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Abstract

Neural networks achieve high accuracy in tasks like image recognition or segmentation. However, their application in safety-
critical domains is limited due to their black-box nature and vulnerability to specific types of attacks. To mitigate this, methods
detecting out-of-distribution or adversarial attacks in parallel to the network inference were introduced. These methods are hard
to compare because they were developed for different use cases, datasets, and networks. To fill this gap, we introduce EFFECT,
an end-to-end framework to evaluate and compare new methods for anomaly detection, without the need for retraining and by
using traces of intermediate inference results. The presented workflow works with every preexisting neural network architecture
and evaluates the considered anomaly detection methods in terms of accuracy and computational complexity. We demonstrate
EFFECT’s capabilities, by creating new detectors for ShuffleNet and MobileNetV2 for anomaly detection as well as fault origin
detection. EFFECT allows us to design an anomaly detector, based on the Mahalanobis distance as well as CNN based detectors.
For both use cases, we achieve accuracies of over 85 %, classifying inferences as normal or abnormal, and thus beating existing
methods.
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1. Introduction

In recent years, Convolutional Neural Networks (CNNs) achieved higher accuracy in image recognition and seg-
mentation tasks, than human respondents or traditional methods. Using dedicated hardware accelerators, neural net-
works have also entered embedded applications [6]. Many applications bear additional requirements regarding safety
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Fig. 1. Schematic of network tracing. Relevant data is marked gray, calculations and results are shown in white.

and security, e.g., in autonomous driving [18, 13]. In such safety-critical environments, mechanisms have to detect
anomalies that occur during CNN inference. Those anomalies manifest themselves in different aspects: For example,
an out of distribution (OOD) anomaly can occur, when the network has to deal with input data not present during
training. Inevitably, a misclassification happens, since the network will always predict one of the classes it has been
trained on. Similar behavior can be observed when the network operates in yet unknown situations like weather or
daytime.

Besides naturally occurring problems, misclassification can also be the consequence of a malicious intent. Those
misclassifications, which are referred to as adversarial attacks, can be evoked through, e.g., adding noise to the input
image, that is not noticeable to the human eye. Other attacks mislead the network by adding special shapes on top
of the input image, triggering a prediction desired by the attacker. Both occurrences can be regarded as an anomaly.
Detecting these anomalies with neural networks, by tracing intermediate results, has been proven to be successful in
[17, 1, 16]. Figure 1 shows a structure, where intermediate features are used to detect an input anomaly in parallel to
the CNN inference. Many strategies use different datasets or metrics for evaluation, making a comparison difficult.
Therefore, we introduce EFFECT, a tool, enabling comparison of newly developed methods with different anomaly
detection strategies, known in literature. Our approach takes the anomaly detection accuracy as well as the introduced
computational overhead into account and, makes a grounded comparison available. The contribution in this paper is
thus:

• We present EFFECT, an end-to-end framework to evaluate and compare strategies to detect anomalies during
CNN inference based on layer traces
• Using EFFECT, we implement and test new strategies to detect anomalies, showing Mahalanobis distance and

CNNs as the best for our use cases
• We show an evaluation and comparison of state-of-the-art methods and our newly proposed combinations, using

EFFECT on two use cases: (A) Detecting abnormal system behavior as well as (B) detecting fault origin.

2. Related work

Anomalies in neural networks can either be caused unintentionally by the environment or by hardware faults or be
a result of intentionally induced attacks.

Out of distribution samples can be caused by inputs that were not part of the training dataset, or when dealing
with dataset shifts when operating in conditions unknown to the network, such as weather or daytime. Detecting these
samples can be done, e.g., with [10]. By using temperature scaling [2], this OOD detector observes the impact of the
slight alterations to the input on the output. If the output drastically changes, the input likely is an OOD sample. While
providing good results, this approach only works for OOD samples and needs multiple inferences for its decision.
In addition to that, [9] allows for out of distribution detection, but only focuses on dens layers and needs training
information for configuration.

