversary uses an attack to obtain the set of plausible traces denoted

by 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 = {𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2, . . . , 𝑡𝑟𝑎𝑐𝑒𝑑 }.
Success rate: We define the success rate as the probability that

an attacker selects the correct trace of a driver uniform at random

from all plausible traces. Note that the uniform selection of the

correct trace from the set can be considered a baseline strategy, as the
adversary makes no distinction among the traces (they all have an

equal probability of being a correct trace). However, the attack could

exploit various strategies in which the adversary distinguishes

among the traces in the set (each having different probabilities

of being a correct trace). In this case, different strategies might

result in distinct corresponding success rates comparable to the

success rate when the attack employs the baseline strategy. Through

this comparison, we can measure the extent to which a strategy

performs better or worse than the baseline strategy.

The attack’s effectiveness: Two factors mainly impact the at-

tack’s effectiveness and, accordingly, affect a driver’s privacy: (1)

The number of plausible traces: In the case of many plausible

traces, privacy is preserved as the success rate becomes very small.

(2) The computational complexity: If it is computationally in-

feasible to find plausible traces, privacy is preserved. The tables of

notations and acronyms are shown in Appendix A.

3 THREAT MODEL
In this work, we consider a passive adversary with access to a subset

𝐼𝐷 of driver IDs, subsets𝐻 and𝑊 of home addresses and wallet bal-

ances, respectively, associated with those drivers, as well as the set

𝑃 of all toll prices and the graph 𝐺 of the ETC system. This knowl-

edge of the adversary is denoted by the set 𝐾 = {𝐼𝐷, 𝑃,𝐺,𝑊 ,𝐻 } in
the following. Note that this is a small amount of required knowl-

edge, which, in the real world, would be, e.g., already available to

payment service providers (e.g., Google Pay [17]) or banks that TSP

customers use to make toll payments to the TSP: A payment service

provider can certainly identify toll payments to a TSP in its records.

These records also contain the corresponding wallet balances. Fur-

thermore, it knows the IDs and home addresses of its customers

associated with these payment records, as this information is usu-

ally needed to set up an account and issue valid account statements.

Finally, the graph, i.e., the map of the toll station infrastructure as

well as the pricing, can be considered public information available

from the internet (e.g., the website of the TSP).

234

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

Certainly, 𝐾 is a subset of the information available to a TSP.

In fact, also the designers of PPETC schemes such as P4TC [15]

consider a stronger adversary being the TSP colluding with all

RSUs. Such an adversary would additionally receive all anonymous
transaction records (consisting of locations, timestamps, and fares,

but no IDs) from the RSUs. By means of our attacks, we show that

even our weaker adversary not obtaining those transaction records

can have a significant success rate. Exploiting more information

may only lead to stronger attacks or higher success rates.
3

In the following, we consider adversaries aiming to achieve the

following two goals:

Toll station disclosure (TSD) goal. This goal is a variant of the
presence disclosure goal, defined as “to find out if a given user or

a set of users are present at some place(s)” [36]. The TSD goal

has two subgoals: firstly, to learn the toll stations visited by a

driver and, secondly, to determine the frequency with which the

driver visited each toll station within a given billing period. The

frequency of visited toll stations could reveal a driver’s point of

interest/s (POI) [16, 21, 38], e.g., supermarkets, restaurants, tourist

spots, and hotels [30, 44]. Note that this goal is equivalent to find-

ing the correct trace defined in Section 2 and denoted as 𝑡𝑟𝑎𝑐𝑒 =

{(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)}.

Cycle disclosure (CD) goal. The intuition behind this goal is to

discover regular activities of drivers, represented by cycles [3, 4]. A

cycle starts from a driver’s home, passes through one or more toll

stations, and returns to the home. Besides learning cycles, another

subgoal is to determine the frequency of each individual cycle made

in the billing period. Regarding this goal, a driver’s trace is defined

as 𝑡𝑟𝑎𝑐𝑒 = {(𝑐1, 𝑓1), (𝑐2, 𝑓2), . . . , (𝑐𝑦, 𝑓𝑦)}, where the 𝑐 𝑗 are different
cycles the driver made in a billing period. Note CD is a stronger goal

than TSD, as it aims to disclose a driver’s full trajectories instead

of only the visited toll stations.

4 THE TSD ATTACK
This section presents the TSD attack to achieve the TSD goal. The

pseudo-code and details of the attack are discussed in Appendix B.

We, finally, theoretically compute the attack’s success rate. We

present the attack as follows.

4.1 Procedure of the attack
The adversary (A) uses an attack based on solving the SSP to obtain

the plausible traces of a driver. The attack uses as its input the set

𝑀 = {𝐼𝐷, 𝑃,𝐺,𝑊 }. To find the correct trace of a driver with the

wallet𝑤 , the adversary needs to obtain the driver’s set of plausible

traces where the correct trace is located. A plausible trace is denoted

as 𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)}; hence, to create a plausible
trace, it needs the set of toll stations, i.e., 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑙 } and
the set of corresponding frequencies, i.e., 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑙 }. Note
that the set 𝑆 is concluded from graph 𝐺 = (𝑉 , 𝐸), where 𝑆 = 𝑉 . To

obtain the set 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑙 }, it needs to solve the SSP, for which
it creates the following linear diophantine equation and solves it via

DOcplex (i.e., IBM Decision Optimization CPLEX Modeling [12]),

3
We stress that we refrain from exploiting additional information because (i) our

counter-example is stronger when considering a weaker adversary, and (ii) it is hard to
obtain the necessary transaction records to evaluate stronger attacks under real-world

conditions.

which uses the depth-first search as the default algorithm [22]. We

remind that the SSP can be interpreted as a linear diophantine

equation.

𝑤 = 𝜏1 · 𝑥1 + 𝜏2 · 𝑥2 + · · · + 𝜏𝑙 · 𝑥𝑙 , 𝑥 𝑗 ∈ N0, 𝑥 𝑗 ≤ ⌈𝑤/𝑚𝑖𝑛(𝑃)⌉ (3)

The equation holds as explained in the wallet’s definition in

Section 2. Each 𝑥 𝑗 , in Equation 3, represents the frequency 𝑓𝑗 that

the driver visited the toll station 𝑠 𝑗 . A solution of Equation 3 results

in the set 𝐹 . Note that the 𝑓𝑗 ≠ 0 in the set 𝐹 means that the

corresponding toll station 𝑠 𝑗 is visited at least once. Then,A verifies

if the visited toll stations in the set 𝑆 are connected. For instance, if

two toll stations are visited without visiting the intermediate toll

station (assuming that this is the only connection between the two

toll stations), the solution will be discarded. If connectivity holds,

A creates the corresponding plausible trace 𝑡𝑟𝑎𝑐𝑒 using the sets 𝑆

and 𝐹 . The algorithm for checking the connectivity in a graph is

fully discussed in Appendix C. It should be highlighted that one

solution of Equation 3 leads to a plausible trace; hence, since the

equation may have more than one solution, it results in a set of

plausible traces as 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 = {𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2, . . . , 𝑡𝑟𝑎𝑐𝑒𝑑 }. The
correct trace is among the plausible traces. The details of the attack

and the corresponding pseudo-code are provided in Appendix B.

Success rate: The probability, namely 𝑆𝑅, that A uniformly

guesses the correct trace, i.e., 𝑡𝑟𝑎𝑐𝑒 𝑗 from the set of plausible traces

𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 = {𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2, . . . , 𝑡𝑟𝑎𝑐𝑒𝑑 } is computed as:

SR = 1 / |𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 | = 1 / 𝑑 (4)

The details and pseudo-code of the algorithm computing the success

rate are discussed in Appendix D.

4.2 Heuristic-based approaches
We explained in Section 2 (see success rate) that the adversary uses

a baseline strategy to guess uniformly at random the correct trace

from the plausible traces. Here, we offer several heuristics that the

TSD attack can utilize to guess non-uniformly the correct trace. The

presented heuristics are based on drivers’ behavior.

The first heuristic. The presented heuristic is based on drivers’

behavior, i.e., they tend to visit a restricted number of toll stations

within a given billing period. For example, the toll roads in Brisbane

are mainly used for activities, such as taking a holiday/getaway,

going to the airport, and social activities [41]. This behavior implies

that drivers exhibit a constrained toll station usage pattern tied to

their regular activities. Concerning this heuristic, A considers the

maximum number (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) of toll stations a driver visits in a

billing period. The threshold can be determined through statistical

data [41]. Considering a set of plausible traces associated with a

driver, the heuristic assigns the probability of zero to plausible

traces in which the number of toll stations exceeds the threshold

and assigns the same probabilities to the rest of the plausible traces.

Finally, A ignores the traces with a probability of zero (this is why

we consider this strategy as non-uniformly) and selects a trace

uniformly from the remaining ones.

The second heuristic. This heuristic, similar to the first one,

is based on drivers’ behavior, i.e., visiting a limited number of toll

stations, with the difference that the heuristic assigns a certain

235

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

probability to each plausible trace in a set of plausible traces. The

probability can be computed using statistical data, which describes

the distribution of the number of visited toll stations by drivers in

an ETC system (in a billing period). For instance, A may assign a

relatively low probability to plausible traces that involve a large

number of toll stations. For example, in the case study of Brisbane,

it would be less likely for a driver to visit all nine toll points in the

city. On the other hand, A can assign a relatively high probability

to plausible traces that involve a relatively small number of toll

points. For example, employees who regularly commute from Yatala

to Ipswich would likely pass through only a limited number of toll

points on their route (see the map in Figure 1). Finally, A selects a

trace with the highest assigned probability. The details and pseudo-

code are discussed in Appendix F.

The third heuristic. This heuristic exploits the regularity in

drivers’ behavior by utilizing the yearly historical information of

wallet balances. The heuristic considers a driver and all their corre-

sponding yearly wallet balances, denoted as𝑤 𝑗 , 1 ≤ 𝑗 ≤ 12, where

𝑗 represents each month of the year. Using the sets of plausible

traces corresponding to the𝑤 𝑗𝑠 , the heuristic creates a set of clus-

ters, each of which includes the potential traces a driver could have

made within a year. Each cluster is assigned a probability based

on the similarity of the traces within it, indicating the likelihood

that those traces are associated with the driver. To measure the

similarity among the traces, A can use a similarity metric such

as Euclidean distance. Clusters with higher probabilities contain

traces that demonstrate more similarity and are thus more likely to

be associated with a driver displaying regularity in their behavior.

Finally, A can select a cluster with the highest probability (see

Appendix F for the details and pseudo-code).

5 EVALUATION OF THE TSD ATTACK
In Section 5.1, we introduce the parameter settings used in the

evaluation of the attack. In Sections 5.2 and 5.3, we evaluate the

TSD attack and the first heuristic, respectively.

5.1 Parameter settings
In this section, we discuss the parameter settings and evaluate

the attack based on the metric 𝑆𝑅 (see Equation 4). To evaluate the

attack, we use real parameters and statistics provided by Transurban

Queensland, including toll prices, the number of toll stations, the

billing period length, and statistical information on the distribution

of wallet balances [5, 40, 41]. Transurban is the operator of all toll

roads in Brisbane. The toll stations and toll roads are shown on the

map in Figure 1, where the yellow circles represent the toll stations

in Brisbane. In the following, we discuss the attack input, i.e., the

set𝑀 = {𝐼𝐷, 𝑃,𝐺,𝑊 }, and the other parameters needed to obtain

the plausible traces. The parameter settings are shown in Table 1.

Our evaluation is performed on Windows Server 2019 Standard

(64-bit), with 96.0 GB RAM, with x64-based CPU 3.70 GHz, Intel(R)

Xeon(R) E-2288G.

• Drivers’ identities (𝐼𝐷): Drivers’ identities are not pub-

licly available; however, we can compute the success rate

whatever drivers’ identities are as a driver’s identity has no

role in the computation of the correct trace nor of the suc-

cess rate. The identity is only used for assigning the correct

trace to its corresponding driver’s identity (see line 15 of the

pseudo-code of the TSD attack, in Appendix B).

• Toll prices (𝑃): We define the set of toll prices as follows:

𝑃 = {𝜏1 = 4.55, 𝜏2 = 2.68, 𝜏3 = 2.84, 𝜏4 = 1.72, 𝜏5 = 4.09, 𝜏6 =

5.46, 𝜏7 = 5.11, 𝜏8 = 5.11, 𝜏9 = 3.19}. The real toll prices are
based on [40] and are in dollars.

• Toll stations (𝑆):We define the set of toll stations’ identities

as follows: 𝑆 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻, 𝐼 }. The toll stations are
shown on the map in Figure 1.

Figure 1: The Brisbane map [5].

• Wallets (𝑊): Drivers’ wallet balances in Brisbane are not

publicly available. However, we have access to statistics from

the sources [40, 41] denoting the wallet ranges. These ranges

are represented by [𝑤𝑙 ,𝑤𝑢], where𝑤𝑙 and𝑤𝑢 are the lower

and upper bounds of the range. According to the statistics,

61.38% of drivers fall into the range [$0, $10], while 14.31%
fall into [$10, $20], and 11.12% are associated with the range

[$20, $40]. Figure 2 provides a summary of the statistics.

Using the ranges, we can generate drivers’ plausible wallet
balances.
Plausible wallet balance: A driver’s plausible wallet bal-

ance is a wallet in the range [𝑤𝑙 ,𝑤𝑢] that could potentially

be associated with the driver. To generate a driver’s plausi-

ble wallet balances, we create the below inequality whose

solutions are all plausible wallet balances:

𝑤𝑙 < 𝜏1 · 𝑥1 + 𝜏2 · 𝑥2 + · · · + 𝜏9 · 𝑥9 < 𝑤𝑢 (5)

Note that the idea of the inequality comes from Equation 3.

To create the inequality, we use the wallet ranges shown

in Figure 2. For example, given the range [$10, $20], the
corresponding inequality is as follows: 10 < 𝜏1 · 𝑥1 + 𝜏2 ·
𝑥2 + · · · + 𝜏9 · 𝑥9 ≤ 20. Having solved the inequality for

each range [𝑤𝑙 ,𝑤𝑢], the number of corresponding plausible

wallet balances becomes 93, 721, and 2000, each of which

is associated with drivers with the corresponding wallet

236

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

Attack input and parameter settings Num of plausible wallets Drivers’ proportion 𝐴𝑆𝑅 𝐴𝑆𝑅

𝑀 = {𝐼𝐷, 𝑃,𝐺, 0 < 𝑤 ≤ 10}, |𝑆 | = 9, \ = a month 93 61.38% 94% 51%

𝑀 = {𝐼𝐷, 𝑃,𝐺, 10 < 𝑤 ≤ 20}, |𝑆 | = 9, \ = a month 721 14.31% 54% 11%

𝑀 = {𝐼𝐷, 𝑃,𝐺, 20 < 𝑤 ≤ 40}, |𝑆 | = 9, \ = a month 2000 11.12% 5% 0.28%

Table 1: The 𝐴𝑆𝑅s of attacks given Brisbane’s parameter settings. The column 𝐴𝑆𝑅 (left-sided) corresponds to
the TSD attack, and the column 𝐴𝑆𝑅 (right-sided) corresponds to the CD attack.

range. The numbers are shown in Table 1. We further use the

generated plausible wallets to compute the average success

rate.

• Upper bound (𝑢): We set the upper bound to ⌈𝑤/𝑚𝑖𝑛(𝑃)⌉,
meaning that 𝑥 𝑗 , 1 ≤ 𝑗 ≤ 𝑙 (see Equation 3) cannot exceed

this upper bound.

• Billing period (\): We consider a billing period of a month

as the wallets reported in [40] are based on one month.

• Number of variables (|𝑆 |): The number of variables in

Equation 3, and Inequality 5 equals 9, i.e., the number of toll

stations.

Figure 2: The proportion of drivers across wallet ranges. [40]

5.2 Our evaluation
Having discussed the parameter settings, we proceed to evaluate

the TSD attack using the notion of 𝐴𝑆𝑅.

5.2.1 Computation of average success rate. Having discussed

the parameter settings, we aim to compute the attack’s success

rate (see Formula 4); however, as said earlier, the adversary does

not access drivers’ real wallets (𝑊) to run the attack. To tackle

the problem, we employ the computed plausible wallet balances

discussed earlier and use the notion of average success rate (𝐴𝑆𝑅).
The𝐴𝑆𝑅metric demonstrates the attack’s average success in finding

a driver’s correct trace concerning all his corresponding potentially

plausible wallets. To compute 𝐴𝑆𝑅, we take the following steps.

• Step 1: Considering drivers associated with the wallet range

[𝑤𝑙 ,𝑤𝑢], we compute a driver’s plausible wallet balances

using Inequality 5. Then, for each plausible wallet balance,

we run the TSD attack and accordingly compute its corre-

sponding success rate, i.e., 𝑆𝑅.

• Step 2: We compute the average of all computed 𝑆𝑅s corre-

sponding to the plausible wallet balances from Step 1. The

resulting value is the attack’s 𝐴𝑆𝑅 for finding the correct

trace of a driver associated with the range [𝑤𝑙 ,𝑤𝑢]. Note
that for all drivers within the range [𝑤𝑙 ,𝑤𝑢], the attack’s
𝐴𝑆𝑅 has the same value since the range results in the same

plausible wallet balances and, accordingly, the same 𝐴𝑆𝑅.

Note that the two steps will be repeated for each of the three

ranges shown in Figure 2. The figure shows that approxi-

mately 86% (summation of all proportions) pay less than $40

a month; hence, we are motivated to evaluate the attack’s

success rate concerning this large proportion of drivers. We

do not consider the rest of the drivers (14% of total drivers)

with wallet balances above $40 since the corresponding ASR

is negligible.

5.2.2 The evaluation results. Based on the evaluation, we dis-

cuss the distribution of success rates and the corresponding 𝐴𝑆𝑅s

which are shown in Table 1.

Distribution of success rates. To analyze the effectiveness

of the TSD attack, we illustrate the distribution of success rates

obtained in Step 1. Each box plot in Figure 3 illustrates the distribu-

tion of success rates corresponding to all plausible wallet balances

within the range of [𝑤𝑙 ,𝑤𝑢]. The figure shows that almost all of the

success rates (𝑆𝑅s) within the range of [$0, $10] are 100% (shown

in the first box plot). For the range of [$10, $20], half of the suc-
cess rates (𝑆𝑅s) are between 50% and 100%, and the other half are

between 7% and 50% (shown in the second box plot). Finally, for

the range of [$20, $40], almost all of the success rates (𝑆𝑅s) are

below 12% (shown in the third box plot). As a concrete example, we

illustrate the distribution of 𝑆𝑅s in the first box plot in Appendix E.

• The 𝐴𝑆𝑅 for 61.38% of drivers, a large proportion, is roughly

94% which is considerably high. As said, this proportion of

drivers is associated with the wallet range of [$0, $10].
• The 𝐴𝑆𝑅 for 14.31% of drivers is approximately 54%, yet

considerably high. This proportion of drivers is associated

with the wallet range of [$10, $20].
• The𝐴𝑆𝑅 for the small proportion (11.12%) of drivers is nearly

5%, which is relatively low.

