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Abstract: A novel series of hybrid compounds comprising quinazolin-4-one and 3-cyanopyridin-
2-one structures has been developed, with dual inhibitory actions on both EGFR and BRAFV600E.
These hybrid compounds were tested in vitro against four different cancer cell lines. Compounds 8,
9, 18, and 19 inhibited cell proliferation significantly in the four cancer cells, with GI50 values ranging
from 1.20 to 1.80 µM when compared to Doxorubicin (GI50 = 1.10 µM). Within this group of hybrids,
compounds 18 and 19 exhibited substantial inhibition of EGFR and BRAFV600E. Molecular docking
investigations provided confirmation that compounds 18 and 19 possess the capability to inhibit
EGFR and BRAFV600E. Moreover, computational ADMET prediction indicated that most of the newly
synthesized hybrids have low toxicity and minimal side effects.
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1. Introduction

Cancer is still a heavily researched public health issue in modern civilization. Despite
intensive research, it remains a significant cause of death in wealthy countries [1–3]. Can-
cer’s danger rests in its capacity to infiltrate and destroy normal tissues and organs, causing
them to malfunction. Furthermore, cancer can spread to other body regions, complicating
treatment [4–6]. Cytotoxic therapy has long been considered the gold standard in cancer
treatment [7]. However, due to inconsistencies in treatment outcomes and inadequate
safety, new approaches to cancer treatment have evolved [8–10]. The development and
widespread clinical testing of precisely targeted anti-cancer tools such as therapeutic anti-
bodies [11], tyrosine kinase inhibitors (TKIs) [12–14], micro-RNA therapy [15], oncolytic
viruses [16], and gene-editing treatments [17] have significantly expanded the arsenal of
weapons available to combat various tumor types.

Central to these advancements is the Epidermal Growth Factor Receptor (EGFR), also
known as HER1, a transmembrane receptor belonging to the ErbB family alongside HER2,
HER3, and HER4 [18,19]. EGFR, a pivotal tyrosine kinase receptor, plays indispensable roles
in various physiological processes, including cell cycle regulation [20], differentiation [21],
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and reorganization of the cytoskeleton [22]. It is frequently overexpressed in several cancer
types, where it participates in activities such as cell proliferation, migration, invasion, and
angiogenesis [23,24]. Mutations in EGFR are frequent in diseases such as non-small cell
lung cancer, head and neck cancer, and colorectal cancer [25–27].

Conversely, the BRAF gene encodes BRAF kinase, a cytosolic serine/threonine kinase
crucial in cell signaling, growth, and survival pathways [28,29]. BRAF mutations are
commonly seen in melanoma, thyroid cancer, and colorectal cancer [30,31].

Nitrogen-based heterocycle molecules are a useful source of necessary building
blocks for developing novel bioactive chemicals. N-Heterocyclic components are found in
over three-quarters of the medications approved by the Food and Drug Administration
(FDA) [32]. Quinazoline and quinazolin-4-one are crucial nitrogen-based heterocycles that
have been extensively researched in numerous research activities revealing their adaptive
biological effects [33,34]. These chemically basic compounds possess a wide range of medic-
inal properties, such as anti-cancer [33,35], anti-tubercular [36], anti-inflammatory [37], and
antimicrobial activities [38]. Many quinazoline-based anti-cancer agents were granted FDA
approval and are in clinical use for cancer management, such as Erlotinib (I) (Figure 1),
demonstrating remarkable potency in inhibiting growth factor receptor tyrosine kinases,
particularly targeting the EGFR receptor, and featuring quinazoline scaffolds [39]. Its
anti-cancer effectiveness stems from its ability to hinder intracellular phosphorylation of
tyrosine kinases at the ATP binding site of the receptor, block JAK2V617F—a mutant variant
of JAK2, and initiate pathways that lead to apoptotic cell death [40]. Despite its notable
efficacy, specificity, and favorable safety record, patients frequently acquire resistance to
this treatment within 8–12 months of initiating therapy due to mutations occurring in the
ATP binding site of the EGFR kinase domain [41]. In our recent publication, compound
(II) with a quinazolin-4-one nucleus had robust antitumor activity against four cancer cell
lines, as well as significant dual EGFR and BRAFV600E inhibitory action (IC50 = 0.11 µM
and 0.65 µM, respectively) (Figure 1) [33].
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Cyanopyridine derivatives have exhibited favorable characteristics in terms of antimi-
crobial [42], antioxidant [43], antibiotic [44], anti-inflammatory [45], anticonvulsant [46],
as well as anti-cancer potential [47,48]. Because of their potential to interact with a vari-
ety of biological targets, including tubulin [49], the survivin protein [50,51], and PIM-1
Kinase [52,53], these compounds have received much interest for their anti-cancer character-
istics. In our recent publication, 3-cyanopyridone/pyrazoline hybrid III (Figure 2) exhibited
impressive dual inhibitory efficacy against EGFR and BRAF V600E (IC50 = 68, 65 nM, respec-
tively), with remarkable GI50 values of 25 nM. Like Erlotinib, compound III displayed a
potent inhibitor especially against both cancer cell proliferation and BRAFV600E [54]. In
another study, compound IV (Figure 2) demonstrated significant efficacy in inhibiting
cancer cell proliferation (with a GI50 value of 0.72 µM) and promising inhibitory potential
against BRAFV600E (with an IC50 value of 58 nM), outperforming Erlotinib (with an IC50
value of 65 nM) [47].
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A challenging issue that has arisen during EGFR inhibitor therapy is the emergence
of the BRAFV600E mutation as a potential resistance mechanism [55]. Inhibiting BRAF can
also activate EGFR, reviving tumor growth [56–58]. Consequently, a strategic approach
involving the dual inhibition of EGFR and BRAFV600E has been employed to circumvent
these complexities. Several clinical trials, including patients with metastatic colorectal
cancer with the BRAFV600E mutation, revealed that the combination of BRAFV600E and
EGFR inhibitors was clinically successful [55,59,60].

In our ongoing research to develop antiproliferative hybrids inspired by the biological
properties of compounds I–IV, we hypothesized that these hybrids might possess dual
EGFR/BRAFV600E pharmacophoric elements. As shown in Figure 3, the quinazolin-4-one
moiety (as seen in compounds I and II), spacer, and 3-cyanopyridin-2-one moiety (as seen
in compounds III and IV) were identified as important components. As a result, combining
these pharmacophores into a single compact structure can lead to the development of
potent antiproliferative drugs with EGFR/BRAFV600E inhibitory actions. This approach
may provide benefits such as reduced drug resistance development and fewer associated
side effects.
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As a result, a novel series of quinazolin-4-one/3-cyanopyridin-2-one hybrids (7–21,
Figure 3) were developed and synthesized as dual EGFR/BRAFV600E inhibitors with an-
tiproliferative activity. The newly synthesized compounds were evaluated against a panel of
four human cancer cell lines. The most potent compounds were then investigated as EGFR
and BRAFV600E inhibitors. Finally, molecular docking studies were carried out to evaluate
their binding mechanisms and interactions inside the active sites of molecular targets.