Hardware faults, like random bit flips or stuck at faults, can be detected by [17]. In this approach, intermediate
feature representations are traced and anomalies are detected using a pretrained neural network. The same approach is
used to detect a noisy image in [16], where additional environmental information is considered and used for classifi-
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Fig. 2. Schematic diagram of framework workflow, starting with network model, layer list and input data. Arrows point towards (intermediate)
generated artifacts. Gray boxes mark examples for the concepts shown in white boxes. Dark gray boxes signify generated artifacts suitable for
further use.

cation. By calculating the distance between a fully connected layer of one inference to a given example, [5] introduces
a method to label neural network decisions as problematic, by calculating the Euclidean distance between the current
activations and a predefined sample. In contrast to [17, 16], this method only traces one and not many layers. The
methods in [17, 16, 1] show good results but can neither be compared to each other nor to other newly introduced
approaches, because of different datasets and metrics.

In addition to that, [17, 16] lack explainability, lying in the nature of its methods. Using machine learning methods
to detect anomalies during inference of other machine learning methods only moves the problem and does not mitigate
it. Besides the detection of anomalies, some approaches exist that try to train a network to be resilient against out-of-
distribution or adversarial inputs [19, 7], or alter the structure to filter out appropriate input aspects. While providing
acceptable results, these approaches only move the problem to a careful selection of training data.

Overall, the common problem with all methods is the lack of comparability between them, due to divergent metrics
and different datasets. There exists no framework to compare them against each other or newly introduced anomaly
detection methods. EFFECT closes this gap, by providing a framework for easy comparison and configuration of new
and existing methods like [9, 17, 16, 1].

Algorithm 1 Framework overview
Require: Matching list M, classification list C,

network model n, dataset D, traced layers L
1: function evaluate strategies(M,C, n,D, L)
2: Ftrain, Ftest ← trace generation(n,D, L)
3: for m ∈ M do
4: A← preprocessing(m, Ftrain)
5: for c ∈ C do
6: if compatible(m, c) then
7: R← eval strategy(c,m, A, Ftest)
8: end if
9: end for

10: end for
11: end function

Algorithm 2 Trace generation
Require: Traced network n, complete dataset D,

traced layers L
1: function trace generation(n,D, L)
2: Dtrain,Dtest ← split(D)
3: for l ∈ L do
4: Ftrain,l = { f = n(d, l) | d ∈ Dtrain}
5: Ftest,l = { f = n(d, l) | d ∈ Dtest}
6: end for
7: ∀ ftrain ∈ Ftrain,l : Ftrain ← Ftrain ∪ { ftrain}
8: ∀ ftest ∈ Ftest,l : Ftest ← Ftest ∪ { ftest}
9: return Ftrain, Ftest

10: end function

3. Tracing framework concept

EFFECT describes a framework and end-to-end workflow for testing, evaluating, choosing and configuring dif-
ferent inference classification strategies for defined faults or normal operation of preexisting neural networks. All
strategies share the same fundamental structure, using traces of intermediate feature representations and classifying
them in parallel to the running inference. This chapter describes the three framework steps. In section 4, EFFECT
gets evaluated by choosing strategies to distinguish network inferences into normal or abnormal runs, described in
section 5.1. Afterward, the framework is then used a second time to test strategies detecting the fault origin and reason
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for an abnormal inference (section 5.2). Algorithm 1, fig. 2 and the following chapters describe the EFFECT workflow
in detail and shows the strengths of this framework. Providing high flexibility while simultaneously automating the
train and test setup, the workflow encapsulates the steps as far as possible, to allow an automated test of a broad range
of classification strategies.

EFFECT consists of three steps, trace generation, preprocessing and classification evaluation. A trained network
model and dataset specifies the given use case. To specify real world application, trace generation is used to generate
inference traces based on specified watched layers. The same layers are used during training, testing and evaluation.
As shown in algorithm 1, a training dataset Ftrain and a test dateset Ftest of feature map traces is generated, by doing an
inference for every input dataset element d ∈ D and saving the outputs of the specified layers in L. Trace generation
keeps the original classification of the inference inputs for the corresponding traces in regard to test and train data,
as well as predefined classes. Afterward, neither the original dataset D, nor the neural network model n is needed
for preprocessing or classification evaluation, thus eliminating the need to retrain or modify the existing network.
For every classification strategy c ∈ C, and for every dimension matching strategy m ∈ M, the following steps
are executed. If the classification is compatible with the dimension matching strategy, the classification is prepared
in the preprocessing step. Here, the training dataset Ftrain, consisting of the output traces marked for training, is
used in junction with the dimension matching d to prepare a classification strategy c. Afterward, in the classification
evaluation step, the test traces Ftest are run through the classificator c using the dimension matching strategy m to
create the results R = (a,mconf , tCUDA, nmem). EFFECT traces the accuracy a, the confusion matrix mconf , the CUDA
time tCUDA as well as the used memory nmem. The three steps are explained in more detail below.

