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1. Introduction

Smaller batch sizes due to individualized products increase
the complexity of planning. Suitable production systems re-
liably produce a great variety of products. Furthermore, due
to volatile demands, adaptation planning is required in ever
shorter intervals [1]. As decisions in factory planning are the ba-
sis for economic success, it is particularly important to develop
new technologies that allow for thorough planning with little
effort [2]. Manufacturing simulation is an established method
to support and facilitate the decision making process during the
planning of complex production systems [3]. It allows to com-
pare different system configurations with regard to their logis-
tical goal achievement. Although manufacturing processes are
already automated to the extent that it is economically feasi-
ble, planning processes are still largely carried out manually
and individually by experts [4]. Thus, the creation of different
simulation models is still very time-consuming. There is a need
for adaptation of parameters, structures and control strategies in
each simulation model, even if the variants are similar [5].
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E-mail address: fadil.kallat@tu-dortmund.de (Fadil Kallat).

1.1. Methodological Structure

Fig. 1. Method to generate sets of feasible simulation models (SMT = satisfia-
bility modulo theory; (CL)S = Combinatory Logic Synthesizer).

Our approach, as depicted in Fig. 1, uses component-
based software synthesis and constraint solving methods. In
component-based software synthesis programs are not built
from scratch but are composed from a repository of software
components [6, 7, 8]. The Combinatory Logic Synthesizer
(CL)S is one such framework based on a type inhabitation al-
gorithm for combinatory logic with intersection types [7]. The
simulation model of the as-is analysis is migrated into a repos-
itory of typed components. Then the (CL)S framework is used
for the automatic composition of all possible variants accord-
ing to the user-intent (goal). The synthesis result of (CL)S is
provided as a tree grammar Σ that is used to enumerate all pos-
sible variants [9]. We translate the tree grammar into adequate
SMT formulas and introduce optimization constraints. In this
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work, the goal of the optimization criteria is to minimize the ac-
quisition costs of the machines considering a defined threshold
for the allowed throughput times. Domain-specific constraints
are also expressible in the SMT-Solver such as incompatibili-
ties between machines and automation components. SMT for-
mulas are first-order logic formulas with respect to background
theories. A background-theory prescribes the interpretation of
certain predicates and function symbols [10]. We use the SMT
solver Z3 [11] with the optimization functionality νZ [12] for
solving those formulas. The SMT solver determines the satisfia-
bility of the formulas and returns a tree model, which represents
a solution.

1.2. Outline of this Paper

This paper is structured as follows: In Section 2, we intro-
duce related work on automated simulation model generation
in the context of factory planning. Additionally, the fundamen-
tals of CL(S) are explained and some previous applications of
this framework are presented. In Section 3, the industrial use
case is depicted and we show the degree of freedom which is
inherent to this planning problem. In Section 4, we set up the
respective feature model and the repository for the synthesis of
all possible simulation models. In Section 5, the runtimes of the
CL(S) framework as well as the top three system configurations
with respect to costs are given as the main results. We conclude
this paper in Section 6 with a short summary and an outlook to
future work.

2. Related Work

In this section, the current approach to factory planning is
presented and compared with our approach and a brief overview
of related work from the field of automated simulation model
generation (ASMG) for factory planning is given. Then, the for-
mal foundation of (CL)S is shortly outlined to provide a basic
understanding of the theoretical background.

2.1. Further Development of existing approaches

The current approach to factory planning in practice is com-
pared qualitatively with our approach in Fig. 1. During the as-is
analysis, the state of the production system is examined to gain
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Fig. 2. Example of considered planning variants during the factory planning
process (gray line = current procedure in practice; black line = our approach).

an understanding of the underlying problem. In the next step,
experts collect and develop planning variants based on discus-
sions and experience. This leads to selecting a few variants for
detailed planning, since the experts involved still have to over-
see the solution space. Subsequently, often only the favorite pa-
rameter setting is used for the simulation to assess the system
performance [13].