2. Results and Discussion
2.1. Chemistry

The reaction sequences shown in Scheme 1 were used to prepare compounds 7–21.
Anthranilic acid 1 was reacted with appropriate ethyl/phenyl/allyl isothiocyanates (2a–c)
in refluxing ethanol in the presence of triethylamine (TEA) as a base catalyst to gener-
ate 2-mercapto-3-substituted-(3H)-quinazolin-4-ones (3a–c) [33,35]. N-(4-Acetylphenyl)-
2-bromoacetamide 4 was synthesized in high yield according to the previously described
procedure [61] by treating p-aminoacetophenone with bromoacetyl bromide in water and
methylene chloride bilayer solvent in the presence of potassium carbonate. The structure of
product 4 was confirmed by the reported melting point [61]. Consequently, refluxing com-
pounds 3a–c with N-(4-acetylphenyl)-2-bromoacetamide 4 in acetonitrile in the presence of
TEA for 8–12 h, and the corresponding intermediates 5a–c were prepared in 75–85% yield.
The melting points of compounds 5a–c were confirmed by a previously reported study [35].
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Scheme 1. Synthesis of quinazolin-4-one/3-cyano-2-pyridone hybrids (7–21); reagents and reaction
condition: (a) TEA/EtOH reflux 1.5 h; (b) BrCOCH2Br, CH2Cl2, K2CO3, H2O; (c) CH3CN, TEA reflux
8 h; (d) ethyl cyanoacetate, ammonium acetate, fusion 120–130◦ for 1.5 h.
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The synthesis of quinazolin-4-one/3-cyano-2-pyridone hybrids 7–21 was carried out
by a one-pot, four-component reaction of equal amounts of acylated quinazolin-4(3H)-one
5a–c, ethyl cyanoacetate, suitably substituted benzaldehyde, and an excess of ammonium
acetate in absolute ethanol with vigorous stirring at 120–130 ◦C for 1.5 h to obtain final
conjugates 7–21. Regarding the 1HNMR of compound 10, it exhibited a singlet signal
at δ: 4.26 ppm, illustrating the presence of methylene group of SCH2 protons as well
as the presence of a singlet signal at δ: 6.77 ppm corresponding to cyanopyridine H-5.
Furthermore, the NH group of the 2-pyridone ring appeared as a singlet at δ: 12.75 ppm.
In the 13C NMR of compound 10, a signal appeared at δ: 115.26 ppm corresponding
to the nitrile group, and a signal at δ: 160.21 ppm related to the carbonyl group of the
2-pyridone ring.

2.2. Biology
2.2.1. In Vitro Anti-Cancer Activity
Cytotoxicity Assay in Non-Tumorigenic MCF-10A Cells

To evaluate the potential cytotoxic effects of the synthesized compounds on non-
cancerous cells, we utilized the human mammary gland epithelial cell line, MCF-10A [62].
Compounds 7–21 were incubated with MCF-10A cells for a period of 4 days. After this
incubation period, the cell survival was assessed through the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay [9]. Importantly, at a concentration of
50 µM, the investigated compounds did not manifest any cytotoxic effects on MCF-10A
cells. For most of the compounds tested, the cell viability remained high, surpassing 86%
Table 1.

Table 1. Cytotoxicity assay of compounds 7–21 and Doxorubicin in non-tumorigenic MCF-10A cells.

Compound Cell Viability %

7 90

8 89

9 96

10 88

11 91

12 86

13 87

14 89

15 87

16 89

17 89

18 90

19 91

20 91

21 87

Doxorubicin a ND
a ND: Not determined.

Antiproliferative Activity

The antiproliferative properties of synthesized compounds are essential in assessing
their therapeutic potential. In this study, we embarked on a detailed evaluation of com-
pounds 7–21, focusing on their ability to hinder cell proliferation across diverse cancer cell
lines. The chosen cell lines represent a spectrum of human cancers, which are pancreatic
cancer (Panc-1), breast cancer (MCF-7), colon cancer (HT-29), and epithelial cancer (A-549).
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This variety ensures that the synthesized compounds’ efficacy is tested against different
cancer types, giving a holistic picture of their potential use. For a rigorous assessment, the
widely accepted MTT assay [63,64] was employed. Using Doxorubicin, a well-established
drug, as the reference standard ensures a benchmark for the synthesized compounds,
allowing a contextual understanding of their efficacy. A first glance at the results in Table 2
showcases the promising antiproliferative potential of the synthesized compounds. With
GI50 values spanning 1.40 µM to 9.40 µM, these compounds exhibited commendable in-
hibitory effects compared to the potent Doxorubicin with a GI50 of 1.10 µM. Among the
series, compounds 8, 9, and 18–21 emerged as the frontrunners. Their antiproliferative
activity was strikingly high, especially in compound 18 with a GI50 value tantamount to
Doxorubicin, thereby indicating its impressive potency. The antiproliferative activity seems
to hinge significantly on the type of substituent at the N-3 position of the quinazoline
moiety. Compound 18, with an allyl group, showed a pronounced effect, whereas its
counterparts with ethyl or phenyl groups, i.e., compounds 8 and 13, were less potent. This
suggests the paramount role of allyl group in enhancing the antiproliferative activity, a
crucial insight for future design improvements. Diving deeper into the structure–activity
relationship, the position-4 substitution on the phenyl group of the pyridine-2-one moiety
emerges as a critical determinant. Compounds 19, 20, and 21, bearing halogens, suggest a
clear tolerance and even preference for halogens in antiproliferative activity. Interestingly,
the order of efficacy based on the halogens is Cl > Br > F. Unsubstituted derivatives, namely
compounds 7, 12, and 17, showcased relatively lower potency. This signifies the relevance
of the substituents at position-4 of the phenyl group, stressing their importance in future
design considerations.

Table 2. Antiproliferative activity of compounds 7–21 and Doxorubicin.

Comp.
Antiproliferative Activity a IC50 ± SEM (µM)

b A-549 c MCF-7 d Panc-1 e HT-29 f Average IC50(GI50)

7 9.20 ± 0.80 9.10 ± 0.80 9.30 ± 0.80 9.80 ± 0.90 9.30

8 1.50 ± 0.10 1.40 ± 0.10 1.70 ± 0.10 1.70 ± 0.10 1.60

9 1.80 ± 0.10 1.60 ± 0.10 2.00 ± 0.10 2.00 ± 0.10 1.80

10 2.40 ± 0.20 2.20 ± 0.45 2.60 ± 0.20 2.70 ± 0.20 2.50

11 3.70 ± 0.30 3.60 ± 0.30 3.80 ± 0.30 4.00 ± 0.30 3.80

12 7.50 ± 0.60 7.20 ± 0.70 7.80 ± 0.70 7.70 ± 0.70 7.50

13 3.20 ± 0.30 3.10 ± 0.30 3.40 ± 0.30 3.50 ± 0.30 3.30

14 4.10 ± 0.40 3.90 ± 0.40 4.20 ± 0.40 4.20 ± 0.40 4.10

15 4.70 ± 0.40 4.60 ± 0.40 5.00 ± 0.40 4.90 ± 0.40 4.80

16 4.80 ± 0.50 4.70 ± 0.40 5.10 ± 0.50 5.10 ± 0.50 4.90

17 8.40 ± 0.70 8.10 ± 0.70 8.90 ± 0.70 9.00 ± 0.70 8.60

18 1.10 ± 0.10 1.00 ± 0.10 1.30 ± 0.10 1.30 ± 0.10 1.20

19 1.30 ± 0.10 1.20 ± 0.08 1.60 ± 0.10 1.60 ± 0.10 1.40

20 2.00 ± 0.10 1.80 ± 0.10 2.10 ± 0.10 2.10 ± 0.10 2.00

21 2.10 ± 0.20 1.90 ± 0.10 2.20 ± 0.20 2.20 ± 0.10 2.10

Doxorubicin 1.20 ± 0.10 0.90± 0.10 1.40 ± 0.10 1.00 ± 0.10 1.10
a IC50 (µM): Expressed as mean ± SEM. b A-549: Human lung carcinoma cell line. c MCF-7: Human breast
adenocarcinoma cell line. d Panc-1: Human pancreatic cancer cell line. e HT-29: Human colon cancer cell line.
f GI50: average of IC50 against four cancer cell line.

