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Abstract: The inherent dependency of deep learning models on labeled data is a well-known problem
and one of the barriers that slows down the integration of such methods into different fields of
applied sciences and engineering, in which experimental and numerical methods can easily generate
a colossal amount of unlabeled data. This paper proposes an unsupervised domain adaptation
methodology that mimics the peer review process to label new observations in a different domain
from the training set. The approach evaluates the validity of a hypothesis using domain knowledge
acquired from the training set through a similarity analysis, exploring the projected feature space to
examine the class centroid shifts. The methodology is tested on a binary classification problem, where
synthetic images of cubes and cylinders in different orientations are generated. The methodology
improves the accuracy of the object classifier from 60% to around 90% in the case of a domain shift in
physical feature space without human labeling.

Keywords: unsupervised domain adaptation; pseudo-labeling; transfer learning

1. Introduction

Labeling huge amounts of unlabeled data becomes more and more challenging for
models with an increasing complexity. Different forms of labeling strategies such as semi-
supervised, self-supervised, and active learning including generative and adversarial
methods have created a vibrant research field to solve this common problem with many
successful demonstrations [1–3].

In the case of semi-supervised learning, generative models aim to learn and sample
from explicit or implicit probability distributions, whereas consistency regularization uti-
lizes the unlabeled data with perturbations for model robustness [4]. In such data-centric
methods, including image augmentation techniques, it is assumed that the boundaries of
the original or the extracted feature space engulfs the whole possibility space, and synthetic
data generation provides a mean to increase the data density. In active learning, the ob-
jective shifts to select unlabeled data instances to be labeled in an optimal way so that the
expensive human annotator/oracle is consulted at a minimum rate while updating the
prior on the data distribution. Herein, the objective function for adding new examples can
vary, such as maximizing diversity or the accuracy of the model [2]. Nonetheless, the stan-
dard approach for active learning relies heavily on human interaction for labeling uncertain
samples. This limitation increases the time and cost of the process, especially when working
with large datasets. N-shot learning is an alternative, model-centric approach that aims to
increase the predictive capability of machine learning methods with few training instances
by either looking for similarities in embedded feature spaces or relying on a meta-learner
that can adapt to different tasks [2]. There are also reported works that merge the strengths
of unsupervised, self-supervised, and semi-supervised methods [5–7]. We refer the reader
to a recent literature review for a more detailed overview [2,3,8–13].

The main objective of this work is to propose an alternative, similarity-based frame-
work to label unknown instances, particularly in the presence of a domain shift (i.e., feature
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statistics of the unlabeled instances are different than those of the labeled ones). The essence
of the underlying learning mechanism mimics the peer reviewing process in the scientific
community. Pseudo-labels created by the hypothesis generator (e.g., a classifier model)
are examined by the reviewer via metric learning. Herein, the shifts in class centroids in a
projected feature space due to the proposed hypothesis (pseudo-labels) is taken into consid-
eration in terms of direction and magnitude. Representing the current knowledge (labeled
instances) as centroids and tracking its relative change with the added pseudo-labels has
eliminated the need for human labeling in a case study and improved the accuracy of the
object classifier in the presence of a drastic domain shift. In the following, we will give
a brief overview of the relevant recent work, explain our methodology, and discuss the
further steps.

2. Related Work

The field of semi-/self-supervised and transfer learning has raised a great interest
in the community. Herein, we will highlight some of the recent works that have some
similarities with the different aspects of the proposed idea. One significant issue with
semi-supervised strategies is the assumption that the data of both the training and test
data are drawn from the same distribution. This domain shift between training (source
domain) and test data (target domain) can lead to a poor model performance for target
instances. Domain adaptation, as a subfield of transfer learning, focuses on generalizing
models trained on a source domain to be applied to different target domains. The case
where no target labels are available is referred to as unsupervised domain adaptation [14].
Various methods have been developed in the last decade to overcome the problem of
domain shift. Those methods can be categorized according to [15] into instance-based,
feature-based, and parameter-based methods. Because parameter-based methods focus on
adjusting the model’s parameters, which is not in the scope of our work, we refer to [14]
for related methods.

(1) Instance-based methods adjust the weights of the instances in a way such that the
distributions of both domains are similar [15]. Gong et al. [16] automatically selected in-
stances from the source domain (“landmarks”) that were distributed similarly to the target
domain in order to mitigate the domain shift problem. As in our work, Bruzzone and Mar-
concini [17] followed a pseudo-labeling strategy for domain adaptation in support vector
machines, where pseudo-labeled target instances were moved to the training dataset based
on their distance to the upper and lower bound of the decision margin. Both studies include
only different parts (similarity analysis or pseudo-labeling) of our proposed method.

(2) Feature-based methods achieve domain adaptation by adjusting the features of two
domains [15]. Many approaches try to alleviate the domain discrepancy by projecting
both domains in a common embedding space [18–20]. In a recent work, Deng et al. [21]
used a deep ladder-suppression network to extract expressive cross-domain shared rep-
resentations by suppressing domain-specific variations, which can be integrated with
metric discrepancy-based methods such as D-CORAL [22], DAN [23] and JAN [24]. Deep
frequency filtering was introduced by [25], where they used a simple spatial attention mech-
anism as a filtering step in the frequency domain in order to keep transferable frequency
components, leading to higher generalization across different domains.

