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Abstract
In dynamic ride-sharing systems, intelligent repositioning of idle vehicles often improves the
overall performance with respect to vehicle utilization, request rejection rates, and customer
waiting times. In this work, we present a forecast-driven idle vehicle repositioning algorithm.
Our approach takes a demand forecast as well as the current vehicle fleet configuration as
inputs and determines suitable repositioning assignments for idle vehicles. The core part of
our approach is a mixed-integer programming model that aims to maximize the acceptance
rate of anticipated future trip requests while minimizing vehicle travel times for repositioning
movements. To account for changes in current trip demand and vehicle supply, our algorithm
adapts relevant parameters over time. We embed the repositioning algorithm into a plan-
ning service for vehicle dispatching. We evaluate our forecast-driven repositioning approach
through extensive simulation studies on real-world datasets from Hamburg, New York City,
Manhattan, and Chengdu. The algorithm is tested assuming a perfect demand forecast and
applying a naïve forecasting model. These serve as an upper and lower bound on state-of-
the-art forecasting methods. As a benchmark algorithm, we utilize a reactive repositioning
scheme. Compared to this, our forecast-driven approach reduces trip request rejection rates
by an average of 3.5 percentage points and improves customer waiting and ride times.

Keywords Repositioning · Ride-sharing · Dial-a-ride · Mobility-on-demand

1 Introduction

While the popularity of mobility-on-demand (MOD) services such as Uber and Lyft has
increased significantly in recent years, this growth has also led to increased traffic congestion
(Castiglione and Cooper 2018). Several cities have identified this issue and some have even
taken countermeasures (Doubek 2018). One way to tackle this problem is to increase the
share of dynamic ride-sharing services such asUberPool orMOIA. In these services, multiple
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Fig. 1 Points denote vehicle positions without (left) and with (right) repositioning. Grid cells show the number
of trip requests by area in the next hour

passengers with different destinations share the same vehicle. Compared to classical MOD
services for individual customers, this leads to slight delays due to detours for picking up or
dropping off other passengers. Generally, these detours as well as initial waiting times are
constrained to a couple of minutes ensuring customer satisfaction. Overall, one maintains the
flexibility of MOD services compared to traditional public transport and improves vehicle
utilization at the same time.

Planning problems regarding MOD services in general and dynamic ride-sharing, in par-
ticular, have generated significant research attention.Most works focus on the vehicle routing
aspect, i.e. solving the dynamic dial-a-ride-problem arising in these applications (Alonso-
Mora et al. 2017a; Ma et al. 2019). In this work, we focus on the idle vehicle repositioning
problem, i.e. the problem of sending idle vehicles to a suitable location in anticipation of
future demand.

In general, the overall performance of a ride-sharing systemmay be impacted significantly
by suitable repositioning algorithms. Figure 1 exemplifies this fact by comparing vehicle
positions in scenarios without and with repositioning after several hours of service.

Without repositioning vehicles become stuck in low-demand areas. In turn, requests in
other areas are rejected due to a lack of nearby vehicles. This is due to the assumption
of a maximum waiting time for customers in dial-a-ride problems. A vehicle must reach
the customer within this time frame, otherwise, the customer is rejected. Thus, vehicles in
low-demand areas cannot reach many new trip requests in time and are consequently rarely
assigned a new route. This phenomenonmay be avoided by using a repositioningmechanism.

Inmany practical applications with self-employed drivers, this problem is currently solved
decentrally by incentivizing drivers to reposition towards areas with low vehicle supply. For
instance, Uber employs so-called “surge pricing” which raises prices in areas with excess
demand and thereby offers increased revenue opportunities to drivers (Uber 2020). In this
paper, we propose the usage of a central repositioning strategy that may improve system
performance in use cases with a central fleet operator.

Themain objective of the repositioning procedure is to serve more customers given a fixed
vehicle fleet in large-scale MOD services. The main contribution of this paper is threefold.
First, we propose an efficient model-based repositioning algorithm that intelligently reposi-
tions idle vehicles based on the current system state and a short-term demand forecast. Our
algorithm is applicable in real-time even for large-scale and dynamic systems and may be
combined with an existing approach for dispatching vehicles to trip requests. Second, we
introduce an integrated adaptive parameter tuning technique to adequately consider temporal
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and spatial differences in the number of trip requests that vehicles are expected to serve,
which is crucial in the case of ride-sharing services. This mechanism ensures that the pro-
posed approaches are usable in real-world settings without requiring extensive parameter
tuning or a high effort for data collection and processing and that they can be combined with
existing routing and dispatching solutions. Third, we perform an extensive evaluation on four
real-world datasets showing that our approach is able to improve the system performance
significantly compared to a myopic benchmark strategy.

The main addition compared to our prior work (Pouls et al. 2020) is the introduction of
a novel adaptive parameter tuning technique that removes the need for an a priori parameter
tuning and enables us to flexibly adjust the parameters to account for the spatial and tempo-
ral characteristics of different real-world application scenarios. In addition, we perform an
extensive computational evaluation of our algorithm on real-world data. For this purpose we
use a simulation-based evaluation framework that enables us to evaluate the repositioning
algorithm within the scope of a dynamic ride-sharing application.

The remainder of this work is organized as follows. Section 2 gives an overview of related
work regarding idle vehicle repositioning as well as demand forecasting. In Sect. 3 we
describe our overall planning service encompassing repositioning as well as dispatching and
forecasting. In addition, we cover the discrete-event simulation that is used for evaluations.
Our repositioning approach itself is detailed in Sect. 4. Finally, Sect. 5 presents our compu-
tational results on real-world datasets while Sect. 6 summarizes our findings and gives some
possible directions for future work.

2 Related approaches in repositioning and demand forecasting

To the best of our knowledge, there are relatively few papers dealing with repositioning
explicitly in the context of large-scale dynamic ride-sharing applications. However, there
exist several closely related fields. There is a large body of work on the dynamic vehicle
routing problem with stochastic customers (DVRPSC). In this vehicle routing variant, part
of the customers arrive dynamically and there is some form of stochastic knowledge about
customer arrivals that may be used during planning. There also exist a large number of
works regarding repositioning in other mobility-on-demand services besides ride-sharing.
For instance, repositioning is a widely considered problem in car-sharing systems. In these
systems, customers rent a vehicle for a desired time period. Repositioning is particularly
important for systems in which customers may drop off the vehicle at a different location
than their pickup. There are some key differences between car- and ride-sharing. In car-
sharing, there are no dedicated drivers and customers drive the rented vehicles themselves.
In addition, there is no sharing between different customers, a vehicle is assigned to exactly
one customer at a time.

We structure our literature review as follows. We first consider related work regarding
repositioning in dynamic ride-sharing systems. These are the most similar to the algorithm
presented in this paper. Subsequently, we review literature concerning the DVRPSC as well
as repositioning approaches for car-sharing and taxi services. Finally, we discuss existing
approaches for short-term travel demand forecasting, a vital component in our repositioning
approach.
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Table 1 Related work on repositioning for dynamic ride-sharing

Paper Algorithmic approach Routing interaction Instance size

Alonso-Mora et al. (2017a) Reactive Separate 460,700 / day

Alonso-Mora et al. (2017b) Sampling Integrated 460,700 / day

Jung and Chow (2019) Repositioning policies Separate 145,643 / 6 hours

Riley et al. (2020) MIP Separate 59,820 / 2 hours

Shah et al. (2020) ADP Integrated 19,820 / hour

Lowalekar et al. (2021) Stochastic program Integrated 403,770 / day

2.1 Repositioning in dynamic ride-sharing

Most closely related to the algorithm presented in this paper are works dealing with reposi-
tioning in the context of dynamic ride-sharing systems. A summary of existing approaches
is provided in Table 1. We report the algorithmic approach as well as the instance sizes used
for evaluation. Instance sizes are given as the number of trip requests over time. To ensure
the comparability of the approaches, we report the largest instances measured by the num-
ber of trip requests per unit of time, as far as possible based on the information given. In
addition, approaches may be divided by their interaction with the vehicle routing algorithm.
Repositioning may either be integrated with routing, i.e. routing and repositioning decisions
are taken simultaneously. Alternatively, repositioning decisions are determined by a separate
algorithm.