In synthesizing compounds for antiproliferative purposes, the interplay between
different functional groups and substituents becomes apparent. This detailed evaluation
of the synthesized compounds offers valuable insights, not just in understanding their
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current efficacy but also in directing future compound designs and modifications for even
enhanced therapeutic potential.

EGFR Inhibitory Activity

The most effective antiproliferative hybrids, 8, 9, 18, and 19, were tested for EGFR-TK
inhibitory activity as a possible target for their antiproliferative activity [65]. Table 3 shows
the IC50 values for each compound against Erlotinib, the reference drug.

Table 3. Effects of compounds 8, 9, 18, 19, and Erlotinib on EGFR and BRAFV600E.

Compound EGFR Inhibition
a IC5 ± SEM (nM)

BRAF Inhibition
IC50 ± SEM (nM)

8 160 ± 12 220 ± 15

9 190 ± 15 290 ± 20

18 110 ± 10 140 ± 10

19 140 ± 11 190 ± 12

Erlotinib 80 ± 5 60 ± 5
a IC50 (nM): Expressed as mean ± SEM.

Compounds 8, 9, 18, and 19 displayed promising EGFR inhibitory activity, with
IC50 values ranging from 110 nM to 190 nM compared to Erlotinib (IC50 = 80 ± 5 nM).
As EGFR inhibitors, the investigated compounds were less effective than Erlotinib. The
most potent antiproliferative agent, compound 18 (R1 = allyl, R2 = OCH3), was also the
most potent EGFR inhibitor, with an IC50 value of 110 ± 10 nM, 1.4-fold less potent than
Erlotinib. Compound 19 (R1 = allyl, R2 = Cl) was the second most active compound, with
an IC50 value of 140 ± 11 nM, 1.8-fold less potent than Erlotinib. These findings add to the
body of evidence supporting the significance of the methoxy group in these compounds’
antiproliferative effect. Finally, compounds 8 (R1 = ethyl, R2 = OCH3) and 9 (R1 = ethyl,
R2 = Cl) were the least effective EGFR inhibitors, with IC50 values of 160 ± 12 nM and
190 ± 15 nM, respectively. These findings indicate that the EGFR may be a potential target
for the antiproliferative activity of the investigated compounds, notably compounds 18
and 19.

BRAFV600E Inhibitory Activity

An in vitro study was carried out to evaluate the activity of the newly synthesized
compounds 8, 9, 18, and 19 against BRAFV600E [59]. Table 3 shows the IC50 values for
the tested compounds and Erlotinib, which was chosen as the reference drug. Table 2
shows that the investigated compounds had good inhibitory efficacy, with IC50 values
ranging from 140 nM to 290 nM compared to Erlotinib (IC50 = 60 ± 5 nM). Compounds 18
(R1 = allyl, R2 = OCH3) and 19 (R1 = allyl, R2 = Cl) had the most potent inhibitory activities
against BRAFV600E, with IC50 values of 140 ± 10 nM and 190 ± 12 nM, respectively, being
2- and 3-fold less potent than Erlotinib. According to the findings of this study, the tested
compounds 18 and 19 had dual inhibitory effects against both EGFR and BRAFV600E,
suggesting that they could be used as potential targets for antiproliferative action.

2.3. In Silico Studies
2.3.1. Docking Study

In this investigative study, we conducted a computational docking analysis to unveil
the binding interactions involving the highly in vitro active compounds 18 and 19 with
the tyrosine kinase receptors EGFR and BRAFV600E. We employed the Discovery Studio
software, a computational tool designed for such analyses [66–68]. To streamline our
inquiry, we obtained the X-ray crystallography structures of the EGFR and BRAFV600E

tyrosine kinases. Specifically, the structure of EGFR was co-crystallized with Erlotinib as a
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reference structure (PDB: 1M17) [69]. Similarly, the BRAFV600E structure was co-crystallized
with Vemurafenib as a reference (PDB: 3OG7) [70].

To validate the reliability of the EGFR docking procedure, we conducted a re-docking
experiment using the co-crystallized Erlotinib. This was performed within the active site of
EGFR, resulting in a S score of −8.69 kcal/mol. The root-mean-square deviation (RMSD)
value, a structural similarity measure, was calculated to be 1.72 Å. A significant hydrogen
bond interaction was established, specifically between the pyrimidine nitrogen of Erlotinib
and the amino acid Met769, with a bond length of 2.29 Å. This interaction emphasized the
pivotal role of Met769 in stabilizing the ligand within the binding site Figure 4.
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Figure 4. Docking representation model of co-crystallized Erlotinib within the binding site of EGFR
(PDB ID: 1M17).

The molecular modelling and interactions presented in the docking studies of com-
pounds 18, 19, and the quinazoline-single moiety 5C with the EGFR receptor provide
a profound insight into the mechanisms and intricacies of drug-receptor binding. The
conjugation of quinazolin-4-one and 3-cyanopyridin-2-one motifs into a singular entity
in compounds 18 and 19 and their subsequent interactions illuminate the significance of
strategic molecular design for targeted receptor engagement. A critical observation from
the provided data is the pronounced binding efficacy of the conjugated hybrids, 18 and 19,
despite the evident absence of direct interactions of their quinazoline ring with the receptor
amino acids. This absence might initially seem counterintuitive, given the potent nature
of quinazoline as a pharmacophore. However, the enhanced activity of these hybrids can
be attributed to their encompassing and vital interactions with pivotal EGFR amino acids.
Such interactions not only anchor the molecules within the active site, but they also likely
disrupt native functions of the receptor, rendering it inactive (Figure 5). The diversity and
multiplicity of the interactions exhibited by compounds 18 and 19 emphasize the wisdom
behind the conjugation of the two moieties. Whereas each moiety is capable of specific
interactions, their combination seems to exploit a broader range of binding possibilities,
ensuring a comprehensive engagement with the receptor. This intricate binding landscape,
especially the interactions with crucial amino acids like MET A:769, ALA A:719, and VAL
A:702, indicates a highly strategic alignment within the receptor active site, which could
explain their potent in vitro activity. Compound 18 establishes a more diverse binding
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pattern within the active site of EGFR compared to compound 19. This diversity is evident
in its broader interaction landscape, especially its π-sigma and π-alkyl interactions with
pivotal amino acids like PHE A:771 Figure 5. These extensive interactions not only stabilize
the compound within the active site but could also enhance its inhibitory effect on the
receptor. Furthermore, compound 18′s computed docking score of −7.35 kcal/mol, which
is higher than the −6.85 kcal/mol score of compound 19, provides a quantitative measure
of its superior binding affinity (Figure 5). The constrained binding pattern of compound
19, in contrast, might limit its binding stability and, consequently, its therapeutic efficacy.
Whereas compound 19 still exhibits valuable interactions and remains a potential EGFR
inhibitor, compound 18, with its multifaceted engagement and superior docking score,
stands out as the more potent entity in the series. On the contrary, the quinazoline-single
moiety 5c, although demonstrating a series of interactions, lacks the diversity and depth
of engagements witnessed in the hybrids (Figure 6). This difference is likely due to the
absence of the 3-cyanopyridin-2-one motif, which, when present in the hybrids, amplifies
their binding profiles. The lower S score for 5c compared to the hybrids further supports
this notion (Figure 6).
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Similarly, to validate the docking protocol concerning BRAFV600E, we conducted a re-
docking experiment utilizing the co-crystallized Vemurafenib. This endeavor took place at
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active site of BRAFV600E, resulting in an impressive S score of−11.99 kcal/mol. To gauge the
extent of structural conformity, we computed a root-mean-square deviation (RMSD) value
of 1.55 Å. Substantial hydrogen bond interactions were established, particularly between
Vemurafenib and the amino acids Cys532 and Asn580, firmly anchoring its position within
the binding site (Figure 7).
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BRAF (PDB ID: 3OG7).