Several studies have utilized a pseudo-labeling approach, known from semi-supervised
learning, to enhance the model’s performance on the target data. Similar to our work, Gu
et al. [26] accepted or rejected pseudo-labels of target instances based on their distance
to the corresponding class center in a spherical feature space. Their approach can be
implemented based on adversarial domain adaptation models such as DANN [27] and
MSTN [28]. Karim et al. [29] divided the predicted pseudo-labels of the source model
into “more reliable” and “less reliable” ones based on their prediction confidence and
uncertainty. By using a curriculum learning strategy, they focused on the more reliable
pseudo-labeled target samples in the first iterations before continuously integrating the
remaining target samples in the training process. Similarly, Litrico et al. [30] attempted to
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refine the pseudo-labels made by the source model based on an uncertainty score derived
from the pseudo-labels of neighbor samples. In contrast to our method, they select the
neighbor samples of a target sample by comparing features of weakly augmented target
samples in the target feature space. The pseudo-labels then become refined by employ-
ing a soft-voting strategy that aggregates predictions from neighbor samples. With their
approach, they reach a state-of-the-art accuracy score of 90 % for the VisDa-C dataset and
69.6 % for the DomainNet dataset.

The idea of iteratively improving the pseudo-label predictions of a base classifier
is part of the visual domain adaptation (VDA) model by [31]. Their approach employs
domain-invariant clustering by minimizing the joint marginal and conditional distribution
distances across domains in the latent space iteratively. In a recent study, Liu et al. [32]
presented a novel unsupervised domain adaptation strategy that draws inspiration from
the optimal transport phenomenon. This approach focuses on aligning sub-domain clusters
between the source and target domains to facilitate effective adaptation. Their method
demonstrates particularly high performance, especially in scenarios marked by class imbal-
ance in the dataset.

3. Our Contribution

Semi-/self-supervised methods assume that the labeled fraction of the data is infor-
mative enough to learn/sample from the underlying probability distributions, despite
being sparsely distributed. N-shot learning methods are exploring the unseen classes
by accessing information through matching semantic labels with the extracted features.
Herein, it is still assumed a priori that the physical feature space is represented by the
semantic content, through which the embedded clustering of unique combinations are
assigned to new classes. Active learning relies on dissimilarities and queries the most
informative instances to oracles. In the case of domain shift, however, such a methodology
would demand a large number of samples to be labeled with human supervision.

In this work, we target scenarios during which drastic domain shifts in the physical
feature space are expected, which is in turn reflected into the observed state features or their
projected representations. The proposed methodology mimics the peer reviewing process
in the scientific community. The current knowledge (labeled data) is treated as centroids
acting as attractors. The new hypothesis (pseudo-labels coming from the classifier) is
checked by the reviewer model based on metric learning. One unique aspect of our work
is the use of the concept shift in each class that may happen with the new proposal as a
decision criterion to accept, revise, or reject the proposed hypothesis. As in scientific peer
reviewing, the decision is made based on the consistency of the new proposal with the
current knowledge and the self-consistency of the new proposal. The consistency here is
defined as vectors constituted by the current and proposed cluster centroids in the latent
space. Herein, peer-reviewing policy acts as an autonomous learning mechanism with
no reliance on any oracles. In other words, the unlabeled data space (suspected to be
different than the training feature space) is explored via relative information and similarity-
based learning, rather than accessing absolute information as needed. The details of the
methodology is described in the following section.

4. Materials and Methods
4.1. Case Study: Synthetic Basic Shapes Dataset

In this study, we present a case from the multiphase flow community related to the
particle segregation and distribution analysis of a wood recycling unit operating in the
dilute flow regime. The domain shift aspect of the problem comes from the fact that while
designing the equipment, particle characterization experiments (as in the work of [33]) are
conducted within a certain flow settings (physical features of the gas and solid phases).
In gas-solid flows, particle segregation and entrainment strongly depend on the balance
between the drag, gravitational, and buoyancy forces [34]. As the velocity of the gas phase
increases (i.e., Reynolds number for particles (Re) increases), particles that are well-oriented
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with respect to the flow direction (when Re < 100) start to exhibit complex secondary
motions due to the difference in the center of gravity and the center of pressure, which is
typically the case in the real operation (Re > 1000). Herein, the orientation of the particle
further affects the instantaneous drag force acting on the particle, which in turn changes the
force distribution on the particle, further changing its orientation and the distribution along
the chamber. Depending on the material batch and pre-processing steps (e.g., milling),
particle properties such as size distribution and shape features (base shape, aspect ratio)
can also introduce further shifts in the physical feature space, leading to a multi-layered,
hierarchical relation network. On the other hand, such orientation/flow alignment statistics
(e.g., [35]) are needed to be able to design the recycling unit targeting a certain material or
mixing patterns within the chamber (e.g., separating viable wood from waste).

The dataset is created by considering a typical flow characterization experiment,
where particles are fed to the setup and their distribution is typically monitored via high-
speed imaging, followed by masking, object detection, shape classification, and building
orientation statistics for many events at the same operating conditions [34]. In order to test
the proposed idea, we reduced the problem complexity and first examined the classification
problem (we will return the whole framework in the discussion part). Synthetic images
of cubes and cylinders in different orientations were generated using the open-source
3D creation software ”Blender”, which also provides us with the corresponding labels
(shape, orientation). Both the cubes and cylinders have an aspect ratio (AR) of 1 to add
more overlapping shape projections at different orientations. All objects are centered in
the images, which are 224 × 224 px in size. Herein, it is assumed that object detection
is handled via a simple tool such as background subtraction, which is a rather easy task
with high-speed imaging in dilute flows (i.e., particle volume fractions are low by design).
The generated images differ only in the shape and rotation around the x- and y-axes.
The training, validation, and initial test datasets for the base classifier include images of
cubes and cylinders with rotations around both axes limited to 15° (source domain DS).
Herein, it is analogous to conduct an experiment with real particles (e.g., more complex
shape classes) at low Re and create an initial labeled dataset. The test data (the second set to
analyze the proposed idea), on the other hand, include random rotations of the objects that
are exhibited at high Re flows (target domain DT). We created two different test datasets:
one for pseudo-labeling called the pool dataset, and the other (test dataset) for evaluating
classifier performance as it explores unknown feature space during the learning process
which is used only for model performance assessment. Table 1 summarizes the number of
samples and the range of possible rotation angles for each. Figure 1 shows example images
of cubes and cylinder for both the training/validation and pool/test dataset.