• The attack achieves these high 𝐴𝑆𝑅s, i.e., 94% and 54% with-

out utilizing drivers’ home addresses and transactions. Fur-

thermore, these 𝐴𝑆𝑅s are achieved using the baseline strat-

egy without incorporating any heuristics.

237

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

Figure 3: Each box plot shows the distribution of 𝑆𝑅s across
all plausible wallet balances within the range [𝑤𝑙 ,𝑤𝑢].

5.2.3 Discussion on the attack’s effectiveness. As said in Sec-

tion 2, the attack’s effectiveness depends on the number of plausible

traces and the complexity of the attack, which hinges on the diffi-

culty of solving Equation 3 (which is generally NP-complete). Our

evaluation demonstrates that the TSD attack performs effectively as

solving the equation is feasible. Figure 4 shows that the distribution

of wallet balances significantly impacts the number of plausible

traces and the runtime. Figure 4a shows the number of traces for

plausible wallet balances below $40, associated with 86% of total

drivers. The graph shows that for wallets below $10 (93 red points),

the number of plausible traces is one or two, meaning that a large

proportion of drivers (61.38%) have very low privacy. The number

of traces for wallet balances between $10 and $20 (721 blue points)

is between one and sixteen. Drivers’ privacy with this range of

wallets is also at risk of violation. For balances between $20 and $40

(2000 green points), the number of traces is considerably increasing,

i.e., between one and 320. Drivers with balances close to $20 have

relatively lower privacy than drivers close to $40. Overall, the graph

shows that the balance of wallets noticeably impacts the number

of traces and a driver’s privacy accordingly.

Figure 4b shows the runtime of the TSD attack, which depends

on the difficulty of solving Equation 3. The runtime for the wallets

below $10 is between 20 𝑚𝑠 and 60 𝑚𝑠; for wallets between $10

and $20 is between 20𝑚𝑠 and 80𝑚𝑠 . The runtime for the wallets

between $20 and $40 is considerably increasing, from 30 𝑚𝑠 to

260 𝑚𝑠 . Although the graph shows an increasing trend, solving

Equation 3 is feasible in a short time. This shows that although

solving a linear diophantine equation is NP-complete in general, the

equation can be solved quickly, given the real settings of Brisbane’s

ETC system.

5.3 Evaluation of the first heuristic
Due to the page limitation, we evaluate the first heuristic (see

Section 4.2) with the parameter settings of Brisbane’s ETC system

(see Table 6 in Appendix F). We highlight that presenting a more

sophisticated and enhanced strategy (to guess the correct trace)

would not necessarily strengthen our argument, as our main goal

is to provide a counterexample, which we have already achieved.

See Appendix F for the details of the heuristic.

For the evaluation, we analyze how the attack’s 𝐴𝑆𝑅 and the

average percentage decrease (𝐴𝑃𝐷) change with different potential

thresholds that the adversary can consider in the case study of

Brisbane. The percentage decrease helps us compute the reduction

in the number of plausible traces (due to ignoring traces with zero

probabilities) as a percentage of the original size of the set of plau-

sible traces. The notion of 𝐴𝑃𝐷 is similar to 𝐴𝑆𝑅 (see Section 5.2.1),

which is the average of all percentage decreases corresponding to

a driver’s all plausible wallet balances within the range [𝑤𝑙 ,𝑤𝑢].
Table 2 shows that the metrics show an upward trend as the thresh-

old decreases. This trend is particularly noticeable in larger wallet

ranges ([$20, $40], [$40, $60]), indicating a contribution to the im-

provement in ASR compared to the lower ASRs before applying

the heuristic (see “without heuristic” column). However, the up-

ward trend is less noticeable for smaller wallet ranges ([$0, $10],
[$10, $20]); nevertheless, the corresponding ASRs are already high

even without applying the heuristic, i.e., 94% and 51.16% (see “with-

out heuristic” column).

6 THE CD ATTACK
As defined in Section 3, the CD goal is to find the cycles and cor-

responding frequencies a driver made in a billing period. The ad-

versary can attempt to find the cycles where the summation of

the price of individual cycles leads to a driver’s wallet balance by

solving an SSP: The price of a cycle is the summation of the toll

prices corresponding to the toll stations included in the cycle. How-

ever, this fails; for details, see Appendix I. The adversary would

need to solve a linear equation with numerous variables, which is

computationally infeasible for a sufficiently large number of toll

stations. We introduce the CD attack, which exempts the adversary

from solving the SSP. We theoretically elaborate on the algorithm’s

success rate and then evaluate it with the real parameter settings

of Brisbane’s ETC system.

6.1 Procedure of the attack
In this section, we present the CD attack. See Appendix J for pseudo-

code and details and Appendix K for an example.

Basic idea. The adversary exploits the set 𝐾 = {𝐼𝐷, 𝑃,𝐺,𝑊 ,𝐻 }
to achieve the CD goal. Compared to the TSD goal, the adversary,

in this attack, exploits additional information, i.e., drivers’ home

addresses. The attack’s core idea is that A exploits the visited

toll stations and their corresponding frequencies, which are al-

ready obtained from the TSD attack and denoted as 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 =

{(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)}. The visited toll stations are the build-

ing blocks of the cycles made by a driver. Obviously, the toll stations

that have not been visited do not contribute to the formation of

cycles. In the following, we will first explain the algorithm, namely

“find_cycle_algo” for finding cycles utilized by the CD attack. We

will then outline the CD attack in three steps.

Algorithm find_cycle_algo. We present an algorithm for find-

ing cycles. The algorithm takes a set of different toll stations, a

home location, a graph, and a strategy as the inputs and returns the

cycle passing through all the toll points and the home location (if

238

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

(a) Number of plausible traces per wallet balance (b) Run-time (ms) per wallet balance

Figure 4: The number of plausible traces and runtime are two parameters impacting the attack’s effectiveness. The value of
these parameters increases significantly as the balance of the wallets gets larger.

Metric

Thresholds used in the first heuristic

Without heuristic Wallet range

3 4 5 6 7 8

APD

0% 0% 0% 0% 0% 0% 0% (0 < 𝑤 ≤ 10)
24.1% 3.95% 0.08% 0% 0% 0% 0% (10 < 𝑤 ≤ 20)
81.33% 47.47% 16.03% 2.7% 0.18% 0% 0% (20 < 𝑤 ≤ 40)
97.21% 84.01% 53.7% 20.77% 3.98% 0.27% 0% (40 < 𝑤 ≤ 60)

ASR

94% 94% 94% 94% 94% 94% 94% (0 < 𝑤 ≤ 10)
65.84% 52.45% 51.17% 51.16% 51.16% 51.16% 51.16% (10 < 𝑤 ≤ 20)
22.05% 7.07% 4.99% 4.72% 4.69% 4.69% 4.69% (20 < 𝑤 ≤ 40)
5.2% 0.85% 0.3% 0.18% 0.16% 0.15% 0.15% (40 < 𝑤 ≤ 60)

Table 2: The metrics 𝐴𝑃𝐷 and 𝐴𝑆𝑅 indicate the impact of the first heuristic on the reduction of
plausible traces and the average success rate, respectively, during a one-month billing period.
Each row corresponds to a wallet range and thresholds 𝑗 , where 3 ≤ 𝑗 ≤ 8. As the threshold
decreases, the metrics show an upward trend, especially for wallet ranges that include higher
wallet balances.

any). The algorithm can use various strategies to obtain the cycles,

such as the shortest distance and shortest time [8]. A driver may

use the shortest-distance strategy, taking the shortest possible route

to their destination. The algorithm and its pseudo-code are shown

in Appendix H.

Step 1: Create partitions. A uniformly selects a plausible trace

as a candidate for the correct trace, namely 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 , via the

TSD attack. Given the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)},
A first creates a multiset, where the visited toll station 𝑠 𝑗 is re-

peated 𝑓𝑗 times. It then computes all possible partitions by dividing

all visited toll points in the multiset into segments, each containing

different visited toll stations. The point is that the toll stations in

each segment, along with the driver’s home location, could poten-

tially form a cycle that a driver has made. A segment must satisfy

two conditions: (1) no toll station should be repeated within a seg-

ment, and (2) the order of toll stations in a segment does not matter.

All the segments in a partition could potentially correspond to the

cycles a driver has made. The driver’s correct trace (i.e., cycles and

their corresponding frequencies) is associated with only one of the

partitions. To compute the partitions, A uses a partition function

explained in the following example.

Example: Given a driver’s correct trace {(𝑠1, 1), (𝑠2, 2), (𝑠3, 1)},
the partition function computes the multiset 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 = {𝑠1, 𝑠2,
𝑠2, 𝑠3}. Then, the function divides the visited toll points in the multi-

set into six different partitions regarding the two mentioned condi-

tions. The portions are 1: {{𝑠1, 𝑠2}, {𝑠2, 𝑠3}}, 2: {{𝑠1, 𝑠2, 𝑠3}, {𝑠2}}, 3:
{{𝑠1, 𝑠2}, {𝑠2}, {𝑠3}}, 4: {{𝑠1}, {𝑠2}, {𝑠2, 𝑠3}}, 5:{{𝑠1, 𝑠3}, {𝑠2}, {𝑠2}},
6: {{𝑠1}, {𝑠2}, {𝑠2}, {𝑠3}}. The toll stations in each segment, along

with a driver’s home location (ℎ), lead to a cycle (if any) that

the driver could have made. The cycle is found by the algorithm

𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 .

Step 2: Transform each partition to a plausible trace. In
this step, A transforms all the segments in each partition to their

corresponding cycle (if any), using the aforementioned algorithm

𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 . Hence, each partition will be transformed into a

239

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

plausible trace, including the cycles and their corresponding fre-

quencies {(𝑐1, 𝑓1), (𝑐2, 𝑓2), . . . , (𝑐𝑦, 𝑓𝑦)}. The plausible trace, then,
will be stored in a set of plausible traces, namely 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 .

Note that there may be a partition where the toll points in a seg-

ment cannot lead to a cycle due to their connectivity, and hence,

the partition cannot lead to a plausible trace. We emphasize that

each plausible trace within the set of plausible traces is linked to

one of the partitions obtained in Step 1.

Example: In the example provided in Step 1, concerning parti-

tion one, segments {𝑠1, 𝑠2} and {𝑠2, 𝑠3} could lead to corresponding

cycles, such as ℎ𝑠1𝑠2ℎ and ℎ𝑠2𝑠3ℎ, thereby forming the plausible

trace {(ℎ𝑠1𝑠2ℎ, 1), (ℎ𝑠2𝑠3ℎ, 1)}.

Step 3: Selection of the correct trace. Finally, A uniformly

guesses a plausible trace as the correct trace from the set of plausi-

ble traces, i.e., 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 . The success rate of A to guess

correctly is computed as follows:

6.1.1 Computation of the success rate. To obtain the success

rate, we need to compute the probability of selecting the correct

trace in Step 3. This requires A to make two consecutive correct

guesses, as outlined below: (1) In Step 1,A has to guess the correct

trace, namely 𝑡𝑟𝑎𝑐𝑒𝑑′ among the plausible traces 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 =

{𝑡𝑟𝑎𝑐𝑒1, . . . , 𝑡𝑟𝑎𝑐𝑒𝑑 } obtained by the TSD attack, where 𝑑 ′ denotes
an arbitrary but fixed plausible trace. The probability of the correct

guess is denoted and computed as 𝑝 [1st] = 1

𝑑
.

(2) Given 𝑡𝑟𝑎𝑐𝑒𝑑′ , using the CD attack,A obtains the correspond-

ing set of plausible traces, including the cycles and corresponding

frequencies denoted by 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 = {𝑡𝑟𝑎𝑐𝑒1, . . . , 𝑡𝑟𝑎𝑐𝑒𝑧 }
(see Step 2). Then, A uniformly selects 𝑡𝑟𝑎𝑐𝑒𝑧′ as a correct trace

from this set with the condition that its first guess is correct, where

𝑧′ in 𝑡𝑟𝑎𝑐𝑒𝑧′ denotes an arbitrary but fixed plausible trace. The prob-
ability of 𝑡𝑟𝑎𝑐𝑒𝑧′ being a correct trace is denoted by 𝑝 [2nd | 1st] = 1

𝑧 .

Now, we use Bayes’ theorem [23] to compute the probability of the

second guess, i.e., 𝑝 [2nd], being a correct trace.

𝑝 [2nd] = 𝑝 ([1st]) × 𝑝 ([2nd | 1st])
𝑝 ([1st | 2nd]) (6)

We previously computed the terms𝑝 [1st] and 𝑝 [2nd | 1st], which
are equal to

1

𝑑
and

1

𝑧 respectively. The term 𝑝 ([1st | 2nd]) in For-

mula 6 represents the probability of the first guess being correct,

given that the second guess is correct, which is equal to one. This

is because the correctness of the second guess depends on the

correctness of the first guess as a prerequisite. Substituting the

values of these terms into Formula 6 yields the success rate, i.e., the

probability of the second guess being correct.

𝑆𝑅𝑑′ = 𝑝 [2nd] =
1

𝑑
× 1

𝑧
(7)

The index 𝑑 ′ in 𝑆𝑅𝑑′ denotes that the success rate is computed

with respect to the 𝑡𝑟𝑎𝑐𝑒𝑑′ as a candidate for the correct trace in

Step 1. Since, in this step, each 𝑡𝑟𝑎𝑐𝑒 𝑗 in the set of plausible traces

has a chance of being a correct trace, we compute 𝑆𝑅 𝑗 with respect

to each individual 𝑡𝑟𝑎𝑐𝑒 𝑗 using Formula 7. Note that the value of 𝑧

depends on 𝑡𝑟𝑎𝑐𝑒𝑑′ . The final 𝑆𝑅 is obtained by taking the average

over all 𝑆𝑅 𝑗 s (shown in Formula 7), as all of the 𝑡𝑟𝑎𝑐𝑒 𝑗 have the

same probability of being a correct trace.

𝑆𝑅 =
1

𝑑
×

𝑑∑︁
𝑗=1

𝑆𝑅 𝑗 (8)

Formula 8 shows that the success rate of the CD attack (𝑆𝑅)

correlates with the success rate of the TSD attack, i.e., 𝑝 [1st] = 1

𝑑
.

Discussion on the attack’s effectiveness. As said in Section 2,

the attack’s effectiveness depends on two main factors. (1) The
number of plausible traces: If in Formula 8,𝑑 and 𝑧 are quite large,

i.e., the corresponding sets of plausible traces contain a quite large

number of plausible traces, 𝑆𝑅 becomes negligible, preserving a

driver’s privacy. (2) Computational complexity: The complexity

of the CD attack mainly depends on the complexity of the TSD

attack (discussed in Section 4.1) and depends on the complexity

of the functions used for creating the partitions and cycles. The

details are discussed in Appendix J.

7 EVALUATION OF THE CD ATTACK
Here, we discuss the parameter settings used in the CD attack and

evaluate it using the success rate discussed in 6.1.1.

Parameter settings. We employ the same real parameter set-

tings of Brisbane’s ETC system discussed in Section 5.1. The CD

attack requires the set 𝑀 = {𝐼𝐷, 𝑃,𝐺,𝑊 } and also the set 𝐻 to

achieve the CD goal. Concerning the set 𝐻 , we do not access the

home locations of drivers registered with the Brisbane ETC system,

as this information is not publicly available. Consequently, the al-

gorithm for finding the cycles cannot find the cycles since it relies

on 𝐻 ; additionally, the algorithm for finding the cycles requires

the strategy for finding a cycle as drivers use different strategies

for selecting a path. However, we do not access such information;

nonetheless, we can evaluate the CD attack as follows.

Our evaluation. We evaluate the CD attack using the notion of

𝐴𝑆𝑅 explained in Section 5.2.1 with the difference that, here, 𝐴𝑆𝑅

is computed based on 𝑆𝑅 in Formula 8. According to the formula,

𝑆𝑅 depends on 𝑑 and 𝑧, where 𝑧 depends on the size of the set

of plausible traces (𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠), including plausible traces.

To obtain the set, 𝐻 and the strategy is needed to find the cycles

(see Step 2 of Section 6.1). As said earlier, we do not access such

information; nevertheless, we compute 𝑆𝑅 using an upper bound

for the size of the set 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 , i.e., 𝑧, via the inequal-

ity |𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 | ≤ number of all partitions. The inequal-

ity holds because, as said in Step 2 of Section 6.1, each partition

may/may not lead to a corresponding plausible trace. Hence, we em-

ploy the total number of partitions to compute an upper bound for

|𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 |, i.e., 𝑧, and, accordingly, to compute 𝑆𝑅. Given

𝑆𝑅, we compute 𝐴𝑆𝑅 for each individual wallet range [𝑤𝑙 ,𝑤𝑢].

The evaluation results. We discuss the distribution of success

rates and 𝐴𝑆𝑅s shown in Table 1.

Distribution of success rates. To investigate how successfully

the CD attack performs, we demonstrate the distribution of success

rates across all plausible wallet balances within each range [𝑤𝑙 ,𝑤𝑢]
in Figure 5.

Each box plot in Figure 5 illustrates the distribution of success

rates corresponding to all plausible wallet balances within the range

240

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

of [𝑤𝑙 ,𝑤𝑢]. The figure shows that half of the success rates (𝑆𝑅s)
corresponding to the range of [$0, $10] are nearly 50%, while the

other half fall between 10% and 50% (shown in the first box plot). For

the range of [$10, $20], half of the success rates (𝑆𝑅s) fall between
5.50% and 35% (shown in the second box plot). Finally, for the range

of [$20, $40], a few of the success rates (𝑆𝑅s) are below 10%, and

the rest are close to zero (shown in the third box plot).

Figure 5: Each box plot shows the distribution of 𝑆𝑅s across
all plausible wallet balances within the range [𝑤𝑙 ,𝑤𝑢].

• Regarding the CD attack, the 𝐴𝑆𝑅 for approximately 61.38%

of drivers is around 51%, which is relatively high. However,

it is considerably lower than the 𝐴𝑆𝑅 of 94% achieved by the

TSD attack.

• The 𝐴𝑆𝑅 for approximately 14.31% of drivers is relatively

low, i.e., 11%, which is lower than the 𝐴𝑆𝑅 of 54% achieved

by the TSD attack.

• The 𝐴𝑆𝑅 for the small proportion of drivers 11.12% is ap-

proximately 0.28%, which is negligible compared to the 𝐴𝑆𝑅

of 5% in the TSD attack.

• The comparison above demonstrates that the CD attack has

a lower 𝐴𝑆𝑅 in comparison to the TSD attack. However, the

former attack provides the adversary with more information,

such as the driver’s cycles, whereas the latter attack only

discloses the visited toll stations.

8 IMPACT OF PARAMETER SETTINGS ON
PRIVACY

We discuss parameters impacting the TSD attack’s success rate

and a driver’s privacy accordingly. Then, we evaluate the success

rate for various parameter settings. To this end, we consider the

Brisbane case study with different parameter settings and complex-

ities. This approach offers useful insights to determine the privacy

level of a driver under different settings. For instance, we explore

alternative toll price ranges rather than Brisbane’s, creating diverse

complexities. Appendix G provides the details of our experiments.