Hybrid 18, with a docking score of −7.85 kcal/mol, showcases more pronounced
interactions with the receptor. From the visualization, hybrid 18 forms strong conventional
hydrogen bonds with residues like CYS A:532, ASN A:580, and SER A:536 (Figure 8). These
interactions, particularly with CYS A:532, are of utmost importance, considering the pivotal
role cysteine residues often play in the active sites of various proteins. The compound
aromatic regions also engage in multiple pi interactions, further reinforcing its grip within
the active site. Alkyl and pi-alkyl interactions with residues such as ALA A:481, LYS A:483,
and VAL A:471 solidify its binding affinity, potentially leading to its potent in vitro activity
(Figure 8). On the other hand, hybrid 19, despite having a commendable docking score of
−7.53 kcal/mol, falls slightly short when compared to hybrid 18. The visual representation
suggests robust interactions, but the comparative difference in docking scores indicates
that hybrid 18 might have a slightly superior binding affinity or forms more favorable
interactions, translating to enhanced inhibitory potential. However, with a docking score
of −6.33 kcal/mol, Erlotinib interaction is somewhat less optimal than the scores observed
for hybrids 18 and 19 (Figure 8). One reason for this could be the extent and depth of
interactions Erlotinib forms with the receptor. Whereas it does form important bonds with
vital residues, it may not span as diverse a landscape as the hybrids, especially hybrid 18
(Figure 8). These findings closely aligned with dual EGFR/BRAFV600E in vitro inhibition
assay outcomes. In conclusion, the findings presented in this study underscore the notable
inhibitory potential of compound 18 against the BRAFV600E kinase. This propensity is
underpinned by meaningful binding interactions observed within the active site. This
observation resonates with the outcomes obtained from the rigorous BRAFV600E in vitro



Pharmaceuticals 2023, 16, 1522 11 of 23

inhibition assay, lending credibility to the predictive capabilities of our computational
approach.
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Additionally, our investigation unveils a compelling avenue for potential dual inhi-
bition, as indicated by supplementary simulations targeting both EGFR and BRAFV600E;
specifically, compounds 18 and 19 promise to function as dual inhibitors.

The insights garnered from this study offer a foundational comprehension of the in-
hibitory implications embedded within the investigated compounds. This understanding,
in turn, sets the stage for subsequent experimental investigations and optimization en-
deavors within the dynamic realm of drug discovery. Describing the complex interactions
between these compounds and the target kinases is an important guide for developing
targeted hit compounds. These compounds could interfere with pathways linked to can-
cer signaling.

2.3.2. In Silico ADMET Studies

Considering the promising in vitro and silico docking results, we proceeded to conduct
supplementary ADMET studies for the newly synthesized compounds. This choice was
motivated by the intention to gain a more comprehensive insight into these significant
activities [71]. During the ADMET investigations, we utilized Erlotinib as the established
reference compound. Using Discovery Studio 4.0, we conducted predictions for the ADMET
descriptors of all synthesized compounds. The expected descriptors are outlined in Table 4.

Table 4. Predicted ADMET for synthesized qunazolin-4-one/3-cyanopyrid-2-one hybrids 7–21.

Comp. ID PSA PPB a Absorption
Level b

CYP2D6
Prediction c BBB Level d Solubility

Level e AlogP98

7 113.584 True 2 False 4 2 5.009

8 122.514 True 2 False 4 2 4.992

9 113.584 True 3 False 4 1 5.673

10 113.584 True 2 False 4 1 5.757

11 113.584 True 2 False 4 2 5.214

12 115.133 False 3 False 4 2 5.361
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Table 4. Cont.

Comp. ID PSA PPB a Absorption
Level b

CYP2D6
Prediction c BBB Level d Solubility

Level e AlogP98

13 124.063 False 3 False 4 2 5.345

14 115.133 True 2 False 4 1 6.026

15 115.133 False 2 False 4 1 6.11

16 115.133 True 2 False 4 2 5.567

17 115.133 False 1 False 4 2 4.402

18 124.063 False 2 False 4 2 4.385

19 115.133 True 2 False 4 2 5.066

20 115.133 False 2 False 4 2 5.15

21 115.133 True 2 False 4 2 4.607

Erlotinib 70.844 True 0 False 1 2 4.299
a PBB, plasma protein binding, FALSE means less than 90%, TRUE means > 90%; b Absorption level, 0 = good,
1 = moderate, 2 = poor, 3 = very poor; c CYP2D6, cytochrome P2D6, TRUE = inhibitor, FALSE = non inhibitor;
d BBB level, blood–brain barrier level, 0 = very high, 1 = high, 2 = medium, 3 = low, 4 = very low; e Solubility
level, 1 = very low, 2 = low, 3 = good, 4 = optimal.

A significant number of the hybrid compounds exhibited a modest predicted level of
intestinal absorption (absorption level = 2). This positioning designates them as promising
candidates for localized treatment of gastrointestinal tumors or as potential contenders
for intravenous administration. Notably, most of these novel compounds displayed low
solubility (ADME aqueous solubility level = 2).

Furthermore, the AlogP98 tool aided in predicting the logP value based on the molec-
ular structure of each compound. This approach allows researchers to estimate how a
compound will partition between a nonpolar solvent (octanol) and water. Notably, most
hybrid compounds demonstrated AlogP98 values ranging from 5 to 6, indicating their
heightened lipophilicity. This characteristic contributes to their reduced aqueous solubility.
However, there is a potential solution in the form of Cyclodextrin Complexation, a method
that improves solubility by encapsulating these hybrid molecules within the hydrophobic
cavity of cyclodextrin molecules.

During the ADMET assessment, all the newly synthesized hybrids were categorized at
a blood–brain barrier (BBB) level of 4, effectively hindering their ability to penetrate across
the BBB. Importantly, the drug bioavailability was interconnected with the fundamental
property of 2D polar surface area (ADMET 2D PSA).

Utilizing the calculated 2D polar surface area (PSA 2D) and Atom-based Log P98
(A log P98) properties, the outcomes have been visualized through a 2D ADMET plot
(Figure 9). It is worth noting that molecules with a PSA less than 145 generally exhibit
characteristics of low bioavailability and passive absorption [72]. Using a 2D chemical
structure as input, the cytochrome P450 2D6 (CYP2D6) model predicts the potential for
inhibiting the CYP2D6 enzyme. This enzyme, located in the liver, plays a critical role
in metabolizing a wide range of substrates, thereby significantly contributing to various
drug–drug interaction scenarios [73]. As a result, experimenting to evaluate CYP2D6
inhibition becomes crucial within the regulatory protocols followed during drug discovery
and development [74]. Each evaluated hybrid compound was predicted to display non-
inhibitory behavior towards CYP2D6. As a result, the risk of inducing liver dysfunction
after administering these hybrids is minimal.
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The plasma protein binding model determines whether a substance will bind robustly
(>90%) to carrier proteins in the blood. Notably, a substantial binding to plasma proteins
(>90%) was expected for the majority of hybrid compounds, as detailed in Table 4.