Alonso-Mora et al. (2017a) propose a reactive repositioning policywith the idea of sending
idle vehicles to the desired pickup locations of rejected trip requests. Given a batch of rejected
requests, idle vehicles are matched to the corresponding pickup locations while minimizing
travel times for repositioning movements. We use a similar approach as a benchmark for our
solution algorithm. In a follow-up paper, Alonso-Mora et al. (2017b) present a more refined
approach similar to the sampling-based algorithms for the DVRPSC presented in Section
2.2. They include predicted trip requests in their vehicle routing algorithm. These requests
are served with a lower priority than actual trip requests. The authors show that this approach
leads to reduced waiting times and in-car travel delays compared to the reactive repositioning
from their previous work (Alonso-Mora et al. 2017a). However, no noticeable improvement
in the number of rejected trip requests is achieved. Jung and Chow (2019) present two
policies in which vehicles reposition according to historical pickup probabilities. Vehicles
either move to a zone or a depot. The probability of selecting a zone or depot is proportional
to the historical distribution of trip requests. The authors compare these approaches to a
settingwithout repositioning and show that both repositioning algorithms improve the request
acceptance rate at the cost of an increase in the total distance traveled by vehicles. In contrast
to our work, the authors do not consider detailed information about supply and demand.
In particular, neither the current configuration of the vehicle fleet nor the total demand is
considered during repositioning. Riley et al. (2020) propose a MIP-based solution approach
similar to the one presented in this work. They use a two-step formulation that first determines
the number of vehicles to be repositioned between a pair of zones and subsequently selects
specific vehicles. Their algorithm integrates a demand forecast containing the number of trip
requests between each pair of zones. Hence, in contrast to this work, they expect a more fine-
grained forecast which may not be available in practice. Moreover, they do not allow for the
rejection of trip requests but rather penalize long customer waiting times. They evaluate their
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approach on data from New York City and show that their repositioning approach decreases
customer waiting times compared to performing no repositioning. Shah et al. (2020) propose
a learning-based approach that assesses the future value of routing decisions. However, the
approach does not explicitly reposition idle vehicles. It merely considers the future value
of routing decisions when assigning trip requests to vehicles. They evaluate their algorithm
on data from New York City and show that it yields a decrease in rejected trip requests
compared to myopic routing approaches. Lowalekar et al. (2021) propose another approach
that includes samples of future trip requests to build routes that are suitable to accommodate
upcoming requests. The authors evaluate their approach on two real-world datasets from
NYC and an undisclosed location and show that the trip request rejection rate is reduced
compared to myopic approaches.

2.2 Related work in dynamic vehicle routing with stochastic customers

In the DVRPSC, part of the trip requests arrive dynamically and there is some form of
exploitable stochastic information about these trip requests. The problem has been widely
studied in literature. A selection of solution approaches is summarized in Table 2. For more
extensive reviews we refer the reader to Ritzinger et al. (2016) and Ulmer et al. (2020). In
our review, we adopt the classification by Ulmer et al. (2020) that distinguishes between the
following general solution methods:

– Lookahead algorithm (LA) Approaches that use a lookahead, for instance, samples of
anticipated trip requests, to improve routing decisions.

– Policy function approximation (PFA) Algorithms that aim to approximate a policy, often
inspired by decision making in practice.

– Value function approximations (VFA) Procedures that derive a value function for routing
decisions via simulations and related learning techniques.

Among the earliest works in the field of DVRPSCs are waiting strategies (Mitrović-
Minić and Laporte 2004; Ichoua et al. 2006; Thomas 2007), which represent examples of
PFA algorithms. In these algorithms, the aim is to decide when and where a vehicle should
wait while executing a route in order to be well-positioned for dynamically arriving trip
requests. While these approaches yield benefits for many application settings such as parcel
delivery (Mitrović-Minić and Laporte 2004), the problems arising from these applications
are structurally different from the setting of ride-sharing. For instance, they tend to be less
dynamic as a large portion of customer requests is known in advance, while in this work
we consider purely dynamic trip requests. Additionally, vehicles in ride-sharing tend to have
little to no waiting times while executing a route as dynamically arriving customers want
to be serviced immediately. Moreover, when transporting passengers, it is difficult to justify
waiting times whenever there are customers aboard the vehicle or waiting for its arrival. In
contrast, for applications such as parcel logistics, this aspect is less of a problem. Therefore,
in our view, such waiting strategies are not directly applicable to the use case considered in
this paper.

The most prevalent approach for lookahead algorithms is the inclusion of samples of pre-
dicted customers in the routing algorithm. Among these sampling-based algorithms are the
multiple scenario approaches (MSA) by Bent and Van Hentenryck (2004); Bent and Hen-
tenryck (2007), in which multiple routing plans are generated based on different samples of
future customers and a so-called “distinguished” plan is selected via consensus mechanisms.
Ferrucci et al. (2013) also propose a sampling-based approach in the form of a tabu search
(TS) that includes sampled future customers. Due to their computational complexity, most
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Table 2 Related work on the DVRPSC

Paper Algorithmic
approach

Classification
by Ulmer et
al. (2020)

Instance size

Bent and Van Hentenryck (2004) MSA LA 100 / day

Mitrović-Minić and Laporte (2004) Waiting strat-
egy

PFA 1,000 / 10 hours

Ichoua et al. (2006) Waiting strat-
egy

PFA 36 / hour

Bent and Hentenryck (2007) MSA LA 100 / day

Thomas (2007) Waiting strat-
egy

PFA 50 / day

Mes et al. (2010) Auction VFA 4.5 / hour

Schmid (2012) ADP VFA 90 / day

Ferrucci et al. (2013) TS with sam-
pling

LA 150 / day

Ulmer et al. (2018) ADP VFA 100 / 6 hours

Ulmer et al. (2019) ADP VFA 100 / 6 hours

Voccia et al. (2019) ADP VFA 192 / day

sampling-based approaches have not been tested on large instance sizes as commonly seen
in ride-sharing.

A third major direction of DVRPSC research are VFA algorithms such as approximate
dynamic programming (Mes et al. 2010; Schmid 2012; Ulmer et al. 2018, 2019; Voccia
et al. 2019). The idea behind these approaches is to determine a value function for routing
decisions that incorporates their impact on the handling of future customers. From the prac-
tical perspective of ride-sharing applications, these algorithms have two main drawbacks.
First, they need a relatively large amount of training data to approximate the value function.
Hence, launching a ride-sharing service in a region where no prior data is available becomes
a challenge. Second, these VFA approaches are also not tested on large instances and may
not deliver the necessary computational performance for processing large numbers of trip
requests.

2.3 Repositioning for car-sharing and taxi services

Vehicle repositioning is a widely studied problem in the context of car-sharing services.
One may differentiate between operator-based and user-based repositioning. In the former,
the car-sharing operator employs personnel to reposition vehicles while in the latter car-
sharing users are incentivized to pick up or drop off cars at certain locations. In our literature
review, we focus on operator-based repositioning as it shares a closer resemblance with
central repositioning approaches for ride-sharing. A summary of recent works in this field is
presented in Table 3. A more detailed review may be found in Huang et al. (2020b).

Algorithms are often based on MIP formulations (Nourinejad and Roorda 2014; Repoux
et al. 2015; Boyacı et al. 2017; Gambella et al. 2018; Xu and Meng 2019; Huang et al.
2020b), but also include metaheuristics (Bruglieri et al. 2019) and Markov chain based
models (Repoux et al. 2019). There are some key differences to the application setting of
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Table 3 Related work on repositioning for car-sharing

Paper Algorithmic approach Instance size

Nourinejad and Roorda (2014) MIP 200 / day

Repoux et al. (2015) MIP 200 / day

Boyacı et al. (2017) MIP 300 / day

Gambella et al. (2018) MIP 50 / day

Bruglieri et al. (2019) ALNS 100

Repoux et al. (2019) Markov chain model 400 / day

Xu and Meng (2019) MIP 125 / day

Huang et al. (2020b) MIP 125,000 / day

ride-sharing. Most importantly, in car-sharing systems, there is a one-to-one relation between
a customer and vehicle. In contrast, ride-sharing allows for multiple customers to share the
same vehicle. Therefore, one key challenge when making repositioning decisions in a ride-
sharing system is to estimate how many vehicles are needed to serve a given number of
trip requests. As this depends on the structure of the trip requests, it may vary between
datasets but also between locations or the time of day within the same dataset. On the other
hand, repositioning approaches for car-sharing systems focus on specific aspects of that
application domain. These include scheduling the personnel that carries out the repositioning
movements, considering different operation modes (two-way, one-way, free-floating) and
different reservation schemes.Hence,webelieve that due to the structural differences between
car- and ride-sharing, specific solution approaches are needed for both applications.

Repositioning approaches have also been proposed for ride-hailing and classical taxi
services. In these services, no sharing takes place and only one group of customers uses
the vehicle at a time. Both Li et al. (2011) and Powell et al. (2011) use GPS traces of
taxis to identify profitable regions. However, as with car-sharing, in classical taxi services,
a vehicle serves at most one customer at a time. In addition, these solution approaches take
the viewpoint of a taxi driver and optimize the profit, while our goal is to optimize the
system-wide performance.

2.4 Short-term travel demand forecasting

In our solution approach, we utilize a short-term forecast of the anticipated trip requests. The
general field of short-term travel demand forecasting and related spatio-temporal prediction
problems has been studied extensively. For reviews we refer the reader to Vlahogianni et al.
(2004, 2014). Most approaches provide information in an aggregated form, i.e. they offer a
forecast of the total number of trip requests for a given area and interval of time rather than
predicting individual trip requests (Vlahogianni et al. 2014). Classical approaches include
time series models such as ARIMA or Kalman filters (Li et al. 2012; Lippi et al. 2013) as well
as statistical learning (Huang et al. 2020a). More recently, convolutional neural networks
(CNN) and long short-term memory (LSTM) recurrent neural networks have emerged as
suitable techniques for modeling the complex spatial and temporal dependencies typically
found in these forecasting problems (Zhang et al. 2018; Liao et al. 2018; Yao et al. 2018;
Ke et al. 2017; Yao et al. 2019). For instance, Yao et al. (2018); Yao et al. (2019) combine a
CNN for modeling spatial dependencies with a LSTM architecture that reflects the temporal
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Fig. 2 Planning service, simulation and relevant communication

aspects. They evaluate their approach on New York City taxi data and achieve a significant
improvement over a simple historical average as well classical machine learning algorithms
such as gradient boosting.