Table 1. Overview of the different datasets used.

Dataset Training Validation Pool Test

Samples 3200 800 10,000 10,000
Rotation 0°− 15° 0°− 15° 0°− 360° 0°− 360°
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Figure 1: Sample images of the synthetic cubes and cylinders from both, the train/validation
dataset (source domain) and the pool/test dataset (target domain)
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Figure 1. Sample images of the synthetic cubes and cylinders from both the training/validation
dataset (source domain) and the pool/test dataset (target domain).

4.2. Algorithm Details

The proposed method relies on an autonomous peer reviewing process to eliminate the
need for human labeling, even in the presence of a domain shift. As illustrated in the algo-
rithm flowchart (Appendix A), we begin by creating four datasets (Xtrain, Xval, Xpool, Xtest)
as described in Section 4.1, where {Xtrain, Xval} ⊂ DS and {Xpool, Xtest} ⊂ DT. In the first
step, we use the initial training and validation datasets to train a basic classifier, for instance
a ResNet18 [36] model. Before training the model, we check the training data for class
imbalance and apply undersampling if necessary. At this stage, the goal is to create an
accurate model given the observations. In the second stage, the classifier—which has been
trained on images of particles with rotations limited to 15°—is used to predict pseudo-labels
for the pool dataset, which includes images of particles with any rotation. It should be
reminded here that the particles are literally rotated in the Blender environment, as if it is
caused by secondary particle motions and images are captured at a fixed camera position.
Before passing the pseudo-labels to the reviewer, we use the class probabilities output by
the network’s softmax output layer to discard predictions that fall below a 80 % confidence
threshold in order to filter out predictions where the model is not confident.

In the next step, the proposed classes are checked by the reviewer via a novel metric
learning approach. Similar to many similarity-based assessments, we first project the
training and pool data into a two-dimensional embedding space using two different
dimensionality reduction techniques, namely t-SNE [37] and Ivis [38], which preserve local
and structural similarities of the original images in the low-dimensional representations.
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The hypothesis is that the model is more likely to accurately predict samples that are similar
and therefore closer to the training data in the embedding space, akin to how humans tend
to build upon their prior knowledge by solving problems that are similar to ones they have
already solved. By selecting those samples during each iteration, the model will be able
to systematically explore the entire data space in the presence of concept shift. What is
unique in our approach is to use both the magnitude and the direction of the centroids for
all classes simultaneously in the form of a domain split task. A more detailed description
of the acceptance/rejection policy is provided in Section 4.3. After the reviewing process,
the algorithm checks if more than 1 % of the pool data have been accepted. If more than 1 %
of the recent pool data are selected, these samples and their corresponding pseudo-labels
are added to the training dataset for the next iteration, effectively treating them as true
labels. This process continues until, in theory, the entire pool dataset is correctly labeled.
If not, the algorithm reapplies the dimensionality reduction method, resulting in a different
embedding space as t-SNE and Ivis are non-deterministic. In this inner loop, the similarity
constraint is further relaxed via increasing the allowable maximum distance from the class
centroid by 20 %. If the recalculated embedding space does not lead to a higher number
of selected pool samples for five consecutive iterations, the algorithm stops. As some
incorrect predictions may be added to the training dataset, leading to a confirmation bias,
we calculate the accuracy metrics on an independent test data during each iteration of
the learning process. It is important to note that no external information is used during
the training and it is merely used for demonstration of the improved performance of the
classifier due to selective use of self-improved pseudo-labels. The algorithms details are
summarized in Algorithm 1.

4.3. Reviewing Policy

In essence, the reviewer checks how the newly labeled dataset is aligned with the
current centroids and how the class centroids will shift if the proposed labels are accepted.
To generate the necessary low-dimensional embeddings, we deployed two dimensionality
reduction techniques, t-SNE and Ivis, which both produce two-dimensional representations
of the training and pool images. We set the number of nearest neighbors to 30 for both.
Ivis is selected due to its demonstrated ability to preserve the data structure and whether
that proves to be more useful than the t-SNE approach. It is also considered that the
performance comparisons with different projection policies can provide further insights on
whether we can benefit from multi-review approach in the follow-up studies.

For the review process, we first calculate the centroids for both the training data and
the pseudo-labeled pool data for each class. The centroids calculated from the training
set represent the current “state of the art”. The centroids of the pseudo-labels proposed
by the most recent classifier, on the other hand, represent the “proposed hypothesis”. Let
l1,A and l1,B denote the distances between the training centroid and the pool centroid for
Classes A and B, respectively. Herein, l1,A and l1,B provides relative information about
the magnitudes of the domain shift. Next, the directions of the vectors starting from
the previous class centroid to the newly observed class centroid are computed to decide
in which direction it is reasonable to expand for each class based on how the classifier
interprets the "world" and the pool data (unlabeled set). Herein, we used semicircles to
explore the projected feature space. At each iteration, we add all pseudo-labels that are
inside the semicircle of one class but not inside the semicircle of the other. By doing so, in a
single step, we account for both negative and positive feedbacks coming from the previous
and the proposed knowledge states. Herein, each projection with t-SNE or Ivis acts similar
to the perspective of the reviewer(s) to the current state of the art, and its relation to the
proposed hypothesis (pseudo-labels). A more detailed mathematical description of the
reviewing process can be found in Algorithm 1.

Figure 2 shows an example plot of the filtering in the embedding space using t-SNE
from both the perspectives of classes A and B. In each view, the blue color shows the class
of interest, whereas the gray color denotes the other (i.e., data space is viewed based on one
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vs. others). The training data are represented by large, thicker points. The pseudo-labeled
pool data are represented by smaller points if the model predictions was right; otherwise,
they are represented by a cross symbol. From the figure, it is immediately seen that the
pool data exhibit a concept shift and the unlabeled pool data have drastically different
representations for classes.