Parameters impacting privacy. The attack’s success rate de-
pends on the number of plausible traces, which, in turn, is influ-

enced by the parameters in Equation 3. These parameters are as

follows: toll prices (𝑃), wallet balance (𝑤), length of the billing

period (\), and the number of toll stations (|𝑆 |).

Analysis of different parameter settings on privacy. We in-

vestigate the impact of different settings of each parameter on

the attack’s success rate and, consequently, a driver’s privacy. To

accomplish this, we consider the Brisbane case study and the cor-

responding parameter settings outlined in Section 5.1. We create

scenarios with varying levels of complexity for each parameter,

allowing us to assess the attack’s success rate in different settings.

To this end, while keeping certain parameters fixed, we vary the

settings of a specific parameter, such as toll prices, to examine its

impact on privacy. Appendix G and Table 7 in the appendix pro-

vide further details on our experiments and the parameter settings.

Figure 6 shows the impact of settings of different parameters on

the success rate. The red, blue, and green points/graphs concern

the wallet ranges [$0, $10], [$10, $20], and [$20, $40], respectively.
The results are summarized as follows:

• Parameter 𝑃 : Each of the toll price ranges [1, 𝑗], 1 ≤ 𝑗 ≤ 10

on the x-axis of Figures 6a, 6b, and 6c indicate the span from

which toll prices are chosen and assigned to the respective

toll stations in Brisbane. Figures 6a, 6b, and 6c demonstrate

that the 𝐴𝑆𝑅 increases as the toll price range gets larger.

Now, for comparing the box plots, we consider their median.

In Figure 6a, the 𝐴𝑆𝑅 increases from zero to almost 96%, in

Figure 6b from zero to almost 73%, and in Figure 6c, from zero

to about 15%. This concludes that a driver’s privacy is more

at risk, given a larger toll price range. This manifests itself

more evidently for wallets with low balances (see Figure 6a).

The figures show that when the assigned toll prices are equal

(selected from the range [1, 1]), the 𝐴𝑆𝑅 approaches zero,

thereby preserving a driver’s privacy (see Appendix G for

the details of our experiment).

• Parameter𝑤 : The wallet’s balance highly impacts the num-

ber of plausible traces and a driver’s privacy accordingly.

Overall, small wallet balances lead to higher𝐴𝑆𝑅s. Figure 6d

shows that drivers (above %75 of total drivers) with wallet

balances below $35 are more at risk of a privacy violation

than those with wallets between $35 and $40.

• Parameter \ : Figure 6e shows that a short billing period leads

to a high 𝐴𝑆𝑅. Even for a relatively long billing period of

eight months (two months), the attack has𝐴𝑆𝑅 of about 10%,

which is considerable.

• Parameter |𝑆 |: Figure 6f illustrates that the attack’s 𝐴𝑆𝑅 re-

mains high for a low number of toll stations. While the 𝐴𝑆𝑅

decreases as the number of toll stations increases, it is still

significantly high, approximately 60%, for 20 toll stations

and the wallet range [$0, $10] (as shown by the red graph).

This poses a potential risk to a driver’s privacy.

• It should be noted that the overall impact of the parameters

on privacy also holds regarding the CD attack since the

success rates of the attacks are correlated (see Formula 8).

9 DISCUSSION
We discuss the limitations and future work, and thenwe give several

recommendations concerning PPETC schemes.

241

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

(a) Impact of the toll price range, 𝑤 ≤ 10 (b) Impact of the toll price range, 10 < 𝑤 ≤ 20 (c) Impact of the toll price range, 20 < 𝑤 ≤ 40

(d) Impact of the wallet balance (e) Impact of the billing period length (f) Impact of the number of toll stations

Figure 6: The figures demonstrate how different settings of a parameter, including toll prices, wallet balances, billing period
length, and the number of toll stations, impact the attack’s 𝐴𝑆𝑅 or success rate and, accordingly, a driver’s privacy.

9.1 Limitations and Future work
• Our TSD attack utilizes a subset of the information available

to the TSP in order to achieve the TSD goal. This attack can

serve as a baseline for other attacks that aim to achieve the

same goal but utilize more information than the set𝑀 . For

instance, these attacks could incorporate drivers’ home ad-

dresses and transactions, which are not utilized in our attack.

The CD attack uses the sets𝑀 and 𝐻 to achieve the CD goal.

Similarly, this attack can be used as a baseline for attacks

that exploit additional information, such as transactions. In

future work, we can analyze how leveraging such additional

information would impact a driver’s privacy compared to

our attacks.

• It is said in [36], if the adversary has already found some

user locations where he visited, completing the user’s lo-

cations can be done more easily. This is achievable if the

adversary accesses the user’s mobility profile. The mobility

profile represents how probable it is for a specific user to

move from one location to another in a specific period [36].

The adversary, e.g., could use drivers’ identities to find dri-

vers’ mobility profiles. Knowing such information would

help the adversary complete the locations the driver passed.

In future work, given that the adversary has obtained a dri-

ver’s mobility profile, we can investigate to what extent the

adversary can complete the driver’s trajectories.

• As future work, we raise the following research question:

“To what extent is an adversary successful in converting the

cycles obtained by the CD attack to a chain of trips?” A

trip made by a driver starts from a source (at time 𝑡𝑠) and

ends at a destination (at time 𝑡𝑒), and the driver stays at

the destination for a while. Each trip takes place for a main

purpose: work, shopping, and education. We are interested

in finding the trip constituents of a cycle. The adversary,

e.g., could benefit from contextual information to guess the

trips made by a driver [11]. For example, given that a cycle

passes through one toll station close to a shopping center,

the adversary can conclude that the driver could have made

a trip to the shopping center with a certain probability. By

inferring the trips, the adversary learns more information

about a driver’s behavior.

• For evaluating the TSD attack, since we did not access dri-

vers’ wallet balances, we generated all plausible wallet bal-

ances based on wallet ranges provided by statistics. Then, we

computed the attack’s 𝐴𝑆𝑅 (see Section 5.2.1). Although our

evaluation demonstrates a high 𝐴𝑆𝑅, accessing drivers’ wal-

let balances leads to a more accurate success rate in finding

a driver’s correct trace.

• This study focuses on static toll pricing, excluding the con-

sideration of PPETC schemes involving dynamic pricing.

Dynamic pricing entails toll prices that fluctuate according

to time or other parameters. Incorporating dynamic pricing

242

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

would negatively affect the efficacy of our attacks, as it in-

troduces additional variables into Equation 3 while solving

the SSP. This stands in contrast to a scenario where prices

remain constant. In fact, the inclusion of each time-based

toll price requires the addition of a corresponding variable

within the equation, thereby reducing the success rate.

• In this work, our presented attacks do not employ transac-

tions, including times (stored in the TSP), to achieve the goals.

The times are the moments when vehicles pass through

toll stations. The reasons for not using times in our attacks

are: firstly, based on our threat model, the given “counter-

example” is stronger if considering a weaker attacker. Sec-

ondly, although there are tracking algorithms [13, 43] for

tracking vehicles based on the times and locations of vehi-

cles, these algorithms operate under some conditions, some

of which are not held in our case study. The main important

condition is that vehicles should report their times and loca-

tions periodically and with a short time interval [20, 43] (e.g.,
below one second [43]), which does not hold in our study. In

our case study, the times corresponding to each vehicle have

long time intervals since the distances between two consecu-

tive toll stations are quite long. Hence, in this study, we take

advantage of other information for the purpose of tracking,

including wallets, toll prices, the city’s ETC graph, and home

addresses. Finally, to evaluate attacks exploiting timestamps,

we would also need realistic traces, including timestamps, for

the Brisbane setting. But we do not access real traces, and for

generating realistic synthetic traces, we lack the necessary

statistics to feed into a simulator we would have to develop.

This is why we refrained from exploiting time stamps. As

future work, we are interested in how to exploit timestamps

as additional information to achieve stronger attacks/higher

success rates.

• In Section 1, we categorized PPETC schemes into two dif-

ferent categories: (1) privacy-preserving road-infrastructure

based ETC schemes and (2) privacy-preserving autonomous-

device based ETC schemes. The focus of this study is on the

first category. In future work, we can investigate the privacy

of schemes in the second category, such as [2, 31, 34], where

the OBU device is used to compute the monthly toll fees

with the help of times and locations received by the GPS. We

are interested in determining if our attacks can be applied

to the schemes in the second category. Since our attacks are

fairly generic and only require minimal information as input,

we expect that they are also applicable to disclose a driver’s

road segments in an autonomous-device based ETC.

9.2 Recommendation
To deploy a PPETC system, toll engineers should consider the

following recommendations based on our analysis in Section 8:

(1) Various parameters impact a driver’s privacy, including the

range of toll prices (𝑃), wallet balances (𝑤), length of the billing

period (\), and the number of toll stations (|𝑆 |), which the TSP sets

except the wallet balance. A wallet balance depends on the toll

prices of toll stations visited by the driver and the frequency of

visiting. The parameter \ also indirectly affects a wallet’s balance

and, accordingly, a driver’s privacy. Hence, when deploying PPETC

schemes, toll engineers should remember that varying a parameter

could influence the other parameters and, accordingly, a driver’s

privacy. (2) Considering a sufficiently large billing period by the TSP

would help reduce the risk of violating a driver’s privacy (Figure 6e).

In fact, a large billing period would lead to larger wallet balances

as drivers would likely visit more toll stations or visit toll stations

more frequently within a longer period. Therefore, larger wallet

balances provide better privacy for drivers (Figure 6d). It should

be noted that this consideration should align with a toll service

provider’s financial policies. (3) A wide range of toll prices in an

ETC system increases the risk of violating a driver’s privacy. It is

advisable to consider a toll price range that results in a negligible

success rate while not conflicting with the TSP’s financial policies.

For example, if all toll prices associated with the corresponding toll

stations are equal, the success rate is close to zero (see Figures 6a,

6b, and 6c). However, such a toll price range should align with a

TSP’s financial policies.

10 RELATEDWORK
In this Section, we discuss the typical information leaked by PPETC

schemes. Then, we elaborate on the attacks regarding PPETC sys-

tems.

Privacy in ETC schemes: In this section, we discuss the infor-

mation leaked by PPETC schemes and available to the TSP. The

privacy-preserving scheme in [25] stores toll fees and hashes of the

locations into the TSP so as to hide them from the server. Apart

from this, a small percentage of the locations and toll fees should be

revealed to the TSP to detect cheating. In [34], the scheme “VPriv”

stores the tagged location-time data at the TSP, which an OBU

sends. The driver computes the total toll fee and sends it to the

TSP. The notion of privacy in “VPriv” means that the privacy of the

current scheme should be the same as the privacy in a scheme in

which the TSP stores just location-time data without any identify-

ing information (tags), and the total toll fee should be received from

an oracle without executing any protocol. In [26], the TSP stores

the OBU’s id and a set of signed, encrypted, and committed tuples

(location, time, toll fee). This information is transmitted by the

OBU at the end of each billing period. Two schemes are presented

in [10]: (1) the SPEcTRe spot-record scheme and (2) the SPEcTRe

no-record scheme. The first scheme reveals the same data as that in

the scheme [34]. The second scheme does not store drivers’ private

information but can detect cheaters.

Attacks on privacy in ETC: To the best of our knowledge

supported by the survey [24], the work [7] is the only relevant

study that proposes an attack concerning the post-payment PPETC

schemes. In [7], the authors present an attack to find drivers’ pos-

sible traces in a toy example of an ETC system. A trace is a set of

trips a driver has made within a billing period. A trip made by a

driver includes anonymous transactions belonging to the driver.

The authors assumed a strong adversary that already has access to

anonymous trips as its input, which is a strong assumption. Besides

the trips, the adversary accesses wallet balances, trip prices, the

city map, and contextual information such as the maximal speed

of cars. The adversary uses an attack that works based on solving

the SSP whose solutions lead to a driver’s set of traces where the

243

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

correct trace is located. To solve the SSP, [7] utilizes Pisinger’s

algorithm [33] due to its linear computation time. However, it is

important to note that the values corresponding to the set of traces

must adhere to specific restrictions. In our approach, we employ

DOcplex [12] as the solver, which, by default, has no restrictions and

is more convenient and straightforward than Pisinger’s algorithm.

The attack uses various heuristics based on the connectivity of trips

to reduce the number of traces. Unlike our study, the work lacks a

detailed and precise threat model, e.g., the information available to

an adversary, and its goal is not determined clearly. This work, as

opposed to our study, aims to perform an attack by exploiting any

ETC data at the adversary’s disposal, while our objective is to do an

attack using a weaker adversary and using only the minimal ETC

data, which makes our attack more applicable and impressive. The

main point overlooked in this work is the significance of parameter

settings in determining the complexity of the attack, which depends

on the hardness of SSP. In contrast, our study examines the impact

of various parameters and their settings, including toll price ranges,

wallet balances, and number of toll stations, on the difficulty of

the SSP problem (see Sections 5.2.3, 8). By analyzing the effect of

different parameter settings on the SSP’s complexity, we obtain

valuable insights into selecting parameter settings that can enhance

privacy. The presented attack in [7] is just applied to a toy scenario

using the synthetic data within a billing period of 10 days, and the

authors do not discuss how their evaluation results can be applied

to a real-world scenario. We emphasize that the attack in [7] relies

on a very strong assumption (which is not justifiable according

to [20, 37] with respect to our setting). Therefore, we cannot re-

gard it as a suitable baseline for the purpose of benchmarking. The

comparison between our work and [7] is summarized in the table

shown in Appendix L.

In [34], the authors briefly mention an attack based on the SSP

and argue that if the billing period is large enough, it is unlikely

for an adversary to learn the toll stations a driver visits. However,

unlike ours, their work primarily focuses on designing a PPETC

scheme and does not provide a detailed attack to evaluate a driver’s

privacy. Our study demonstrates, as opposed to their perception,

that our attack can achieve a significant success rate even for a one-

month billing period, which is large enough. Similarly, the work [2]

briefly acknowledges the possibility of an attack by solving the SSP

in PPETC schemes. However, since their aim is to design a PPETC

scheme, they do not present any attacks, unlike ours.

11 CONCLUSION
This research focuses on the issue of driver privacy in post-payment

privacy-preserving road-infrastructure based ETC schemes. We

offer a counterexample using the case study of Brisbane’s ETC

system, illustrating that these PPETC schemes are sometimes not

sufficient to provide privacy. We present two attacks that employ

a subset of all information available to the TSP with real param-

eter settings of Brisbane’s ETC system. The first attack aims to

achieve the toll station disclosure goal, and the results show that

the attack’s 𝐴𝑆𝑅 is considerably high, i.e., 94% affecting 61% of

total drivers’ privacy. The second attack aims to achieve the cy-

cle disclosure goal, where an adversary learns more information.

The evaluation shows that the attack’s 𝐴𝑆𝑅 is high, i.e., 51% for

61% of total drivers. These high 𝐴𝑆𝑅s are achievable considering a

weak adversary employing a baseline strategy without exploiting

any heuristics. Our attack evaluation shows that solving the SSP

(i.e., generally NP-complete), upon which the schemes’ privacy is

built, is feasible. We then present various parameters impacting a

driver’s privacy, such as toll prices and wallets, and then analyze

how different settings of individual parameters impact a driver’s

privacy. Finally, we give recommendations to toll engineers when

deploying privacy-preserving ETC systems.

ACKNOWLEDGMENTS
Andy Rupp was supported by funding from the topic Engineering

Secure Systems (46.23.01 Methods for Engineering Secure Systems

and 46.23.03 Engineering Security for Mobility Systems) of the

Helmholtz Association (HGF) and by KASTEL Security Research

Labs.

REFERENCES
[1] Apple Pay 2023. Apple Pay. Retrieved July 1, 2023 from https://www.apple.com/

apple-pay/

[2] Josep Balasch, Alfredo Rial, Carmela Troncoso, Bart Preneel, Ingrid Verbauwhede,

and Christophe Geuens. 2010. {PrETP}:{Privacy-Preserving} Electronic Toll
Pricing. In 19th USENIX Security Symposium (USENIX Security 10).

[3] Haris Ballis and Loukas Dimitriou. 2020. Optimal synthesis of tours from multi-

period origin-destination matrices using elements from graph theory and integer

programming. European Journal of Transport and Infrastructure Research 20, 4

(2020), 1–21.

[4] Haris Ballis and Loukas Dimitriou. 2020. Revealing personal activities sched-

ules from synthesizing multi-period origin-destination matrices. Transportation
research part B: methodological 139 (2020), 224–258.

[5] Linkt Brisbane. 2022. Queensland toll calculator. Retrieved 2022 from https:

//www.linkt.com.au/using-toll-roads/toll-calculator/brisbane

[6] Mathilde Carlier. 2021. Projections for the global electronic toll collection market size
between 2019 and 2030. Retrieved 2022 from https://www.statista.com/statistics/

1254629/global-electronic-toll-collection-market-forecast

[7] Xihui Chen, David Fonkwe, and Jun Pang. 2012. Post-hoc user traceability

analysis in electronic toll pricing systems. In Data Privacy Management and
Autonomous Spontaneous Security. Springer, 29–42.

[8] Wilner Ciscal-Terry, Mauro Dell’Amico, Natalia Selini Hadjidimitriou, and

Manuel Iori. 2016. An analysis of drivers route choice behaviour using GPS

data and optimal alternatives. Journal of transport geography 51 (2016), 119–129.

[9] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.

Introduction to algorithms. MIT press.

[10] Jeremy Day, Yizhou Huang, Edward Knapp, and Ian Goldberg. 2011. Spectre:

spot-checked private ecash tolling at roadside. In Proceedings of the 10th annual
ACM workshop on Privacy in the electronic society. 61–68.

[11] Rinku Dewri, Prasad Annadata, Wisam Eltarjaman, and Ramakrishna Thurimella.

2013. Inferring trip destinations from driving habits data. In Proceedings of the
12th ACM workshop on Workshop on privacy in the electronic society. 267–272.

[12] DOcplex 2022. DOcplex Python Modeling API. Retrieved May 1, 2022 from https:

//www.ibm.com/docs/en/icos/12.8.0.0?topic=docplex-python-modeling-api

[13] Karim Emara, Wolfgang Woerndl, and Johann Schlichter. 2013. Vehicle tracking

using vehicular network beacons. In 2013 IEEE 14th International Symposium on"
A World of Wireless, Mobile and Multimedia Networks"(WoWMoM). IEEE, 1–6.

[14] European Commission. 2019. Directive of the European Parliament and of the
Council on the Interoperability of Electronic Road Toll Systems and Facilitating
Crossborder Exchange of Information on the Failure to Pay Road Fees in the Union.
https://eur-lex.europa.eu/eli/dir/2019/520/oj

[15] Valerie Fetzer, MaxHoffmann,Matthias Nagel, Andy Rupp, and Rebecca Schwerdt.

2018. P4TC—Provably-Secure yet Practical Privacy-Preserving Toll Collection.

Cryptology ePrint Archive (2018).
[16] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. 2007. Trajectory

pattern mining. In Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining. 330–339.