In the remainder of this work, we will not focus on the forecasting methodology itself but
rather on the usage of a forecast to improve planning results. However, the assumptions of
our algorithm regarding the structure of the forecast conform to state-of-the-art forecasting
techniques, i.e. they expect the predicted number of trip requests per area and interval of time
as an input. This way, we ensure that these approaches can be used in combination with our
algorithm.

3 A system design for dynamic ride-sharing

This section provides an overview of the larger system for dynamic ride-sharing into which
the proposed repositioning mechanism is embedded. Similar to several recent approaches
(see Sect. 2.1), we use separate components for the main planning tasks of dispatching
and repositioning. Consequently, the proposed repositioning procedure can be integrated
with existing routing mechanisms for ride-sharing services. This setup also ensures that
each component is less complex compared to an integrated approach and that routing and
repositioning decisions can be understood and accepted by human operators interacting with
the planning system. Moreover, the system design ensures that no component is dependent
on prior information or extensive training. This enables the usage of the proposed method
in new service areas where a large amount of training data that is necessary for learning-
based approaches may not be available. The overall system and communication between
components is depicted in Fig. 2.

It consists of a set of modular components separated into two parts, the planning ser-
vice and a simulation that emulates the behavior of real-world customers and vehicles. By
strictly separating planning and simulation components, the planning service could be directly
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transferred to a real-world use case. The different components that make up this system are
discussed in the following.

3.1 Planning service

All planning and forecasting functionality is consolidated in the planning service, which
consists of separate decoupled components.

Status manager The status manager handles external communication and maintains the cur-
rent status of vehicles and trip requests. It processes incoming events regarding new trip
requests, pickup and delivery of customers, start and end of repositioning movements as well
as regular vehicle location updates. All this information is consolidated and provided as an
up-to-date system state to the planning and forecasting components. The status manager also
triggers planning actions in other components such as the dispatching of new trip requests.

Dispatching Vehicle routing is handled by the dispatching module. Essentially it solves a
dynamic dial-a-ride problem with the typical constraints: vehicle capacity, waiting time,
and customer ride time (Cordeau and Laporte 2007). The waiting time is limited to a fixed
maximum and corresponds to the time a customer has to wait after submitting a request until a
vehicle arrives at the requested pickup location. The ride time on the other hand corresponds
to the total travel time of a customer inside the vehicle. The maximum allowed ride time
of a single trip request may for instance be calculated as the direct travel time between the
desired pickup and delivery locations plus a permissible detour. Each trip request is processed
immediately upon arrival to guarantee quick response times. A request is either accepted and
inserted into the route of a vehicle or rejected if no feasible solution is found. For this process,
we utilize an insertion heuristic inspired by the works ofMa et al. (2015, 2019). Ourmodified
dispatching algorithm can be roughly outlined as follows.

1. Vehicle search Based on a spatial index data structure, vehicles near the pickup location
of the new trip request are identified. We consider all vehicles that may reach the new
request within the specified maximum acceptable waiting time of the request.

2. Vehicle sorting The selected vehicles are sorted based on their suitability for the new trip
request. In this step, we perform a rough approximation regarding the impact of inserting
the new request into a vehicle route. No detailed checking of constraints and in particular
no expensive shortest path calculations are performed.

3. Insertion check Sorted vehicles are iteratively checked for a feasible insertion. Feasible
insertions are rated based on the resulting increase in vehicle travel time and the best
feasible insertion is performed. If no feasible insertion is found, the trip request is rejected.
The prior sorting of vehicles allows us to prematurely abort the search after evaluating at
least 50 vehicles if a feasible insertion was found. Otherwise, the search continues until
either an insertion is found or all eligible vehicles have been evaluated. The premature
abortion allows for faster running times and is particularly usefulwhenworkingwith large
datasets such as in New York City with a peak demand of up to 20, 000 trip requests per
hour. In this case, individual requestsmust be processedwithin 100 - 200ms.Additionally,
response times for the customer are quicker, improving customer satisfaction.

Repositioning The repositioning module monitors the current vehicle fleet configuration
and demand forecast. Based on this information it regularly repositions vehicles to new
locations. Repositioning decisions are made in real-time in order to ensure efficient usage in
combination with the dispatching algorithm. As seen in Sect. 2.1, some approaches combine
repositioning and vehicle routing decisions. We opted to decouple these decisions for the
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Fig. 3 Demand forecast for Hamburg

following reasons. First, it enables us to flexibly combine the repositioning algorithm with
any vehicle routing algorithm. For instance, a different vehicle routing approach could be
used depending on the specific dataset or special constraints for a use case. Second, the
repositioning approach may be used with existing demand forecasting models whereas many
integrated approaches require more detailed demand information. Our algorithmic approach
for vehicle repositioning is detailed in Sect. 4.

Routing engine The main task of the routing engine is to answer shortest path queries and
provide travel times as well as route geometries to other components. For this purpose, we
work with road networks derived from OpenStreetMap (OSM) data and use a state-of-the-art
open-source routing engine (Dibbelt et al. 2016).

Demand forecasting The repositioning approach requires information on the anticipated
number of trip requests within a set of areas over a given forecast horizon. Figure 3 illustrates
an exemplary demand forecast for Hamburg utilizing a partitioning of the map into grid
cells. This structure conforms to state-of-the-art forecasting algorithms as outlined in Sect.
2.4. Thus, any forecasting approach providing information in this form could be integrated
into our system in the form of a forecasting module. The forecasting modes that are used for
evaluation purposes in this paper are discussed in Sect. 5.4.

3.2 Simulation

The simulation part of our system consists of the necessary input data in form of a trip demand
database and the simulation engine itself.

Demand database The simulation operates on a database of historic trip requests. Each trip
request contains the request time, pickup and destination coordinates as well as the number
of passengers. Throughout the remainder of this paper, we work with trip requests obtained
from real-world taxi services. However, if no real-world data is available, one could also use
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other data sources such as macroscopic traffic simulations or public transport data to generate
trip requests.

Simulation engine The discrete-event simulation is responsible for simulating the behavior of
vehicles and customers. On startup, the simulation obtains all trip requests in the simulated
time period from the demand database. In addition, a vehicle fleet of a given size is created.
Initial vehicle positions are sampled from historical pickup locations of trip requests and
therefore roughly mirror the expected spatial distribution of demand. The simulation now
replays all trip requests and enriches them with scenario-specific parameters such as the
maximum waiting time or the maximum ride time. Each simulated trip request is sent to the
planning service for dispatching. If the trip request is accepted, the simulation obtains a new
vehicle route as a response. Combined with repositioning assignments, these vehicle routes
form the basis for the simulation of vehicle behavior. A vehicle moves immediately to its
next target which either corresponds to the next stop in its route or its repositioning target.
In order to realistically model vehicle movement, we work with paths on a road network
obtained from our routing engine. For this study, we assume free-flow travel times on the
arcs of the road network. Upon arrival at its target, a vehicle generates relevant events and
sends them to the plannings service. These include, for instance, the pickup and delivery of
customers or the end of a repositioning movement. Additionally, while traveling to a new
location, each vehicle regularly emits updates regarding its current location.

4 Forecast-driven repositioning

In this section, we provide a detailed description of our forecast-driven repositioning algo-
rithm (FDR) and additionally introduce a reactive repositioning strategy (REACT) as a
benchmark.

4.1 Forecast-driven repositioning algorithm

The core idea of our algorithmFDR is to cover forecasted trip request demand by intelligently
repositioning idle vehicles. The central component of our approach is a MIP model (FDR-
M) that is solved at regular intervals. In this model, we aim to balance supply and demand
by maximizing the sum of covered demand and minimizing the number of repositioning
movements as well as vehicle travel times. Anticipated demand is given by a forecast that
outputs the expected number of trip requests for a given set of areas and a forecast horizon.
Supply on the other hand is provided by the vehicle fleet. We assume that vehicles may
cover demand in the neighborhood of their current or assigned location. This neighborhood
is intuitively defined as the set of areas that may be reached within the maximum allowed
waiting time of a customer. A single vehicle is assumed to cover multiple trip requests over
the forecast horizon. However, the precise number varies drastically by dataset, location, and
time of day. For instance, at night, when demand is rather low, vehicles tend to serve fewer
customers in the forecast horizon as fewer trip requests can be combined in a single vehicle
route. A similar behavior may be observed when comparing low and high demand areas with
vehicles in high-demand areas serving more customers within the forecast horizon. Thus,
we integrate an adaptive parameter tuning technique into our approach that estimates the
expected number of served trips for a vehicle located in a certain area. As this parameter
is updated each time we solve FDR-M, it reflects the spatial and temporal differences in
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the utilization of vehicles. Based on this adaptive parameter tuning and the current vehicle
schedules, we may calculate the supply provided by our vehicle fleet. By repositioning idle
vehicles, we are now able to shift supply from low-demand areas to areaswith excess demand.