Version September 27, 2023 submitted to Mach. Learn. Knowl. Extr. 7

train data
pool data (true)

pool data (false)
pool data selected (true/false)

adding area
rejection area

centroids

(a) Class A (cubes) (b) Class B (cylinders)

Figure 2: Example embedding space for selecting pool samples for class A and class B
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Figure 2. Example embedding space for selecting pool samples for class A and class B.

The green-shaded semicircle area defines the zone where the pseudo-labeled pool data
are to be added if we only take the class of interest into account (blue color). Correspond-
ingly, the red semicircle defines the area of rejection if we consider the feedback coming
from the concept shift in the other class. The selected pool data samples are highlighted
in red.

One important hyperparameter here is the radius of the semicircles, which is analogous
to the learning rate concept. In the study, it is calculated via two different methods:

r1,i = 0.8 l1,i i ∈ [A, B] (1)

r2,i = (µ− l1,i) + l1,i(1−
l1,i

l0
) = µ−

l2
1,i

l0
i ∈ [A, B] (2)

for both classes A and B. The first definition is simply scaled with the available subjective
information about the concept shift. The second definition is considered as an alternative
approach, which is regularized with respect to the data projection. For that purpose, we
introduce two new terms into the equation. µ is the average distance between pseudo-labels
of class i and the training centroid of the same class, whereas l0 is the distance between
the two training centroids, which is considered as a relative similarity measure between
current class representations in the projected space. Such a regularization is considered
to be useful particularly if the domain shift in the projected feature is manifested as a
symmetric expansion around the training centroids. In such a case, l1,i would be close to
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zero, resulting in a stagnation in the learning process (no pseudo-labels would be accepted).
If the concept shift is highly asymmetric, then the first term of Equation (2) would converge
to zero and domain exploration would be driven by the shifts in class centroids. This is
considered to be similar to weight regularization.

Algorithm 1 Algorithm details with Peer Reviewing Policy for Pseudo-Labeling

Ensure: {Xtrain, Xval} ⊂ DS
Ensure: {Xpool, Xtest} ⊂ DT

fDR : Rd → Rk . Dimensionality Reduction
Require: k < d (in this work: k = 2)

X̃n = fDR(Xn) n ∈ [train, val, pool]
X̃S = X̃train ∪ X̃val
X̃T = X̃pool
scaling factor: s = 1
for every iteration i do

Train model Fθ on X̃S
Predict pseudo-labels for target domain: ŶT = Fθ(XT)
Filter by confidence: X̃T = {x̃T | confidence(ŷT) ≤ 0.8, x̃T ∈ X̃T, ŷT ∈ ŶT}
for every class j do

Calculate centroid of source domain embedding: Cj,S = 1
m ∑m

i=l x̃l,S x̃S ∈ X̃j,S

Calculate centroid of target domain embedding: Cj,T = 1
m ∑m

i=l x̃l,T x̃T ∈ X̃j,T
l1,j = dist(Cj,S, Cj,T)
r1,j = s · 0.8 l1,j . or r2,j according to Equation (2)

Define semi-circle for each class: SCj = sc(location = Cj,S, direction =
−−−−→
Cj,SCj,T, ra-

dius = r1,j)
Target samples in semicircle: Sj = {x̃T | x̃T ∈ X̃j,T, x̃T inside SCj}

end for
for everly class j do

for every remaining class n 6= j do
Accepted samples: X̃T, accepted = X̃T ∩ Sj \ Sn

end for
end for
Test predictions: Ŷtest = Fθ(Xtest)
Update source domain: X̃S = X̃S ∪ X̃T, accepted

Update target domain: X̃T = X̃T \ X̃T, accepted

if
|X̃T, accepted|
|Xpool| ≤ 1% then

X̃n = fDR(Xn) n ∈ [train, val, pool] . Refit embedding (non-deterministic)
X̃S = X̃train ∪ X̃val
X̃T = X̃pool
s = 1.2 s . Increase semi-circle radius with scaling factor

end if
end for

5. Results
5.1. Learning Process

We first examine the learning process by looking at the quantity and quality of the
selected pool data samples, as well as the embedding space during the learning process
using t-SNE in combination with the simple radius selection method (r1). Figure 3 reports
the details of the learning process via demonstrating (i) the percentage of the accepted
pseudo-labels with respect to the initial pool data and (ii) the calculated accuracy of the
binary classification task at each iteration. It should be reminded that these samples are
subsequently added to the training data in the next iteration and therefore play a crucial
role in the overall success of the method.
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Figure 3: Added pool data per iteration for t-SNE/Ivis and r1/r2 devided in correct classified (green) and misclassified
(black) fractions; numbers above the bars represent the prediction accuracy in each iteration

pseudo labels with respect to the initial pool data and (ii) the calculated accuracy of the 283

binary classification task at each iteration. It should be reminded that these samples are 284

subsequently added to the training data in the next iteration, and therefore play a crucial 285

role in the overall success of the method. 286

Focusing on t-SNE using r1 in Figure 3a, it is evident that for the first five iterations, 287

almost no pool data samples with incorrect predictions were selected, indicating that the 288

model’s accuracy on the test dataset is likely to improve. However, it is worth noting that 289

in the subsequent iterations, it becomes increasingly difficult to avoid adding samples with 290

incorrect labels to the training data. The accuracy of the selected pool samples reaches 291

a minimum of 45 % during these later iterations, though in most cases it is above 90 %. 292

Additionally, the overall proportion of pool data added to the training dataset per iteration 293

remains relatively low, at a maximum of 27 %. The overall number of samples selected 294

per iteration serves as a form of learning rate, as increasing the number of samples per 295

iteration could lead to faster potential improvement of the model’s accuracy, but at the same 296

time increases the proportion of mislabeled data in the training set. This emphasizes the 297

importance of balancing the quantity and quality of samples selected per iteration to achieve 298

optimal model performance. To underscore the significance of the embedding filtering step, 299

Figure 3. Added pool data per iteration for t-SNE/Ivis and r1/r2 divided into correctly classified
(green) and misclassified (black) fractions; the numbers above the bars represent the prediction
accuracy in each iteration.