[17] Google Pay 2023. Google Pay. Retrieved July 1, 2023 from https://pay.google.

com/about/

[18] Vladimir Grebinski and Gregory Kucherov. 1997. Optimal query bounds for

reconstructing a Hamiltonian cycle in complete graphs. In Proceedings of the Fifth
Israeli Symposium on Theory of Computing and Systems. IEEE, 166–173.

[19] Gregory Gutin and Abraham P Punnen. 2006. The traveling salesman problem
and its variations. Vol. 12. Springer Science & Business Media.

244

https://www.apple.com/apple-pay/
https://www.apple.com/apple-pay/
https://www.linkt.com.au/using-toll-roads/toll-calculator/brisbane
https://www.linkt.com.au/using-toll-roads/toll-calculator/brisbane
https://www.statista.com/statistics/1254629/global-electronic-toll-collection-market-forecast
https://www.statista.com/statistics/1254629/global-electronic-toll-collection-market-forecast
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=docplex-python-modeling-api
https://www.ibm.com/docs/en/icos/12.8.0.0?topic=docplex-python-modeling-api
https://eur-lex.europa.eu/eli/dir/2019/520/oj
https://pay.google.com/about/
https://pay.google.com/about/

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

[20] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf Alrabady. 2007. Preserving

privacy in GPS traces via uncertainty-aware path cloaking. In Proceedings of the
14th ACM conference on Computer and communications security. 161–171.

[21] Yongfeng Huo, Bilian Chen, Jing Tang, and Yifeng Zeng. 2021. Privacy-preserving

point-of-interest recommendation based on geographical and social influence.

Information Sciences 543 (2021), 202–218.
[22] IBM. 2022. Module docplex.cp.parameters. Retrieved 2023 from

https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.

parameters.py.html#docplex.cp.parameters.CpoParameters.SearchType

[23] Edwin T Jaynes. 2003. Probability theory: The logic of science. Cambridge univer-

sity press.

[24] Amirhossein Adavoudi Jolfaei, Abdelwahab Boualouache, Andy Rupp, Stefan

Schiffner, and Thomas Engel. 2023. A Survey on Privacy-Preserving Electronic

Toll Collection Schemes for Intelligent Transportation Systems. IEEE Transactions
on Intelligent Transportation Systems (2023).

[25] Wiebren de Jonge and Bart Jacobs. 2008. Privacy-friendly electronic traffic pricing

via commits. In International Workshop on Formal Aspects in Security and Trust.
Springer, 143–161.

[26] Florian Kerschbaum and Hoon Wei Lim. 2015. Privacy-preserving observation in

public spaces. In European Symposium on Research in Computer Security. Springer,
81–100.

[27] Donald E Knuth. 2004. GENERATING ALL PARTITIONS. Retrieved 2023 from

http://www.kcats.org/csci/464/doc/knuth/fascicles/fasc3a.pdf

[28] Jeffrey C Lagarias and Andrew M Odlyzko. 1985. Solving low-density subset sum

problems. Journal of the ACM (JACM) 32, 1 (1985), 229–246.
[29] Gilbert Laporte. 1992. The traveling salesman problem: An overview of exact and

approximate algorithms. European Journal of Operational Research 59, 2 (1992),

231–247.

[30] Xin Li, Guandong Xu, Enhong Chen, and Yu Zong. 2015. Learning recency based

comparative choice towards point-of-interest recommendation. Expert Systems
with Applications 42, 9 (2015), 4274–4283.

[31] Sarah Meiklejohn, Keaton Mowery, Stephen Checkoway, and Hovav Shacham.

2011. The Phantom Tollbooth:{Privacy-Preserving} Electronic Toll Collection in

the Presence of Driver Collusion. In 20th USENIX Security Symposium (USENIX
Security 11).

[32] KW Ogden. 2001. Privacy issues in electronic toll collection. Transportation
Research Part C: Emerging Technologies 9, 2 (2001), 123–134.

[33] David Pisinger. 1999. Linear time algorithms for knapsack problemswith bounded

weights. Journal of Algorithms 33, 1 (1999), 1–14.
[34] Raluca Ada Popa, Hari Balakrishnan, and Andrew J Blumberg. 2009. VPriv:

Protecting privacy in location-based vehicular services. (2009).

[35] Tyronza R Richmond and Arunachalam Ravindran. 1974. A generalized euclidean

procedure for integer linear programs. Naval Research Logistics Quarterly 21, 1

(1974), 125–144.

[36] Reza Shokri, Julien Freudiger, and Jean-Pierre Hubaux. 2010. A unified framework
for location privacy. Technical Report.

[37] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre

Hubaux. 2011. Quantifying location privacy. In 2011 IEEE symposium on security
and privacy. IEEE, 247–262.

[38] Gang Sun, Shuai Cai, Hongfang Yu, Sabita Maharjan, Victor Chang, Xiaojiang

Du, and Mohsen Guizani. 2019. Location privacy preservation for mobile users

in location-based services. IEEE Access 7 (2019), 87425–87438.
[39] Hamdy A Taha. 2014. Integer programming: theory, applications, and computations.

Academic Press.

[40] Transport and Public Works Committee. 2018. Inquiry into the operations of toll
roads in Queensland. Retrieved 2022 from https://www.transurban.com/content/

dam/transurban-pdfs/02/news/transurban-submission-inquiry-qld.pdf

[41] Transurban. 2022. Travel on our roads. Retrieved 2022 from https://insights.

transurban.com/travel/travel-on-our-roads/#toll-spend-data

[42] William Thomas Tutte and William Thomas Tutte. 2001. Graph theory. Vol. 21.
Cambridge university press.

[43] Björn Wiedersheim, Zhendong Ma, Frank Kargl, and Panos Papadimitratos. 2010.

Privacy in inter-vehicular networks: Why simple pseudonym change is not

enough. In 2010 Seventh international conference on wireless on-demand network
systems and services (WONS). IEEE, 176–183.

[44] Guoming Zhang, Lianyong Qi, Xuyun Zhang, Xiaolong Xu, and Wanchun Dou.

2021. Point-of-interest recommendation with user’s privacy preserving in an iot

environment. Mobile Networks and Applications 26, 6 (2021), 2445–2460.

A NOTATIONS
The notations and acronyms are shown in Tables 3 and 4.

Notation Description

𝐴𝑆𝑅 average success rate

𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 correct trace

D set of decimal numbers

𝑓 frequency

𝐹 set of frequencies

𝐺 graph equivalent of a city’s map

𝐻 set of drivers’ home addresses

𝐼𝐷 set of drivers’ identities

𝐾 set of adversary’s knowledge, namely

𝐾 = {𝐼𝐷, 𝑃,𝐺,𝑊 ,𝐻 }
𝑛 number of drivers

N0 set of non-negative integers

𝑃 set of toll prices

𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 set of plausible traces

𝑠 toll station’s identity

𝑆 set of toll stations’ identities

𝑆𝑅 success rate

𝑇 set of transactions

𝑢 upper bound

𝑤 wallet balance

𝑊 set of drivers’ wallet balances

𝜏 toll price

\ length of the billing period

Table 3: The notations.

Full name Acronym

Average percentage decrease APD

Average success rate ASR

Cycle disclosure attack CD(A)

Depth First Search DFS

Dedicated short-range communications DSRC

Electronic Toll Collection ETC

On-Board Unit OBU

Privacy-preserving ETC PPETC

Road-side unit RSU

Subset sum problem SSP

Toll station disclosure attack TSD(A)

Toll service provider TSP

Toll service providers TSPs

Table 4: The acronyms.

B THE TSD ATTACK
We formalize the attack in three steps and present the attack’s

pseudo-code in Algorithm 1. To find the set of plausible traces of a

driver with identity 𝑖 and its associated wallet𝑤 , A performs the

following steps: (1) In Step 1, it creates vectors ®𝑃 , ®𝑋 , and accordingly,
the linear equation 𝐸. (2) In Step 2, it solves Equation 𝐸 to create all

plausible traces associated with the driver. (3) In Step 3, A selects

a plausible trace (as the correct trace) uniformly from the set of

plausible traces.

245

https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.parameters.py.html#docplex.cp.parameters.CpoParameters.SearchType
https://ibmdecisionoptimization.github.io/docplex-doc/cp/docplex.cp.parameters.py.html#docplex.cp.parameters.CpoParameters.SearchType
http://www.kcats.org/csci/464/doc/knuth/fascicles/fasc3a.pdf
https://www.transurban.com/content/dam/transurban-pdfs/02/news/transurban-submission-inquiry-qld.pdf
https://www.transurban.com/content/dam/transurban-pdfs/02/news/transurban-submission-inquiry-qld.pdf
https://insights.transurban.com/travel/travel-on-our-roads/#toll-spend-data
https://insights.transurban.com/travel/travel-on-our-roads/#toll-spend-data

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

Step 1. The adversary creates the following vectors and equation.
• Vector ®𝑃 : The adversary creates the vector ®𝑃 using the func-

tion 𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 (line 3). The function takes as input the

set 𝑃 and the vector’s size 𝑙 that equals the size of the set

of toll stations (line 2). The vector’s elements represent toll

prices. The index 𝑗 in 𝜏 𝑗 ∈ ®𝑃 denotes the toll station’s iden-

tity.

®𝑃 =

𝜏1
𝜏2
.
.
.

𝜏𝑙

, ∀𝜏 𝑗 ∈ ®𝑃 : 𝜏 𝑗 > 0, ®𝑃 ⊆ D.

• Vector ®𝑋 : It creates the vector ®𝑋 (line 4) in which each el-

ement is an unknown variable representing the frequency

corresponding to the toll station 𝑠 𝑗 . The index 𝑗 in 𝑥 𝑗 ∈ ®𝑋
indicates the toll station’s identity.

®𝑋 =
[
𝑥1 𝑥2 . . . 𝑥𝑙

]
, ®𝑋 ⊆ N0, 0 ≤ 𝑥 𝑗 ≤ 𝑢.

Each 𝑥 𝑗 is limited by the same upper bound, i.e.,𝑢. We set the

value of the upper bound to

⌈
𝑤/𝑚𝑖𝑛(®𝑃)

⌉
(line 5) since the

unknown variable 𝑥 𝑗 cannot exceed this value. The solver

uses the upper bound value to solve the equation.

• The linear Equation 𝐸: It creates Equation 𝐸 via the func-

tion 𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑞 (line 6). The function takes as its input the

parameters ®𝑃, ®𝑋,𝑤 , and computes Equation 3 as𝑤 = ®𝑃 × ®𝑋 .

Algorithm 1 The TSD attack

Input: 𝑀 = {𝐼𝐷, 𝑃,𝐺,𝑊 }
Output: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
1: function TSD_attack(𝐼𝐷, 𝑃,𝐺,𝑊)

2: 𝑙 ← |𝑆 |
3:

®𝑃 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 (𝑙, 𝑃)
4:

®𝑋 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 (𝑙)
5: 𝑢 ←

⌈
𝑤/𝑚𝑖𝑛(®𝑃)

⌉
6: 𝐸← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑞(®𝑃, ®𝑋,𝑤)
7: 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 ← 𝑖𝑙𝑝_𝑠𝑜𝑙𝑣𝑒𝑟 (𝐸,𝑢)
8: for 𝑠𝑜𝑙 ∈ 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 do
9: 𝐹 ← 𝑔𝑒𝑡_𝑓 𝑟𝑒𝑞(𝑠𝑜𝑙)
10: 𝑣𝑖𝑠𝑖𝑡_𝑡𝑜𝑙𝑙𝑠 ← 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑠𝑜𝑙, 𝑆, 𝐹)
11: if 𝑐ℎ𝑒𝑐𝑘_𝑔𝑟𝑎𝑝ℎ_𝑎𝑙𝑔𝑜 (𝑣𝑖𝑠𝑖𝑡_𝑡𝑜𝑙𝑙𝑠,𝐺, 𝑆𝑖𝑛𝑡 , 𝑆𝑚𝑎𝑖𝑛) then
12: 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑐𝑒 (𝐹, 𝑆)
13: end if
14: end for
15: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠)
16: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒) ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑡𝑟𝑎𝑐𝑒 (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
17: return (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
18: end function

Step 2. In this step, A creates the set of plausible traces. To this

end, the attack uses the function 𝑖𝑙𝑝_𝑠𝑜𝑙𝑣𝑒𝑟 that takes 𝐸 and 𝑢 as its

input (line 7) and solves the equation. For solving, the function uses

DOcplex, i.e., IBM Decision Optimization CPLEX Modeling [12],

then stores all solutions in the set 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 (line 7).

Having obtained the solutions, for each 𝑠𝑜𝑙 ∈ 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 (line

8), it calls the functions 𝑔𝑒𝑡_𝑓 𝑟𝑒𝑞, taking 𝑠𝑜𝑙 as its input (line 9)

and outputs 𝐹 . The function 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 takes 𝑠𝑜𝑙 , 𝑆 , and 𝐹 as its

input and outputs 𝑣𝑖𝑠𝑖𝑡_𝑡𝑜𝑙𝑙𝑠 , which is the set of visited toll sta-

tions. The set 𝑣𝑖𝑠𝑖𝑡_𝑡𝑜𝑙𝑙𝑠 includes 𝑠 𝑗 ∈ 𝑆 , where its corresponding
𝑓𝑗 ≠ 0. Then, it uses the algorithm 𝑐ℎ𝑒𝑐𝑘_𝑔𝑟𝑎𝑝ℎ_𝑎𝑙𝑔𝑜 to check

the connectivity between the visited toll stations (line 11). The

algorithm 𝑐ℎ𝑒𝑐𝑘_𝑔𝑟𝑎𝑝ℎ_𝑎𝑙𝑔𝑜 and its pseudo-code are discussed in

detail in Appendix C. This algorithm takes 𝑣𝑖𝑠𝑖𝑡_𝑡𝑜𝑙𝑙𝑠 , 𝐺 , the set

of intermediate toll stations 𝑆𝑖𝑛𝑡 , and main toll stations 𝑆𝑚𝑎𝑖𝑛 as

its inputs; if it returns 𝐹𝑎𝑙𝑠𝑒 , it will fetch another 𝑠𝑜𝑙 from the

set 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 (line 8); otherwise, if 𝑐ℎ𝑒𝑐𝑘_𝑔𝑟𝑎𝑝ℎ_𝑎𝑙𝑔𝑜 returns 𝑇𝑟𝑢𝑒 ,

it will create the trace using the function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑐𝑒 (line 12),

taking 𝐹 and 𝑆 as the input, and stores it in the set of plausi-

ble traces, i.e., 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 = {𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2, . . . , 𝑡𝑟𝑎𝑐𝑒𝑑 }. Each
𝑡𝑟𝑎𝑐𝑒𝑖 ∈ 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 is a plausible trace corresponding to a solu-
tion of Equation 3. It should be mentioned that a set of plausible

traces is empty if Equation 3 has no solution. The correct trace is

in the set of plausible traces.

Step 3. In this step, A guesses uniformly the correct trace out

of the set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 using the function 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (line

15). The function takes 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 as its input and outputs the

correct trace, namely 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 . Finally, in order to define to

whom the correct trace corresponds, A assigns it to the driver 𝑖

with the function 𝑎𝑠𝑠𝑖𝑔𝑛_𝑡𝑟𝑎𝑐𝑒 , taking 𝑖 , and 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 as the

input and outputting the tuple (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒) (line 16). Note that
the adversary knows the identity of a driver to whom the wallet𝑤

belongs (see the wallet’s definition in Section 2). Finally, the attack

returns the tuple as its output (line 17).

Note that, for simplicity, in Section 2, we assumed that each

driver’s identity is associated with only one vehicle. We explain that

this assumption does not affect the TSD attack’s success rate. Based

on this assumption, in a billing period, only one wallet balance will

be assigned to each driver’s identity. We remind that based on the

definition of wallet balance in Section 2, the TSP knows all tuples

(𝑖,𝑤), where 𝑖 represents a driver’s identity and w represents the

corresponding wallet balance that the driver owes to the TSP. The

assumption that a driver could use multiple vehicles implies that

more than one tuple could be associated with a driver with identity

𝑖 . This assumption does not impact the attack’s effectiveness. In fact,

to find the correct trace of a driver with identity 𝑖 , the adversary

executes the attack for all of the tuples corresponding to the driver.

C THE CHECK_GRAPH_ALGO ALGORITHM
The algorithm checks the connectivity among the visited toll sta-

tions (associated with a plausible trace). The pseudo-code is shown

in Algorithm 2.

Before explaining the algorithm, we define two types of toll sta-

tions in ETC systems. (1) main toll station: This type of toll station

is the main entrance for drivers who want to reach the correspond-

ing intermediate toll stations. (2) intermediate toll station: This

type of station is only reachable from its corresponding main toll

station/s. We denote the sets of main and intermediate toll stations

of graph𝐺 by 𝑆𝑚𝑎𝑖𝑛 and 𝑆𝑖𝑛𝑡 , respectively (this information is pub-

licly available). In the following, we explain the algorithm, taking

𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺, 𝑆𝑖𝑛𝑡 , and 𝑆𝑚𝑎𝑖𝑛 as its input and outputs 𝑇𝑟𝑢𝑒 or

𝐹𝑎𝑙𝑠𝑒 , denoting if toll stations are connected or not, respectively.

246

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

The function 𝑖𝑛𝑑𝑢𝑐𝑒𝑑_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ takes 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 (the set of

visited toll stations) and 𝐺 as the inputs and creates the induced

subgraph 𝐺 ′ where it removes all vertices that do not belong to

the set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 from graph𝐺 . The induced subgraph includes

every edge in the original graph 𝐺 that only uses vertices from

𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 . The algorithm creates the set 𝑆 ′
𝑖𝑛𝑡

, including the in-

termediate toll stations in the set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 . To this end, it uses

the function 𝑔𝑒𝑡_𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑙𝑙𝑠 , which computes the intersection of

the sets 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 and 𝑆𝑖𝑛𝑡 and outputs the set 𝑆 ′
𝑖𝑛𝑡

(line 3).

For each intermediate toll station in 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 , its correspond-

ing main toll station/s must exist in the set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠; other-

wise, the intermediate toll station is unreachable. Hence, for each

𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑙𝑙 ∈ 𝑆 ′
𝑖𝑛𝑡

(line 4), it creates the set of corresponding main

toll stations, i.e., 𝑆 ′
𝑚𝑎𝑖𝑛

. To this end, it uses the 𝑔𝑒𝑡_𝑚𝑎𝑖𝑛_𝑡𝑜𝑙𝑙 func-

tion, which takes 𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑙𝑙 and 𝑆𝑚𝑎𝑖𝑛 as the inputs and outputs

the set 𝑆 ′
𝑚𝑎𝑖𝑛

(line 5). Then, it checks if the set 𝑆 ′
𝑚𝑎𝑖𝑛

is the subset

of the set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 ; if not, the set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 is not valid, and

the algorithm returns 𝐹𝑎𝑙𝑠𝑒 . Otherwise, if for each intermediate

toll station its corresponding main toll stations exist, it checks the

connectivity of graph 𝐺 ′ using the function 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (line

10). The function checks if the directed graph 𝐺 ′ is weakly con-

nected, meaning that the underlying undirected graph is connected.