FDR-M is embedded into a planning process that we explain in the following section.
Subsequently, we introduce the MIP model itself alongside the necessary notation and the
adaptive parameter tuning technique.

4.1.1 Planning process

FDR-M is embedded into a rolling horizon planning process which is triggered at a regular
interval f (e.g. every three minutes). The four main steps of the planning process are as
follows:

1. Obtain an up-to-date demand forecast.
2. Perform adaptive parameter tuning as detailed in Sect. 4.1.4.
3. Solve FDR-M as given in Sect. 4.1.3.
4. Determine an optimal assignment of vehicles to repositioning targets.

In the first step, a demand forecast is obtained that yields the number of expected trip requests
for a set of areas within a forecast horizon (e.g. 1 hour). Combined with the current state of
the vehicle fleet, this forecast serves as an input for FDR-M. In a second step, parameters
for FDR-M are updated based on the fleet’s performance in a short period of time before the
repositioning algorithm is triggered. This enables us to adjust to varying spatial and temporal
conditions. Subsequently, we solve FDR-M which determines repositioning assignments on
an aggregated level. As an output, we obtain the number of vehicles repositioned between
any pair of areas i and j , denoted as xi j . Lastly, these aggregated values are translated into
actionable decisions. First, we randomly sample xi j repositioning targets from the set of
feasible target locations L j in the target area for all pairs i, j ∈ A where i �= j . This set of
feasible targets is determined based on prior trip requests, i.e. each past pickup location is
a feasible repositioning target. Afterward, we determine an optimal assignment of available
idle vehicles to the sampled target locations via a network flow formulation. This assignment
minimizes the total travel time necessary for repositioning movements. In the remainder of
this section, we will take a detailed look at the second and third steps of the planning process
which constitute the core portion of our algorithm.

4.1.2 General notation

All relevant notation used throughout this section is summarized in Table 4. K denotes the
set of all vehicles. This set may be further subdivided into idle vehicles K id , active vehicles
serving a route Kact and vehicles on a repositioning trip Kre. In addition, A represents a
set of areas. For the remainder of this work, we utilize a partitioning of the region under
study into square grid cells. The size of these cells is given by g (e.g. 3000 m) and denotes
the length of the sides. Figure 4 illustrates the utilized grid among other key concepts that
will be explained throughout this section. For the purpose of travel time calculations, we
assume that these areas are represented by their center and calculate a travel time ti j between
the centers of i and j . Centers are not the exact centroid of an area but rather the closest
node on the road network. Consequently, travel times are calculated from the shortest paths
on the road network. The maximum travel time between any pair of areas is denoted as
Tmax = maxi, j∈A ti j . We may now further divide the sets of vehicles by area i ∈ A as K id

i ,

123



Annals of Operations Research

Table 4 Notation for forecast-driven repositioning

Sets

A Areas

Are Valid target areas for repositioning

K Vehicles

Kid |Kact |Kre Idle | active | repositioning vehicles

Kid
i |Kact

i |Kre
i Idle | active | repositioning vehicles per area i ∈ A

K Ni Vehicles in the neighborhood of i at the start of h−
Li Feasible repositioning target locations in i ∈ A

Ni Neighborhood of i

Parameters

αk Active percentage of vehicle k

d̂i Demand forecast for i ∈ A

D̂ Cumulated demand forecast for all areas i ∈ A

d−
k Performed delivery operations by vehicle k in h−

d+
k Planned delivery operations by vehicle k in h+

êi Expected number of requests for a vehicle in i ∈ A in h+
ek Potential number of requests served for vehicle k in h−
f Interval of time in which algorithm FDR is run

g Size of grid cells

h Forecast horizon in minutes

h+|h− Time periods covering the previous and next h minutes

kmin Minimum number of vehicles for neighborhood calculations

p−
k Performed pickup operations by vehicle k in h−

p+
k Planned pickup operations by vehicle k in h+

Sacti Supply provided by active vehicles in area i ∈ A

Srei Supply provided by repositioning vehicles to area i ∈ A

ti j Travel time from area i to j

Tmax Maximum travel time maxi, j∈A ti j
tc Coverage radius

wcov Objective function weight for covered demand

wmov Objective function weight for repositioning movements

wt Objective function weight for coverage travel times

wi Objective function weight for coverage of demand in area i ∈ A

Decision variables

ci j ∈ R
+
0 Provided demand coverage from area i to j

xi j ∈ N
+
0 Number of vehicles repositioned from area i to j

K act
i , Kre

i . Note that the sets K id
i and Kact

i contain those vehicles currently situated in area
i . Kre

i on the other hand consists of vehicles currently repositioning towards i . Vehicles may
only be repositioned to valid target areas Are ⊆ A. In this study, we limit Are to areas with
at least one prior pickup. This is necessary as we sample specific repositioning targets Li
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Fig. 4 Illustration of our grid-based map partitioning, neighborhood of the considered area a, area centers,
and possible repositioning targets

for each i ∈ Are from past pickup locations. An example of possible repositioning targets
may be seen in Fig. 4. In practical applications, Are might be determined based on suitable
waiting spots for vehicles. Our model works on a demand forecast denoted as d̂i for each
i ∈ A. This forecast gives us the expected number of trip requests originating in an area i
within a forecast horizon of h minutes. h+ and h− denote time periods covering the previous
and next h minutes respectively.

4.1.3 Repositioning model

The complete model FDR-M is given in equations (1) – (8). In the following, we will first
describe the decision variables and subsequently, we take a detailed look at the model, its
objective function, and constraints. In Sect. 4.1.4, we present the details of our adaptive
parameter tuning process that is utilized when building the model.
Decision variables Our model contains two sets of decision variables. Integer variables
xi j |i, j ∈ A correspond to our actual repositioning decisions and denote the number of
vehicles repositioned from area i to j . Variables ci j |i, j ∈ A denote the coverage that is
provided by vehicle resources located in or assigned to i for forecasted trip demand in j .
This concept of provided coverage is central to our model. We assume that any vehicle may
serve multiple trip requests over the forecast horizon in the neighborhood Ni of its current
or assigned location in area i . This neighborhood is defined as the set of areas j ∈ A that
lie within a given coverage radius tc of i . This coverage radius corresponds to the maximum
allowed waiting time of a trip request as this means that a vehicle situated in i could reach the
request on time. Thus, Ni is defined as Ni = { j ∈ A|ti j ≤ tc}. Figure 4 shows an example in
the city of Hamburg with a coverage radius of 480 seconds. Given these variable definitions,
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Fig. 5 Illustration of decision
variables. Green areas form the
neighborhood of i . Only non-zero
demands and relevant area
centers are shown for simplicity.
In this example one vehicle is
repositioned from area k to area i
to cover forecasted demand in
areas j and h

our model will reposition vehicles to provide coverage in areas with lacking supply. Figure
5 shows a simple example in which one vehicle is repositioned from area k to area i in order
to cover demand in the two neighboring areas h and j . The precise number of requests that a
single vehiclemay cover depends on its location and the time of day. Therefore, we adaptively
determine a parameter êi denoting the expected number of trip requests that a vehicle located
in area i may cover over the horizon h. The details of this supply calculation as well as the
adaptive parameter tuning technique will be explained later in this section.
Model The objective function (1) follows three hierarchical goals which are reflected in the
terms of the objective function:

1. Maximize the sum of covered demand, weighted by wcov and wi .
2. Minimize the number of repositioning movements, weighted by weight wmov .
3. Minimize travel times for repositioning movements and demand coverage. The latter are

penalized with weight wt .

Objective precedence is ensured by weights wcov > wmov > 1. These weights may be
determined based on the maximum overall travel time between two areas Tmax . We use
wcov = 10 · Tmax and wmov = Tmax . With this choice of weights, we ensure that one unit
of additional covered demand is prioritized over minimizing movements and travel times.
The primary objective is to maximize the acceptance rate of future requests by covering
predicted demand. Empirically, it has proven beneficial to prioritize coverage in high-demand
areas. Therefore, we add weights per area corresponding to the fraction of total estimated

demand, i.e., wi = d̂i∑
i∈A d̂i

= d̂i
D̂
rewarding coverage in high-demand areas. The secondary

objective stems from the operational concern thatwewant tomove as fewvehicles as possible.
Particularly, we do not want to move any vehicles at all, if the current fleet configuration can
cover all forecasted demand. Thus, we penalize the movement of vehicles and ensure that
repositioning only takes place if it leads to additional covered demand. The tertiary objective
ensures that overall travel times are minimized and leads to suitable vehicles being selected
for repositioning. Two travel time factors are taken into account. First, we consider travel
times incurred by repositioning decisions xi j . Second, we consider anticipated travel times
attached to ci j variables. The assumption is that a vehicle located at i ∈ A will have to move
to j ∈ A when a request arises. These anticipated travel times are penalized by a factor
wt ≥ 1 which rewards moving vehicles closer to the predicted demand. This tends to be
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beneficial as it reduces customer waiting times and improves vehicle utilization.