3.1. Trace generation

Traces are signified as feature activation maps F of previously specified layers in L. For every input of the training
dataset D (split into predefined classes), an inference takes place for the given model n and the traces are saved.
Depending on the configuration, the inference output might also play a role for classifying the traces and can be
saved into F. Algorithm 2 shows the algorithm for trace generation. Required are a network model n, for which
EFFECT should evaluate AI operation classification strategies, a dataset of inputs D, split into subsets representing
the different operational classes, as well as a list of traced layers L. For each element in the dataset, an inference
run of the existing network is done. During each inference, samples are fed through the machine learning model and
intermediate feature traces, sorted by specified layer and split into the given classes, are collected. Creating traces f
for each of the monitored layers in L based on the given datasets D comprises step one. Inside the framework, the
trace for every feature activation map includes the complete data. No dimension matching takes place during trace
generation. The generated traces, split into test and training, are then saved for later use.

3.2. Preprocessing

This section necessitates dimension matching, to equalize the dimensions of the traced feature maps for further
classification, including dimension reduction if desired. For further calculations, knowledge over the used classifica-
tion strategy is necessary. The algorithm describing this is listed in algorithm 3.

When generating traces of AI models, the output dimensions might not always be the same. In MobileNet for
example, the first convolutional layer has an output dimension of 112 × 112 × 32, while the fifth convolutional layer
has an output dimension of 28 × 28 × 32 [15], resulting in a dimensional mismatch when trying to concatenate
feature maps. Equalizing the dimensions is necessary to proceed for calculating classification artifacts as well as
for classification when using those artifacts. Matching the dimension of inputs between samples of different width
and height can either be done by scaling the length and width of smaller or larger samples to the same value, or
e.g., reducing the first two dimensions to a single value per feature map. The second strategy is used in, e.g., [16].
Here, each of the values of each activation map are summed, with this sum used as input into the anomaly detector.
Evaluated dimension matching strategies are highly dependent on the use case. Preprocessing also includes training
neural network based classification strategies. For every feature maps, generate artifacts gets called, generating
a set of artifacts A, necessary for classification, section 4.2 shows examples for dimension matching and the required
artifacts for each strategy.
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3.3. Classification evaluation

Classification evaluation takes place as the final and last step of EFFECT. Algorithm 4 shows this step. Depending
on the used classification c, the function classify gets called, classifying the test sample ftest. Depending on the
classifier, additional artifacts A might be necessary, such as pretrained neural networks or covariance matrices. After-
ward, the results are collected. For confusion matrices and accuracy, this includes comparing it to the true class ctrue.
Additionally, timing information as well as used data points are evaluated. The configured classifier is saved, allowing
for seamless integration and easy deployment, once a classifier is chosen.

Algorithm 3 Preprocessing
Require: dimension matching m, train dataset Ftrain
1: function preprocessing(m, Ftrain)
2: A = {}
3: for ftrain ∈ FTrain do
4: A← A ∪ {generate artifacts(m, ftrain)}
5: end for
6: return A
7: end function

Algorithm 4 Classification evaluation
Require: classification strategy c, dim. matcher m,

classification artifacts A, test dataset Ftest
1: function eval strategy(c,m, A, Ftest)
2: for ftest ∈ Ftest do
3: cpred = classify(c, ftest,m, A)
4: ctrue = get class( ftest)
5: R← R ∪ {register result(cpred, ctrue)}
6: end for
7: return R
8: end function

4. Anomaly Detection Strategies used for Evaluation

To show the capabilities of EFFECT, two different use cases are evaluated, (A) detecting anomalies in system
behavior as well as (B) detecting the origin of the faults. The combination of seven different classification strategies
with five different dimension matching strategies is shown in section 4.1 and section 4.2 as well as in Table 1 and
Table 2.