Our approach differs in that, after the as-is analysis, all com-
binatorially possible solution alternatives are generated auto-
matically. From these, the most promising ones are selected by
means of an optimization heuristic and simulatively compared
using cloud computing, which is the basis to evaluate a huge
number of different planning alternatives within a reasonable
time [14]. Our approach avoids the rejection of potentially bet-
ter plant concepts by experts in an early planning phase by con-
sidering a larger solution space. In this way, well-trodden paths
are left, because scenarios are also considered that would at first
glance appear to be unacceptable to experts.

2.2. ASMG for Factory Planning

There has been some research in the field of automated sim-
ulation model generation (ASMG) for discrete manufacturing
over the last years that aims at reducing the efforts for simu-
lation model generation for tasks in production planning and
control, bottleneck detection, remanufacturing and layout plan-
ning [15].

Völker et al. [16] couple a factory planning tool with a simu-
lation environment to automatically generate the matching sim-
ulation model. This approach reduces the effort in creating sim-
ulation models of planning alternatives, but it does not solve
the problem of how to create different planning variants. This is
still done manually by experts in the factory planning tool.

As far as we know, the existing approaches of ASMG have
focused on generating a specific simulation model that satis-
factorily represents the real system. In [5], an ASMG approach
for the management and exploitation of the planning variety in
factory planning projects was developed.

Previous work used the CL(S) framework for workflow man-
agement in factory planning. This paper focuses on the selec-
tion and configuration of machines and equipment. Winkels [1]
used (CL)S within the scope of the precedence diagram method
with a repository of taxonomically ordered building blocks for
the creation of planning workflows. The planning blocks con-
tain methods and processes of factory planning and are de-
scribed in detail in [17].

In [5], a first theoretical example of a production line was
synthesized with CL(S). There were only twelve system vari-
ants. This paper uses a real-world example with considerably
larger solution space to prove the scalability and the applicabil-
ity of our approach.

2.3. (Combinatory Logic) Synthesizer

Use cases of the Combinatory Logic Synthesizer (CL)S in-
clude the automatic composition of software and also for the
synthesis of data structures such as BPMN 2.0 processes [8] and
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planning processes [4]. The framework is fully integrated into
the Scala programming language and is publicly available [18].

The formal foundation of (CL)S lies in the type-theoretical
problem of inhabitation Γ � ? : σ, which denotes the question
if a well-typed applicative term exists, that can be formed from
the user-specified repository Γ of typed combinators to satisfy
the target type σ. Each combinator (c : τ) in Γ represents a type
assumption τ for a combinator named c. The inhabitation algo-
rithm [7] uses the combinator types to determine which combi-
nators can be applied to each other in order to satisfy the target
type.

If a combinatory expression M exists, so that Γ � M : σ,
then we call M inhabitant of σ. Terms are constructed by a
named component or combinator c or an application of M to
N, (MN), where M and N are terms. The type system of (CL)S
is based on intersection types [7]. Types are constants which
can be native or semantic types. Native types correspond to
data types in programming languages, whereas semantic types
can be used to consider additional domain-specific knowledge.
Types can also be type variables that can be substituted by type
constants according to a substitution map. Moreover, function
types (σ→ τ) or intersections (σ ∩ τ) can be used to construct
a type.

Although the underlying type system of (CL)S is well-suited
to express feature vectors of programs and software compo-
nents, the expression of domain-specific knowledge is limited
since expressing the logical connectives conjunction, disjunc-
tion and negation is difficult when using intersection types [19].
In addition, expressing constraints on the global structure of re-
sults is challenging, since in the combinatory approach the typ-
ing information is specified for a local combinator.

Therefore, in [19] the authors evaluated the joint usage of
(complementary) specification formalisms that yield a synthe-
sis approach, which benefits of the particular strengths of the
underlying techniques. The authors identified SMT as a proper
counterpart to the (CL)S specification formalism and used SMT
for filtering the enumeration of inhabitants. The approach is im-
plemented in a tool called CLS-SMT and was evaluated con-
sidering an example for sort programs and a labyrinth example.
The additional domain-specific constraints referred to the struc-
ture of the inhabitants. In contrast, we mainly consider numeri-
cal optimization in this paper.