(FDR-M)
∑

i∈A

∑

j∈A

wcov · w j · ci j

−
∑

i∈A

∑

j∈A\{i}
wmov · xi j

−
∑

i∈A

∑

j∈A

xi j · ti j −
∑

i∈A

∑

j∈A

wt · ci j · ti j → max

(1)

s.t.
∑

j∈A

xi j ≤ |K id
i | i ∈ A (2)

∑

j∈A

c ji ≤ d̂i i ∈ A (3)

∑

j∈A

ci j ≤
∑

j∈A

x ji · êi + Srei + Sacti i ∈ A (4)

ci j = 0 i ∈ A, j /∈ Ni (5)

xi j = 0 i ∈ A, j /∈ Are, i �= j (6)

xi j ∈ N
+
0 i, j ∈ A (7)

ci j ∈ R
+
0 i, j ∈ A (8)

Constraints (2) guarantee that the number of vehicles repositioned from i ∈ A does
not exceed the number of available idle vehicles. Note that only idle vehicles are available
for repositioning. Vehicles that are currently performing a repositioning movement cannot
be reassigned to a new target. This is due to operational concerns as we do not want to
frequently change repositioning targets of individual vehicles and drivers. A repositioning
movement may however be interrupted by the dispatching algorithm as presented in Sect.
3.1. In that case, the vehicle is assigned a route with trip requests and starts serving these.
Constraints (3) ensure that the maximum provided coverage for a given area i is capped by
the forecasted demand d̂i . Inversely, Constraints (4) limit the provided coverage from area
i to the available supply. This supply is equivalent to the number of trip requests that may
be served within the forecast horizon h by vehicle resources in i . In order to calculate the
available supply, we consider three types of vehicles. Active vehicles located in i contribute
to the active supply Sacti , while vehicles currently repositioning to i provide the repositioning
supply Srei . Lastly, supply provided by idle vehicles is considered through the x ji variables
in the right-hand side of the equation. This term includes vehicles staying idle at i as well
as vehicles being selected for repositioning to i . These vehicles are multiplied by a factor
êi denoting the expected number of trip requests that a vehicle in i will serve within the
forecast horizon. This parameter as well as the active and repositioning supply may differ
significantly depending on the considered area, current vehicle schedules, and time of day
among other factors. Therefore, we introduce an adaptive parameter tuning approach, which
will be detailed in Sect. 4.1.4. Constraints (5) limit the spatial extent of provided coverage to
the given neighborhood Ni as explained earlier. As repositioning is only allowed to a set of
target areas Are, Constraints (6) ensure that we only send idle vehicles to such areas or leave
them at their current location. Lastly, variable domains are given by Constraints (7) and (8).
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4.1.4 Adaptive parameter tuning

As mentioned previously, the number of trip requests that a vehicle is expected to serve in
the horizon h varies depending on several factors such as its current location, the time of
day, or its current schedule. For instance, vehicles tend to be able to serve more requests in
high-demand areas as it is possible to build more efficient vehicle routes. To reflect these
facts, we propose an adaptive parameter tuning process to estimate the supply provided by
the vehicle fleet over the next horizon h+.

For this purpose, we consider the performance of our vehicle fleet within the previous
horizon h−. As a first step given in Equation 9, we determine the potential number of requests
that a vehicle k could have served in h−, denoted as ek .

ek = 0.9 · 1

αk
· p−

k + d−
k

2
k ∈ K (9)

p−
k and d−

k denote the number of pickup and delivery operations performed by k in h−.
Thus, dividing the sum of these values by two in the right-hand side of the equation gives
us the number of trip requests served in h−. However, k may have been idle for a portion
of h−, therefore this number does not reflect the potential number of served requests at full
utilization. To account for this fact we multiply by a factor of 1

αk
where αk is the percentage

of time that k was active in h−. This value tends to be an upper bound on the number of trip
requests that the vehicle could have realistically served. In general, a 100 % usage rate of
vehicles is not achievable in practical scenarios. Based on preliminary studies, we estimate
that an average 90 % usage rate is realistic and therefore correct our result by a factor of 0.9.

Based on this historical vehicle performance, we may now estimate the expected number
of served trip requests êi for each area i as defined in Equation 10. This value yields an
estimation of how many trip requests a vehicle starting in area i will serve in the time period
h+.

êi =
∑

k∈K Ni ek
|K Ni | i ∈ A (10)

To calculate êi , we consider all vehicles K Ni that were located in the neighborhood of i at
the start of the previous horizon h−. Recall that this neighborhood is defined as the set of
areas within the coverage radius of i . To achieve a reliable estimate, we furthermore ensure
that K Ni contains at least kmin vehicles. If this is not the case, the neighborhood Ni is grown
iteratively by including the next closest area until kmin vehicles are reached. We may then
calculate êi as the average of ek for all vehicles in K Ni .

Based on êi , we are now able to estimate our available supply in any area. Supply provided
by repositioning vehicles, i.e. vehicles that have been selected for repositioning in previous
runs of the repositioning algorithms, is calculated as defined in Equation 11. We assume that
each vehicle repositioning to area i will serve approximately êi requests over the coming
forecast horizon h+. Thus, we merely multiply the number of repositioning vehicles by êi .

Srei = |Kre| · êi i ∈ A (11)

Supply provided by active vehicle is calculated in a similar fashion in Equation 12. How-
ever, in this case we need to consider the current vehicle schedules. Thus, for each vehicle,
we adjust the number of expected served trip requests based on the current planned pickup
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(p+
k ) and delivery (d+

k ) operations.

Sacti =
∑

k∈Kact
i

êi − p+
k + d+

k

2
a ∈ A (12)

Finally, supply is also provided by idle vehicles that are either selected to reposition
to another location in the subsequent period or that stay at their current position. This is
expressed through the decision variables x ji in Constraints (4) of our model.

4.2 Reactive repositioning algorithm (REACT)

As a benchmark algorithm, we implement a reactive repositioning approach. The algorithm
is an adapted version of the repositioning approach presented by Alonso-Mora et al. (2017a).
The central idea behind it is to reposition idle vehicles to the locations of rejected trip requests.
This tends to be beneficial as trip requests are highly spatially and temporally correlated.
Therefore, it is likely that additional trip requests will arise in the near future in the vicinity
of rejected requests. We modify the proposed algorithm to reflect the fact that we process
each trip request individually upon arrival whereas Alonso-Mora et al. (2017a) work with
batches of requests gathered over a given batching time period. Thus, after rejecting a trip
request, wemay immediately select an idle vehicle for repositioning. Given a rejected request
r and its pickup location pr , we greedily reposition the nearest idle vehicle to pr , i.e. the
vehicle with the shortest travel time from its current position to pr .

5 Computational evaluation

In this section, we evaluate FDR on several real-world datasets. We first discuss our exper-
imental design and afterward our datasets and describe the specific scenarios considered in
this computational study. Subsequently, we present algorithmic settings as well as relevant
performance indicators. Finally, Sect. 5.6 presents the computational results and findings.

5.1 Experimental design and setup

In this study, we investigate the performance of our approach on several real-world instances.
Our main goals are (1) to evaluate the applicability of the repositioning approach for large-
scale instances, (2) to compare its performance to the reactive repositioning approach of
Alonso-Mora et al. (2017a), (3) to assess the robustness of the repositioning approach relative
to errors in the forecasting process, and (4) to evaluate howwell the adaptivemethod performs
in different settings and scenarios.

To assess the performance of the algorithms under circumstances, we use four real-world
data sets for urban and metropolitan areas that differ substantially in terms of structure.
These data sets as well as the scenarios derived from them are introduced in Section 5.2 in
more detail. Note that our main interest lies in the evaluation of the repositioning algorithm
rather than in the development of demand prediction methods. However, the quality of the
repositioning decisions depends on the quality of the forecasts that are used. Therefore,
we combine our algorithm with both a naive and a perfect demand forecast, which, together,
provide reasonable lower and upper bounds on the quality of forecasts that can be expected in
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practical applications. These forecast modes are discussed in Sect. 5.4. Finally, performance
measures are defined in Sect. 5.5.

Our planning algorithms as well as the discrete-event simulation described in Sect. 3 are
implemented in C++. As a routing engine, we use RoutingKit (Dibbelt et al. 2016) which
operates on data extracted from OpenStreetMap covering the respective areas under study.
Gurobi 8.1.0 serves as a MIP solver for model FDR-M. All experiments were run on the
same machine with an Intel i7-6600U CPU and 20 GB of RAM.

5.2 Datasets and scenarios

In the following we describe the datasets that were used in this study (Sect. 5.2.1). From
these datasets we derive several simulation scenarios that are described in Sect. 5.2.2.

5.2.1 Dataset description

We evaluate our repositioning approach on four real-world datasets. Firstly, a dataset contain-
ing taxi trip records from the city of Hamburg (HH)1. Secondly, we use the publicly available
data of taxi trips in New York City2 to build two datasets. On the one hand, we consider
the complete area of New York City (NYC). Additionally, we also build another dataset as
a subset of the previous one, containing only taxi trips within Manhattan (MANH). We do
this to evaluate our algorithm under different circumstances. The MANH dataset reflects a
highly urbanized area with very dense demand in a rather small geographical region while the
NYC dataset also includes less densely populated regions and covers a significantly larger
area. Lastly, we utilize a dataset from Chengdu (CH)3 made available by the Chinese MOD
provider Didi Chuxing.