For the use case of anomaly detection, these combinations were not found in literature except for a few combina-
tions. These are: (a) with a specified threshold in [17]; (a,1) in [1]; (a,7) in [16]; as well as tracing every input with
strategy (5) in [9]. In Table 3 and Table 4, these combinations are marked with footnotes.

Evaluation is done for two network models (MobileNet [15] and ShuffleNetV2 [11]), tracing two convolutional
layers each. Choosing an early and a late layer provides information about basic as well as advanced features. With
different width and height between chosen layers, this provides the reason for the dimension matching strategies pre-
sented in section 4.2. Simulating normal system behavior, 10,000 correctly classified samples from the ImageNet [14]
dataset are used. Representing a hardware fault, 10,000 white noise samples are fed through the deep learning mod-
els. Simulating inference on unknown inputs, ImageNet-o (representing out of distribution samples) and ImageNet-a
(representing adversarial attacks) samples from [8] are fed through both models.

In a first experiment, the framework is used to select a strategy discriminating between normal and abnormal
samples. In the second experiment, EFFECT is used, to choose a strategy for the detection of abnormal system
behavior origin and classifying the traces into normal system behavior as well as white noise, adversarial or out of
distribution. In neither case, a retraining nor altering of the networks was necessary. The evaluation is done on an
NVIDIA RTX A6000, using driver version 520.61.50 and CUDA version 11.8.

4.1. Classification

Classification strategies specify the algorithm, deciding if the trace of an inference can be classified as normal or
abnormal. They also necessitate the use of dimension matching strategies, and calculated artifacts. Some combinations
between classification as well as the used dimension matching might not be possible. Table 1 gives an overview of the
classification strategies, presented below. The table also shows compatible dimension matching as well as necessary
input dimensions and classification artifacts. Classification strategies are numbered from (1) to (7) for easier reference.

(1) Euclidean distance: Calculate the Euclidean distance between the averages of different classes and the current
sample and select the class, whose average has the lowest distance between the sample and it’s average.
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Table 1. Overview of classification strategy, input sizes, for classification necessary data calculated and compatible dimension matching strategies,
outliers are marked in gray.

Classification Input dimension Calculation Necessary artifacts Dim. matching

(1) Euclidean distance NW × NH × Ns c = argmin
c

dc = argmin
c
| favg,c − f | Class avg. (a) - (e)

(2) Cross entropy NW × NH × Ns H(Q) = − 1
N
∑N

c=1 log Qc( f ) Class avg. (a) - (e)

(3) KL divergence NW × NH × Ns DKL = −
∑

f∈Ftrain Q f ( f ) log
(

Q f ( f )
Qc( f )

)
Class avg. (a) - (e)

(4) K nearest neighbor NW × NH × Ns Class of nearest k neighbors - (a) - (e)

(5) Mahalanobis dist. 1 × Ns + Ns × Ns dM(x,Qc) =
√

( f − favg,c)TS −1
c ( f − favg,c) Avg. & cov. mat. (a), (b)

(6) CNN based NW × NH × Ns Inference of CNN model parameters (c) - (e)

(7) Dense net 1 × Ns Inference of DNN model parameters (a), (b)

(2) Cross entropy: Calculate the entropy between the given sample and the average of the classes, where f is the
currently processed sample and Qc is the distribution over class c.

(3) Kullback–Leibler divergence [3]: Calculate the Kullback-Leibler divergence between the average of each
class and the current sample. where f is the currently processed sample, Q f the distribution over the sample and Qc

is the distribution over class c.
(4) K nearest neighbor: Classifying the sample based on k nearest neighbors of a subset of all training data, using

Euclidean distance. In this paper, 1 % randomly selected samples are chosen.
(5) Mahalanobis distance [12]: Calculate the Mahalanobis distance between the averages of different classes and

the current sample and select the class with the lowest distance, where f is the currently processed sample, favg,c is
the average sample value, and S c is the covariance matrix of the average of Ftrain of the current class c.

(6) CNN based classification: Train a convolutional neural network on activation traces with input sizes of NW ×
NH×Ns, where NW is the width, NH is the height, and NS is the amount of traced feature maps. Using two convolutional
and two dense layers and Sigmoid Linear Unit (SiLU) [4] activation function.