Focusing on t-SNE using r1 in Figure 3a, it is evident that for the first five iterations,
almost no pool data samples with incorrect predictions were selected, indicating that the
model’s accuracy on the test dataset is likely to improve. However, it is worth noting that
in the subsequent iterations, it becomes increasingly difficult to avoid adding samples with
incorrect labels to the training data. The accuracy of the selected pool samples reaches
a minimum of 45 % during these later iterations, though in most cases it is above 90 %.
Additionally, the overall proportion of pool data added to the training dataset per iteration
remains relatively low, at a maximum of 27 %. The overall number of samples selected
per iteration serves as a form of learning rate, as increasing the number of samples per
iteration could lead to faster potential improvement in the model’s accuracy but at the same
time increases the proportion of mislabeled data in the training set. This emphasizes the
importance of balancing the quantity and quality of samples selected per iteration to achieve
optimal model performance. To underscore the significance of the embedding filtering
step, Figure 4 demonstrates the results obtained from a purely self-supervised approach,
i.e., using only the confidence filter of the classifier. The findings reveal a rather poor
accuracy of about 60 % on the test dataset when relying solely on the model’s confidence
scores to select samples. Additionally, nearly all samples pass the filter in the first iteration,
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evidenced by the fact that the model’s confidence scores exceed 95 % for more than 90 %
of the samples. The results are not affected by adjustments to the confidence threshold
to higher values either. In the test runs with the reviewer approach, on the other hand,
the confidence filter becomes important in later iterations. The model yields a wider range
of confidence distribution, as more samples from the target domain are added into the
training dataset.
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Figure 4: Added pool data per iteration for a run without the embedding filter devided
in correct classified (green) and misclassified (black) fractions; numbers above the bars
represent the prediction accuracy in each iteration

Figure 4 demonstrates the results obtained from a purely self-supervised approach, i.e., 300

using only the confidence filter of the classifier. The findings reveal a rather poor accuracy 301

of about 60 % on the test dataset when relying solely on the model’s confidence scores to 302

select samples. Additionally, nearly all samples pass the filter in the first iteration since the 303

model’s confidence scores exceed 95 % for more than 90 % of the samples. The results are 304

not affected by adjustments to the confidence threshold to higher values either. In the test 305

runs with the reviewer approach, on the other hand, the confidence filter gets important in 306

later iterations. Model yields a wider range of confidence distribution, as more samples 307

from the target domain are added into the training dataset. 308

In order to further investigate the reviewing process, we present in Figure 5 the 309

corresponding embedding plots for iterations 0, 6, 8, and 11, with a focus on the selection 310

process for class B. As shown in Figure 3a, in the first iteration, almost all accepted pool 311

samples had been correctly classified by the model. However, in iteration 6, the rejection 312

semicircle of class A is not large enough to reject the misclassified samples, which will 313

consequently be added to the training dataset in the next iteration. It is worth noting 314

that the majority of misclassified pool samples by the model are either in the boundary 315

zone between the two classes or have a significant distance from the training data centroid 316

(Figure 5). This supports our assumption that the accuracy of predictions for similar 317

images is higher and the position of the training data centroids should be included in the 318

selection process. After eight iterations, most of the pool data had already been included 319

into the training set and only a few additional samples can be selected. Recalculating the 320

embeddings in addition to increasing the semicircle radius did not lead to an increase in the 321

number of selected samples at this point. Since this was the case for the last five iterations, 322

the algorithm stops after Iteration 11. The remaining samples are added based on the most 323

recent classifier. 324

5.2. Evaluation of alternative review procedures 325

Next, we turn to an analysis of the quantity and quality of the selected data samples 326

per iteration for the different combinations of t-SNE/Ivis and r1/r2. In Figure 6, the 327

accumulated amount of pool data that was added to the training dataset of the next 328

iteration until the training process stopped is shown for all cases. Typically a larger number 329

of samples are selected in the first iteration compared to later iterations. Almost 95 % of 330

the whole pool data was added iteratively before the loop is terminated, except the t-SNE 331

projection with r2 policy regularization, which added up to 56 %. When comparing the 332

Figure 4. Added pool data per iteration for a run without the embedding filter divided into correctly
classified (green) and misclassified (black) fractions; the numbers above the bars represent the
prediction accuracy in each iteration.

In order to further investigate the reviewing process, in Figure 5 we present the
corresponding embedding plots for iterations 0, 6, 8, and 11, with a focus on the selection
process for class B. As shown in Figure 3a, in the first iteration, almost all accepted pool
samples had been correctly classified by the model. However, in iteration 6, the rejection
semicircle of class A is not large enough to reject the misclassified samples, which will
consequently be added to the training dataset in the next iteration. It is worth noting
that the majority of misclassified pool samples by the model are either in the boundary
zone between the two classes or have a significant distance from the training data centroid
(Figure 5). This supports our assumption that the accuracy of predictions for similar
images is higher, and the position of the training data centroids should be included in the
selection process. After eight iterations, most of the pool data had already been included
in the training set, and only a few additional samples can be selected. Recalculating the
embeddings in addition to increasing the semicircle radius did not lead to an increase in
the number of selected samples at this point. Because this was the case for the last five
iterations, the algorithm stopped after iteration 11. The remaining samples were added
based on the most recent classifier.
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5.2. Evaluation of Alternative Review Procedures