All of these datasets have the same basic structure and contain the pickup time as well
as the desired pickup and delivery coordinates of each trip request. Moreover, the NYC and
MANH datasets also contain the number of passengers per request. As this information is
missing from the other two datasets, we derive a distribution over the number of passengers
based on the NYC dataset and randomly sample from this distribution for the HH and CH
datasets. Additionally, we perform some basic filtering to eliminate obvious outliers and
erroneous records. For this purpose, we remove records where pickup or delivery coordinates
are missing or lie outside the respective region of study. We only consider trip requests with
a passenger count of at most two. This is common practice in ride-sharing services like
UberPool (Uber 2021) as larger groups are often requested to use classical taxi services.

5.2.2 Scenario generation

Based on the datasets described above, we generate a set of scenarios. As the spatial and
temporal distribution of demand varies significantly between working days and weekends,
we consider a scenario on a Wednesday as well as Sunday for each dataset. This way, we
evaluate our repositioning approach under different demand patterns. The precise dates and
number of requests are shown in Table 5.We use a shorthand notation to denote our scenarios,
e.g., “HH-Wed” corresponds to the Wednesday scenario for the HH dataset. One thing to

1 Provided by PTV Group, Haid-und-Neu-Str. 15, 76131 Karlsruhe, Germany.
2 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
3 https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020.
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Table 5 Temporal scenario settings per dataset with dates and trip requests

HH NYC

Date Requests Date Requests

Wednesday 20 Mar 2019 13,556 16 Mar 2016 376,526

Sunday 24 Mar 2019 10,669 20 Mar 2016 368,508

MANH CH

Date Requests Date Requests

Wednesday 16 Mar 2016 297,457 16 Nov 2016 239,037

Sunday 20 Mar 2016 269,346 20 Nov 2016 237,037

Table 6 Fleet size per dataset HH NYC MANH CH

Fleet size 90 1300 900 1700

note is that we use a simulation warm-up time of 6 hours in simulated time. Thus, when
evaluating a scenario on 20March 2019, the simulation is started on 19March 2019 at 18:00,
but the collection of statistics is only performed after 20 March 2019 at 00:00. This way, we
do not start with an empty system state in which all vehicles are idle.

As we have no information regarding real-world vehicle fleets, we use preliminary tests
to determine a fleet size for each dataset as given in Table 6.

This fleet size should lead to a trip request acceptance rate of roughly 90 − 95 % with
our benchmark algorithm REACT and is used throughout most experiments in the following
sections. The reasoning behind our fleet size choice is as follows. Firstly, it seems reasonable
to assume that a real-world provider of a MOD service would be able to accept almost all
trip requests. We allow for some rejections due to trip requests that are very difficult to reach
or due to excess demand during peak hours. Secondly, we vary fleet sizes in a limited range
around our base size to evaluate scenarios with a slight over- and undersupply of vehicles in
order to assess the algorithm performance under these conditions (Section 5.6.3). Scenarios
with extremely small or large fleet sizes relative to the given demand are less interesting for
repositioning. In these cases either no repositioning is necessary or all vehicles are occupied
and, thus, no idle vehicles are available for repositioning.

5.3 Repositioning settings

All scenarios are run with different repositioning modes: no repositioning at all (NONE),
reactive repositioning as described in Sect. 4.2 (REACT), and our forecast-driven reposition-
ing algorithm from Sect. 4.1 (FDR). FDR has a set of parameters that need to be configured
appropriately.Concerning the repositioning interval ( f ), grid cell size (g) and forecast horizon
(h), we perform experiments to assess the impact of these parameters and determine suitable
values. These are described in detail in Sect. 5.6.1. Values for all remaining parameters are
given in Table 7.

The objective function weights are selected in accordance with the prioritization of the
different goals as discussed in Sect. 4.1.3. We use wcov = 10 · Tmax and wmov = Tmax .

Covered demand is weighted with a factor of wi = d̂i
D̂
, while travel times for coverage
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Table 7 FDR parameter settings

Description Values

Objective weight for total coverage (wcov) 10 · Tmax

Objective weight for vehicle movements (wmov) Tmax

Objective weight for coverage travel time (wt ) 1.3

Objective weight for areas (wi )
d̂i
D̂

Min. vehicles in neighborhoods (kmin ) 5

Coverage radius (tc) [min] 4 / 8 (HH)

are penalized by a factor of wt = 1.3. Altogether, these weights prioritize the coverage of
additional demand over the minimization of vehicle movements. If not all demand may be
covered, this parameter setup prioritizes trip requests in high-demand areas. Lastly, travel
times for coverage of demand are penalized slightly, encouraging moving vehicles closer
to the covered demand. When running our adaptive parameter tuning process, we set the
minimum number of considered vehicles for calculation of êi to kmin = 5. One additional
parameter is configured depending on the dataset: the coverage radius tc. It is set to 8 minutes
for the HH dataset and 4 minutes for all other datasets. Recall that this parameter is derived
from the maximum waiting time of a customer. We assume a longer acceptable waiting time
for the Hamburg dataset where trip request demand is relatively sparse and the vehicle fleet
is consequently much smaller compared to the other datasets. Otherwise, we would need an
excessively large vehicle fleet in the Hamburg scenarios to serve a reasonable fraction of the
arising trip requests.

5.4 Forecast modes

As described above, we combine the forecast-driven repositioning algorithm (FDR) with
two different forecasting modes to evaluate its performance relative to the quality of the
predicted information. In order to base our study on forecasting benchmarks that can be
easily replicated, we do not use dedicated forecasting methods but seek to represent the
margin of error that may be associated with real-world forecasts. We first employ a perfect
forecast that assumes complete knowledge of future trip requests. It is used in this study
to examine how well the proposed method can exploit the available information, since it
includes, for example, demand spikes due to public events. The corresponding setting is
denoted as FDR (P) in the following. Secondly, we use a naive forecast that assumes that the
demand in the next period equals that of the previous one, i.e. the forecast for a given area
i and a forecast horizon h is merely the number of trip requests that originated in i within
the previous horizon h−. This setting is denoted as FDR (N). It is reasonable to assume that
any forecast achieves at least this quality in practice, as mechanisms that perform worse can
easily be replaced by the naive forecast. Similar to REACT, it can adjust to demand surges
with a small delay. Moreover, it is a method that can be used without any additional data
input and can therefore also be used for new systems without a data history.

These two forecasts serve as an upper and lower bound on realistic state-of-the-art fore-
casting models and can be easily replaced by application-specific methods. They serve to
illustrate that our algorithm is relatively robust to forecasting errors and may already be
successfully utilized with a relatively simple forecast. We performed some preliminary tests
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Table 8 Performance indicators

KPI Unit Description

Rej % Trip request rejection rate

Wait s Avg. customer waiting time

Ride s Avg. customer ride time

TTv min Avg. total travel time per vehicle

TTv
rep min Avg. repositioning travel time per vehicle

TTv
req s Avg. vehicle travel time per served trip request

RT min Total running time

RTr min Total running time for the repositioning algorithm

regarding the performance of our naive forecast in order to compare its performance to results
from literature and estimate how a more refined forecasting model would perform. In par-
ticular, we replicated the evaluation of Yao et al. (2019) on the NYC dataset. They achieve
a root-mean-squared error (RMSE) of 24.10 with their best model and report a RMSE of
26.07 − 28.51 with classical machine learning approaches such as gradient boosting or
multi-layer perceptrons. In comparison, our naive forecast achieves a RMSE of 35.54. For
our experiments, we used the same spatial granularity (1x1 km grid cells), test data period
(11 February 2015 - 03 March 2015), and forecast interval of 30 minutes. Therefore, these
results should be roughly comparable despite minor differences like the data preprocessing
and cleaning procedure. Based on these evaluations, we may conclude that our naive and
perfect forecasts establish a reasonable range regarding the performance of our repositioning
approach.

5.5 Performance indicators

To assess the performance of our repositioning algorithm, we introduce a set of key per-
formance indicators (KPI) as summarized in Table 8. The trip request rejection rate is our
primary measure for the effectiveness of our repositioning algorithms. Customer waiting and
ride times are used as a means to assess the impact on customer satisfaction. The total travel
time per vehicle TTv serves as an estimator of the increased system cost by vehicle move-
ments. However, it is distorted due to the differences in served trip requests. An increased
average travel time may be caused by two main factors: First, a higher vehicle utilization due
to serving more trip requests, and second, the repositioning movements themselves. Thus,
we also consider the average travel time per served request TTv

req which corresponds to the
total travel time of all vehicles divided by the total number of served trip requests. We also
separately measure the travel time for repositioning movements TTv

rep . Lastly, we report the
total running time of a scenario. This includes the running time of the repositioning algorithm
as well as dispatching and simulation. The running time of only the repositioning algorithm
is also reported separately as RTr .