(7) Dense net classification: Train a fully connected neural network on activation traces with input sizes of 1×NS,
where NS is the amount of traced feature maps. Using two layers and Sigmoid Linear Unit (SiLU) [4] activation
function.

4.2. Dimension matching

Resulting from the different prerequisites on the classification strategies in section 4.1, choosing the right strategy
for matching the dimensions of different layer traces is important for successful classification. The evaluated dimen-
sion matching strategies are marked from (a) to (e), where the first two strategies reduce every feature map into a
single value and strategies (c) - (e) reduce or enlarge feature maps to a common size, respectively. An overview is
given in Table 2, where possibilities for combination with the compatible classification strategies as well as the input
and output sizes are listed. A description of those strategies is given below. The representation of one trace sample
is specified with t and consists of a set of feature map representations fi. It is specified as t = { f1, f2, ..., fN}, with N
specifying the amount of traced feature maps.

(a) Layer Summation: Summation of all values inside one feature map into a single value, where ai, j,k denotes the
activation value at indexes ( j, k) in feature map fi.

(b) Layer maximum extraction: Extract the maximum value of the activation, with ai, j,k denoting the activation
value at indexes ( j, k) in feature map fi.

(c) Layer up-scaling: Perform bilinear interpolation on all feature activation maps to fit specified dimension sizes,
where fi ∈ f denotes the ith feature map in the current sample, f specifies the processed sample, resize( fi, cx, cy) the
bilinear resizing function, cx and cy specify the target size in x and y dimension, respectively.
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√
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(6) CNN based NW × NH × Ns Inference of CNN model parameters (c) - (e)
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(2) Cross entropy: Calculate the entropy between the given sample and the average of the classes, where f is the
currently processed sample and Qc is the distribution over class c.

(3) Kullback–Leibler divergence [3]: Calculate the Kullback-Leibler divergence between the average of each
class and the current sample. where f is the currently processed sample, Q f the distribution over the sample and Qc

is the distribution over class c.
(4) K nearest neighbor: Classifying the sample based on k nearest neighbors of a subset of all training data, using

Euclidean distance. In this paper, 1 % randomly selected samples are chosen.
(5) Mahalanobis distance [12]: Calculate the Mahalanobis distance between the averages of different classes and

the current sample and select the class with the lowest distance, where f is the currently processed sample, favg,c is
the average sample value, and S c is the covariance matrix of the average of Ftrain of the current class c.

(6) CNN based classification: Train a convolutional neural network on activation traces with input sizes of NW ×
NH×Ns, where NW is the width, NH is the height, and NS is the amount of traced feature maps. Using two convolutional
and two dense layers and Sigmoid Linear Unit (SiLU) [4] activation function.

(7) Dense net classification: Train a fully connected neural network on activation traces with input sizes of 1×NS,
where NS is the amount of traced feature maps. Using two layers and Sigmoid Linear Unit (SiLU) [4] activation
function.

4.2. Dimension matching

Resulting from the different prerequisites on the classification strategies in section 4.1, choosing the right strategy
for matching the dimensions of different layer traces is important for successful classification. The evaluated dimen-
sion matching strategies are marked from (a) to (e), where the first two strategies reduce every feature map into a
single value and strategies (c) - (e) reduce or enlarge feature maps to a common size, respectively. An overview is
given in Table 2, where possibilities for combination with the compatible classification strategies as well as the input
and output sizes are listed. A description of those strategies is given below. The representation of one trace sample
is specified with t and consists of a set of feature map representations fi. It is specified as t = { f1, f2, ..., fN}, with N
specifying the amount of traced feature maps.

(a) Layer Summation: Summation of all values inside one feature map into a single value, where ai, j,k denotes the
activation value at indexes ( j, k) in feature map fi.

(b) Layer maximum extraction: Extract the maximum value of the activation, with ai, j,k denoting the activation
value at indexes ( j, k) in feature map fi.

(c) Layer up-scaling: Perform bilinear interpolation on all feature activation maps to fit specified dimension sizes,
where fi ∈ f denotes the ith feature map in the current sample, f specifies the processed sample, resize( fi, cx, cy) the
bilinear resizing function, cx and cy specify the target size in x and y dimension, respectively.
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Table 2. Overview of dimension matching strategies, corresponding output sizes and compatible classification strategies.