Next, we turn to an analysis of the quantity and quality of the selected data samples
per iteration for the different combinations of t-SNE/Ivis and r1/r2. In Figure 6, the accumu-
lated amount of pool data that was added to the training dataset of the next iteration until
the training process stopped is shown for all cases. Typically, a larger number of samples
are selected in the first iteration compared to later iterations. Almost 95 % of the whole pool
data was added iteratively before the loop was terminated, except the t-SNE projection with
r2 policy regularization, which added up to 56 %. When comparing the results obtained
using r1 and r2 as the radius for the filtering shape, it is evident that using r1 leads to the
selection of more samples in the first iterations. Specifically, after two iterations almost
50 % of the pool data have already been selected using r1, whereas it takes six iterations
to reach the same level using r2. The comparison shows that regularization technique
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functions as expected, yet without much noticeable improvement in the accuracy rates.
Results further suggest that alternative and/or adaptive domain regularization methods
should be investigated. One suggestion here is to deploy a transition between r1 to r2 based
on the percentage of the remaining pool data, which may be more effective at identifying
and selecting relevant samples early on in the training process. It is also seen that t-SNE
leads to a higher accuracy rate most of the time compared to the Ivis method, as shown
in Figure 3. During some iterations, especially when using Ivis in combination with r2,
the accuracy falls below 50 %.
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5.3. Accuracy assessment on test dataset 345

Figure 7 depicts the accuracy, precision and recall score at every iteration on the test 346

dataset using t-SNE and r1. The precision and recall curve is only shown for class B, as 347

they look very similar to that of class A. When the classifier is tested on the data with 348

the domain shift, the initial accuracy is found be around 55 %, which at about 99 % in the 349

test data without the domain shift. With the peer reviewing policy, the model’s accuracy 350

increases to 85 % after 6 iterations. The course of the precision and recall scores follow a 351

similar pattern, except of iterations 4 − 6 where the precision temporarily drops to 77 % 352

whereas the recall score increases to 88 %. This can be explained by the model being 353

biased towards class B during these iterations. In order to test the repeatability of our 354

method, we performed four different runs with t-SNE embedding and r1 as the radius of 355

the acceptance/rejection semicircles. The results of that investigation are shown in Figure 8. 356

It is clear that the resulting accuracy plots cannot be identical due to the stochastic nature of 357

the t-SNE. Nonetheless, the overall learning history looks similar with different projections 358

and converge to a similar accuracy score at around 87 % with a maximum difference of 359

approximately 5 %. 360

In an attempt to better see whether peer reviewing approach outperforms a baseline 361

model, we conducted a simple self-supervised learning policy, where the classifier confi- 362

dence is used as the only filter for adding pseudo labeled instances to the training set. In this 363

case, however, the accuracy of the basic approach do not change significantly once all the 364

pool data is added (58 %), which illustrates the added value of using the direction vectors 365

to explore the unknown feature space for fully automating the self-learning schemes. 366

Figure 6. Accumulated filtered pool data.

5.3. Accuracy Assessment on Test Dataset

Figure 7 depicts the accuracy, precision, and recall score at every iteration on the
test dataset using t-SNE and r1. The precision and recall curve is only shown for class
B, as they look very similar to that of class A. When the classifier is tested on the data
with the domain shift, the initial accuracy is found be around 55 %, whereas it is at about
99 % in the test data without the domain shift. With the peer reviewing policy, the model’s
accuracy increases to 85 % after six iterations. The course of the precision and recall scores
follow a similar pattern, except those of iterations 4–6 where the precision temporarily
drops to 77 %, and the recall score increases to 88 %. This can be explained by the model
being biased towards class B during these iterations. In order to test the repeatability of our
method, we performed four different runs with t-SNE embedding and r1 as the radius of
the acceptance/rejection semicircles. The results of that investigation are shown in Figure 8.
It is clear that the resulting accuracy plots cannot be identical due to the stochastic nature of
the t-SNE. Nonetheless, the overall learning history looks similar with different projections
and converge to a similar accuracy score at around 87 % with a maximum difference of
approximately 5 %.

In an attempt to better see whether the peer reviewing approach outperforms a
baseline model, we conducted a simple self-supervised learning policy, where the classifier
confidence was used as the only filter for adding pseudo-labeled instances to the training set.
In this case, however, the accuracy of the basic approach did not change significantly once
all the pool data were added (58 %), which illustrates the added value of using the direction
vectors to explore the unknown feature space for fully automating the self-learning schemes.
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Figure 9 compares the predictive accuracy of all four approaches on the test dataset. It
can be seen that after the first learning loop, methods with no regularization (r1) outperform
those with regularization (r2) by a margin. In the course of the iterations, the accuracy
curves converge to different maximum scores. Using r2 results in a maximum accuracy of
only around 65 % for both embedding methods, whereas using r1 results in an increase in
accuracy to around 89 % for t-SNE and 78 % for Ivis. With t-SNE projection, a total accuracy
increase of 29 % is achieved. It should be emphasized that this increase in accuracy was not
due to any external input, but rather achieved as a result of the selection process based on
relative metric learning in the embedding space. This highlights the effectiveness of the
proposed reviewing policy, particularly for scenarios with noticeable domain shifts.
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Figure 7: Test data metrics for evaluating model over iterations using t-SNE and r1
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Figure 8: Comparison of different runs using t-SNE and r1

Figure 9 compares the predictive accuracy of all four approaches on the test dataset. 367