2.3.3. In Silico Toxicity Predictions

To predict toxicity, we utilized the constructed and validated models within the
Discovery Studio software for the synthesized compounds [75]. The rodent carcinogenicity
test carried out by the FDA evaluates the capacity of a chemical structure to induce cancer
in rats. On the other hand, the prediction of rat maximum tolerated dose (MTD) estimates
the highest dose of a chemical substance that can be administered to rats without resulting
in adverse effects [76]. In assessing toxicity for a chemical compound, the prediction of
rat oral LD50 is utilized to forecast the acute median lethal dose (LD50) in rats after the
compound is administered orally [77]. As part of the Draize test, ocular irritancy analysis
is utilized to determine the potential of a particular compound to cause eye irritation
and assess the degree of severity of this irritation [78]. In evaluations based on rabbits,
investigations into skin irritancy assess the probability of a substance causing skin irritation
and the potential severity of such effects. As per the in silico assessments outlined in Table 5,
most compounds displayed low toxicity and minimal adverse effects.
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Table 5. The predicted toxicity properties of the synthesized compounds.

Comp. ID
FDA

Rodent Carcinogenicity
(Mouse- Female)

Rat Maximum
Tolerated

Dose (Feed) a

Rat Oral
LD50

a
Ocular

Irritancy
Skin

Irritancy

7 Non-Carcinogen 0.0306 0.592702 Mild Non-Irritant

8 Non-Carcinogen 0.0164 0.63625 Mild Non-Irritant

9 Non-Carcinogen 0.0367 0.686439 Mild Non-Irritant

10 Non-Carcinogen 0.0236 0.912908 Mild Non-Irritant

11 Non-Carcinogen 0.0400 0.357337 Mild Non-Irritant

12 Non-Carcinogen 0.0239 1.5471 Mild Non-Irritant

13 Non-Carcinogen 0.0127 0.806376 Mild Non-Irritant

14 Non-Carcinogen 0.0285 0.737159 Mild Non-Irritant

15 Non-Carcinogen 0.0182 0.974688 Mild Non-Irritant

16 Non-Carcinogen 0.0311 0.384654 Mild Non-Irritant

17 Non-Carcinogen 0.0251 0.719247 Mild Non-Irritant

18 Non-Carcinogen 0.0134 0.582941 Mild Non-Irritant

19 Non-Carcinogen 0.0300 0.533142 Moderate-Severe Non-Irritant

20 Non-Carcinogen 0.0192 0.707879 Moderate-Severe Non-Irritant

21 Non-Carcinogen 0.0327 0.277722 Moderate-Severe Non-Irritant

Erlotinib Non-Carcinogen 0.0730 0.534347 Mild Non-Irritant
a Unit: g/kg body weight.

Additionally, all the hybrid compounds subjected to testing were forecasted to have
non-carcinogenic attributes, aligning with the preliminary findings of the FDA rodent
carcinogenicity assessment. The majority of the evaluated compounds exhibited higher rat
oral LD50 values compared to the value of Erlotinib.

Furthermore, the predictive models suggested that all hybrids are anticipated to not
irritate in the context of skin irritancy testing, and the majority of them are projected to
induce mild irritation in the context of ocular irritancy testing.

In conclusion, the ADMET investigations conducted in this study provide crucial
insights into the potential effectiveness, safety, and pharmacokinetic behavior of the newly
developed hybrids. The insights gained from these assessments hold immense significance
in guiding the drug discovery and development trajectory. This wealth of information
assists in identifying promising drug candidates that merit further evaluation and advance-
ment in the testing and developmental stages.

In summation, the ADMET explorations undertaken in this investigation offer piv-
otal insights into the potential efficacy, safety profile, and pharmacokinetic attributes of
the recently formulated hybrids. The discernments gleaned from these analyses carry
substantial importance, serving as a compass to navigate the path of drug discovery and
development. This reservoir of knowledge aids in pinpointing auspicious drug candi-
dates warranting meticulous scrutiny and progression through subsequent testing and
developmental phases.

2.4. Structure–Activity Relationship (SAR)

Based on the observed results, the structure–activity relationship of our novel quinazolin-
4-one/3-cyanopyridin-2-one hybrids (7–21) is as follows.
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with Asn 580 within the catalytic loop active site of BRAFV600E.The strategic positioning of
these functional groups is critical in defining these compounds’ antiproliferative efficacy.

3. Materials and Methods
3.1. Chemistry

General details: see Section A (Supplementary File). Compounds 3a–c and 5a–c were
prepared according to previous studies [33,35].

General Procedures for the Synthesis of Compounds 7–21

A mixture of appropriate derivatives 5a–c (1 mmol) substituted benzaldehydes 6a–j
(1 mmol), ethyl cyanoacetate (0.113 g, 1 mmol), and ammonium acetate (0.154 g, 2 mmol)
were fused at 120–130 ◦C for 30 min. After cooling, the crude product was filtered off and
crystallized from absolute ethanol [48,52].

N-(4-(5-Cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-yl)phenyl)-2-((3-ethyl-4-oxo-3,4-dihydroquin
azolin-2-yl)thio)acetamide (7). White powder; yield (0.400 g, 75%); m.p.: > 300 ◦C; 1H NMR
(500 MHz, DMSO-d6) δ (ppm): 1.33 (t, J = 7.0 Hz, 3H, N3-CH2-CH3), 4.14 (q, J = 7.1 Hz, 2H,
N3-CH2-CH3), 4.27 (s, 2H, SCH2), 6.74 (s, 1H, pyridine-C5–H), 7.41–7.48 (m, 4H, Ar-H),
7.57–7.60 (m, 3H, Ar-H), 7.77 (d, J = 8.2 Hz, 3H, Ar-H), 7.92 (d, J = 8.5 Hz, 2H, Ar-H), 8.08
(d, J = 7.9 Hz, 1H, Ar-H), 10.73 (s, 1H, CONH), 12.67 (br s, 1H, pyridine-NH). 13C NMR
(125 MHz, DMSO-d6) δ (ppm): 13.02, 36.78, 37.61, 91.52, 104.39, 118.53, 118.83, 118.88,
121.61, 124.00, 125.67, 125.99, 126.43, 127.50, 128.69, 130.37, 131.29, 131.77, 134.68, 135.36,
138.26, 141.76, 146.68, 155.88, 160.21, 166.36. Anal. Calcd. For C30H23N5O3S (533.61): C,
67.53; H, 4.34; N, 13.12; S, 6.01. Found: C, 67.64; H, 4.46; N, 13.15; S, 6.23.
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N-(4-(5-Cyano-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((3-ethyl-4-oxo-3,4-
dihydroquinazolin-2-yl)thio)acetamide (8). Yellow powder; yield (0.292 g, 80%); m.p.: > 300 ◦C;
1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.33 (t, J = 7.0 Hz, 3H, N3-CH2-CH3), 3.85 (s, 3H,
OCH3), 4.14 (q, J = 7.1 Hz, 2H, N3-CH2-CH3), 4.27 (s, 2H, SCH2), 6.74 (s, 1H, pyridine-
C5–H), 7.10–7.16 (m, 2H, Ar-H), 7.40–7.46 (m, 2H, Ar-H), 7.72–7.78 (m, 5H, Ar-H), 7.89
(s, 2H, Ar-H), 8.07 (dd, J = 8.2, 1.6 Hz, 1H, Ar-H), 10.73 (s, 1H, CONH), 12.61 (br s, 1H,
pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm): 13.02, 36.78, 37.61, 55.61, 91.52,
104.39, 118.53, 118.83, 118.88, 121.61, 124.00, 125.67, 125.99, 126.43, 127.50, 128.69, 130.37,
131.29, 131.77, 134.68, 135.36, 138.26, 141.76, 146.68, 155.88, 160.21, 166.36. Anal. Calcd. For
C31H25N5O4S (563.63): C, 66.06; H, 4.47; N, 12.43; S, 5.69. Found: C, 66.28; H, 4.67; N, 12.44;
S, 5.71.