Dimension matching Calculation Output size Compatible classification

(a) Summation f = { fi | fi =
∑

j,k ai, j,k and 1 ≤ i ≤ N 1 × 1 (1) - (5), (7)
(b) Max. extraction f = { fi | fi = max j,k ai, j,k , 1 ≤ i ≤ N} 1 × 1 (1) - (5), (7)

(c) Up-scaling f = { fi | resize( fi, cx, cy) | 1 ≤ i ≤ N} WMax × HMax (1) - (4), (6)
(d) Clipping f = { fi | clip( fi, cx, cy) | 1 ≤ i ≤ N} WMin × HMin (1) - (4), (6)
(e) Zero padding f = { fi | pad( fi, dx, dy) | 1 ≤ i ≤ N} WMax × HMax (1) - (4), (6)

(d) Layer clipping: Clip the middle part of activation with larger sizes to fit the size of the smallest activation,
where fi ∈ f denotes the ith feature map in the current sample, f specifies the processed sample and clip( fi, cx, cy) a
function for returning the middle cx × cy entries of feature map fi.

(e) Zero padding: Pad the perimeter of smaller feature activation maps with zeros, where fi ∈ f denotes the ith
feature map in the current sample, f specifies the processed sample and pad( fi, cx, cy) a function, returning a matrix
with the dimension dx × dy and the middle entries equal to fi. Every other entry is equal to zero.

Necessary artifacts: In addition to matching the dimensions of feature activation, an information compression is
necessary for some classification strategies. These include averaging over all samples in one class. By interpreting
every sample as a random variable, it is possible to additionally calculate the covariance matrix over all samples.

5. Results

EFFECT evaluates given strategies for inference run classification and dimension matching in three aspects. For
each combination of dimension matching and classification, accuracy, confusion matrix, runtime as well as mem-
ory usage are tracked and the given graphs and tables are generated by the framework. Accuracy is calculated as
Acc = Ncorrect/Ntotal. For computational complexity, GPU time is a good indicator. Omitting disk loading time and any
CPU processing necessary, it only focuses on calculations inside the GPU itself. Memory consumption for necessary
calculated data is presented as float32 data points. Mini-batching is omitted for inference in this framework to be as
close to a mobile use case as possible, using dedicated hardware accelerators, where mini-batching of incoming data
is uncommon.

5.1. Anomaly detection

The samples are split into two classes, representing normal and abnormal input images. Correctly classified input
images from ImageNet’s validation dataset [14] are called normal. Traces generated from ImageNet-o and ImageNet-
a samples [8] as well as traces generated from white noise are called anomalies. 75 % of all data used as training
data and 25 % used as test data. For MobileNet, 96 feature maps and for ShuffleNetV2, 1048 feature maps are
traced per sample. In contrast to conventional classification methods, ML classificators highly depend on parameter
optimization to the given use case of traced layers and dimension matching strategies, resulting in a large design space.
For the following chapters, we focus on an architecture with two dense layers, either after two convolutional layers or
in sequence to dimension reduction methods, resulting in a one dimensional output. Accuracy is presented in percent,
runtime in µs and memory consumption in the number of float32 data points.

Accuracy: Table 3-A shows the classification results for traces passing through the two traced networks using ac-
curacy as metric. For Mahalanobis distance, only dimension matching resulting in a single value per feature map
is applicable ((a) and (b)). For machine learning methods the columns are split into fully connected networks (6)
and CNNs (7). The experiment was repeated three times, with the highest accuracy value presented. MobileNet is
marked light gray. Rows depicting ShuffleNetV2 are white. Dark gray cells mark incompatible combinations. Clas-
sifications, where all samples are classified the same, thus failing the task, are marked with an X. Inconsistencies
between percentages result from slightly unbalanced datasets. Low percentages not marked dark gray show results,
not exclusive to a single class. A trend emerges, where (1) Euclidean distance is strong, while some machine learning
based strategies (6) & (7) also show success in some combinations. The overall trend is constant for ShuffleNetV2
and MobileNet. For MobileNet, the strongest combination is (c,6) and (d,6) (CNNs with upscaling or clipping)
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for machine learning approaches, and (b,5) (Mahalanobis distance with maximum extraction) for conventional ap-
proaches. For ShuffleNetV2, (b,7) is the strongest machine learning approach.