Heineman et al. [20] migrate an existing object-oriented
framework into a software product line. They show how to de-
sign a repository of modular units, which are formalized using
combinatory logic. In this paper, we follow a similiar approach
by taking an existing simulation model and migrating it into a
simulation model product line.

3. Industrial Use Case

In the context of this paper, a discrete event simulation
application is implemented using the simulation framework
AnyLogic 8. The model of a sheet metal box production is a
real-world example. As shown in Fig. 3, it consists of an in-
bound warehouse for the sheets, an intermediate storage area

for empty pallets, two cutting machines and two bending ma-
chines. One cutting machine is directly connected to the in-
bound warehouse, the other is supplied with sheets by fork-
lifts. Cut blanks are also transported to the bending machines
by forklifts.

Fig. 3. Simulation model of sheet metal production system in AnyLogic with
storages (A), two bending machines (B) and two cutting machines (C).

The variability in planning this production system results
from the choice of two cutting and two bending machines. Dif-
ferent cutting machines are available, which differ in their cut-
ting speeds (low/mid/high), the assembly space (processing of
small, medium or large sheets possible) and the type of load-
ing and unloading (automated - yes/no). We group continuous
parameters into intervals, because otherwise the solution space
would consist of an uncountable number of combinations. It
should be emphasized here that this is fundamental to automat-
ing the factory planning process.

Considering the introduced intervals, this results in 2∗3∗3 =
18 machine configurations for one cutting machine. For the
bending machines, two types (mid- and high-end) are available,
which bend at mid or high speed. Both in turn, can process dif-
ferent sheet sizes (small-medium-large) resulting in 2 ∗ 3 = 6
machine configurations for one bending machine. Fig. 4 sum-
marizes all possible configurations for each machine. In total,
there are 18 ∗ 18 ∗ 6 ∗ 6 = 11664 different system variants for
the production system consisting of two cutting and two bend-
ing machines.
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Fig. 4. Overview of the decision-making scope for the industrial use case.

4. Synthesis of simulation models

First, the scenario is converted into a feature model. A fea-
ture model represents all occurrences of a software product line

This is a resupply of March 2023 as the template used in the publication of the original article contained errors. The content of the article has remained unaffected.



Fadil Kallat  et al. / Procedia CIRP 93 (2020) 556–561 559

(SPL) [21]. It allows to map the variability and the different
configurations of the simulation model in the given use case.

Converting the scenario into a feature model was feasible
with little effort in consequence of the modular structure of the
simulation model. Fig. 5 shows the feature model, where each
leaf in the model represents a variation possibility. For instance,
the model shows that a cutting machine varies in cutting speed,
type of unloading and allowed sheet size.

Fig. 5. Feature model.

Next, the feature model is transformed into combinators for
synthesis, which is a fundamental step in our work. As a result
of transforming, we achieve the repository Γ, which is shown
in Fig. 6. Each combinator in the repository Γ is classified by
a native type (e.g. integer or string) and a semantic type. Ad-
ditionally, the combinators may have input parameters that are
classified in the same way. Given a target type, (CL)S tries to
find a set of combinators, that meet the target type and cover all
input parameters with appropriate combinators.

The combinators cuttingMachine and bendingMachine rep-
resent configurations of the particular machines. For instance,
the combinator bendingMachine requires a combinator of the
type E ∩ BendingTime(α) and also a combinator of the type
E ∩ SheetSize(γ). The native type E is in place for the data type
scala.xml.Elem, which represents XML documents in the pro-
gramming language Scala. The variable α expresses that the
bending time is arbitrary and can be substituted by Low, Mid
or End according to the substitution map WF in Fig. 6. In the
same way, the variables β and γ can also be substituted. Thus,
the BendingTime(α) in the type specification of the bending ma-
chine can be filled in by the combinators bendingMidEnd or
bendingHighEnd since they provide the required type. The to-
tal use case is described by the combinator sheetProduction in
that manner. The combinator expresses the idea that the sheet
production requires two cutting machines and two bending ma-
chines. By using different variables (α1, α2, ...), we achieve dif-
ferent configurations of the particular machines. However, we
can allocate variables to constant values by restricting the sub-
stitution map WF. For instance, we can demand that the first
cutting machine processes large-sized sheets with automated
unloading.