We say an undirected graph is connected if it has a path connect-

ing any two vertices [9]. The function 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 operates

based on the Depth First Search (𝐷𝐹𝑆) algorithm. If the graph is

connected, it returns 𝑇𝑟𝑢𝑒; otherwise, the graph is unconnected,

and the algorithm returns 𝐹𝑎𝑙𝑠𝑒 .

Computational complexity of the algorithm. The compu-

tational complexity of the algorithm primarily depends on the

function 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 , which takes 𝐺 ′ as its input and uti-

lizes the 𝐷𝐹𝑆 algorithm. The complexity of the 𝐷𝐹𝑆 algorithm

is O(|𝑉 ′ | + |𝐸 ′ |), where |𝑉 ′ | and |𝐸 ′ | represent the number of toll

stations and the corresponding edges associated with a trace.

Algorithm 2 The graph’s connectivity algorithm

Input: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺, 𝑆𝑖𝑛𝑡 , 𝑆𝑚𝑎𝑖𝑛

Output: 𝐹𝑎𝑙𝑠𝑒 or 𝑇𝑟𝑢𝑒
1: function check_graph_algo(𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺, 𝑆𝑖𝑛𝑡 , 𝑆𝑚𝑎𝑖𝑛)

2: 𝐺 ′← 𝑖𝑛𝑑𝑢𝑐𝑒𝑑_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺)
3: 𝑆 ′

𝑖𝑛𝑡
← 𝑔𝑒𝑡_𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑙𝑙𝑠 (𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠, 𝑆𝑖𝑛𝑡)

4: for 𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑙𝑙 ∈ 𝑆 ′
𝑖𝑛𝑡

do
5: 𝑆 ′

𝑚𝑎𝑖𝑛
← 𝑔𝑒𝑡_𝑚𝑎𝑖𝑛_𝑡𝑜𝑙𝑙 (𝑖𝑛𝑡𝑒𝑟_𝑡𝑜𝑙𝑙, 𝑆𝑚𝑎𝑖𝑛)

6: if 𝑆 ′
𝑚𝑎𝑖𝑛

⊄ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 then
7: return 𝐹𝑎𝑙𝑠𝑒
8: end if
9: end for
10: if 𝑐ℎ𝑒𝑐𝑘_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 (𝐺 ′) then
11: return 𝑇𝑟𝑢𝑒
12: else
13: return 𝐹𝑎𝑙𝑠𝑒
14: end if
15: end function

D COMPUTATION OF THE SUCCESS RATE
This algorithm computes the success rate of the TSD attack, and

its pseudo-code is shown in Algorithm 3. It takes as inputs the

driver’s identity, namely 𝑖 , and 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 obtained from the

attack. It creates the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 (see Section 2) of driver 𝑖 via

the function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 (line 2). Then, it checks if the

condition 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 ∈ 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 holds (line 3), meaning that

the correct trace exists in the set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 (a set of plausible

traces). If not, it sets the 𝑆𝑅 to null (line 6); otherwise, the success

rate is computed via the function 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 (line 4). It should be

noted that the success rate is formally computed in Section 4.1.

Algorithm 3 The compute success rate algorithm

Input: 𝑖, 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠
Output: 𝑆𝑅
1: function compute_success_rate_algo(i, plaus_traces)

2: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 (𝑖)
3: if 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 ∈ 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 then
4: 𝑆𝑅← 𝑠𝑢𝑐𝑐𝑒𝑠𝑠_𝑟𝑎𝑡𝑒 (𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠)
5: else
6: 𝑆𝑅 ← 𝑛𝑢𝑙𝑙

7: end if
8: return 𝑆𝑅
9: end function

E DISTRIBUTION OF SUCCESS RATES
As a concrete example, we illustrate the distribution of 𝑆𝑅s in the

first box plot concerning the wallet range [$0, $10]. We compute all

plausible wallet balances that fall into the range [$0, $10] (see Step
1 in Section 5.2.1), shown in the second row of Table 5. The row

includes 93 different tuples (𝑗, 𝑝𝑙𝑎𝑢𝑠𝑖𝑏𝑙𝑒 𝑤𝑎𝑙𝑙𝑒𝑡), demonstrating

the 𝑗th plausible wallet balance. The third row includes 93 tuples

(𝑗, 𝑆𝑅), demonstrating the 𝑆𝑅 (in percentage) corresponding to the

𝑗th plausible wallet balance (in the second row). The 𝐴𝑆𝑅 equals

the average of all 𝑆𝑅s in the second row, i.e., 94% (see Step 2 in

Section 5.2.1). The results are shown in Table 5.

F HEURISTIC ALGORITHMS
The details and pseudo-code of the heuristics are discussed in the

following.

F.1 The first heuristic
We present a heuristic algorithm that the TSD attack (see Algo-

rithm 1) can apply. The heuristic contributes to a higher success

rate for certain settings. The heuristic takes the set of plausible

traces 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 (obtained by Algorithm 1) and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as

inputs and outputs the updated set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 . The pseudo-code

of the first heuristic algorithm is shown in Algorithm 4. To apply

the heuristic, the TSD attack should call the heuristic algorithm

between lines 14 and 15 shown in Algorithm 1.

247

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

Parameter settings 𝑀 = {𝐼𝐷, 𝑃,𝐺, 0 < 𝑤 ≤ 10}, |𝑆 | = 9, 𝑢 = 6, \ = a month

Plausible wallets (1, 1.72), (2, 2.68), (3, 2.84), (4, 3.19), (5, 3.44), (6, 4.09), (7, 4.4), (8, 4.55), (9, 4.56), (10, 4.91), (11, 5.11), (12, 5.16),

(13, 5.36), (14, 5.46), (15, 5.52), (16, 5.68), (17, 5.81), (18, 5.87), (19, 6.03), (20, 6.12), (21, 6.27), (22, 6.28), (23, 6.38),

(24, 6.63), (25, 6.77), (26, 6.83), (27, 6.88), (28, 6.93), (29, 7.08), (30, 7.18), (31, 7.23), (32, 7.24), (33, 7.28), (34, 7.39),

(35, 7.4), (36, 7.53), (37, 7.59), (38, 7.74), (39, 7.75), (40, 7.79), (41, 7.84), (42, 7.95), (43, 7.99), (44, 8.0), (45, 8.04), (46,

8.1), (47, 8.14), (48, 8.18), (49, 8.2), (50, 8.3), (51, 8.35), (52, 8.36), (53, 8.49), (54, 8.52), (55, 8.55), (56, 8.6), (57, 8.64),

(58, 8.65), (59, 8.71), (60, 8.8), (61, 8.87), (62, 8.9), (63, 8.95), (64, 8.96), (65, 9.0), (66, 9.06), (67, 9.1), (68, 9.11), (69,

9.12), (70, 9.2), (71, 9.22), (72, 9.25), (73, 9.31), (74, 9.45), (75, 9.46), (76, 9.47), (77, 9.51), (78, 9.55), (79, 9.56), (80,

9.57), (81, 9.61), (82, 9.66), (83, 9.67), (84, 9.71), (85, 9.72), (86, 9.76), (87, 9.77), (88, 9.82), (89, 9.86), (90, 9.9), (91,

9.91), (92, 9.92), (93, 9.96)

Success rates (SR) (1, 100.0), (2, 100.0), (3, 100.0), (4, 100.0), (5, 100.0), (6, 100.0), (7, 100.0), (8, 100.0), (9, 100.0), (10, 100.0), (11, 50.0),

(12, 100.0), (13, 100.0), (14, 100.0), (15, 100.0), (16, 100.0), (17, 100.0), (18, 100.0), (19, 100.0), (20, 100.0), (21, 100.0),

(22, 100.0), (23, 100.0), (24, 100.0), (25, 100.0), (26, 50.0), (27, 100.0), (28, 100.0), (29, 100.0), (30, 100.0), (31, 100.0),

(32, 100.0), (33, 100.0), (34, 100.0), (35, 100.0), (36, 100.0), (37, 100.0), (38, 100.0), (39, 100.0), (40, 50.0), (41, 100.0),

(42, 50.0), (43, 100.0), (44, 100.0), (45, 100.0), (46, 100.0), (47, 100.0), (48, 100.0), (49, 100.0), (50, 33.33), (51, 100.0),

(52, 100.0), (53, 100.0), (54, 100.0), (55, 33.33), (56, 100.0), (57, 100.0), (58, 50.0), (59, 100.0), (60, 100.0), (61, 100.0),

(62, 100.0), (63, 100.0), (64, 100.0), (65, 100.0), (66, 100.0), (67, 100.0), (68, 100.0), (69, 100.0), (70, 50.0), (71, 100.0),

(72, 100.0), (73, 100.0), (74, 100.0), (75, 100.0), (76, 100.0), (77, 50.0), (78, 100.0), (79, 100.0), (80, 100.0), (81, 100.0),

(82, 50.0), (83, 50.0), (84, 100.0), (85, 100.0), (86, 100.0), (87, 100.0), (88, 100.0), (89, 100.0), (90, 100.0), (91, 100.0),

(92, 100.0), (93, 100.0)

Table 5: Plausible wallet balances and corresponding 𝑆𝑅s for the range [$0, $10].

Algorithm 4 The first heuristic algorithm

Input: 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Output: 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠
1: function first_heuristic_algo(𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

2: for 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 do
3: if |𝑡𝑟𝑎𝑐𝑒 | > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
4: 𝑟𝑒𝑚𝑜𝑣𝑒 (𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠, 𝑡𝑟𝑎𝑐𝑒)
5: end if
6: end for
7: return 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠
8: end function

The 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is the maximum number of toll points a driver

has visited during a billing period. From the set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 , the

heuristic algorithm keeps plausible traces with a length equal to and

less than the threshold and discards plausible traces with a length

greater than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Note that the length of a plausible trace,

i.e., |𝑡𝑟𝑎𝑐𝑒 | = |{(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)}|, equals the number of

visited toll stations in the set 𝑡𝑟𝑎𝑐𝑒 . Hence, for each plausible trace

𝑡𝑟𝑎𝑐𝑒 in the set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 , the heuristic checks the condition

|𝑡𝑟𝑎𝑐𝑒 | > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . If it holds, the algorithm removes the plausible

trace from the set by the function 𝑟𝑒𝑚𝑜𝑣𝑒 . Finally, it outputs the

updated set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 .

Then, the adversary uniformly guesses the correct trace from the

updated set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 . Note that this heuristic helps to increase

the attack’s success rate 𝑆𝑅 = (1 / |𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 |) since the length
of the updated set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 becomes smaller after removing

implausible traces, i.e., the traces with a length greater than the

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

The heuristic evaluation. To evaluate the heuristic, we employ

the parameter settings discussed in Section 5.1 for Brisbane’s ETC

system. However, some settings differ from those discussed in Sec-

tion 5.1. For each range [𝑤𝑙 ,𝑤𝑢], we only consider those plausible

wallet balances where the corresponding updated 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 (i.e.,

the output) in the heuristic algorithm does not become empty for

thresholds ranging from 3 to 8. This is because the success rate is

not defined for the empty set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 with a length of zero.

Note that the set 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 will become empty if, for every 𝑡𝑟𝑎𝑐𝑒

in the set, the condition |𝑡𝑟𝑎𝑐𝑒 | > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 holds (see Algorithm 4).

Moreover, we do not perform our analysis for the thresholds 1 and

2 since a large number of the updated 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 corresponding

to plausible wallet balances become empty, which leaves only a few

plausible wallet balances for our analysis. This makes the computa-

tion of the metrics 𝐴𝑃𝐷 and 𝐴𝑆𝑅 inaccurate. We highlight that the

threshold values are the potential ones that can be deduced from

the statistical data by an adversary in the case study of Brisbane.

The details of the parameter settings are presented in Table 6.

Impact of the heuristic on 𝐴𝑃𝐷 . We evaluate to what extent

the heuristic helps to reduce, on average, the number of plausible

traces associated with all plausible wallet balances within the wallet

range [𝑤𝑙 ,𝑤𝑢]. To this end, we use APD, which is the average

percentage decrease in the number of plausible traces for each

wallet range [𝑤𝑙 ,𝑤𝑢]. The metric “percentage decrease” shows to

what extent the number of plausible traces in a set of plausible traces

has reduced after applying the heuristic. The 𝐴𝑃𝐷 denotes the

average of all percentage decreases corresponding to all plausible

wallet balances within the wallet range [𝑤𝑙 ,𝑤𝑢].
For the analysis, we consider four different wallet balance ranges,

namely 0 < 𝑤 ≤ 10, 10 < 𝑤 ≤ 20, 20 < 𝑤 ≤ 40, and 40 < 𝑤 ≤ 60.

Then, we apply the heuristic to all sets of plausible traces associated

with all plausible wallet balances within each range [𝑤𝑙 ,𝑤𝑢]. For
each wallet range [𝑤𝑙 ,𝑤𝑢], we vary the potential threshold from

248

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

Parameter settings Num of plausible wallets Drivers’ proportion

𝑀 = {𝐼𝐷, 𝑃,𝐺, 0 < 𝑤 ≤ 10}, |𝑆 | = 9, \ = a month, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [3, 8] 93 61.38%

𝑀 = {𝐼𝐷, 𝑃,𝐺, 10 < 𝑤 ≤ 20}, |𝑆 | = 9, \ = a month, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [3, 8] 652 14.31%

𝑀 = {𝐼𝐷, 𝑃,𝐺, 20 < 𝑤 ≤ 40}, |𝑆 | = 9, \ = a month, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [3, 8] 1975 11.12%

𝑀 = {𝐼𝐷, 𝑃,𝐺, 40 < 𝑤 ≤ 60}, |𝑆 | = 9, \ = a month, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [3, 8] 2001 4.57%

Table 6: . Each row shows the parameter settings for the case study of Brisbane’s ETC system to analyze
the impact of the first heuristic. The rows show the number of plausible wallets and drivers’ proportion
corresponding to the wallet range [𝑤𝑙 ,𝑤𝑢].

3 to 8 and analyze how it impacts 𝐴𝑃𝐷 . The results are shown in

Table 2. Regarding the wallet range 0 < 𝑤 ≤ 10, the values for

𝐴𝑃𝐷 are the same, i.e., 0% for all thresholds. The reason is that

the size of the corresponding plausible traces is equal and below 3

for all the thresholds, which does not contribute to reducing the

number of plausible traces. Nevertheless, the success rate is already

considerably high (94%) prior to applying the heuristic. For the

wallet range 10 < 𝑤 ≤ 20, the 𝐴𝑃𝐷 is increasing from 0% to 24.1%

(from threshold 8 to 3). For the wallet range 20 < 𝑤 ≤ 40, the 𝐴𝑃𝐷

increases from 0% to 81.33% (from threshold 8 to 3). For the wallet

range 40 < 𝑤 ≤ 60, the 𝐴𝑃𝐷 is increasing from 0.27% to 97.21%

(from threshold 8 to 3). Overall,𝐴𝑃𝐷 demonstrates an upward trend

by decreasing the threshold value.

Given a fixed threshold 𝑗 , where 3 ≤ 𝑗 ≤ 8, the 𝐴𝑃𝐷 values

show a significant increase across all wallet ranges. For instance,

when the threshold is set to 3, the𝐴𝑃𝐷 values are 0%, 24.1%, 81.33%,

and 97.21% (see the second column). This increasing trend can be

attributed to the fact that larger wallet balances encompass a greater

number of plausible traces, many of which are ultimately discarded

by the heuristic.

Impact of the heuristic on 𝐴𝑆𝑅. We analyze how the heuristic,

with threshold 𝑗 , impacts 𝐴𝑆𝑅 for each wallet range [𝑤𝑙 ,𝑤𝑢]. We

remind that𝐴𝑆𝑅 is the average of all success rates corresponding to

all plausible wallet balances within the range [𝑤𝑙 ,𝑤𝑢]. The results
are shown in Table 2. For each wallet range [𝑤𝑙 ,𝑤𝑢], we vary the

threshold from 3 to 8 and analyze how it impacts 𝐴𝑆𝑅 by discard-

ing implausible traces. Furthermore, we calculate the “percentage

increase” to quantify the extent to which the ASR, associated with

threshold 3, has increased compared to the ASR without applying

any heuristic. For the wallet range 0 < 𝑤 ≤ 10, the 𝐴𝑆𝑅 has the

same value of 94%, associatedwith all thresholds. This is because the

size of the corresponding plausible traces is equal and below 3 for all

the thresholds, which does not contribute to reducing the number

of plausible traces. For the wallet range 10 < 𝑤 ≤ 20 (for thresholds

from 8 to 3), the 𝐴𝑆𝑅 is increasing from 51.16% to 65.84%, resulting

in a percentage increase of
65.84−51.16

51.16 ≈ 29%. For the wallet range

20 < 𝑤 ≤ 40, the 𝐴𝑆𝑅 increases from 4.69% reaching to 22.05%.

This results in a percentage increase of
22.05−4.69

4.69 ≈ 370%. For the

wallet range 40 < 𝑤 ≤ 60, the𝐴𝑆𝑅 increases from 0.15% reaching to

5.2%, leading to the percentage increase of 5.2−0.15
0.15 ≈ 3367%, which

is significantly high. Overall, 𝐴𝑆𝑅 shows an upward trend by de-

creasing the threshold. Besides, the values of percentage increases

demonstrate that as the wallet ranges get larger, their correspond-

ing “percentage increase” significantly increases. This is because

the plausible wallet balances within a larger wallet range lead to a

larger number of plausible traces, many of which are discarded by

the heuristic, leading to a relatively large 𝐴𝑆𝑅.

F.2 The second heuristic
The heuristic algorithm takes a set of plausible traces and a distri-

bution function as inputs. The algorithm outputs a set of plausible

traces, including the traces and their corresponding probabilities.

The pseudo-code of the heuristic is shown in Algorithm 5. To apply

the heuristic, the TSD attack should call the heuristic algorithm

between lines 14 and 15 shown in Algorithm 1. The algorithm per-

forms as follows. For each trace in the set of plausible traces, it

computes the probability 𝑝 using the distribution function 𝑃 (𝑥).
The distribution function describes the probability that a given trace

is the correct one. The function takes the number of visited toll sta-

tions in a trace, i.e., |𝑡𝑟𝑎𝑐𝑒 | and outputs the corresponding 𝑝 . Using

the function 𝑎𝑠𝑠𝑖𝑔𝑛_𝑝𝑟𝑜𝑏, the algorithm assigns the probability 𝑝

to the 𝑡𝑟𝑎𝑐𝑒 , creating the tuple (𝑡𝑟𝑎𝑐𝑒, 𝑝). Then, it stores the tuple
in the set 𝐸. The adversary may use different strategies to select

the correct trace in the set 𝐸. For example, it can select the trace

with the highest probability (i.e., non-uniformly). If two or more

traces are assigned the same highest probability, the adversary can

uniformly select one of them.