It can be seen that after the first learning loop, methods with no regularization (r1) out- 368

performs the ones with regularization (r2) by a margin. In the course of the iterations, 369

the accuracy curves converge to different maximum scores. Especially using r2 results in 370

a maximum accuracy of only around 65 % for both embedding methods, while using r1 371

results in an increase of accuracy to around 89 % for t-SNE and 78 % for Ivis. With t-SNE 372

projection, a total accuracy increase of 29 % is achieved. It should be emphasized that this 373

increase in accuracy was not due to any external input, but rather achieved as a result of the 374

selection process based on relative metric learning in the embedding space. This highlights 375

the effectiveness of the proposed reviewing policy particularly for scenarios with noticeable 376

domain shifts. 377

5.4. Assessment of the proposed method with alternative classifiers 378

In an attempt to quantify the robustness of the proposed approach, we performed 379

a comparative analysis with classifiers of different complexities in terms of their pattern 380

recognition capabilities, namely support vector machines [39], ResNet 34 [36], DenseNet 381

Figure 7. Test data metrics for evaluating model over iterations using t-SNE and r1.
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Figure 9 compares the predictive accuracy of all four approaches on the test dataset. 367
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Figure 9: Accuracy improvement on test dataset

121 [40] and InceptionV3 [41]. For that purpose, we first assess the predictive accuracy of 382

all classifiers trained in source domain, and tested in the source and target domains (Figure 383

10). Comparisons reveal a distinct accuracy gap across all classifiers, attributable to the 384

presence of a domain shift. In other words, employing a more complex pattern recognition 385

approach alone is not sufficient to rectify the distribution misalignment between the two 386

domains. On the other hand, once the classifiers are deployed in the proposed UDA 387

scheme, all models expand their knowledge base by incorporating similar examples from 388

the pool data iteratively. In particular, when the pseudo labels of the pool data accepted 389

by the reviewing process is updated after each iteration, allowing the classifier to correct 390

its previous mistakes, the predictive accuracy of all models increases drastically. The 391

results of this comparison are depicted in Figure 11, revealing a consistent improvement 392

in accuracy for all classifiers, with a minimum gain of 37 %. This observation underscores 393

the capabilities of the proposed algorithm to explore the target domain gradually and in a 394

directed way, while highlighting its robustness and its ability to operate effectively with 395

classifier of different complexity. 396

6. Discussions 397

Our method proposes to use all information extracted from the potential shift in class 398

centroids in terms of directed vectors and regularized, gradual feature space exploration, 399

which is considered to be particularly useful when the unlabeled data includes concept 400

drifts in the physical feature space. In an attempt to test the idea, we created a dataset 401

related to gas-solid flow characterization experiments, in which the human generated labels 402

typically cover a fraction of the operating parameters. 403

As in self-supervised approaches, we only rely on model predictions to minimize 404

the human supervision needed particularly for a new case study. In addition to model 405

confidence as a filter for learning, we apply the principles of metric learning to assess the 406

shifts in class centroid (in lower dimensional projections) based on the relative information 407

provided by the classifier. Herein, we utilize all the positive and negative feedbacks 408

extracted from the proposed pseudo labels, in the form of direction vectors connecting 409

the current and the proposed class centroids. The reviewer algorithm accepts the current 410

labeled data as the state of the art and checks how much the new proposal (pseudo labels) 411

are consistent with the known ground truth (most recent training data) via considering 412

the potential re-partitioning of the projected feature space. This is done in a single step by 413

considering the domain shift vectors of all classes, which are directed from the training 414

sample centroids to the pseudo labeled pool centroids. If the position of the pseudo 415

Figure 9. Accuracy improvement on test dataset.

5.4. Assessment of the Proposed Method with Alternative Classifiers

In an attempt to quantify the robustness of the proposed approach, we performed
a comparative analysis with classifiers of different complexities in terms of their pattern
recognition capabilities, namely support vector machines [39], ResNet 34 [36], DenseNet
121 [40], and InceptionV3 [41]. For that purpose, we first assess the predictive accuracy of all
classifiers trained in source domain and tested in the source and target domains (Figure 10).
Comparisons reveal a distinct accuracy gap across all classifiers, attributable to the presence
of a domain shift. In other words, employing a more complex pattern recognition approach
alone is not sufficient to rectify the distribution misalignment between the two domains.
On the other hand, once the classifiers are deployed in the proposed UDA scheme, all
models expand their knowledge base by incorporating similar examples from the pool data
iteratively. In particular, when the pseudo-labels of the pool data accepted by the reviewing
process are updated after each iteration, allowing the classifier to correct its previous
mistakes, the predictive accuracy of all models increases drastically. The results of this
comparison are depicted in Figure 11, revealing a consistent improvement in accuracy for
all classifiers, with a minimum gain of 37 %. This observation underscores the capabilities
of the proposed algorithm to explore the target domain gradually and in a directed way
while highlighting its robustness and its ability to operate effectively with classifier of
different complexity.
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Figure 10: Loss in accuracy in presence of domain shift for different classifiers

labels in the latent space do not agree with the potential domain shifts in all classes, the 416

algorithm rejects the proposed labels for those instances at the given iteration. All pseudo 417

labeled pool samples which pass both filters are added to the training dataset, helping to 418

improve the model performance in the next iteration. With this approach, we were able 419

to improve the accuracy for predicting the class from initially 55 % to 85 %. Finally, we 420

relaxed the constraint on pseudo-labels and allowed the algorithm to update them for 421

the additional pool samples after each iteration. In other words, the classifier is given the 422

opportunity to refine the pseudo-labels at iteration i during a subsequent iteration i+j, with 423

the benefit of additional evidence (more pseudo-labeled data). This modification further 424

enhanced the model’s accuracy on the target domain, increasing it from approximately 60% 425

to 100%. Ultimately, we deployed the proposed UDA algorithm with various classifiers, 426

demonstrating the robustness of our methodology, which proved effective regardless of the 427

complexity of the pattern recognition method used. 428

From those findings we can conclude that the labeling process by a human can be 429

at least partially replaced. We called our approach as peer reviewing, since the metric 430

learning deployed as the reviewer also has access the same labeled training set, but look 431