Besides a combinator name and type assumption, combina-
tors can have implementation details such as programs, data,
data fragments or functions in the Scala implementation of
(CL)S. In our case, they contain functions manipulating XML
fragments, which represent parts of the simulation model in a
AnyLogic project file. The combinators of the variation possi-

Γ = { sheetProduction : (E → E → E → E → E) ∩
(CuttingMachine(α1, β1, γ1)→
CuttingMachine(α2, β2, γ2)→
BendingMachine(α3, γ3)→
BendingMachine(α4, γ4)→
SheetProduction),

cuttingMachine : (E → E → E → E) ∩
(CuttingTime(α)→
Unloading(β)→
SheetSize(γ)→
CuttingMachine(α, β, γ)),

bendingMachine : (E → E → E) ∩
(BendingTime(α)→
SheetSize(γ)→
BendingMachine(α, γ)),

cuttingLowEnd : E ∩ CuttingTime(Low),
cuttingMidEnd : E ∩ CuttingTime(Mid),

cuttingHighEnd : E ∩ CuttingTime(High),
bendingMidEnd : E ∩ BendingTime(Mid),

bendingHighEnd : E ∩ BendingTime(High),
manualUnloading : E ∩ Unloading(Manual),

automaticUnloading : E ∩ Unloading(Automated)
smallSheetSize : E ∩ SheetSize(Small)

mediumSheetSize : E ∩ SheetSize(Medium)
largeSheetSize : E ∩ SheetSize(Large) }

WF = { (α→ Low), (α→ Mid), (α→ High),
(β→ Automated), (β→ Manual),

(γ → S mall), (γ → Medium), (γ → Large) }

Fig. 6. The upper part shows the combinator repository Γ for simulation model
synthesis, while the substitution map WF is shown in the lower part, which
indicates how the variables α, β and γ can be replaced.

bilities cuttingLowEnd, cuttingMidEnd,..., largeSheetSizes con-
tain the XML encoded values according to the correspond-
ing parameter. The implementations of the cuttingMachine and
bendingMachine combinators produce XML code, which rep-
resent the machine in its chosen configuration. XML files
are produced that are simulation models directly executable
by AnyLogic. Listing 1 shows the call for executing the inhabi-
tation algorithm. The algorithm is asked if it is possible to gen-
erate a solution that meets the requirement of using a combina-
tory expression (that is, a composition of combinators) of the
type SheetProduction. In our use case, we obtain 11644 differ-
ent valid and ready simulation models.

l a z y v a l r e s u l t s =
Gamma . i n h a b i t [ Elem ] ( ’ S h e e t P r o d u c t i o n )

Listing 1. Call for executing inhabitation
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However, not all of the generated simulation models are
useful since various configurations violate general project con-
straints. Therefore, we introduce SMT techniques for filtering
solutions. We use the tool CLS-SMT to translate the synthe-
sis result of the (CL)S framework, which is provided as a tree
grammar, into adequate SMT formulas. Solving these formu-
las with an SMT solver yields a tree model, which is a valid
inhabitant. The shape of solutions can be influenced by addi-
tional domain-specific constraints. In this paper, we consider
constraints that limit the throughput time and minimize the to-
tal costs.

All possible cutting and bending machine configurations are
compromised in the following sets:

CM = {−→cm1,−→cm2, . . . ,−→cm18} and BM = {−→bm1,
−→
bm2, . . . ,−→cm6}

We represent a cutting and bending machine configuration
by the following vectors:

−→cm = (cmcspeed, cmsize, cmunloading) and
−→
bm = (bmbspeed, bmsize)

We define the functions t() and c() that take a machine con-
figuration and return the throughput time or costs, respectively.
We assume that x sheets are processed by a cutting and bend-
ing machine that are configured to assemble the same sheet
size. The same applies to the variable y. Therefore, we require
cmi

size = bmj
size and cmk

size = bml
size with 0 < i, k ≤ 18 and

0 < j, l ≤ 6.
Given the number of sheets x, y and the additional processing

times e1, e2, which depend on the sheet size, we can calculate
the total costs and throughput time for a concrete configuration
as follows:

totalCosts = x ∗ (c(−→cmi) + c(
−→
bmj)) + y ∗ (c(−→cmk) + c(

−→
bml)),

totalT ime = x ∗ (t(−→cmi) + t(
−→
bmj) + e1) +

y ∗ (t(−→cmk) + t(
−→
bml) + e2)