Algorithm 5 The second heuristic algorithm

Input: 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠, 𝑃 (𝑥)
Output: 𝐸
1: function second_heuristic_algo(𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠, 𝑃 (𝑥))
2: for 𝑡𝑟𝑎𝑐𝑒 ∈ 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 do
3: 𝑝 ← 𝑃 (|𝑡𝑟𝑎𝑐𝑒 |)
4: (𝑡𝑟𝑎𝑐𝑒, 𝑝) ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑝𝑟𝑜𝑏 (𝑡𝑟𝑎𝑐𝑒, 𝑝)
5: 𝐸← (𝑡𝑟𝑎𝑐𝑒, 𝑝)
6: end for
7: return 𝐸
8: end function

F.3 The third heuristic
The third heuristic algorithm takes as inputs 𝐼𝐷, 𝑃,𝐺 , and the list

of yearly wallet balances (𝑦𝑒𝑎𝑟𝑙𝑦_𝑤𝑎𝑙𝑙𝑒𝑡𝑠) associated with a driver.

Then, it outputs a set of tuples, including a cluster and its corre-

sponding probability. Each of the clusters includes the potential

traces a driver might have made within a year. The pseudo-code of

the heuristic is shown in Algorithm 6.

249

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

Algorithm 6 The third heuristic algorithm

Input: {𝐼𝐷, 𝑃,𝐺,𝑦𝑒𝑎𝑟𝑙𝑦_𝑤𝑎𝑙𝑙𝑒𝑡𝑠}
Output: 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑏
1: function third_heuristic_algo({𝐼𝐷, 𝑃,𝐺,𝑦𝑒𝑎𝑟𝑙𝑦_𝑤𝑎𝑙𝑙𝑒𝑡𝑠})
2: for𝑤 ∈ 𝑙𝑖𝑠𝑡_𝑦𝑒𝑎𝑟𝑙𝑦_𝑤𝑎𝑙𝑙𝑒𝑡𝑠 do
3: 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠 ← 𝑇𝑆𝐷_𝑎𝑡𝑡𝑎𝑐𝑘 (𝐼𝐷, 𝑃,𝐺,𝑤)
4: 𝑁 ← 𝑝𝑙𝑎𝑢𝑠_𝑡𝑟𝑎𝑐𝑒𝑠

5: end for
6: 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 (𝑁)
7: for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
8: 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑑𝑖𝑠𝑡 ← 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
9: 𝑠𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ← 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑑𝑖𝑠𝑡

10: end for
11: 𝑙𝑖𝑠𝑡_𝑝𝑟𝑜𝑏𝑠 ← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑠𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠)
12: for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
13: (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑝) ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑝𝑟𝑜𝑏 (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑙𝑖𝑠𝑡_𝑝𝑟𝑜𝑏𝑠)
14: 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑏 ← (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑝)
15: end for
16: return 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑏
17: end function

The algorithm performs as follows. For each wallet 𝑤 in the

list 𝑦𝑒𝑎𝑟𝑙𝑦_𝑤𝑎𝑙𝑙𝑒𝑡𝑠 , it computes the corresponding set of plausible

traces via the TSD attack (see Algorithm 1). Then, it stores the set of

plausible traces in the list𝑁 . Using the function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , the

algorithm creates all possible clusters, where each cluster includes a

different permutation of traces, each of which belongs to a different

set of plausible traces in the set 𝑁 . For creating the permutation of

traces, the algorithm uses the Cartesian product of the sets in𝑁 . The

made clusters will be stored in the set 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 . For each 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

in the set 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , the algorithm computes the similarity dis-

tance among the traces in the cluster using the 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

function. Then, the algorithm stores 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑑𝑖𝑠𝑡 to the set of

similarity distances, i.e., 𝑠𝑒𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 . The Euclidean distance be-

tween two plausible traces, 𝑡𝑟𝑎𝑐𝑒1 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠 𝑗 , 𝑓𝑗)}
and 𝑡𝑟𝑎𝑐𝑒2 = {(𝑠1, 𝑓 ′

1
), (𝑠2, 𝑓 ′

2
), . . . , (𝑠 𝑗 , 𝑓 ′𝑗)}, is calculated using the

below formula:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√︃
(𝑓1 − 𝑓 ′

1
)2 + (𝑓2 − 𝑓 ′

2
)2 + · · · + (𝑓𝑗 − 𝑓 ′𝑗)2 (9)

Note that each pair of frequencies inside the parentheses corre-

sponds to the same toll station 𝑠 𝑗 . The formula indicates that if the

frequencies within each pair of parentheses are close to each other,

the distance will be closer to zero.

The function 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 takes the set of similarity distances and

normalizes its elements to the corresponding probabilities stored

in the list 𝑙𝑖𝑠𝑡_𝑝𝑟𝑜𝑏𝑠 . Each value in the list is the probability that

the driver could have made the traces inside the 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 . Then, for

each cluster in the set 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , the algorithm via the function

𝑎𝑠𝑠𝑖𝑔𝑛_𝑝𝑟𝑜𝑏 assigns the cluster to its corresponding probability 𝑝

and outputs the tuple (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑝). Then, the algorithm stores the

tuple (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑝) to the set 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑏. Finally, the adversary
may use different strategies for selecting the correct cluster from

the set 𝑠𝑒𝑡_𝑐𝑙𝑢𝑠𝑡𝑒𝑟_𝑝𝑟𝑜𝑏. By the correct cluster, we mean a cluster

including the correct traces of a driver made within a one-year

billing period. One example of a strategy is that the adversary selects

a cluster with the highest assigned probability (i.e., non-uniformly).

If two or more of the clusters have equal highest probabilities, the

adversary will uniformly select one of the clusters. It should be

noted that the cluster with the highest probability may not always

be the correct one. This is because, inside the cluster, there could

be plausible traces where there is a coincidental similarity among

them. With this heuristic, the adversary achieves a stronger goal

than the TSD goal. By stronger, we mean that the adversary learns

all plausible traces associated with a driver within a year.

G IMPACT OF PARAMETERS ON PRIVACY
We analyze the impact of different settings for each parameter on a

driver’s privacy. To achieve this, we vary the settings of a specific

parameter, such as toll prices, while keeping the settings for the

remaining parameters fixed. We then observe how the success rate

changes with respect to the different settings. Table 7 displays the

settings for the parameters we are analyzing.

Parameter 𝑃 . To analyze the impact of toll prices on a driver’s

privacy, we consider ten different ranges of toll prices as [1, 𝑗], 1 ≤
𝑗 ≤ 10, where 𝑗 ranges from one to ten, creating a diversity of

range spans. We consider different wallet ranges, [𝑤𝑙 ,𝑤𝑢], shown
in Figure 2, and for each wallet range, we perform the following

experiment to compute the𝐴𝑆𝑅 explained in Section 5.2.1. For each

toll price range [1, 𝑗], we uniformly randomly select nine toll prices

from the range [1, 𝑗] (one price for each toll station in Brisbane) and
assign them to the corresponding toll stations. Then, we compute

the 𝐴𝑆𝑅. We repeat this experiment 50 times, each with different

selected toll prices from the range [1, 𝑗]. Repeating experiments

multiple times reduces the impact of random fluctuations, enabling

us to observe a range of results and determine the average outcome.

This provides more reliable and accurate 𝐴𝑆𝑅s. Then, we record

the resulting 𝐴𝑆𝑅s in a set that results in a box plot (in green) for

the toll price range [1, 𝑗]. The 𝐴𝑆𝑅s corresponding to the wallet

ranges [$1, $10], [$10, $20], and [$20, $40] are demonstrated in

Figures 6a, 6b, and 6c respectively. The second row in Table 7

shows all settings for the parameter 𝑃 .

Parameter 𝑤 . To analyze the impact of the wallet balance on

a driver’s privacy, we consider the three different wallet ranges

discussed in Figure 2. Then we compute the success rate (see Sec-

tion 4.1) for all plausible wallets within each wallet range [𝑤𝑙 ,𝑤𝑢].
The red points in Figure 6d show the success rate for all plausible

wallets in the range [$0, $10]. The success rate associated with most

wallets is 100%, and for some wallets are 50% and 33%. The blue

points correspond to all plausible wallets in the range [$10, $20].
The density of blue points demonstrates that for the significant

number of wallet balances, the success rates are 100%, 50%, and

33%, and for the rest, the success rate is between 6% and 33%. The

green points concern all plausible wallets in the range [$20, $40].
For the wallets between $20 and $25, the success rate is between

3% and 100%, and for the wallets between $25 and $40, the success

rate is between 0% and 20%. The values for the toll prices and the

length of the billing period are fixed. The parameter settings are

summarized in Table 7.

Parameter \ . To analyze the impact of the length of the billing

period (\), we consider different lengths, i.e., from one week to

eight weeks. In each billing period, drivers’ wallet range can be

250

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

Parameter P \ u |𝑆 | w

P [$1, $ 𝑗], 1 ≤ 𝑗 ≤ 10 a month [0, 10], [0, 20], [0, 40] 9 [$0, $10], [$10, $20], [$20, $40]
w 𝑃 a month 6, 12, 24 9 [$0, $10], [$10, $20], [$20, $40]
\ 𝑃 [1, 8] 6, 12, 18, 24, 30, 35, 41, 47 9 [$0, $10 ∗ 𝑗], 1 ≤ 𝑗 ≤ 8

|𝑆 | [$1.72, $5.46] a month [0, 6], [0, 12], [0, 24] [9, 20] [$0, $10], [$10, $20], [$20, $40]

Table 7: Parameter settings to evaluate the impact of each parameter on a driver’s privacy. Note that each row is concerned
with the parameter being analyzed.

estimated by the statistics [40]. It shows that 85% of drivers pay

wallet balances of less than $10 a week. This concludes that the

wallet range for each of the eight billing periods is:𝑤 ≤ $10 for one

week up to𝑤 ≤ $80 for eight weeks. Then, for each wallet range,

we compute the 𝐴𝑆𝑅 discussed in Section 5.2.1. The number of toll

stations and their corresponding toll prices are fixed. The impact

of the length is shown in Figure 6e. The graph shows a significant

decrease in the 𝐴𝑆𝑅, from approximately 93% to almost 10%. The

graph demonstrates that drivers’ privacy is at risk of violation, even

considering an eight-week billing period. The details of parameter

settings are in Table 7.

Parameter |𝑆 |. To investigate the impact of the number of toll

stations on a driver’s privacy, we increase the toll stations’ number

from nine (current Brisbane’s number of toll stations) to 20. We con-

sider all nine toll stations in Brisbane, then for each newly added toll

station, we assign a toll price to it within the range of [$1.72, $5.46],
where the lower and upper bounds are the minimum and maximum

of the set of toll prices in Brisbane, i.e., 𝑃 . The range ensures that

the selected toll price is close to Brisbane’s toll prices, creating more

realistic scenarios. We consider different wallet ranges, [𝑤𝑙 ,𝑤𝑢],
shown in Figure 2, and for each range, we compute the 𝐴𝑆𝑅 as

explained in Section 5.2.1. The graphs in Figure 6f show that overall

the 𝐴𝑆𝑅 decreases as the number of toll stations increases. The

red graph concerns the wallet range [$0, $10] and decreases from

about 93% to almost 60%. The blue graph concerns the wallet range

[$10, $20] and varies from 53% to 4%, and the green graph concerns

the range [$20, $40] and changes from 5% to zero. Drivers’ privacy

with wallets below $20 (red and blue graphs) is violated even con-

sidering the maximum number of toll stations (20). Drivers’ privacy

associated with the range [$20, $40] (green graph) is at risk when

the toll station’s number is between 9 and 11, although the success

rate is not very high. Overall, a driver’s privacy is more at risk

with a low density of toll stations. The details of the settings are in

Table 7.

H FIND_CYCLE_ALGO ALGORITHM
We present an algorithm that gets as inputs a set of toll stations, a

home location, a city’s graph, and a strategy and then outputs the

corresponding cycle passing through the toll points and the home

location. The pseudo-code is shown in Algorithm 7.

The algorithm first checks if the toll stations are connected us-

ing the algorithm 𝑐ℎ𝑒𝑐𝑘_𝑔𝑟𝑎𝑝ℎ_𝑎𝑙𝑔𝑜 (see Appendix C). If the toll

stations are not connected, it returns 𝐹𝑎𝑙𝑠𝑒 ; otherwise, it computes

the induced subgraph 𝐺 ′ using the function 𝑖𝑛𝑑𝑢𝑐𝑒𝑑_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ.

Algorithm 7 The find cycle algorithm

Input: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺, ℎ𝑖
Output: 𝑐𝑦𝑐𝑙𝑒
1: function find_cycle_algo(𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺, ℎ𝑖 , 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦)

2: 𝑓 𝑙𝑎𝑔← 𝑐ℎ𝑒𝑐𝑘_𝑔𝑟𝑎𝑝ℎ_𝑎𝑙𝑔𝑜 (𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺, 𝑆𝑖𝑛𝑡 , 𝑆𝑚𝑎𝑖𝑛)
3: if 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 then
4: return 𝐹𝑎𝑙𝑠𝑒
5: end if
6: 𝐺 ′← 𝑖𝑛𝑑𝑢𝑐𝑒𝑑_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠,𝐺)
7: 𝑐𝑦𝑐𝑙𝑒 ← 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒 (𝐺 ′, ℎ𝑖 , 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦)
8: if 𝑐𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙 then
9: return 𝑛𝑢𝑙𝑙
10: end if
11: return 𝑐𝑦𝑐𝑙𝑒
12: end function

Then, it uses the function 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒 taking 𝐺 ′, ℎ𝑖 , and the

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 as its inputs and finds the corresponding cycle starting

from and ending ℎ𝑖 , and passing through all the toll points at least

once in 𝐺 ′ if any. The function stores its output in the 𝑐𝑦𝑐𝑙𝑒 . If no

cycle is found, the algorithm will return 𝑛𝑢𝑙𝑙 . In the following, we

highlight some points concerning the cycles.

• A cycle includes one or more toll roads on which at least

one toll station is located. The cycle might also include one

or more roads on which no toll station is located.

• It is worth mentioning that the adversary does not know

a driver’s destination/s, where the driver stops for a while

to do an activity. The driver could exit somewhere on the

toll road to reach his destination to do an activity and then

reenter the road again to continue his cycle. For example,

the toll roads in Brisbane are mainly used for activities, such

as taking a holiday/getaway, going to the airport, and so-

cial activities [41]. Since the adversary has no information

about the driver’s destination/s, it cannot precisely follow

the driver. Nevertheless, it can approximately follow the cy-

cle, ignoring the paths to the destination/s. For example, after

passing one or more toll stations, a driver exits the toll road

to get to his workplace and then reenters the road to return

home. In this example, although the adversary cannot follow

the driver exactly to his workplace, it can approximately

follow the cycle made by the driver.

• It is worth mentioning that although the adversary does

not know a driver’s destination/s, it can guess it/them. For

example, considering that a driver visited a toll station close

to the airport, he might have exited the toll road to go to the

251

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

airport. Or, given that the driver visited a toll station close

to an industrial area, he might have exited the road to work

in a factory.

The computational complexity of Algorithm 7. The com-

plexity of the algorithm depends on the complexity of function

𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒 , which varies by the strategy the function uses. For ex-

ample, we compute the complexity considering that the strategy

is the shortest distance, i.e., selecting a route that minimizes the

overall distance traveled to reach a destination. In this case, the

function 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒 is a variant of the algorithm used for solving

the traveling salesman problem. This variant asks the following

question: “Given a set of cities and the roads connecting them, what

is the shortest cycle that visits each city at least once and returns

to the origin city?” [19]. The TSP is NP-hard for which exact and

approximate algorithms exist [29]. The complexity of an exact algo-

rithm using dynamic programming is O(2 |𝑉 ′ | · |𝑉 ′ |2), where |𝑉 ′ | is
the graph order, i.e., the number of vertices in graph 𝐺 ′. Although
the complexity is exponential in the length of |𝑉 ′ |, the exact al-
gorithms can efficiently compute the cycle in our application as

the graph order is very small. The graph order, in our case, equals

the number of visited toll stations by a driver in a city, which is

typically a small number. The example in Appendix K uses this

strategy, i.e., the shortest distance.

I SSP-CD ATTACK
We introduce the SSP-CD attack to achieve the CD goal (the pseudo-

code is shown in Algorithm 8). We employ a similar idea used to

accomplish the TSD goal where the idea was to solve the SSP to

obtain the set of plausible traces, where a plausible trace is defined

as 𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 𝑓1), (𝑠2, 𝑓2), . . . , (𝑠𝑙 , 𝑓𝑙)} (see Section 2).

Concerning the CD goal, similarly, A first needs to find the

set of plausible traces of a driver (with the wallet 𝑤) defined as

𝑡𝑟𝑎𝑐𝑒 = {(𝑐1, 𝑓1), (𝑐2, 𝑓2), . . . , (𝑐𝑦, 𝑓𝑦)}, where 𝑐𝑖 is the cycle and

𝑓𝑖 is its corresponding frequency. Then, A uniformly guesses the

correct trace from the set. Hence, to create a plausible trace, it needs

two items: (1) the set of cycles 𝐶 = {𝑐1, . . . , 𝑐𝑦} and (2) frequencies,

i.e., 𝐹 = {𝑓1, . . . , 𝑓𝑦}, for which it performs the following steps:

(1) To obtain the set of cycles 𝐶𝑦𝑐𝑙𝑒 considering graph 𝐺 , A
computes all different combinations of toll stations that could

potentially be constituents of a cycle. To this end, A stores

the graph’s nodes to the set 𝑆 using the function 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙 ,

taking 𝐺 as its input (line 2). Then, it uses the function

𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 , taking 𝑆 as the input, and creates

the set of all different combinations of toll stations that can

be made, which is stored in 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 (line 3). Each combi-

nation consists of 𝑘, 1 ≤ 𝑘 ≤ |𝑆 | toll points out of the total
different toll stations, i.e., |𝑆 |. For each 𝑐𝑜𝑚𝑏 ∈ 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏,
A finds its corresponding cycle, if any. To find the cycles,

it uses the algorithm 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 . The function takes

𝑐𝑜𝑚𝑏,𝐺,ℎ, and the strategy as inputs and outputs the cycle,

which is stored in the set of cycles 𝐶𝑦𝑐𝑙𝑒 (line 5).

Example. Given that an ETC system consists of three toll

points, i.e., 𝑠1, 𝑠2, and 𝑠3, function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠

results in seven combinations denoted as {𝑠1}, {𝑠2}, {𝑠3},
{𝑠1, 𝑠2}, {𝑠1, 𝑠3}, {𝑠2, 𝑠3}, {𝑠1, 𝑠2, 𝑠3}. The toll stations in each

combination, along with a driver’s home location ℎ, could

potentially lead to a cycle, if any. The combination {𝑠1, 𝑠2, 𝑠3}
along with ℎ could result in a cycle, for example, denoted as

ℎ𝑠3𝑠2𝑠1ℎ.