N-(4-(4-(4-Chlorophenyl)-5-cyano-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((3-ethyl-4-oxo-3,4
-dihydroquinazolin-2-yl)thio)acetamide (9). Yellow powder; yield (0.282 g, 78%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.33 (t, J = 7.0 Hz, 3H, N3-CH2-CH3), 4.13
(q, J = 7.1 Hz, 2H, N3-CH2-CH3), 4.26 (s, 2H, SCH2), 6.77 (s, 1H, pyridine-C5–H), 7.34–7.48
(m, 3H, Ar-H), 7.58–7.71 (m, 3H, Ar-H), 7.72–7.85 (m, 5H, Ar-H), 8.04 –8.09 (m, 1H, Ar-H),
10.73 (s, 1H, CONH), 12.75 (s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
13.02, 36.78, 38.01, 91.52, 104.45, 115.26, 118.83, 118.87, 125.67, 125.99, 126.43, 127.50, 128.69,
130.37, 131.29, 131.77, 134.68, 135.36, 141.76, 146.68, 152.76, 155.88, 157.34,158.88, 159.35,
160.21, 166.36. Anal. Calcd. For C30H22ClN5O3S (568.05): C, 63.43; H, 3.90; N, 12.33; S, 5.64.
Found: C, 63.45; H, 4.10; N, 12.35; S, 5.66.

N-(4-(4-(4-Bromophenyl)-5-cyano-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((3-ethyl-4-oxo-3,4-
dihydroquinazolin-2-yl)thio)acetamide (10). Yellow powder; yield (0.262 g, 78%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.33 (t, J = 7.0 Hz, 3H, N3-CH2-CH3), 4.13
(q, J = 7.1 Hz, 2H, N3-CH2-CH3), 4.26 (s, 2H, SCH2), 6.77 (s, 1H, pyridine-C5–H), 7.34–7.48
(m, 3H, Ar-H), 7.58–7.71 (m, 3H, Ar-H), 7.72–7.85 (m, 5H, Ar-H), 8.04–8.09 (m, 1H, Ar-H),
10.73 (s, 1H, CONH), 12.75 (s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
13.02, 36.78, 38.01, 91.52, 104.45, 115.26, 118.83, 118.87, 125.67, 125.99, 126.43, 127.50, 128.69,
130.37, 131.29, 131.77, 134.68, 135.36, 141.76, 146.68, 152.76, 155.88, 157.34, 158.88, 159.35,
160.21, 166.36. Anal. Calcd. For C30H22BrN5O3S (612.50): C, 58.83; H, 3.62; N, 11.43; S, 5.23.
Found: C, 58.90; H, 3.68; N, 11.48; S, 5.28.

N-(4-(5-Cyano-4-(4-fluorophenyl)-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((3-ethyl-4-oxo-3,4-
dihydroquinazolin-2-yl)thio)acetamide (11). Yellow powder; yield (0.298 g, 80%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.33 (t, J = 7.0 Hz, 3H, N3-CH2-CH3), 4.13
(q, J = 7.1 Hz, 2H, N3-CH2-CH3), 4.26 (s, 2H, SCH2), 6.77 (s, 1H, pyridine-C5–H), 7.34–7.48
(m, 3H, Ar-H), 7.58–7.71 (m, 3H, Ar-H), 7.72–7.85 (m, 5H, Ar-H), 8.04–8.09 (m, 1H, Ar-H),
10.73 (s, 1H, CONH), 12.75 (s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
13.02, 36.78, 38.01, 91.52, 104.45, 115.26, 118.83, 118.87, 125.67, 125.99, 126.43, 127.50, 128.69,
130.37, 131.29, 131.77, 134.68, 135.36, 141.76, 146.68, 152.76, 155.88, 157.34, 158.88, 159.35,
160.21, 166.36. Anal. Calcd. For C30H22FN5O3S (551.60): C, 65.32; H, 4.02; N, 12.70; S, 5.81.
Found: C, 65.42; H, 4.22; N, 12.60; S, 5.85.

N-(4-(5-Cyano-6-oxo-4-phenyl-1,6-dihydropyridin-2-yl)phenyl)-2-((4-oxo-3-phenyl-3,4-dihydroqui
nazolin-2-yl)thio)acetamide (12). Yellow powder; yield (0.298 g, 80%); m.p.: > 300 ◦C; 1H
NMR (500 MHz, DMSO-d6) δ: 4.11 (s, 2H, SCH2), 6.78 (s, 1H, pyridine-C5–H), 7.43–7.48
(m, 1H, Ar-H), 7.48–7.51 (m, 2H, Ar-H), 7.51–7.56 (m, 2H, Ar-H), 7.56–7.58 (m, 2H, Ar-H),
7.59–7.62 (m, 3H, Ar-H), 7.70–7.76 (m, 4H, Ar-H), 7.78–7.84 (m, 1H, Ar-H), 7.90 (d, J = 8.3 Hz,
2H, Ar-H), 8.08 (m, 1H, Ar-H), 10.67 (s, 1H, CONH), 12.71 (s, 1H, pyridine-NH). 13C NMR
(125 MHz, DMSO-d6) δ (ppm): 37.43, 91.84, 104.34, 108.15, 116.84, 119.18, 119.67, 126.10,
126.38, 126.85, 128.39, 128.86, 129.04, 129.57, 129.85, 130.32, 130.66, 135.25, 135.90, 136.30,
138.07, 141.85, 143.68, 147.28, 157.06, 158.78, 160.90, 166.71. Anal. Calcd. For C34H23N5O3S
(581.65): C, 70.21; H, 3.99; N, 12.04; S, 5.51. Found: C, 70.41; H, 3.95; N, 12.01; S, 5.50.

N-(4-(5-Cyano-4-(4-methoxyphenyl)-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((4-oxo-3-phenyl-3,4-
dihydroquinazolin-2-yl)thio)acetamide (13). Yellow powder; yield (0.332 g, 80%); m.p.: > 300 ◦C;
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1H NMR (500 MHz, DMSO-d6) δ (ppm): 3.86 (s, 3H, OCH3), 4.13 (s, 2H, SCH2), 6.78 (s, 1H,
pyridine-C5–H), 7.13 (d, J = 8.4 Hz, 2H, Ar-H), 7.44–7.58 (m, 4H, Ar-H), 7.62 (d, J = 5.7 Hz,
3H, Ar-H), 7.66–7.85 (m, 5H, Ar-H), 7.90 (d, J = 8.3 Hz, 2H, Ar-H), 8.09 (d, J = 7.9 Hz, 1H,
Ar-H), 10.68 (s, 1H, CONH), 12.58 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6)
δ (ppm): 36.81, 55.22, 91.02, 112.65, 115.63, 118.17, 119.34, 120.04, 122.73, 123.64, 126.34,
126.55, 127.13, 129.17, 129.90, 130.05, 130.52, 130.85, 132.25, 135.44, 135.79, 136.25, 142.22,
147.58, 157.39, 160.59, 165.72. Anal. Calcd. For C35H25N5O4S (611.68): C, 68.73; H, 4.12; N,
11.45; S, 5.24. Found: C, 68.75; H, 4.17; N, 11.50; S, 5.25.