Then, we can require that the total time should not exceed
400 minutes with minimal costs.

totalTime ≤ 400 ∧ min(totalCosts)

We implemented the described constraints as SMT formulas
and use the SMT Solver Z3 [11] with the optimization func-
tionality νZ [12]. By solving the formulas, we receive a tree
model that relates to the cheapest configuration. The solver re-
turns the next best tree model, when the previous one is added
as a negated formula. The solutions are generated and saved as

AnyLogic Project Files, so that they can directly be executed
and evaluated in the simulation environment AnyLogic 8.

5. Experimental Results

In this experiment, we introduce an exemplary job that re-
quires the processing of 40 small-sized and 60 medium-sized
sheets. Therefore, the inhabitation algorithm is asked if it is
possible to generate a solution that requires a cutting and bend-
ing machine configured to handle small-sized and medium-
sized sheets. We assume that a machine, which is able to pro-
cess large-sized sheets can also handle sheets of medium and
small size. The experiments were performed with the parame-
ters shown in Table 1. The table illustrates the maximum cutting
and bending time for a single sheet depending on the chosen
machine configuration. Furthermore, it lists additional process-
ing times depending on the type of loading and unloading and
the sheet size. The shown process times are exemplary, but close
to reality. The costs were chosen in relation to the machine con-
figuration and can easily be replaced by concrete prices.

The cheapest, but also the slowest configuration comprises
cutting at low speed, bending at mid speed and manual un-
loading. By having this configuration, processing a small-sized
sheet takes 72+120+180 = 372 seconds. Processing a medium-
sized sheet extends the time by 10 seconds and a large-sized
sheet by 20 seconds. In this way, the cheapest configuration
takes 647 minutes and costs 2120 whereas the fastest takes 317
minutes and costs 4020. By using the (CL)S inhabitation with-

Table 1. Costs and time (in seconds) that are considered during optimization
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Time 72 60 48 120 96 30 180 0 10 20
Costs 5 10 15 10 15 5 1 2 4 6

out filtering, we obtain 5184 different configurations. For this
experiment we assume a time limit of 400 minutes. After the
filtering with SMT techniques 1332 solutions are remaining.
Table 2 shows the three best solutions according to the lowest
costs and shortest throughput time. We migrated the simulation

Table 2. Three best machine configurations
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model within the space of a few weeks in a small team. The
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synthesis and the generation of the 1332 variants took 29 min-
utes and 53 seconds. (CL)S provided the first executable solu-
tion after 8 seconds. The experiment was run on a workstation
computer equipped with an Intel i7 processor and 64 GB RAM.

6. Conclusion and Outlook

In this paper we have used a real-world example of sheet
metal production to show how component-based software syn-
thesis and constraint solving with the CL(S) framework can be
used to generate all feasible system concepts during factory
planning and to propose the most economical option among
them. Different degrees of freedom are coded in a tree grammar,
whereby continuous variables are decomposed into suitable in-
terval ranges.

Our experiments suggest that the runtime of the synthesis
algorithm is challenging but not prohibitive in practically rel-
evant scenarios. The experiment documented here is only the
first in a series to be carried out in future work, with a view to-
wards more comparative information on scalability and further
research on engineering and tuning the synthesis algorithm for
scalability.

We are currently in the process of extending the presented
framework by an automatic adaptation of the layout if the num-
ber of machines is changed. Also, the number of required ma-
chines should be determined by the framework itself and no
longer by humans. Therefore, a further detailing of the produc-
tion spectrum is necessary to generate solutions that also in-
clude a feasible machine allocation. Furthermore, the approxi-
mation for throughput time estimation during constraint solving
could be further improved. It is also planned to apply learning
methods to the generated system configurations in order to cre-
ate a recommendation system that can help factory planners.
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