at the proposed pseudo labels from a different perspective. Herein, the quality of the re- 432

viewing process can be improved by utilizing multiple reviewers (projections and distance 433

descriptions) with different initialization, or partial knowledge of the training set (similar 434

to masking policies). The approach can be further strengthened with other augmentation 435

techniques. An important point here is that the feature space exploration was found to be 436

increasing the model accuracy drastically if it is both gradual and directed, indicating a 437

vector field in the embedding space. In our implementation, we used the direction vector of 438

the centroid shift as a supporting information to expand class domains asymmetrically and 439

in the direction of the available information, unlike the clustering based approaches which 440

grow in every direction. We also showed it is both intuitive and easy to implement either 441

more strict or relaxed regularization schemes for the directed domain exploration, which 442

can be guided through the rate of pseudo label addition, analogous to momentum approach 443

in gradient descent. We currently work on testing our approach on different benchmark 444

Figure 10. Loss in accuracy in presence of domain shift for different classifiers.
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Figure 11: Impact of the proposed UDA algorithm on accuracy for different classifiers

datasets from the domain adaptation community like VisDA2017 and Office-Home and 445

extend it to be applicable to multiclass classification problems. 446

7. Conclusions 447

In conclusion, our method presents a novel approach for leveraging unlabeled data 448

with concept drifts in the physical feature space. By utilizing directed vectors and gradual 449

feature space exploration, we aim to minimize human supervision and improve the model 450

performance. Through experiments on a custom particle dataset originating from the 451

multiphase flow community, we successfully addressed the challenge of domain shift 452

between slightly rotated and randomly rotated particles. By leveraging our method, the 453

accuracy of the model on the test data significantly increased from 60% to around 90% 454

without requiring any external input. This improvement demonstrates the effectiveness 455

of our approach in adapting a pre-trained model from a source domain to achieve high 456

accuracy in a target domain. 457
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Figure 11. Impact of the proposed UDA algorithm on accuracy for different classifiers.

6. Discussions

Our method proposes to use all information extracted from the potential shift in class
centroids in terms of directed vectors and regularized, gradual feature space exploration,
which is considered to be particularly useful when the unlabeled data include concept drifts
in the physical feature space. In an attempt to test this idea, we created a dataset related to
gas–solid flow characterization experiments in which the human-generated labels typically
cover a fraction of the operating parameters.

As in self-supervised approaches, we only rely on model predictions to minimize
the human supervision needed, particularly for a new case study. In addition to model
confidence as a filter for learning, we apply the principles of metric learning to assess the
shifts in class centroid (in lower dimensional projections) based on the relative information
provided by the classifier. Herein, we utilize all the positive and negative feedbacks
extracted from the proposed pseudo-labels in the form of direction vectors connecting
the current and the proposed class centroids. The reviewer algorithm accepts the current
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labeled data as the state of the art and checks how much the new proposal (pseudo-labels)
is consistent with the known ground truth (most recent training data) by considering the
potential re-partitioning of the projected feature space. This is performed in a single step
by considering the domain shift vectors of all classes, which are directed from the training
sample centroids to the pseudo-labeled pool centroids. If the position of the pseudo-labels
in the latent space do not agree with the potential domain shifts in all classes, the algorithm
rejects the proposed labels for those instances at the given iteration. All pseudo-labeled
pool samples that pass both filters are added to the training dataset, helping to improve the
model performance in the next iteration. With this approach, we were able to improve the
accuracy of predicting the class from initially 55 % to 85 %. Finally, we relaxed the constraint
on pseudo-labels and allowed the algorithm to update them for the additional pool samples
after each iteration. In other words, the classifier is given the opportunity to refine the
pseudo-labels at iteration i during a subsequent iteration i+j, with the benefit of additional
evidence (more pseudo-labeled data). This modification further enhanced the model’s
accuracy on the target domain, increasing it from approximately 60% to 100%. Ultimately,
we deployed the proposed UDA algorithm with various classifiers, demonstrating the
robustness of our methodology, which proved effective regardless of the complexity of the
pattern recognition method used.

From those findings we can conclude that the labeling process performed by a human
can be at least partially replaced. We called our approach peer reviewing, because the
learning metric deployed as the reviewer also has access the same labeled training set,
but examines the proposed pseudo-labels from a different perspective. Herein, the quality
of the reviewing process can be improved by utilizing multiple reviewers (projections and
distance descriptions) with different initialization or partial knowledge of the training
set (similar to masking policies). The approach can be further strengthened with other
augmentation techniques. An important point here is that the feature space exploration was
found to be increasing the model’s accuracy drastically if it is both gradual and directed,
indicating a vector field in the embedding space. In our implementation, we used the
direction vector of the centroid shift as a supporting information to expand class domains
asymmetrically and in the direction of the available information, unlike the clustering-
based approaches that grow in every direction. We also showed that it is both intuitive
and easy to implement either more strict or relaxed regularization schemes for directed
domain exploration, which can be guided through the rate of pseudo-label addition,
analogous to the momentum approach in gradient descent. We are currently working
on testing our approach on different benchmark datasets from the domain adaptation
community such as VisDA2017 and Office-Home and extend it to be applicable to multiclass
classification problems.

7. Conclusions

In conclusion, our method presents a novel approach for leveraging unlabeled data
with concept drifts in the physical feature space. By utilizing directed vectors and gradual
feature space exploration, we aim to minimize human supervision and improve the model
performance. Through experiments on a custom particle dataset originating from the
multiphase flow community, we successfully addressed the challenge of domain shift
between slightly rotated and randomly rotated particles. By leveraging our method,
the accuracy of the model on the test data significantly increased from 60% to around 90%
without requiring any external input. This improvement demonstrates the effectiveness
of our approach in adapting a pre-trained model from a source domain to achieve high
accuracy in a target domain.
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