(2) To obtain 𝐹 , it needs to solve the SSP, for which it creates

the following linear diophantine equation. The adversary,

using the function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑞, creates a similar equation as

Equation 3, where the cycle price 𝜋 is used instead of the

toll price 𝜏 (line 11). The equation is as follows:

𝑤 = 𝜋1 · 𝑥1 + 𝜋2 · 𝑥2 + · · · + 𝜋𝑦 · 𝑥𝑦, 𝑥 𝑗 ∈ N0, 1 ≤ 𝑗 ≤ 𝑦 (10)

In Equation 10, the cycle price 𝜋 𝑗 is the summation of 𝑘

toll prices 𝜏𝑖 ∈ 𝑃 corresponding to 𝑘 toll stations along the

cycle 𝑐 𝑗 , which is computed as 𝜋 𝑗 =
∑𝑘
𝑖=1 𝜏𝑖 . The set of cycle

prices is denoted as Π = {𝜋1, 𝜋2, . . . , 𝜋𝑦}. The interpretation
of Equation 10 is that the summation of the prices of the

cycles made by a driver in a billing period results in𝑤 . Each

𝑥 𝑗 , in the equation, represents the frequency 𝑓𝑗 that the

driver made the cycle 𝑐 𝑗 . Then, A solves the equation via

the function 𝑖𝑙𝑝_𝑠𝑜𝑙𝑣𝑒𝑟 and stores the solutions in the set

𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 (line 12).

(3) For each solution 𝑠𝑜𝑙 in the set 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 , A creates the set of

frequencies 𝐹 (line 14). Having obtained the sets𝐶𝑦𝑐𝑙𝑒 (from

the previous steps) and 𝐹 , the adversary computes the plausi-

ble trace and stores it in the set 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 (line 15).

Note that one solution of Equation 3 leads to a plausible trace,

and since the equation may have more than one solution,

this leads to a set of plausible traces as 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 .

Finally, A guesses the correct trace uniformly from the set

𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 (line 17).

Algorithm 8 The SSP-CD attack

Input: 𝑀 = {𝐼𝐷, 𝑃,𝐺,𝑊 }, 𝐻
Output: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
1: function SSP_CD_attack(𝑀,𝐻)

2: 𝑆 ← 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝐺)
3: 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (𝑆)
4: for 𝑐𝑜𝑚𝑏 ∈ 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 do
5: 𝐶𝑦𝑐𝑙𝑒 ← 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 (𝑐𝑜𝑚𝑏,𝐺,ℎ𝑖 , 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦)
6: end for
7: 𝑦← |𝐶 |
8:

®Π← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 (𝑦,Π)
9:

®𝑋 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑣𝑒𝑐𝑡𝑜𝑟 (𝑦)
10: 𝑢 ←

⌈
𝑤/𝑚𝑖𝑛(®Π)

⌉
11: 𝐸← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑒𝑞(®Π, ®𝑋,𝑤)
12: 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 ← 𝑖𝑙𝑝_𝑠𝑜𝑙𝑣𝑒𝑟 (𝐸,𝑢)
13: for 𝑠𝑜𝑙 ∈ 𝑎𝑙𝑙_𝑠𝑜𝑙𝑠 do
14: 𝐹 ← 𝑔𝑒𝑡_𝑓 𝑟𝑒𝑞(𝑠𝑜𝑙)
15: 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑐𝑒 (𝐹,𝐶)
16: end for
17: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠)
18: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒) ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑡𝑟𝑎𝑐𝑒 (𝑖, 𝑡𝑟𝑎𝑐𝑒)
19: return (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
20: end function

252

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

The issue with this idea is that the total number of different

cycles (which equals the number of variables n Equation 10) in a

city’s graph grows exponentially in the size of |𝑆 |. This is because
the number of cycles is correlated with the number of combinations

of toll stations (see the first step) obtained by the following formula.

|𝑆 |∑︁
𝑘=1

(
|𝑆 |
𝑘

)
= 2
|𝑆 | − 1 (11)

The exponential number of variables in Equation 10 makes solv-

ing the equation computationally infeasible. While this idea may

be viable for a small number of toll stations in a sparse graph, it is

generally infeasible for a large number of toll stations and a dense

graph. Hence, in Section 6.1, we present a new idea that exploits

the TSD goal so as to achieve the CD goal without needing to create

and solve Equation 10.

I.0.1 The computational complexity of the attack: The com-

plexity mainly depends on two factors: the complexity of the algo-

rithm 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 to obtain the cycles and the complexity of

solving Equation 10. We consider𝐺 as a complete undirected graph

and compute all Hamiltonian cycles in the graph, resulting in the

worst-case number of cycles. To obtain the total number of cycles,

for each combination 𝑐𝑜𝑚𝑏 ∈ 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 (including 𝑘 toll points), we

compute the number of Hamiltonian cycles, which is
(𝑘−1)!

2
[18].

Based on Formula 11, the total number of combinations is computed

as

(|𝑆 |
𝑘

)
. Therefore, the total number of cycles in 𝐺 is equal to the

number of combinations multiplied by the associated number of

cycles, which is
(𝑘−1)!

2
, as given by the following formula.

|𝑆 |∑︁
𝑘=3

(
|𝑆 |
𝑘

)
× (𝑘 − 1)!

2

(12)

Formula 12 shows the total number of Hamiltonian cycles in 𝐺 ,

which is at least exponential. For example, given 𝐺 including 10

toll stations, the total number of Hamiltonian cycles equals 556014,

which is the number of variables in Equation 10. This number of

variables makes solving the equation computationally infeasible.

In Section 6.1, we present a new idea to handle the infeasibility

problem of solving Equation 10 due to many variables.

J THE CD ATTACK
We discuss in detail the CD attack presented to achieve the CD goal.

The attack takes as inputs the sets 𝑀 , 𝐻 , and outputs the correct

trace guessed uniformly by A. The pseudo-code is shown in Algo-

rithm 9. The full example of the attack is illustrated in Appendix K.

The main idea of the attack is that A exploits a driver’s correct

trace, obtained by the TSD attack, to create the corresponding plau-

sible traces, including cycles and their associated frequencies. In

six stages, we explain the CD attack.

(1) Create the multiset. The CD attack executes the TSD attack

to obtain the correct trace of driver 𝑖 denoted as 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 =

{(𝑠1, 𝑓1), . . . , (𝑠𝑙 , 𝑓𝑙)}, including the visited toll stations and their

associated frequencies. Given the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 , A creates a mul-

tiset, namely𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 out of the correct trace including all

the visited toll stations. Each toll station 𝑠𝑖 included in the cor-

rect trace is repeated 𝑓𝑖 times in the multiset. For example, if we

consider 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 = {(𝑠1, 2), (𝑠2, 3)}, it results in the mul-

tiset 𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 = {𝑠1, 𝑠1, 𝑠2, 𝑠2, 𝑠2}. A utilizes the function

𝑐𝑟𝑒𝑎𝑡𝑒_𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 (line 3) to generate the multiset.

(2) Create partitions. A obtains all the partitions by partition-

ing the multiset into parts/segments, each with different visited

toll stations. Each partition denoted as the multiset 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 =

{𝑠𝑒𝑔𝑚𝑒𝑛𝑡1, . . . , 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑦}. Each segment 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑗 in the 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

is a set representing different visited toll stations that, along with

ℎ𝑖 , could potentially be constituents of a cycle made by the driver

in a billing period. Two condition holds concerning a segment: (1)

all the toll stations in a segment are distinct, and (2) the order of

the toll stations in a segment does not matter. Note that the multi-

set𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 can be partitioned in different ways, resulting

in different partitions. To create the partitions, it uses the func-

tion 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 taking the multiset𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 as the

input and outputs the set of partitions denoted as 𝑎𝑙𝑙_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 =

{𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛1, . . . , 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑧 }, where 𝑧 denotes the number of parti-

tions (line 4).

Example. Given the example of multiset {𝑠1, 𝑠1, 𝑠2, 𝑠2, 𝑠2}, the
function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 divides the multiset into the following

partitions: 1: {{𝑠1}, {𝑠1, 𝑠2}, {𝑠2}, {𝑠2}}, 2: {{𝑠1, 𝑠2}, {𝑠1, 𝑠2}, {𝑠2}}, 3:
{{𝑠1}, {𝑠1}, {𝑠2}, {𝑠2}, {𝑠2}}. For example, considering ℎ𝑖 as the dri-

ver’s home location, the segment {𝑠1, 𝑠2} in the first partition could

lead to a cycle denoted as ℎ𝑖𝑠2𝑠1ℎ𝑖 , meaning that the toll points in

each segment along with the home location could lead to a cycle.

Algorithm 9 The CD attack

Input: 𝑀 = {𝐼𝐷, 𝑃,𝐺,𝑊 }, H
Output: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
1: function CD_attack(𝑀,𝐻)

2: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒) ← 𝑇𝑆𝐷_𝑎𝑡𝑡𝑎𝑐𝑘 (𝐼𝐷, 𝑃,𝐺,𝑊)
3: 𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
4: 𝑎𝑙𝑙_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠)
5: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 ← 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
6: 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠)
7: for 𝑐𝑜𝑚𝑏 ∈ 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 do
8: 𝑙𝑖𝑠𝑡_𝑐𝑦𝑐𝑙𝑒𝑠 ← 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 (𝑐𝑜𝑚𝑏,𝐺,ℎ𝑖 , 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦)
9: end for
10: for 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 ∈ 𝑎𝑙𝑙_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 do
11: for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 do
12: 𝐶𝑦𝑐𝑙𝑒 ← 𝑙𝑖𝑠𝑡_𝑐𝑦𝑐𝑙𝑒𝑠 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
13: end for
14: 𝐹,𝐶 ←𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 (𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛,𝐶𝑦𝑐𝑙𝑒)
15: if 𝐶 ≠ 𝐹𝑎𝑙𝑠𝑒 then
16: 𝑡𝑟𝑎𝑐𝑒 ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 (𝐹,𝐶)
17: 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 ← 𝑡𝑟𝑎𝑐𝑒

18: end if
19: end for
20: 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 (𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠)
21: (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒) ← 𝑎𝑠𝑠𝑖𝑔𝑛_𝑡𝑟𝑎𝑐𝑒 (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
22: return (𝑖, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒)
23: end function

(3) Create the pre-computed list of cycles. To transform each

segment (in the partition) to its corresponding cycle, A selects the

253

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

corresponding cycle from a pre-computed list of cycles. This pre-

vents computing the cycle for the same segments belonging to dif-

ferent partitions, as different partitions might have some segments

in common. Hence,A first precomputes the list of all cycles that can

be made from combinations of the visited toll stations. To this end,

it first obtains all different combinations of visited toll stations and

then finds the corresponding cycle of each combination. To make

the pre-computed list, A gets the visited toll from 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒

using the function 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙 and stores it in the 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 (line

5). Then, using the function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 , it generates

all combinations and stores the output in the set 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏 (line

6). For each combination 𝑐𝑜𝑚𝑏 in the set 𝑎𝑙𝑙_𝑐𝑜𝑚𝑏, it finds its cor-

responding cycle (if any) via Algorithm 7 (𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜), tak-
ing 𝑐𝑜𝑚𝑏,𝐺 , ℎ𝑖 , and strategy as the inputs (line 8), and stores the

output (a cycle) in the list 𝑙𝑖𝑠𝑡_𝑐𝑦𝑐𝑙𝑒𝑠 . It should be noted that if

𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 can not find any cycle given the inputs, it returns

𝑛𝑢𝑙𝑙 .

(4) Transform each partition to the corresponding cycles.
Given the pre-computed list 𝑙𝑖𝑠𝑡_𝑐𝑦𝑐𝑙𝑒𝑠 , for each 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 belong-

ing to the set 𝑎𝑙𝑙_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (line 10), A creates the partition’s

corresponding multiset of cycles, namely 𝐶𝑦𝑐𝑙𝑒 . To this end, it

takes the following steps. For each 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, it fetches
its corresponding cycle from the pre-computed list using the seg-

ment as the index and stores the corresponding cycle (if any) to the

multiset 𝐶𝑦𝑐𝑙𝑒 . Note that the cycle 𝑛𝑢𝑙𝑙 is also stored in 𝐶𝑦𝑐𝑙𝑒 (line

12).

(5) Merging. Algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 takes 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

and 𝐶𝑦𝑐𝑙𝑒 as inputs. Then, it merges some segments in the parti-

tion if needed, updates the corresponding cycles (if needed), and

computes the corresponding frequencies. If merging is successful,

the algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 returns the multiset of corre-

sponding cycles as𝐶 and their corresponding frequencies as 𝐹 ; oth-

erwise, it returns 𝐹𝑎𝑙𝑠𝑒 (line 14). Algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜

is explained in detail in Appendix J.1, and its pseudo-code is shown

in Algorithm 10.

(6) Create the set of plausible traces. If the multiset 𝐶 is valid

(not 𝐹𝑎𝑙𝑠𝑒), the plausible trace 𝑡𝑟𝑎𝑐𝑒 will be created using the func-

tion 𝑐𝑟𝑒𝑎𝑡𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 . It takes 𝐹 and 𝐶 as the inputs and outputs the

plausible trace denoted as 𝑡𝑟𝑎𝑐𝑒 = {(𝑐1, 𝑓1), (𝑐2, 𝑓2), . . . , (𝑐𝑥 , 𝑓𝑥)}.
Then, it stores 𝑡𝑟𝑎𝑐𝑒 to the set of plausible traces denoted as

𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 = {𝑡𝑟𝑎𝑐𝑒1, 𝑡𝑟𝑎𝑐𝑒2, . . . , 𝑡𝑟𝑎𝑐𝑒𝑧 } (lines 16 and 17).

Note that each 𝑡𝑟𝑎𝑐𝑒 𝑗 in the set 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 corresponds

to 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑗 in the set of 𝑎𝑙𝑙_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 . Having obtained the set

𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 , A selects the correct trace uniformly via the

function 𝑠𝑒𝑙𝑒𝑐𝑡_𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 and finally assigns the correct trace to

the corresponding driver 𝑖 via the function 𝑎𝑠𝑠𝑖𝑔𝑛_𝑡𝑟𝑎𝑐𝑒 . In the

following, we explain the𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 algorithm used in

the CD attack (Algorithm 9).

J.1 merge_segments_algo algorithm
The algorithm 𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 takes as inputs a partition

and a multiset of cycles obtained by the CD attack (line 12 of Algo-

rithm 9). Then, it merges some segments in the partition if needed,

accordingly updates the multiset of cycles, and computes the cor-

responding frequencies. The algorithm’s pseudo-code is shown in

Algorithm 10. The full example of the algorithm is illustrated in

Appendix K.

Core idea of the algorithm. Before explaining the algorithm in

detail, we discuss merging, which is the main functionality of the

algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 . We said earlier that each segment

includes different toll stations (without repetition of a toll station in

a segment), which are the constituents of a cycle (if any). However,

there would be cases where two or more repetitions of each toll

point in a segment are required as the constituents of the cycle. This

is because one or more toll points could be revisited when finding

the cycle using the algorithm 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 . In this case, the

algorithm takes the following step. In the partition, the algorithm

looks for a segment including one toll point equivalent to the toll

point revisited in the cycle and then merges the toll point into the

segment. The algorithm repeats the step until the toll points in

the segment are equivalent to the ones used in the cycle. In the

following, we give an example of merging.

Algorithm 10 The merge segments algorithm

Input: partition, 𝐶𝑦𝑐𝑙𝑒

Output: 𝐹,𝐶
1: function merge_segments_algo(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, 𝐶𝑦𝑐𝑙𝑒)

2: for 𝑐𝑦𝑐𝑙𝑒 ∈ 𝐶𝑦𝑐𝑙𝑒, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 do
3: if 𝑐𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙 and 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡) ≠ 1 then
4: return 𝐹𝑎𝑙𝑠𝑒
5: end if
6: end for
7: for 𝑐𝑦𝑐𝑙𝑒 ∈ 𝐶𝑦𝑐𝑙𝑒, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 do
8: if 𝑐𝑦𝑐𝑙𝑒 ≠ 𝑛𝑢𝑙𝑙 then
9: if 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑐𝑦𝑐𝑙𝑒) ≠ 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡) then
10: 𝑅← 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑐𝑦𝑐𝑙𝑒) − 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
11: for 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 do
12: if 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 ∈ 𝑅 then
13: 𝑓 𝑙𝑎𝑔←𝑚𝑒𝑟𝑔𝑒 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙)
14: end if
15: end for
16: if 𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒 then
17: return 𝐹𝑎𝑙𝑠𝑒
18: else
19: 𝐶 ← 𝑢𝑝𝑑𝑎𝑡𝑒 (𝐶𝑦𝑐𝑙𝑒)
20: 𝐹 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑓 𝑟𝑒𝑞()
21: end if
22: end if
23: end if
24: end for
25: for 𝑐𝑦𝑐𝑙𝑒 ∈ 𝐶 do
26: if 𝑐𝑦𝑐𝑙𝑒 == 𝑛𝑢𝑙𝑙 then
27: return 𝐹𝑎𝑙𝑠𝑒
28: end if
29: end for
30: return 𝐹,𝐶
31: end function

Example of merging. Considering the segment {𝑠1, 𝑠2, 𝑠3}, the
algorithm 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 finds the corresponding cycle where

254

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

the toll points 𝑠1, 𝑠2 and 𝑠3 are constituents of the cycle. Let us say

the found cycle is ℎ𝑖𝑠1𝑠3𝑠2𝑠3𝑠1ℎ𝑖 , where 𝑠1 and 𝑠3 have been vis-

ited twice. Hence, to form the cycle, the segment {𝑠1, 𝑠2, 𝑠3} needs
one more 𝑠1 and one more 𝑠3, for which the algorithm looks for

two segments (if any), i.e., {𝑠1} and {𝑠3}, in the corresponding

partition and then merges them with the segment {𝑠1, 𝑠2, 𝑠3}, lead-
ing to the segment {𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠3}. Now, the toll points in the

segment {𝑠1, 𝑠2, 𝑠3, 𝑠1, 𝑠3} are equivalent to the ones in the cycle

ℎ𝑖𝑠1𝑠3𝑠2𝑠3𝑠1ℎ𝑖 . If either of the segments {𝑠1} and {𝑠3} could not be

found, merging would not be possible, and the toll points in the

segment would not form the corresponding cycle.

The details of the algorithm. In the following, we explain

the algorithm’s functionality in detail. We first explain how the

algorithm detects an invalid multiset of cycles and then discuss the

merging functionality.

Detection of an invalid multiset of cycles. Here, we discuss
how the algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 detects an invalid multi-

set of cycles, i.e., 𝐶𝑦𝑐𝑙𝑒 . The algorithm takes the following steps

for each 𝑐𝑦𝑐𝑙𝑒 ∈ 𝐶𝑦𝑐𝑙𝑒 and its corresponding 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛
(line 2).

(1) If 𝑐𝑦𝑐𝑙𝑒 ∈ 𝐶𝑦𝑐𝑙𝑒 (line 3) is null (that is, the toll points in the

corresponding 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 cannot lead to a cycle), it checks the

number of toll points in the corresponding segment. If there

is only one toll point in the segment 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡) ==
1, it is likely that the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 will later be merged into an-

other segment in the function𝑚𝑒𝑟𝑔𝑒 (line 13). By merging,

its corresponding cycle (which is null) will be removed from

the multiset 𝐶 , which does not make the multiset invalid.