5.6 Computational results

Throughout the following sections we present our main computational results and findings.
First, we study the impact of several algorithmic parameters in Section 5.6.1. Subsequently,
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Table 9 FDR parameter
evaluation, default values used in
this section are denoted in italic
while the best values determined
in our tests are denoted in bold

Description Values

Repositioning interval ( f ) [s] 30, 60, 120, 180, 300

Grid cell size (g) [m] 750, 1000, 2000, 3000, 5000

Forecast horizon (h) [min] 5, 15, 30, 60, 120

Fig. 6 Influence of the grid cell size (g), forecast horizon (h) and repositioning interval ( f ) on the trip request
rejection rate and the total running time of FDR

Section 5.6.2 presents an overview of our results while Sections 5.6.3 - 5.6.6 present a more
detailed analysis of several relevant factors such as fleet sizes, the parameter tuning process
and the influence of the demand forecast.

5.6.1 Parameter influence

In this section, we study the influence of three main parameters of FDR: the grid cell size
(g), the repositioning interval ( f ), and the forecast horizon (h). For each parameter, we test
five different settings as given in Table 9.

Due to the involved computational effort, we are unable to perform a full grid search for
all possible parameter combinations. Hence, we vary each parameter individually, setting
the other two parameters to their default values indicated in italic in Table 9. The best found
values for each parameter that will be used for the remainder of this study are highlighted in
bold. We test each setting on the scenarios as described in Section 5.2.2. We mainly focus on
the impact of each parameter on the overall trip request rejection rate as well as the running
time for FDR. Average results across all scenarios and datasets are depicted in Figure 6. We
show the trip request rejection rate as well as the total running time of FDR (RTr ) for each
parameter value.

The grid cell size has a large impact on the total running time of FDR. This is mainly due
to the fact that the size of our mathematical model FDR-M scales with the number of grid
cells. On the other hand, the effect on the trip request rejection rates is minor. Empirically,
the best rejection rates are achieved at a size of g = 3000 m. Therefore, we will use this
value in subsequent sections. At his grid cells size, the running times of FDR are negligible
with one iteration taking an average of around 80 ms.

Concerning the forecast horizon, the performance of FDR is relatively stable for values
between 15 and 60 minutes. Above or below these values we see an increase in rejected
trip requests. This meets our expectations as a very short horizon leaves little time to react
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Table 10 Average results for each combination of dataset and repositioning mode

Data Mode Rej Wait Ride T T v T T v
req RT RTr

[%] [s] [s] [min] [s] [min] [min]

HH NONE 15.44 405.58 530.87 773.83 409.54 1.06 0.00

REACT 6.22 387.43 529.58 876.42 417.56 1.37 0.00

FDR (P) 2.50 334.27 525.78 960.43 439.06 4.99 1.47

FDR (N) 2.33 328.22 525.17 959.04 437.85 3.93 1.53

NYC NONE 73.98 237.67 477.46 311.23 251.04 65.49 0.00

REACT 6.98 221.96 426.94 1009.48 227.30 68.63 1.93

FDR (P) 4.07 199.80 414.99 1052.42 229.78 86.86 4.83

FDR (N) 4.00 199.99 415.77 1051.97 229.50 84.03 3.95

MANH NONE 34.63 248.03 368.81 567.14 165.40 50.98 0.00

REACT 2.25 228.28 353.35 842.99 164.54 34.16 0.24

FDR (P) 0.33 204.17 342.38 868.82 166.35 85.42 1.00

FDR (N) 0.38 204.11 342.39 864.20 165.56 137.37 0.90

CH NONE 45.65 208.89 679.41 436.13 363.95 30.05 0.00

REACT 6.25 195.11 629.08 741.98 358.56 25.62 1.82

FDR (P) 0.91 174.89 617.67 825.63 377.48 107.13 7.84

FDR (N) 1.00 174.49 617.31 819.18 374.90 103.44 6.41

ALL NONE 42.42 275.04 514.14 522.08 297.48 36.89 0.00

REACT 5.43 258.20 484.74 867.72 291.99 32.44 1.00

FDR (P) 1.95 228.28 475.21 926.83 303.17 71.10 3.78

FDR (N) 1.93 226.70 475.16 923.59 301.95 82.19 3.20

The last rows denoted as “ALL” contain averages across all four datasets. For KPIs concerning the customer
experience, the best values for each dataset are indicated in bold

to changing demand and a long horizon includes forecasted demand that is not relevant for
the short-term decision making. For all subsequent evaluations, we select the best value of
h = 60 min.

Lastly, the repositioning interval has a relatively strong impact on the rejection rate as
well as the running time. As expected, shorter intervals lead to fewer rejected trip requests
at the cost of an increase in running time as FDR is run more often. However, even running
FDR every 30 seconds is still manageable as the average running time for one iteration is
merely around 80 ms. Hence, subsequently we select an interval of f = 30 sec.

5.6.2 Results overview

Table 10 provides an overview of the computational results. It contains average values for
each combination of dataset and repositioningmode. Additionally, we also calculate averages
across all datasets, denoted in the table as “ALL”.

Concerning the customer rejection rate, FDR achieves the best results with an average
improvement of around 3.5 percentage points compared to our benchmark algorithmREACT.
One thing to note is that the scenarios without repositioning (NONE) are not competitive
and exhibit high rejection rates. Therefore, we will not discuss these values in detail and will
generally use algorithm REACT as a baseline for comparison. When comparing FDR (P)
and FDR (N), we observe similar rejection rates. FDR (N) even performs better in several
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Fig. 7 Impact of the fleet size on rejection rates with REACT and FDR (P)

scenarios. As this behavior may also be observed for the other KPIs, we will focus our
analysis on FDR (P) for most of this section. In Sect. 5.6.5 we will take a more detailed look
at the differences between the two demand forecasting modes.

In addition to lowering rejection rates, our forecast-driven repositioning algorithm also
leads to reduced customer waiting and ride times. Throughout all scenarios, it achieves a
significant reduction compared to REACT. On average the reduction in waiting time amounts
to around 30 s (11.6 %). This is a side-effect of repositioning as vehicles are better positioned
to serve arising requests. The travel time per vehicle is increased when using repositioning
mechanisms. However, this is to be expected as the number of served requests rises. As the
travel time per served request illustrates, algorithm FDR only leads to slightly worse results
than REACT.

Overall, these results show that our approach does not perform unnecessary repositioning
movements in most cases. The observed running times are suitable for real-time usage across
all datasets. Repositioning itself only takes up a minor fraction of the running time compared
to the computational effort for dispatching and simulation. On average, one iteration of FDR
takes 79ms and even on themost challenging dataset (CH), this value only goes up to 163ms.
Hence, the algorithmmaybe used in real-time even on large datasets. The fast running times of
the repositioning algorithm are important to prevent conflicts with the dispatching algorithm.
If the repositioning algorithm would take too long, the system state would deviate while
it is running due to incoming trip requests. This would potentially invalidate the decisions
made by the repositioning algorithm. The overall running time is in all cases lower than the
simulated time equivalent of 1440min. Hence, FDR can be applied in real-time on large-scale
datasets. In fact, there is still a large gap between the total running times and the simulated
time equivalent. This available computational time could for instance be used to employmore
complex vehicle routing algorithms.

5.6.3 Impact of fleet sizes

In Fig. 7 we illustrate the impact of the fleet size on the rejection rate with algorithms REACT
and FDR (P).
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Fig. 8 Vehicle utilization throughout the day for scenario NYC-Wed with REACT and FDR (P)

For this purpose, we alter the base fleet size as determined in Sect. 5.2.2 by a fixed vehicle
factor ranging from 0.8 to 1.2. The actual fleet size is obtained by multiplying the vehicle
factor with the fleet size. Across all datasets and fleet sizes, FDR improves the rejection rate
compared to REACT by an average of 3.36 percentage points. The level of improvement
varies between 1.27 and 5.44 percentage points depending on the specific dataset and fleet
size. For instance, in the MANH dataset REACT performs remarkably well and we see
only minor improvements by employing FDR. We assume that this is mainly due to the
geographical concentration of trip requests in the downtown Manhattan area and the small
overall area. This makes repositioning less impactful as vehicles are always relatively close
to high-demand areas. For all datasets, we observe some level of diminishing returns as the
fleet size is increased. This effect is most noticeable on the MANH and CH datasets where
we see only very minor reductions in the rejection rate when raising the vehicle factor above
1.0. Another trend across all datasets is that the difference between FDR and REACT grows
as the number of vehicles is increased. FDR is better suited to exploit larger fleet sizes where
almost all trip requests may be served, even ones in remote areas. In the case of small vehicle
fleets, the complete fleet may be occupied during peak hours, therefore leaving little room
for improvement by repositioning.

5.6.4 Vehicle utilization & impact of datasets, weekdays and fleet sizes

Besides aggregated KPIs, it is also interesting to take a detailed look at the utilization of
vehicles throughout the day for different scenarios.

Figure 8 shows the vehicle utilization compared between the different repositioningmodes
for one scenario. Colored areas illustrate the fraction of vehicles in a specific state over time.
Possible states are idle, active, and repositioning. Lines indicate the number of total and
rejected requests over time.