N-(4-(4-(4-Chlorophenyl)-5-cyano-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((4-oxo-3-phenyl-3,4-
dihydroquinazolin-2-yl)thio)acetamide (14). Yellow powder; yield (0.309 g, 75%); m.p.: > 300 ◦C;
1H NMR (500 MHz, DMSO-d6) δ (ppm): 4.13 (s, 2H, SCH2), 6.82 (s, 1H, pyridine-C5–H),
7.47 (d, J = 7.5 Hz, 1H, Ar-H), 7.49–7.52 (m, 2H, Ar-H), 7.54 (d, J = 8.0 Hz, 1H, Ar-H),
7.57–7.63 (m, 3H, Ar-H), 7.63–7.68 (m, 2H, Ar-H), 7.72–7.79 (m, 4H, Ar-H), 7.79–7.84 (m,
1H, Ar-H), 7.91 (d, J = 8.3 Hz, 2H, Ar-H), 8.09 (dd, J = 8.0, 1.6 Hz, 1H, Ar-H), 10.68 (s, 1H,
CONH), 12.76 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm): 37.82,
91.02, 104.65, 119.34, 120.04, 122.73, 123.64, 124.51, 126.34, 126.55, 127.13, 129.17, 129.90,
130.05, 130.52, 130.85, 132.25, 135.44, 135.79, 136.25, 142.22, 147.58, 157.39, 161.08, 166.86.
Anal. Calcd. For C34H22ClN5O3S (616.09): C, 66.28; H, 3.60; N, 11.37; S, 5.20. Found: C,
66.30; H, 3.70; N, 11.36; S, 5.29.

N-(4-(4-(4-Bromophenyl)-5-cyano-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((4-oxo-3-phenyl-3,4-
dihydroquinazolin-2-yl)thio)acetamide (15). Yellow powder; yield (0.296 g, 77%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 4.13 (s, 2H, SCH2), 6.80 (s, 1H, pyridine-
C5–H), 7.47 (d, J = 7.5 Hz, 1H, Ar-H), 7.49–7.52 (m, 2H, Ar-H), 7.54 (d, J = 8.0 Hz, 1H, Ar-H),
7.57–7.63 (m, 3H, Ar-H), 7.63–7.68 (m, 2H, Ar-H), 7.72–7.79 (m, 4H, Ar-H), 7.79–7.84 (m,
1H, Ar-H), 7.91 (d, J = 8.3 Hz, 2H, Ar-H), 8.09 (dd, J = 8.0, 1.6 Hz, 1H, Ar-H), 10.68 (s, 1H,
CONH), 12.76 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm): 37.82,
91.02, 104.65, 119.34, 120.04, 122.73, 123.64, 124.51, 126.34, 126.55, 127.13, 129.17, 129.90,
130.05, 130.52, 130.85, 132.25, 135.44, 135.79, 136.25, 142.22, 147.58, 157.39, 161.08, 166.86.
Anal. Calcd. For C34H22BrN5O3S (660.55): C, 61.82; H, 12.10; N, 7.27; S, 4.85. Found: C,
61.84; H, 12.30; N, 7.47; S, 4.90.

N-(4-(5-Cyano-4-(4-fluorophenyl)-6-oxo-1,6-dihydropyridin-2-yl)phenyl)-2-((4-oxo-3-phenyl-3,4-
dihydroquinazolin-2-yl)thio)acetamide (16). Yellow powder; yield (0.339 g, 80%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 4.11 (s, 2H, SCH2), 6.80 (s, 1H, pyridine-C5–H),
7.17–7.34 (m, 1H, Ar-H), 7.34–7.56 (m, 5H, Ar-H), 7.56 –7.68 (m, 3H, Ar-H), 7.68–7.77 (m, 3H,
Ar-H), 7.77–7.84 (m, 2H, Ar-H), 7.85–8.02 (m, 2H, Ar-H), 8.08 (dd, J = 8.0, 1.6 Hz, 1H), 10.67
(s, 1H, CONH), 12.71 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
37.82, 91.02, 104.65, 119.34, 120.04, 122.73, 123.64, 124.51, 126.34, 126.55, 127.13, 129.17,
129.90, 130.05, 130.52, 130.85, 132.25, 135.44, 135.79, 136.25, 142.22, 147.58, 157.39, 161.08,
166.86. Anal. Calcd. For C34H22FN5O3S (599.64): C, 68.10; H, 3.70; N, 11.68; S, 5.35. Found:
C, 68.30; H, 3.80; N, 11.70; S, 5.45.

2-((3-Allyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrid
in-2-yl)phenyl)acetamide (17). Yellow powder; yield (0.409 g, 75%); m.p.: > 300 ◦C; 1H NMR
(500 MHz, DMSO-d6) δ (ppm): 4.25 (s, 2H, SCH2), 4.75 (d, J = 5.2 Hz, 2H, CH2CH=CH2),
5.16–5.27 (m, 2H, CH2CH=CH2), 5.92–5.98 (m, 1H, CH2CH=CH2), 6.82 (s, 1H, pyridine-
C5–H), 7.41–7.48 (m, 4H, Ar-H), 7.57–7.60 (m, 3H, Ar-H), 7.77 (d, J = 8.2 Hz, 3H, Ar-H),
7.92 (d, J = 8.5 Hz, 2H, Ar-H), 8.08 (d, J = 7.9 Hz, 1H, Ar-H), 10.73 (s, 1H, CONH), 12.67 (br
s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm): 37.20, 46.50, 91.09, 105.51,
114.69, 116.99, 118.17, 118.43, 119.05, 119.63, 125.67, 126.30, 126.79, 127.03, 128.85, 129.14,
130.38, 131.64, 132.49, 135.49, 141.59, 147.16, 156.74, 158.94, 161.01, 161.29, 167.05, 174.30.
Anal. Calcd. For C31H23N5O3S (545.62): C, 68.24; H, 4.25; N, 12.84; S, 5.88. Found: C, 68.34;
H, 4.40; N, 12.90; S, 5.93.

2-((3-Allyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-(5-cyano-4-(4-methoxy phenyl)-6-oxo-1,6-
dihydropyridin-2-yl)phenyl)acetamide (18). Yellow powder; yield (0.303 g, 80%); m.p.: > 300 ◦C;
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1H NMR (500 MHz, DMSO-d6) δ (ppm): 3.83 (s, 3H, OCH3), 4.25 (s, 2H, SCH2), 4.73–4.76
(m, 2H, CH2CH=CH2), 5.15–5.26 (m, 2H, CH2CH=CH2), 5.91–6.00 (m, 1H, CH2CH=CH2),
6.71 (s, 1H, pyridine-C5–H), 7.05–7.10 (m, 2H, Ar-H), 7.40–7.48 (m, 2H, Ar-H), 7.62–7.67 (m,
2H, Ar-H), 7.71–7.79 (m, 3H, Ar-H), 7.90–7.95 (m, 2H, Ar-H), 8.06–8.10 (m, 1H, Ar-H), 10.70
(s, 1H, CONH), 12.56 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
37.20, 46.50, 55.90, 91.09, 105.51, 114.69, 118.17, 118.43, 119.05, 119.63, 125.67, 126.30, 126.79,
127.03, 128.85, 129.14, 130.38, 131.64, 132.49, 135.49, 141.59, 147.16, 156.74, 158.94, 161.01,
161.29, 167.05, 174.30. Anal. Calcd. For C32H25N5O4S (575.64): C, 66.77; H, 4.38; N, 12.17; S,
5.57. Found: C, 66.80; H, 4.58; N, 12.29; S, 5.70.