Hence, it continues the loop.

(2) Otherwise, if 𝑐𝑦𝑐𝑙𝑒 is null and there are two or more toll

points in its corresponding segment (line 3), the algorithm

returns 𝐹𝑎𝑙𝑠𝑒 . This is because the segments, including two or

more toll points, will not be considered for merging, which

makes the multiset invalid.

Merging functionality. Here, we discuss how the algorithm

merges some segments if needed. The algorithm performs the

following steps for each 𝑐𝑦𝑐𝑙𝑒 ∈ 𝐶𝑦𝑐𝑙𝑒 and its corresponding

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 (line 7).

(1) If the cycle is not null (𝑐𝑦𝑐𝑙𝑒 ≠ 𝑛𝑢𝑙𝑙) (which is made from

the toll points in the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡), the algorithm checks if any

toll points in the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 are repeated in the cycle. To check,

it executes the code 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑐𝑦𝑐𝑙𝑒) ≠ 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡)
(line 9), where the function 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 returns the toll points

used in a cycle or a segment. If the inequality holds (some

toll points in the segment are repeated in the cycle), it inserts

the repeated toll points in the set 𝑅.

(2) Then, for each segment, namely 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 ∈ 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛,
including only one toll point, it repeats this step. If the seg-

ment 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 is a toll point that belongs to the set of

repeated/revisited toll points (𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 ∈ 𝑅), it calls the
function𝑚𝑒𝑟𝑔𝑒 , taking 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 and 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 as the in-

puts and merges 𝑠𝑒𝑔_𝑜𝑛𝑒_𝑡𝑜𝑙𝑙 into the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 . Finally, the

function returns the 𝑓 𝑙𝑎𝑔 (lines 11, 12, and 13).

(3) If merging is complete (𝑓 𝑙𝑎𝑔 ≠ 𝐹𝑎𝑙𝑠𝑒), meaning that the toll

points in the segment (after merging) equal those used in the

corresponding cycle, then the corresponding multiset 𝐶𝑦𝑐𝑙𝑒

should be updated (function 𝑢𝑝𝑑𝑎𝑡𝑒). This is because the

function𝑚𝑒𝑟𝑔𝑒 removes one or more segments from the par-

tition and merges them with one or more segments, which

changes the partition, and, accordingly, the corresponding

multiset of cycles (𝐶𝑦𝑐𝑙𝑒) should be updated. Then, it com-

putes the set of frequencies 𝐹 via the function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑓 𝑟𝑒𝑞

(lines 19 and 20).

(4) If merging cannot be completed (𝑓 𝑙𝑎𝑔 == 𝐹𝑎𝑙𝑠𝑒), meaning

that the toll points in the segment (after merging) are not

equal to those used in the corresponding cycle, the algorithm

returns 𝐹𝑎𝑙𝑠𝑒 (lines 16 and 17).

Finally, in the loop (line 25), it checks if there is a null cycle in

the updated multiset of cycles, indicating the presence of a segment

where the toll points cannot form a cycle. If such a cycle exists, it

returns 𝐹𝑎𝑙𝑠𝑒 . Otherwise, it returns the multisets 𝐶 and 𝐹 .

J.2 The computational complexity of the CD
attack

The CD attack’s computational complexity mainly depends on

different algorithms and functions as follows. (1) TSD attack: We

discussed that the CD attack uses the TSD attack whose complexity

is explained in Section 5.2.3. (2) create_partitions: The function’s
complexity is O(2𝑚), where𝑚 is the size of the multiset [27]. (3)

compute_combinations: The computational complexity of this func-

tion is exponential in terms of the number of visited toll points,

shown in Formula 11. The |𝑆 | in the formula should be substituted

with the size of the function’s input, i.e., |𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 |, resulting in
(2 |𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 | − 1). (4) find_cycle_algo: Since this algorithm (Algo-

rithm 7) finds the cycle associated with each combination computed

by 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 , it should find (2 |𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 |−1) cycles
in total. Given that the complexity of 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 for finding a

cycle is O(𝜔), the complexity for finding the total cycles becomes

(2 |𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 | − 1) · O(𝜔). The complexity of the CD attack is the

summation of the abovementioned complexities.

K FULL EXAMPLE
In the following, we give a concrete example to have a better under-

standing of the CD attack (Algorithm 9) and Algorithm 10 which

is used by the attack. Note that the paragraphs’ titles shown here

(in bold) correspond to those mentioned in the explanation of the

attack in Section J and the algorithm in Section J.1.

We consider a simple graph of a city’s ETC system, includ-

ing three toll stations 𝑆 = {𝐴, 𝐵,𝐶}, and a driver’s home loca-

tion ℎ. The assigned numbers to the edges show the distance be-

tween each of the two toll points. The graph is shown in Figure 7.

Given that the output of the TSD attack is the 𝑐𝑜𝑟𝑟𝑒𝑐𝑡_𝑡𝑟𝑎𝑐𝑒 =

{(𝐴, 2), (𝐵, 2), (𝐶, 1)}, Algorithm 9 achieves the CD goal in the fol-

lowing six steps.

(1) Create the multiset. The CD attack (Algorithm 9), using the

function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑚𝑢𝑙𝑡𝑖𝑠𝑒𝑡 , computes the multiset𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 =

{𝐴,𝐴, 𝐵, 𝐵,𝐶}.
255

Proceedings on Privacy Enhancing Technologies 2024(1) Amirhossein Adavoudi Jolfaei, Andy Rupp, Stefan Schiffner, and Thomas Engel

(2) Create partitions. Then, it computes the set of all partitions

𝑎𝑙𝑙_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 via the function 𝑐𝑟𝑒𝑎𝑡𝑒_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 , taking the multi-

set𝑚_𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 as its input. There are nine different partitions,

shown in Table 8.

(3) Create the pre-computed list of cycles. Before the attack
pre-computes the list of cycles, it obtains the set of visited toll

stations, which is 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑡𝑜𝑙𝑙𝑠 = {𝐴, 𝐵,𝐶} (computed by 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠).

The set is used as the input for the function 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 ,

which computes all combinations of the visited toll points, shown

in Table 9. Then, the attack finds the corresponding cycle for each

combination using the algorithm 𝑓 𝑖𝑛𝑑_𝑐𝑦𝑐𝑙𝑒_𝑎𝑙𝑔𝑜 . The algorithm

uses the “shortest distance” strategy for finding the cycles, where

a driver takes the shortest possible route to their destination. The

resulting cycles are stored in the list 𝑙𝑖𝑠𝑡_𝑐𝑦𝑐𝑙𝑒𝑠 , shown in Table 9.

As shown in Table 9, the corresponding cycle of combination

{𝐵} is 𝑛𝑢𝑙𝑙 . This is because, given the nodes ℎ and 𝐵 (see Figure 7),

no cycle can be found (to reach 𝐵 from node ℎ, node 𝐴 is required,

which is not in the combination).

(4) Transform each partition to its corresponding cycles.
Then, the attack replaces each segment in the partition, as shown

in Table 8, with its corresponding cycle from the list 𝑙𝑖𝑠𝑡_𝑐𝑦𝑐𝑙𝑒𝑠 ,

resulting in the multiset 𝐶𝑦𝑐𝑙𝑒 depicted in Table 8. For instance,

in the first partition (refer to Table 8), the segments {𝐴}, {𝐴, 𝐵},
and {𝐵,𝐶} are replaced with their respective cycles (as shown in

Table 9):ℎ𝐴ℎ,ℎ𝐴𝐵𝐴ℎ, and𝑛𝑢𝑙𝑙 . Consequently, the resultingmultiset

is {ℎ𝐴ℎ,ℎ𝐴𝐵𝐴ℎ,𝑛𝑢𝑙𝑙}.

(5) Merging. Then, the algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 takes a

partition and its corresponding set of cycles 𝐶𝑦𝑐𝑙𝑒 (Table 8) as the

inputs and merges some of the segments (if needed) and computes

the corresponding updated cycles and frequencies as follows. The

results are shown in Table 10.

• Detection of an invalid multiset of cycles: For the multi-

set of partition and multiset of cycles in rows 1 and 7, the

algorithm returns 𝐹𝑎𝑙𝑠𝑒 since 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 ({𝐵,𝐶}) ≠ 1 (number

of toll points in the segment {𝐵,𝐶} is greater than one), and

the segment’s corresponding cycle is 𝑛𝑢𝑙𝑙 . The algorithm

𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜’s output is shown in column “Validity

of multiset” of Table 10. The symbol cross in the column “Va-

lidity of multiset” represents the algorithm’s output, “False”.

• Merging functionality: Concerning row 2, since the in-

equality 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (ℎ𝐴𝐵𝐶𝐵𝐴ℎ) ≠ 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 ({𝐴, 𝐵,𝐶}) holds,
the algorithm merges the segments {𝐴} and {𝐵} (in the

partition {{𝐴}, {𝐴, 𝐵,𝐶}, {𝐵}}) into the segment {𝐴, 𝐵,𝐶},
resulting in the update partition {𝐴, 𝐵,𝐶, 𝐵,𝐴}. Due to the

merging, the algorithm updates the multiset 𝐶𝑦𝑐𝑙𝑒 = {hAh,
hABCBAh, null} to 𝐶 = {hABCBAh}.
Concerning row 3, since the condition 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (ℎ𝐴𝐶𝐴ℎ) ≠
𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 ({𝐴,𝐶}) holds, the algorithm looks for the segment

{𝐴}, in the partition {{𝐴,𝐶}, {𝐴, 𝐵}, {𝐵}}, to merge it with

the segment {𝐴,𝐶}; but no segment {𝐴} can be found; hence,
the algorithm returns 𝐹𝑎𝑙𝑠𝑒 . For the same reason, the algo-

rithm returns 𝐹𝑎𝑙𝑠𝑒 concerning rows 5 and 6.

Concerning row 4, since the condition 𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 (ℎ𝐴𝐵𝐴ℎ) ≠
𝑔𝑒𝑡_𝑡𝑜𝑙𝑙𝑠 ({𝐴, 𝐵}) holds, the algorithm merges the segment

{𝐴} with the segment {𝐴𝐵} (see the partition {{𝐴}, {A,B},

{𝐵}, {𝐶}}), resulting in the updated partition {{A,B,A}, {𝐵},
{𝐶}}. However, as segments {𝐵} and {𝐶} lead to null cycles,

the algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 returns 𝐹𝑎𝑙𝑠𝑒 . For the

same reason, the algorithm returns 𝐹𝑎𝑙𝑠𝑒 concerning row 8.

Concerning row 9, the algorithm returns 𝐹𝑎𝑙𝑠𝑒 as the seg-

ments {𝐵} and {𝐶} lead to null cycles. Note that if the seg-

ments were merged with other segments, the algorithm

would not return 𝐹𝑎𝑠𝑙𝑒 as the segments would not exist

after merging, and their corresponding null cycles would

accordingly be removed (updated) from the corresponding

multiset of cycles, i.e., 𝐶𝑦𝑐𝑙𝑒 .

Finally, the algorithm𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 returns themul-

tisets 𝐶 = {ℎ𝐴𝐵𝐶𝐵𝐴ℎ} and 𝐹 = {1}, as the outputs.

(6) Create the set of plausible traces. Having obtained the

multisets 𝐶 and 𝐹 by 𝑚𝑒𝑟𝑔𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑙𝑔𝑜 , the CD attack cre-

ates the set of plausible traces denoted as 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 =

{𝑡𝑟𝑎𝑐𝑒1}, where 𝑡𝑟𝑎𝑐𝑒1 = {(𝑐1 = ℎ𝐴𝐵𝐶𝐵𝐴ℎ, 𝑓1 = 1)}. Since the

set 𝑝𝑙𝑎𝑢𝑠_𝑐𝑦𝑐𝑙𝑒_𝑡𝑟𝑎𝑐𝑒𝑠 contains only one element, the adversary

selects it as the correct trace.

Figure 7: Example of an ETC system’s graph, including three
toll stations 𝐴, 𝐵, and 𝐶 and the home location ℎ

L RELATEDWORK
Table 11 summarizes the comparison made between our work

and [7] in Section 10 (attacks on privacy in ETC).

256

Why Privacy-Preserving Protocols are sometimes not enough Proceedings on Privacy Enhancing Technologies 2024(1)

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐶𝑦𝑐𝑙𝑒

1 {{𝐴}, {𝐴, 𝐵}, {𝐵,𝐶}} {ℎ𝐴ℎ,ℎ𝐴𝐵𝐴ℎ,𝑛𝑢𝑙𝑙}
2 {{𝐴}, {𝐴, 𝐵,𝐶}, {𝐵}} {ℎ𝐴ℎ,ℎ𝐴𝐵𝐶𝐵𝐴ℎ, 𝑛𝑢𝑙𝑙}
3 {{𝐴,𝐶}, {𝐴, 𝐵}, {𝐵}} {ℎ𝐴𝐶𝐴ℎ,ℎ𝐴𝐵𝐴ℎ, 𝑛𝑢𝑙𝑙}
4 {{𝐴}, {𝐴, 𝐵}, {𝐵}, {𝐶}} {ℎ𝐴ℎ,ℎ𝐴𝐵𝐴ℎ,𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙}
5 {{𝐴, 𝐵}, {𝐴, 𝐵,𝐶}} {ℎ𝐴𝐵𝐴ℎ,ℎ𝐴𝐵𝐶𝐵𝐴ℎ}
6 {{𝐴, 𝐵}, {𝐴, 𝐵}, {𝐶}} {ℎ𝐴𝐵𝐴ℎ,ℎ𝐴𝐵𝐴ℎ,𝑛𝑢𝑙𝑙}
7 {{𝐴}, {𝐴}, {𝐵}, {𝐵,𝐶}} {ℎ𝐴ℎ,ℎ𝐴ℎ, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙}
8 {{𝐴}, {𝐵}, {𝐵}, {𝐴,𝐶}} {ℎ𝐴ℎ, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, ℎ𝐴𝐶𝐴ℎ}
9 {{𝐴}, {𝐴}, {𝐵}, {𝐵}, {𝐶}} {ℎ𝐴ℎ,ℎ𝐴ℎ, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙}

Table 8: Each row shows a partition and its corresponding
set of cycles.

𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒

1 {𝐴} ℎ𝐴ℎ

2 {𝐵} 𝑛𝑢𝑙𝑙

3 {𝐶} 𝑛𝑢𝑙𝑙

4 {𝐴, 𝐵} ℎ𝐴𝐵𝐴ℎ

5 {𝐴,𝐶} ℎ𝐴𝐶𝐴ℎ

6 {𝐵,𝐶} 𝑛𝑢𝑙𝑙

7 {𝐴, 𝐵,𝐶} ℎ𝐴𝐵𝐶𝐵𝐴ℎ

Table 9: Each row shows a combination of visited toll
stations and the corresponding cycle.

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐶𝑦𝑐𝑙𝑒

Validity of

the multiset

Updated

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

Updated

𝐶𝑦𝑐𝑙𝑒 𝐶 𝐹

1 {{𝐴}, {𝐴, 𝐵}, {𝐵,𝐶}} {ℎ𝐴ℎ, ℎ𝐴𝐵𝐴ℎ, 𝑛𝑢𝑙𝑙 } × × × × 0

2 {{𝐴}, {A,B,C}, {𝐵}} {ℎ𝐴ℎ,hABCBAh, 𝑛𝑢𝑙𝑙 } ✓ {{ABCBA}} {hABCBAh} {hABCBAh} 1

3 {{A,C}, {A,B}, {𝐵}} {hACAh,hABAh, 𝑛𝑢𝑙𝑙 } ✓ × × × 0

4 {{𝐴}, {A,B}, {𝐵}, {𝐶}} {ℎ𝐴ℎ,hABAh, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙 } ✓ {{ABA}, {𝐵}, {𝐶}} {hABAh, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙} × 0

5 {{A,B}, {A,B,C}} {hABAh,hABCBAh} ✓ × × × 0

6 {{A,B}, {A,B}, {𝐶}} {hABAh,hABAh, 𝑛𝑢𝑙𝑙 } ✓ × × × 0

7 {{𝐴}, {𝐴}, {𝐵}, {𝐵,𝐶}} {ℎ𝐴ℎ,ℎ𝐴ℎ, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙 } × × × × 0

8 {{𝐴}, {𝐵}, {𝐵}, {A,C}} {ℎ𝐴ℎ, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙,hACAh} ✓ {{𝐵}, {𝐵}, {ACA}} {𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙,hACAh} × 0

9 {{𝐴}, {𝐴}, {𝐵}, {𝐵}, {𝐶}} {ℎ𝐴ℎ,ℎ𝐴ℎ, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙 } ✓ × × × 0

Table 10: The table shows a concrete example of how Algorithm 10 performs. The symbol “cross” in the column “Validity
of the multiset” represents that the multiset 𝐶𝑦𝑐𝑙𝑒 is invalid. The bold segments and cycles have resulted after the merging
process (step 5 of the example). The columns 𝐶 and 𝐹 denote the algorithm’s outputs.

Factors Our studies [7]

Core idea Solving the SSP Solving the SSP

Assumptions

The assumption is weak as the adversary accesses the

subset of the information available to the TSP.

The assumption is strong as, in the first place, the anony-

mous trips are part of the adversary’s knowledge.

Adversary A weak adversary is defined. A strong adversary is used.

Goals Toll station disclosure, Cycle disclosure Obtaining the trips associated with each driver.

Real settings

Real settings are used, including the map, toll prices,

number of toll stations, billing period, and distribution

of wallet balances.

Synthetic data are used.

Heuristics

Heuristics are based on drivers’ behavior and the road

infrastructure.

Heuristics are based on drivers’ behavior and the road

infrastructure.

SSP solver DOcplex is applied, which is more convenient.

Pisinger’s algorithm is applied, which is complicated to

use.

Privacy

The parameters impacting a driver’s privacy are inves-

tigated, such as toll prices, wallet balances, etc.

The parameters impacting a driver’s privacy are not

discussed.

Table 11: The table compares our work with the most relevant one, i.e., [7] in terms of different factors.

257

	Abstract
	1 Introduction
	2 Background
	3 Threat model
	4 The TSD Attack
	4.1 Procedure of the attack
	4.2 Heuristic-based approaches

	5 Evaluation of the TSD attack
	5.1 Parameter settings
	5.2 Our evaluation
	5.3 Evaluation of the first heuristic

	6 The CD attack
	6.1 Procedure of the attack

	7 Evaluation of the CD attack
	8 Impact of parameter settings on privacy
	9 Discussion
	9.1 Limitations and Future work
	9.2 Recommendation

	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A Notations
	B The TSD attack
	C The check_graph_algo algorithm
	D Computation of the success rate
	E Distribution of success rates
	F Heuristic algorithms
	F.1 The first heuristic
	F.2 The second heuristic
	F.3 The third heuristic

	G Impact of parameters on privacy
	H find_cycle_algo algorithm
	I SSP-CD attack
	J The CD attack
	J.1 merge_segments_algo algorithm
	J.2 The computational complexity of the CD attack

	K Full example
	L Related work