Execution time: For parallel validation of an inference, using a parallel hardware module, reducing the computa-
tional complexity and choosing an approach that minimizes resource utilization is necessary to avoid large resource
overhead. In fig. 3-A, the total CUDA time used to classify every test sample is shown. The Y axis is logarithmic, with
shaded bar heads showing additional time used for ShuffleNetV2 traces. No additional bar signals identical runtime.
CUDA time is dependent on dimension matching as well as classification strategy. Reducing feature maps to a single
value (dimension matching (a) and (b)) always results in a lower CUDA time. Classification strategies (1) - (3), (6)
and (7) have lower CUDA time than (4) and (5). K nearest neighbor and Mahalanobis distance take longer for every
dimension matching strategy.

Memory usage: In addition to computational complexity, reflected by CUDA time, the used memory consumption
is a governing factor for usability in mobile and embedded applications. Table 4-A shows the memory consumption
of every dimension matching strategy. Because the traced layers per evaluated model have different sizes, the total
amount of used memory is different between both models. For every strategy, Layer summation and maximum extrac-
tion use the least amount of memory. With 2.7 G data points being necessary, k nearest neighbor for ShuffleNetV2 in
combination with zero padding or up-scaling uses the most memory. Classificators based on machine learning models
take advantage of not needing class examples, saving parameters instead. This results in a memory usage lower than
k-nearest-neighbor and Mahalanobis distance based classificators, only classificators (1) - (3) use less memory.

5.2. Detecting fault origin

EFFECT is used in a second experiment to find fitting classifiers for detecting fault origin, again without the need
for altering or retraining the networks. The samples are split into four different classes, normal, out of distribution,
adversarial as well as white noise. Correctly classified input images from ImageNet’s validation dataset [14] are
called normal, traces generated from ImageNet-o [8] are called out of distribution, ImageNet-a samples [8] are called
adversarial and traces generated from white noise are called white noise. Thus, the used dataset is the same, only
abnormal samples are now split into three classes instead of one.

Accuracy: When comparing Table 3-A with Table 3-B, classification accuracy decreases. While some strategies
have a large overall reduction in accuracy for both traced networks (Euclidean distance), other strategies still achieve
acceptable performance for one network (Mahalanobis distance). The confusion between adversarial samples from
ImageNet-a, ImageNet-o and samples from ImageNet is the high for all strategies, but was irrelevant for the previous
use case. Detecting out of distribution samples from ImageNet-o has less confusion with normal samples. The least
confusion is in regard to white noise. For every classification strategy, the confusion with white noise is lowest.

Execution time: Figure 3-B shows the used CUDA time for fault origin detection. Execution time doubled for
conventional methods, namely (1) - (3) and (5), because the necessary amount of calculations doubles with twice the
classes. For k nearest neighbor, the execution time stays nearly constant, because the dataset is still 1 % of the total
data. For deep learning methods, the execution time stays similar, because the dimension of a network don’t scale
with the amount of possible classification results.

Memory usage: Compared to the anomaly detection presented in section 5.1, the memory usage for classifications
of fault origin is twice as large for classification strategies (1) - (3) and (5), Euclidean distance, entropy, KL divergence
and Mahalanobis distance, for k nearest neighbor, the memory usage is identical, because the total amount of samples
is the same, and 1 % of those are used for classification. For machine learning models, the same structure is used for
anomaly detection (described in section 5.1) and fault origin detection. Other than the last fully connected layer, this
results in nearly identical parameters sizes, with a deviation of only around 1 k parameters at most.

5.3. Summary

EFFECT provides the user with three aspects to choose the right abnormal AI operation detection method. Ta-
ble 3, Table 4, as well as fig. 3 are generated using the framework. For both use cases, all compatible combinations
between dimension matching and classification are evaluated. Section 5.1 shows the newly introduced method (b,5)
- Mahalanobis distance with maximum extraction - as the best method for anomaly detection in ShuffleNetV2. For
MobileNet anomaly detection using (c,6) and (c,7) CNNs with either upsclaing or clipping has the highest accuracy.
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In fault origin detection (section 5.2), the same strategies show the highest accuracy. Previously shown methods still
show high accuracy, but couldn’t beat the presented combinations. Euclidean distance is always the fastest method
and uses the least float32 data points. All in all EFFECT shows, though highly use case dependent in accuracy, the
overall trends regarding accuracy, memory and runtime hold true between use cases.