2-((3-Allyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-(4-(4-chlorophenyl)-5-cyano-6-oxo-1,6-
dihydropyridin-2-yl)phenyl)acetamide (19). Yellow powder; yield (0.293 g, 78%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 4.26 (s, 2H, SCH2), 4.74–4.80 (m, 2H,
CH2CH=CH2), 5.16–5.29 (m, 2H, CH2CH=CH2), 5.91–6.02 (m, 1H, CH2CH=CH2), 6.83 (s,
1H, pyridine-C5–H), 7.41–7.51 (m, 3H, Ar-H), 7.63–7.67 (m, 2H, Ar-H), 7.75–7.77 (m, 2H,
Ar-H), 7.77–7.79 (m, 2H, Ar-H), 7.89–7.96 (m, 2H, Ar-H), 8.05–8.10 (m, 1H, Ar-H), 10.75
(s, 1H, CONH), 12.73 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
37.20, 46.50, 91.54, 105.51, 114.69, 118.17, 118.43, 119.05, 119.63, 126.30, 126.79, 127.03, 128.85,
129.14, 130.38, 131.64, 132.49, 135.49, 141.59, 147.16, 156.74, 158.94, 161.01, 161.29, 167.05,
170.13, 174.30. Anal. Calcd. For C31H22ClN5O3S (580.06): C, 64.19; H, 3.82; N, 12.07; S, 5.53.
Found: C, 64.22; H, 3.90; N, 12.17; S, 5.64.

2-((3-Allyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-(4-(4-bromophenyl)-4-cyano-6-oxo-1,6-
dihydropyridin-2-yl)phenyl)acetamide (20). Yellow powder; yield (0.279 g, 80%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 4.26 (s, 2H, SCH2), 4.74–4.80 (m, 2H,
CH2CH=CH2), 5.16–5.29 (m, 2H, CH2CH=CH2), 5.91–6.02 (m, 1H, CH2CH=CH2), 6.83 (s,
1H, pyridine-C5–H), 7.41–7.51 (m, 3H, Ar-H), 7.63–7.67 (m, 2H, Ar-H), 7.75–7.77 (m, 2H,
Ar-H), 7.77–7.79 (m, 2H, Ar-H), 7.89–7.96 (m, 2H, Ar-H), 8.05–8.10 (m, 1H, Ar-H), 10.75
(s, 1H, CONH), 12.73 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
37.20, 46.50, 91.54, 105.51, 114.69, 118.17, 118.43, 119.05, 119.63, 126.30, 126.79, 127.03, 128.85,
129.14, 130.38, 131.64, 132.49, 135.49, 141.59, 147.16, 156.74, 158.94, 161.01, 161.29, 167.05,
170.13, 174.30. Anal. Calcd. For C31H22BrN5O3S (624.51): C, 59.62; H, 3.55; N, 11.21; S, 5.13.
Found: C, 59.70; H, 3.60; N, 11.41; S, 5.26.

2-((3-Allyl-4-oxo-3,4-dihydroquinazolin-2-yl)thio)-N-(4-(5-cyano-4-(4-fluorophenyl) -6-oxo-1,6-
dihydropyridin-2-yl)phenyl)acetamide (21). Yellow powder; yield (0.309 g, 80%); m.p.:
> 300 ◦C; 1H NMR (500 MHz, DMSO-d6) δ (ppm): 4.26 (s, 2H, SCH2), 4.74–4.80 (m, 2H,
CH2CH=CH2), 5.16–5.29 (m, 2H, CH2CH=CH2), 5.91–6.02 (m, 1H, CH2CH=CH2), 6.83 (s,
1H, pyridine-C5–H), 7.41–7.51 (m, 3H, Ar-H), 7.63–7.67 (m, 2H, Ar-H), 7.75–7.77 (m, 2H,
Ar-H), 7.77–7.79 (m, 2H, Ar-H), 7.89–7.96 (m, 2H, Ar-H), 8.05–8.10 (m, 1H, Ar-H), 10.75
(s, 1H, CONH), 12.73 (br s, 1H, pyridine-NH). 13C NMR (125 MHz, DMSO-d6) δ (ppm):
37.20, 46.50, 91.54, 105.51, 114.69, 118.17, 118.43, 119.05, 119.63, 126.30, 126.79, 127.03, 128.85,
129.14, 130.38, 131.64, 132.49, 135.49, 141.59, 147.16, 156.74, 158.94, 161.01, 161.29, 167.05,
170.13, 174.30. Anal. Calcd. For C31H22FN5O3S (563.61): C, 66.06; H, 3.93; N, 12.43; S, 5.69.
Found: C, 66.20; H, 3.95; N, 12.46; S, 5.69.

3.2. Biology
3.2.1. Cell Viability Assay

The cell viability test utilized the human mammary gland epithelial cell line (MCF-
10A) [62]. Compounds 7–21 were incubated with MCF-10A cells for a period of 4 days,
followed by an assessment of cell survival through the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay [9]. For more details, see Section A (Supplemen-
tary File).

3.2.2. Antiproliferative Assay

Compounds 7–21 were examined to determine their ability to inhibit cell proliferation
in four types of human cancer cells: pancreatic cancer (Panc-1), breast cancer (MCF-7),
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colon cancer (HT-29), and epithelial cancer (A-549). The MTT assay [63,64] was employed
for this assessment, with Doxorubicin as the reference drug. See Section A (Supplementary
File).

3.2.3. EGFR Inhibitory Activity

The most effective antiproliferative hybrids, 8, 9, 18, and 19, were tested for EGFR-TK
inhibitory activity as a possible target for their antiproliferative activity. See Section A
(Supplementary File).

3.2.4. BRAFV600E Inhibitory Activity

An in vitro study was carried out to evaluate the activity of the newly synthesized
compounds 8, 9, 18, and 19 against BRAFV600E [59]. See Section A (Supplementary File).

3.3. In Silico Studies
3.3.1. Docking Study

For the molecular docking study, we used BIOVIA Discovery Studio 2021 software
v21.1.0.20.298. The selected proteins underwent preparation for docking analysis through the
Protein Preparation Wizard. Subsequently, ligands were mapped onto a three-dimensional
model and subjected to energy minimization using LigPrep. To potentially improve binding,
a receptor grid was created for the selected binding site using the Receptor Grid Generation
Tool. Finally, the Glide tool was employed to evaluate both docking scores and various
binding modes for the ligands.

3.3.2. In Silico ADMET Analysis

BIOVIA I Discovery Studio 2016 was used for ADMET investigations. The chemical
structures of all substances were imported, and ADMET descriptors were predicted using
integrated models that included Lipinski’s Rule of Five and assessments of absorption,
distribution, metabolism, excretion, and toxicity. The obtained results were examined to
determine the drug-likeness and safety profiles of the compounds.

4. Conclusions

A novel series of hybrids, combining quinazolin-4-one and 3-cyanopyrid-2-one in a
single compact structure, was synthesized and developed as dual-targeting antiprolifer-
ative agents. Using the MTT assay, these newly synthesized compounds were tested for
antiproliferative activities against four cancer cell lines. Compounds 18 and 19 were the
most potent antiproliferative agents, with GI50 values of 1.20 µM and 1.40 µM, respectively,
compared to Doxorubicin’s GI50 of 1.10 µM. Compounds 18 and 19 suppressed EGFR
efficiently, with IC50 values of 110 nM and 140 nM, respectively. Furthermore, with IC50
values of 140 nM and 190 nM, these hybrid compounds showed promising inhibition of
BRAFV600E. As a result of their combined inhibition of EGFR and BRAFV600E, they have
the potential to operate as effective antiproliferative agents. Molecular docking studies
indicated that compound 18 is a potent inhibitor for EGFR and BRAFV600E kinase domains.
Moreover, an ADMET study suggested that most compounds have low toxicity and limited
adverse effects in the tested models. Additional in vitro and in vivo studies and potential
chemical modifications may be required to advance the development of highly effective
antiproliferative medicines.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16111522/s1.
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