With FDR (P), most of the fleet is left idle during low-demand times and only minimal
repositioning is performed (particularly at night between 02:00 and 04:00). Before the morn-
ing peak, a significant portion of the fleet is repositioned. In comparison, REACT only starts
to reposition notable numbers of vehicles after a spike in rejected requests at around 07:00.
Overall, when using FDR, the number of rejected requests is almost zero throughout most of
the day. Only during the evening peak after approximately 18:00, when the complete fleet is
occupied, requests are rejected. REACT on the other hand exhibits a small number of rejected
trip requests even at times when the vehicle fleet is not fully utilized.
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Fig. 9 Vehicle utilization throughout the day for scenarios HH-Wed, NYC-Wed, MANH-Wed and CH-Wed
with FDR (P)

Fig. 10 Vehicle utilization throughout the day for scenarios HH-Wed and HH-Sun with FDR (P)

Fig. 11 Vehicle utilization throughout the day for scenario NYC-Wed, FDR (P) and vehicle fleet factors 0.8,
1.0 and 1.2
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Fig. 12 Vehicle utilization throughout the day compared for one scenario MANH-Wed and two repositioning
modes FDR (N) and FDR (P)

The behavior of FDR (P) is consistent and robust over a wide variety of scenarios. Figure
9 illustrates the vehicle utilization on our four different datasets. Although the demand pat-
terns are different, the algorithm achieves reliable results in all scenarios. The same may be
concluded for the behavior when comparing scenarios HH-Wed and HH-Sun as seen in Fig.
10. Although the temporal development of demand is completely different in both scenarios,
FDR manages to keep rejection rates low and only rejects a larger number of trip requests in
times where the complete vehicle fleet is utilized. Finally, FDR (P) also works consistently
with different fleet sizes as shown in Fig. 11. Repositioning becomes less impactful in the
scenario with a 0.8 vehicle fleet factor, as the complete fleet is occupied throughout large
portions of the day and only a few vehicles are available for repositioning. Conversely, in the
scenario with a 1.2 vehicle fleet factor, FDR (P) manages to serve almost all trip requests.

5.6.5 Comparison of naive and perfect forecasts

In this section,we take a detailed look at the performance differences of FDRwhen comparing
the perfect and naive forecasting models, thereby assessing the robustness of the algorithm
with respect to forecasting errors. As we saw from the aggregated results in Sect. 5.6.2,
the overall difference between the two forecasting modes is relatively small. Somewhat
surprisingly, FDR (N) even led to better rejection rates in several scenarios. Looking at the
vehicle utilization in Fig. 12, we can see some minor differences between the two modes.

FDR (N) underestimates demand in the morning, leading to some additional rejected
requests. On the other hand, it overestimates demand in the evening, incurring additional
repositioning movements. The reason for these differences is the structure of the naive fore-
cast, which assumes that the demand over the next forecast horizon is equal to the demand
observed throughout the last forecast horizon. Hence, when we observe a rising demand,
for instance during the morning rush hour, the naive forecast lags behind and only catches
the peak with some delay. On the other hand, during times of sharply decreasing demand,
such as in the late evening, the naive forecast overestimates the level of demand and causes
additional repositioning movements.

To illustrate this effect more concisely, we generate two additional scenarios for the HH
andMANH datasets. The time slices selected for these scenarios are depicted in Fig. 13. One
scenario covers the morning rush hour while the other covers the evening hours during which
the level of demand decreases. The results for these scenarios are summarized in Table 11.
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Fig. 13 Time slices used to illustrate performance during changes in demand

Table 11 Average results for the
morning and evening scenario
with a FDR (P) and FDR (N)

Scenario Data Mode Rej T T v T T v
rep

[%] [min] [min]

morning HH FDR (P) 3.57 265.07 43.77

FDR (N) 4.71 254.64 33.97

MANH FDR (P) 0.00 89.53 15.11

FDR (N) 2.30 80.96 6.05

evening HH FDR (P) 0.82 242.64 27.96

FDR (N) 0.52 249.89 34.79

MANH FDR (P) 1.03 302.45 20.82

FDR (N) 1.30 304.80 24.77

In the morning scenario, our naive forecast underestimates the trip request demand and
causes less repositioning movements as seen by the repositioning time TTv

rep . However, this
also leads to an increased number of rejected trip requests for both datasets. Conversely, in
the evening scenario, FDR (N) overestimates the demand level and repositions additional
vehicles. In the case of the HH dataset, this leads to an improvement in rejected trip requests.
The reasoning for this is that FDR aims to minimize repositioning movements. In some
cases, we may overestimate the capability of the vehicle fleet to serve the forecasted demand.
Hence, repositioning additional vehicles can be beneficial.

Overall, we can conclude that FDR can be successfully utilized even when combined
with structurally biased demand forecasts. Assuming that our two forecasting modes provide
reasonable bounds on demand forecasts used in practice (see Sect. 5.4), we expect that the
effects observed in practical applications follow a similar pattern.

5.6.6 Impact of adaptive parameter tuning

In Sect. 4.1.4 we introduced an adaptive parameter tuning process with the goal of estimating
the number of trip requests that a specific vehicle may serve within the next forecast horizon.
This approach serves two main purposes. Firstly, it is intended to remove the necessity of
tuning parameters a priori. Hence, we could start a ride-sharing service in a new area of
operations without needing any data in advance to tune our system parameters. Secondly, it
should more accurately reflect spatial and temporal differences in the number of trip requests
that a vehicle may serve compared to using a single static parameter. This should in turn lead
to improved system performance.
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Fig. 14 Expected requests served (êi ) for an excerpt of NYC (parts of Manhattan and Brooklyn) on 17 Mar
2016 at 05:00 and 19:00

Table 12 Average results with
and without adaptive parameter
tuning for each dataset. The last
rows denoted as “All” contain
averages across all four datasets

Data Adaptive Rej T T v

[%] [min]

HH yes 1.87 1077.11

no 2.17 1043.66

NYC yes 4.62 1011.16

no 5.24 994.14

MANH yes 0.43 884.85

no 0.47 882.41

CH yes 0.91 820.74

no 1.24 808.58

ALL yes 1.96 948.47

no 2.28 932.20

The usefulness of estimating the number of served trip requests depending on the time
of day and geographical location is illustrated in Fig. 14. It shows the value for êi for an
area covering parts of Manhattan and Brooklyn at two different times of the day. As we can
see, there are indeed large differences in êi . At 05:00, the overall demand level is lower,
which makes combining multiple requests into an efficient route more challenging. Hence,
the overall level of êi is lower. In contrast, during peaks times, a vehicle can serve more than
twice the number of requests. In addition, there are geographical differences. In both images,
we see Manhattan towards the left and Brooklyn towards the right. The demand density is
higher in the Manhattan area, leading to more efficient vehicle routes and hence a higher
value of êi .

To evaluate whether the adaptive tuning mechanism can adequately adjust to these effects,
we ran additional scenarios in which we fixed êi to a single value that was estimated for each
individual dataset based on historical data. The average results are summarized in Table
12. As we can see, the adaptive tuning process reduces the trip request rejection rates in
all datasets at the cost of a slightly increased vehicle travel time. Based on these results
we may conclude that the adaptive parameter estimation both eases the application of the
repositioning algorithm to a new area and improves the overall system performance regarding
rejected trip requests.

123



Annals of Operations Research

6 Conclusion and outlook

In this paper, we have presented a new approach for the idle vehicle repositioning problem.
The central component of our algorithm is a MIP model that aims to balance supply pro-
vided by the vehicle fleet and expected demand given by a forecast. We include an adaptive
parameter tuning process in order to reflect temporal and spatial changes in the number of trip
requests a vehicle is expected to serve. Our approach is embedded into a larger framework
for running dynamic ride-sharing applications and evaluated through extensive simulation
studies on four real-world datasets. In this study, we use a perfect and a naive demand forecast
that serve as an upper and lower bound on realistic forecasting models. The results with both
forecasts show that our algorithm improves trip request rejection rates as well as customer
waiting times and ride times across all datasets and scenarios. Thus, our algorithm may
be used in real time on large real-world datasets and already performs well with a simple
forecast.

In the future, we would like to study other potential applications for our forecast-driven
repositioning approach such as the repositioning of autonomous guided vehicles (AGVs) in
a large-scale industrial manufacturing or warehousing setting. In addition, we would like
to investigate whether our approach could be transferred to applications with decentrally
controlled vehicles such as MOD services like Uber or Lyft with self-employed drivers. In
these settings, our model and algorithm could be adapted to modify prices and incentivize
drivers to reposition to certain areas. Moreover, we aim to integrate additional forecasting
components into our system in order to adequately consider other sources of uncertainty.
One big factor here would be the inclusion of a forecasting model for travel times, as these
vary substantially depending on the current time of day, location, and traffic situation. There
are also several minor extensions and improvements that could be made for our MIP model.
Despite our consideration of the current system state and the adaptive parameter tuning
process,we could still addmore details to our algorithm. For instance, it could prove beneficial
to consider the current vehicle routes which contain information regarding the future vehicle
location and occupation. Moreover, our parameter tuning itself currently only considers
information about the immediate past and could be replaced by a more complex approach.
For example, one could use a trained machine learning model that forecasts the expected
number of served trip requests per vehicle. Besides modifying the current algorithm, we also
intend to experiment with completely different algorithmic approaches. While the running
times are good, the need for a commercial-gradeMIP solver can be problematic in real-world
use cases. Therefore, we intend to study different approaches such as network flow models
which may be able to solve a similar repositioning model considering current supply and
forecasted demand.
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