Table 3. Classification accuracy for MobileNet (M) and ShuffleNetV2 (S) in percent for use cases A and B over all classes, dark gray mark
incompatible combinations, X mark inability to differentiate any samples

Dimension Traced A: Anomaly detection B: Fault origin detection
matching model (1) (2) (3) (4) (5) (6) (7) (1) (2) (3) (4) (5) (6) (7)

(a) Layer M 72b X 40 69 78a Xc 62b 29 39 65 63a Xc

summation S 71b 56 57 65 87a Xc 58b 42 42 65 70a Xc

(b) Max. M 76 X 71 74 80 70c 64 X 50 68 58 74c

extraction S 73 X 36 74 93 89c 66 X 36 67 86 80c

(c) Up- M 85 65 67 75 90 78 65 47 67 84
scaling S 78 53 57 38 71 67 43 53 33 65
(d) Clip- M 85 65 67 74 90 78 65 48 63 84
ping S 72 52 54 36 54 59 42 46 32 53
(e) Zero M 76 X 38 35 55 67 X 38 X 35
padding S 71 58 66 35 X 59 43 52 29 X
Combinations not found previously in literature, except for: (a) partially in [9]; (b) in [17] and [1]; (c) in [16]

Table 4. Data points for dimension matching strategy with used classification for use cases A and B, dark cells mark incompatible combinations
Dimension Traced A: Anomaly detection B: Fault origin detection
matching model (1) - (3) (4) (5) (6) (7) (1) - (3) (4) (5) (6) (7)

(a) Layer M 192b 19 k 36 ka 34 kc 384b 19 k 73 ka 34 kc

summation S 2096b 221 k 2 Ma 225 kc 4138b 221 k 4 Ma 225 kc

(b) Max. M 192 19 k 36 k 34 kc 384 19 k 73 k 34 kc

extraction S 2096 221 k 2 M 225 kc 4138 221 k 4 M 225 kc

(c) Up- M 2 M 243 M 138 k 4 M 243 M 139 k
scaling S 26 M 2 G 418 k 52 M 2 G 418 k
(d) Clip- M 37 k 3 M 15 k 75 k 3 M 15 k
ping S 102 k 10.4 M 158 k 205 k 10 M 158 k
(e) Zero M 2 M 243 M 138 k 4 M 243 M 139 k
padding S 26 M 2.7 G 418 k 52 M 2 G 418 k
Combinations not found previously in literature, except for: (a) partially in [9]; (b) in [17] and [1]; (c) in [16]

A:(1) A:(2) A:(3) A:(4) A:(5) A:(6 & 7) B:(1) B:(2) B:(3) B:(4) B:(5) B:(6 & 7)
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Fig. 3. Graph showing execution time for different classification approaches clustered by matching strategy, for use cases A and B. Y axis is
logarithmic. The last bars methods include (6) and (7), dense net (for dimension matching (a) - (b)) and CNN based (for dimension matching (c) -
(d)) approaches.
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6. Conclusion

This paper presents EFFECT, an end-to-end framework capable of evaluating multiple combinations of dimension
matching and classification strategies for anomaly detection, without the need for altering or retraining existing meth-
ods. The detection is based on inference traces using previously defined layers. The capabilities of this framework are
demonstrated by evaluating two use cases on two machine learning models, anomaly detection and fault origin detec-
tion are tested MobileNet and ShuffleNetV2. For this, five dimension matching strategies and seven classification
strategies are combined and the accuracy, CUDA time and memory consumption for each combination is presented.
EFFECT is then used to find and configure the best combination for both neural network models out of existing strate-
gies and newly introduced methods. For previously introduced methods, the performance could be confirmed, but for
MobileNet, CNN based classification methods yield the highest accuracy in combination with upscaling or clipping
of the generated traces. For ShuffleNetV2, the Mahalanobis distance yields the highest accuracy. By implementing
our own dimension matching and classification strategies separately, it is easy to test and evaluate new strategies for
inference classification based on layer tracing and comparison to existing strategies. EFFECT can thus be used to
provide an overview of existing methods and present new methods in standardized ways.
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